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46 ABSTRACT:

47

48 Late-onset Alzheimer’s disease (LOAD) is typically sporadic, correlated only to advanced age,
49 and has no clear genetic risk factors. The sporadic nature of LOAD presents a challenge to
50 understanding its pathogenesis and mechanisms. Here, we comprehensively investigated the
51 epigenome of LOAD primary entorhinal cortex brain tissues via single-cell multi-omics
52 technologies, simultaneously capturing DNA methylation and 3D chromatin conformation. We
53 identified AD-specific DNA methylation signatures and found they interact with bivalent
54 promoters of AD differentially expressed genes. In addition, we discovered global chromosomal
55 epigenome erosion of 3D genome structure within and across brain cell types. Furthermore, to
56 evaluate whether these age- and disease-dependent molecular signatures could be detected in
57 the in vitro cellular models, we derived induced neurons (iNs) converted directly from AD
58 patients’ fibroblasts and found a set of conserved methylation signatures and shared molecular
59 processes. We developed a machine-learning algorithm to identify robust and consistent
60 methylation signatures of LOAD in vivo primary brain tissues and in vitro fibroblast-derived iNs.
61 The results recapitulate the age- and disease-related epigenetic features in iNs and highlight the
62 power of epigenome and chromatin conformation for identifying molecular mechanisms of
63 neuronal aging and generating biomarkers for LOAD.

64

65 HIGHLIGHT:

66 1. AD-specific DNA methylation signatures are identified in entorhinal cortex brain cell types

67

68 2. The AD differentially expressed genes linked with differentially methylated regions via loop
69 interactions are enriched in a bivalent chromatin state

70

71 3. Chromosomal epigenome erosion of 3D genome structures occurs in LOAD brain cell types.
72

73 4. Shared and reliable methylation signatures are observed in both in vitro cellular iN models
74 and primary brain tissues.

75

76 5. Machine learning models identify robust and reliable methylation loci as AD biomarkers
77 across cell types.
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89
90 INTRODUCTION:
91 Studying human age-dependent disorders is a long-standing challenge, especially for

92 inaccessible tissues like the human brain. Sporadic late-onset Alzheimer’s disease (LOAD)
93 accounts for 95% of all AD cases.! Unlike the early-onset familial AD that is linked to genetic
94 mutations in a specific gene, such as those found in APP, PSEN1 and PSEN2 genes, LOAD is
95 thought to be caused by a complex combination of multiple genes and environmental factors,
96 largely aligning to several age-related co-morbidities. Elucidating the complex genetic
97 background interactions and epigenetic regulation that likely contribute to LOAD is critical to
98 developing targeted therapies.? DNA methylation, the most studied epigenetic system in
99 mammals, has been confirmed to play a crucial role in multiple human diseases such as cancer,
100 imprinting and repeat-instability disorders.? Intriguingly, aberrant DNA methylation is observed in
101 normal aging processes, highlighting the link between proper epigenetic regulation and
102 age-dependent cellular functions.

103 To characterize genome-wide LOAD-specific methylation signatures from in vivo brain
104 cell types, aligning our work with current brain cell type atlas efforts led by BRAIN Initiative Cell
105 Census Network (BICCN),*® we performed single-nucleus methyl-3C sequencing
106 (sn-m3C-seq), to jointly profile chromatin conformation and methylome from the same cell.”®
107 This approach enabled the definition of the cell type taxonomy in AD patients and identified
108 differentially methylated regions between AD and control (aDMRs) within and across brain cell
109 types and revealing erosion of the epigenome in single brain cells of LOAD patients based on
110 cell type-specific 3D genome structure alterations. These findings in human AD patients are
111 consistent with the observations on loss of epigenetic information in aged mice® and more
112 recently in an AD mouse model’® and human aged cerebellar granule neurons.™

113 In addition, to assess whether the epigenetic signatures found from in vivo human brain
114 tissues can be detected in cellular models, we derived induced neurons (iNs) directly converted
115 from dermal fibroblasts of LOAD patients and generated snmCT-seq datasets capturing
116 transcriptome and methylome of fibroblasts and iNs. We defined the distinct cell states of in vitro
117 cellular iIN models and characterized epigenetic signatures of AD from age-retaining iNs. A
118 comparative analysis between in vitro cellular models and in vivo primary brain tissues identified
119 conserved and robust methylation signatures. A reliable set of machine learning model selected
120 CpG sites showed a flawless accuracy of AD prediction across in vitro and in vivo cell types. In
121 summary, we generated a comprehensive dataset dissecting the underlying molecular
122 alterations involved in epigenetic regulation and 3D chromatin conformations of in vivo primary
123 brain tissues and in vitro cellular iN models (Figure 1).

124

125 RESULTS

126

127 ldentification of aDMRs in primary entorhinal cortex.

128 The single nucleus RNA sequencing (snRNA-seq) and ATAC sequencing (snATAC-seq)
129 of AD brain tissues have demonstrated that AD-specific transcriptome changes strongly depend
130 on cellular identity.”>"* However, the alterations of DNA methylation and 3D chromatin
131 architecture in LOAD brain cell types are still unclear. We applied our single nucleus multi-omics
132 technologies, snm3C-seq’ capturing methylome and 3D chromatin conformation to 4 AD and 3
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133 age-matched controls’ (CTRL) post-mortem human entorhinal cortex, a region critical in the
134 development of AD'®" (Supplementary Table 1). Collectively, 34,090 nuclei passed rigorous
135 quality control, with 2.3 + 0.7 million unique mapped reads and 4.3 + 1.4 x €5 chromatin
136 contacts detected per cell (Figure S1A and S1B). These provided reliable quantification of
137 methylome and detection of active or repressive chromatin compartments, topologically
138 associating domains (TADs), and chromatin loops in distinct cell types in the entorhinal cortex.
139 After integration with human brain methylome datasets ¢ based on mCH and mCG across
140 100-kb genomic bins, we annotated six cell classes, including excitatory neurons (Ex), inhibitory
141 neurons (Inh), astrocytes (ASC), microglia (MGC), oligodendrocyte progenitor cells (OPC), and
142 oligodendrocytes (ODC). They were further separated into 24 major cell types (Figure 2A and
143 Methods). Excitatory neuron clusters were separated into cortical layers (L) (L2/3, L4, L5, L5/6,
144 and L6) and projection types (IT = intratelencephalic, CT = corticothalamic, ET = extra
145 telencephalic, and NP = near-projecting). Inhibitory neuron types expressing different
146 neuropeptides could be separated, including Vip, Sst, and Pvalb, as well as rarer types like
147 Lamp5_Lhx6 and Pvalb_ChC. A small fraction of CA2 neurons might be attributable to
148 dissection contamination of the adjacent region between the hippocampus and entorhinal
149 cortex. We observed no significant (p-value = 0.469, t-test) cell type proportion differences
150 between 3 CTRL and 4 AD donors, with slightly increased ASC (p-value = 0.021) and
151 decreased MGC proportions (p-value = 0.024) in AD individuals (Figure 1B and 1D). Consistent
152 with findings in other vertebrate brain systems and young human donors®, 5mCs were also
153 observed in abundance in non-CG (or CH, H= A, C, or T) contexts in aged human individuals,
154 especially in neurons rather than glial cell types (Figure S1C). Global methylation levels across
155 major cell types ranged from 74.2% to 81.9% for CG-methylation and 0.8% to 8.5% for
156 CH-methylation without obvious differences across individuals. Consistent with the previous
157 finding, gene activation negatively correlated with gene-body mCH levels at cell-type marker
158 genes.®'®'° For example, SATB2 is a marker gene for excitatory neurons and showed reduced
159 mCH in excitatory neuron clusters (Figure 2C).

160 To identify the AD-specific putative cis-regulatory elements in a brain cell type-specific
161 manner, we grouped individuals into AD and CTRL and identified paired 209,972 aDMRs in the
162 13 major cell types (METHODS). MGC, ASC, ODC, and L2/3 IT neurons had the largest
163 numbers of aDMRs located mostly at the intergenic and intronic regions (Figure 2D). The
164 consistent methylation patterns of aDMRs across individuals showed robust AD/CTRL
165 differences, most of which were cell-type specific (Figure 2E). Meanwhile, we also observed
166 shared aDMRs across multiple cell types, like aDMRs located in gene GFPT2 introns, which
167 were hypermethylated in AD L2/3 IT neurons and AD ODC (Figure S1D). GFPT2
168 (glutamine-fructose-6-phosphate transaminase 2) is involved in the glutamate metabolism
169 pathway and controls the flux of glucose, which is becoming increasingly recognized as a
170 hypometabolism phenotype in cancer and AD brain.?*2' In addition, we analyzed the TF motif
171 enrichments (-log(p-value) > 10) in aDMRs across cell types (Figure S1E). For example, we
172 identified the TF SPI1 enriched in aDMRs hypomethylated in CTRL microglia. The
173 hypermethylated state of these aDMRs in AD microglia reflects the transcriptional repression in
174 SPI1 target genes and is consistent with AD snATAC-seq analysis." Furthermore, we quantified
175 the aDMRs distribution across the genome and identified 1,795 hotspots enriched for aDMRs
176 across the autosomes (METHODS), 26% of these hotspots were shared between at least 2
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177 major cell types (Figure 2A). The genome feature annotations of these hotspots showed a
178 significant enrichment of CpG island and SINE-VNTR-Alu (SVA) class of retrotransposons
179 (Figure 2B, Supplementary Table 2). Intriguingly, SVA as the evolutionarily young and
180 hominid-specific retrotransposons and LINE1 are mobilized active in the human genome and
181 are involved in human neurodegenerative diseases.???3

182
183 aDMRs interact with bivalent promoters of AD differential expression genes.
184 To interrogate the multivalent interactions regulated by DNA methylation and 3D genome

185 structures on transcriptional activity, we identified putative cis-regulatory elements (CREs) of
186 differential expression genes (DEGs) identified in distinct cell types of snRNA-seq dataset™ by
187 assigning the aDMRs to genes based on the loop interaction (METHODS). In total, 6,214
188 aDMRs/DEGs pairs, between 1,197 DEGs (across six major cell types) were assigned with
189 5,345 aDMRs in corresponding cell types (Supplementary Table 3). We found a significant
190 enrichment of aDMRs at heterochromatin (Het) and zinc finger protein genes associated with
191 chromatin states (Znf/Rpts)?*% (Figure 3C and METHOD). These repressive states were usually
192 marked by H3K9me3, associated with Ilamin-associated domains (LADs) and B
193 compartments.?*-?® However, the chromatin states on the promoters of DEGs linked with aDMRs
194 across cell types show significant enrichment of repressed Polycomb states (ReprPC) and
195 bivalent regulatory states (TssBiv and EnhBiv) (Figure 3D). The increased number of aDMRs
196 linked to DEGs in excitatory neurons amplified the enrichment of these repressive states, like
197 TssBiv, with depletion of active promoters (TssA1 and EnhA1) (Figure 3E). Bivalent promoters
198 are usually marked both with active (H3K4me3) and repressive (H3K27me3) histone
199 modifications.?® Approximately 15% of the promoters of total coding genes exhibit repressive
200 bivalent states or are bound by the PRC complex in the human brain. This proportion surged to
201 50% for the promoters of DEGs linked with aDMRs in both excitatory and inhibitory neurons, as
202 well as modest increments in glial cells (36% in ASC, 35% in ODC, and 24% in MGC) (Figure
203 3F and 3G). Examination of the combinatorial interactions between RNA expression of DEGs
204 and average methylation alterations of linked aDMRs showed no clear correlation, suggesting a
205 more complex relationship between epigenetic regulation and gene expression (Figure 3G).
206 aDMRs linked DEGs in excitatory neurons are enriched in KEGG pathways related to
207 glutamatergic synapse and axon guidance processes (Figure 3H). For example, one of the top
208 genes linked with aDMRs in neurons, CSMD1 (CUB and Sushi Multiple Domains 1) was
209 associated with 68 aDMRs in excitatory neurons and 10 aDMRs in inhibitory neurons and had
210 bivalent promoter and upregulated RNA expression in AD samples (Figure 3G). A genetic
211 variant of CSMD1 was previously found to be associated with schizophrenia and may be
212 involved in the complement cascade system, including synaptic pruning and
213 neuroinflammation.***' For certain DEGs in other cell types, like APOE in ASC, we identified 8
214 aDMRs associated with the gene, and 7 out of them were hypermethylated in AD samples,
215 consistent with the downregulation of APOE RNA expression. An upregulated AD DEGs
216 example in microglia and astrocytes, BCL6, had 12 aDMRs (MGC) and 5 aDMRs (ASC) linked
217 via loop interactions. Eight of the twelve aDMRs interacting with the BCL6 gene in microglia
218 were located in gene TPRG1 (Tumor Protein P63 Regulated 1), which is known to contain
219 differentially methylated loci in epigenome-wide association studies (EWAS) of AD.*23% One
220 upregulated AD DEGs found in neurodegenerative disease and AD mouse models,** HDAC4
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221 (Histone Deacetylases 4) was upregulated specifically in ODC and interacted with 6 aDMRs
222 spanning from 354 to 826 kbps downstream of the transcription start site (TSS), with three of
223 them being hypomethylated in AD and three hypermethylated (Figure S2). In summary, our
224 comprehensive datasets provide valuable resources to analyze the interplay between
225 cis-regulatory elements and genes involved in AD pathogenesis, which enables us to
226 characterize the associations of aDMRs with bivalent promoters and PRC repressive elements
227 within DEGs.

228
229 Chromosomal epigenome erosion in AD brain cell types.
230 Chromatin is organized into structures at different scales. The subchromosomal-level

231 compartment brings together regions that are tens to hundreds of megabases (Mb) away,
232 whereas TADs and chromatin loops are driven by interactions within several Mbs. Chromatin
233 organization and related dysfunctional nuclear lamina (LMNA) in Hutchinson-Gliford Progeria
234 have demonstrated the critical role of chromatin architecture in senescent cells, normal aging,
235 and age-dependent disorders.®*%" The initial studies in neurodegeneration mouse models
236 (Parkinson’s disease and AD) suggested abnormal dysfunctional histone modifiers such as
237 SIRT and HDAC family.*®* Further studies on heterochromatin protein 1a (HP1a), Polycomb
238 group proteins, and ATP-dependent chromatin remodeler-like CHDS indicated that the disrupted
239 chromatin structures and organization contributed to aging and age-related neurodegenerative
240 disorders.***? Chromatin accessibility assays in bulk (ATAC-seq) showed that the
241 AD-associated cis-regulatory domains were enriched in A compartments.*> However, the 3D
242 genome architecture and DNA loop contact maps in the LOAD brain, especially in distinct cell
243 types, are still unknown.

244 We first analyzed the proportion of contacts detected at different genome distances
245 within each single cell to examine the cell-type specificity of genome folding at different length
246 scales. Within the same cell type, AD samples have significantly more longer-range interactions
247 (20-50 Mb) and fewer shorter-range interactions (200 kb-2 Mb) compared to CTRL samples
248 (Figures 4A to 4C, S3A and S3B). Given that megabase-level interactions are usually
249 associated with compartment organization, we next investigated the relationship between
250 enriched, longer-range chromatin contacts and chromatin compartments. We identified
251 chromosome compartments in each cell type at 100 kb resolution and observed that enriched
252 longer-range interactions in AD were predominantly inter-compartmental (Figure S3C). This
253 finding differed from the enrichment of longer-range contacts seen in non-neural cells compared
254 to neurons, where intra-compartment interactions dominated.® Consistently, the compartment
255 strength was weakened in AD, as quantified by the decrease in contact correlation between the
256 intracompartment regions and the ratio between intracompartment and intercompartment
257 interactions (Figures 4D to 4F and Figure S3D). We also identified domains at 25 kb resolution
258 and loops at 10 kb resolution. The number of identified domains decreased in AD cells of all cell
259 types (Figure 4G), whereas the number of loops significantly was reduced in AD samples only in
260 ODC and MGC (Figure 4H). Generally, the insulation score at domain boundaries and the
261 interaction strength at chromatin loops were weaker in AD (Figures S3D and S3E), consistent
262 with the decreased shorter-range interactions. To associate the chromatin structure with gene
263 expression, we first identified 43,620 differential loops (DL) between AD and CTRLs, with nearly
264 all DL being lost in AD (99.8% of total DL). For example, TMEMS9 is a transmembrane protein
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265 inhibiting APP transportation to the cell surface and downregulated in AD inhibitory neurons.
266 Our data suggested that the chromatin loops surrounding the genes were also impaired during
267 AD, and the DMRs associated with TMEM59 by chromatin loops also showed increased mCG
268 (Figure 4G), suggesting the potential epigenetic dysfunction that led to the misregulation of its
269 expression. Together, our data indicated that an erosion process of chromatin occurs in AD,
270 which leads to the erroneous expression of bivalent repressive and PRC binding genes (Figure
271 41 and 4J).

272

273 snmCT-seq characterization of distinct cell states in human neurons directly converted
274 from AD fibroblasts.

275 Modeling age-dependent neurodegenerative diseases is by far one of the biggest
276 challenges for researchers seeking to find cellular model systems or animals that can
277 recapitulate temporal dynamics of up to years in duration. Reprogramming patient tissues to
278 induced pluripotent stem cells (iPSCs) is a powerful approach for genetic-based disease
279 modeling; iNs can be generated through differentiation from reprogrammed iPSCs or by direct
280 conversion from patient somatic fibroblasts.**#°* However, the transition through the stem cell
281 intermediate phase leads to a youthful rejuvenation of the epigenome (METHOD and Figure
282 S4), gene expression, long-lived proteins, mitochondria function, and telomere length in the
283 resulting neuron.*®*® The directly reprogrammed neurons from fibroblasts retain biological
284 aspects of age “°°' and disease.’? Single-cell RNA-seq studies in mouse iNs directly
285 converted from fibroblasts have suggested there is cell state diversity during
286 transdifferentiation.®® Genome-wide methylation and open chromatin dynamics revealed
287 epigenome and chromatin reconfiguration during mouse direct reprogramming.®®*” However, the
288 heterogeneity and epigenome dynamics of iN conversion of human fibroblasts, especially from
289 aged patients and AD donors, have yet to be investigated.

290 To characterize the cell state transitions along the human fibroblast-to-iN conversion
291 process and evaluate whether direct trans-differentiation iN models can mimic aging and AD
292 signatures in primary brain tissues, we profiled iNs from 6 LOAD and 4 age-matched, cognitively
293 normal control individuals, generating a snmCT-seq dataset of 6,242 cells as well as a
294 snmC-seq dataset of 11,402 cells (Supplementary Table 1). The cells were not sorted with
295 PSA-NCAM because we used snmCT-seq and can identify cells during analysis. The data
296 quality is comparable to our previous publication ® (Figure S5A; S5B). The methylome modality
297 in the snmCT-seq dataset covered 3.47%+ 1.7% (meants.d.) of the genome, whereas the
298 transcriptome detected 4,273+1726 genes from each single nucleus. Based on transcriptome
299 clustering, we identified 6 distinct cell states during the iN-induction process: fibroblast,
300 mesenchymal to epithelial transition (MET), intermediate neuronal progenitor (INP), iN, Misc1
301 and Misc2 (Figure 5A and 5B). The downregulated expression of fibroblast marker genes (VIM,
302 FN1, and CD44) and upregulated expression of neuron marker genes (MAP2, NCAM1, and
303 CAMK4) from fibroblast to iN state confirmed the successful iN conversion in both AD and
304 CTRL individuals (Figure 5C, 5D, Supplementary Table 4). The diversity of conversion efficiency
305 across individuals can be quantified by the proportion of iN states after 3 weeks of the
306 iIN-induction process, varying from 22%+ 3% in CTRL and 23%+ 11% in AD (Figure S5E and
307 S5F). Misc1 and Misc2 clusters have mixed marker genes and are labeled as uncharacterized
308 cell states. Misc1 may be due to transition failure during the transdifferentiation since several
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309 genes within heterochromatin are active, like CSMD gene families. In contrast, cell cycle-related
310 genes like CENP family genes and DNA replication genes are highly expressed in the Misc2
311 cluster, suggesting it may represent cells in oncogenesis or senescence (Supplementary Table
312 4).

313 To examine methylome reconfiguration during iN induction, we compared fibroblasts
314 within populations from the same individuals, i.e., CTRL and AD cells were compared
315 separately. In total, 4,476 (AD) and 698 (CTRL) fibroblast -> iN conversion-related DMRs
316 (cDMRs) were identified and were consistent across individuals within the AD/CTRL groups
317 (Figure 6E). We observed 244 cDMRs that were shared between AD and CTRL groups, and
318 almost all of them had methylation levels decreased from fibroblast to iN, suggesting that the
319 overexpression of ASCL1/NGN2 neuronal factors initiated a shared demethylation program at
320 downstream targets regardless of disease status. Conversely, only 4 cDMRs that gained
321 methylation during iN induction were shared between AD and CTRL. Overall, cDMRs were in
322 intergenic (51.67%=+ 11.08%) and intronic (41.19%%+ 11.38%) genome features (Figure S5G).
323 The motif enrichment analysis of cDMRs by HOMER?®® revealed a shared demethylation pattern
324 surrounding the binding sites of Zinc fingers (ZFs) and basic Helix-Loop-Helix (bHLH) TFs; there
325 was no significant (p-value < 0.01) motif enrichment at hypermethylated regions along the iN
326 conversion ftrajectory (Figure S5H). Intriguingly, neuronal differentiation genes like TCF4
327 coupling with induction factors ASCL1 and NGN2 showed increased RNA expression and their
328 binding motifs are enriched at the cDMRs demethylated during the iN conversion process
329 (Figure S5I). Additionally, we observed a higher expression level of ASCL1 and NGN2 and more
330 cDMRs found during AD iN induction, suggesting that the epigenetic landscape of AD
331 fibroblasts is more permissible for iN transdifferentiation. In summary, both AD and CTRL
332 fibroblast-derived iNs can be generated successfully with a shared ASCL1/NGNZ2-initiated
333 demethylation process, and 6 cell states can be observed both in AD and CTRL during
334 transdifferentiation.

335
336 AD-specific methylation and transcriptome signatures in fibroblast-induced neurons.
337 We compared AD versus CTRL groups within fibroblast and iN states to identify

338 AD-specific transcriptomic and methylation signatures. To this end, we identified 734 DEGs
339 (p-value < 0.01, log2foldchange >1) between AD and CTRL in fibroblasts and 223 in iNs.
340 Thirty-six (7) DEGs were upregulated (downregulated) in AD in both fibroblast and iN states
341 (shared DEGs; Figure 6A-D, Supplementary Table 5). We observed that 9 of the 36 shared
342 DEGs upregulated in AD belonged to the ATP synthesis pathway in mitochondria, for example,
343 UQCRB and COX6C. One of 7 AD-downregulated shared DEGs, FAM155A, was also
344 downregulated in AD in endothelial cells.*® Strikingly, GABA receptors (e.g., GABBR2 and
345 GABRB3) together with synaptic transmission-related genes, KCND2 and SYT14, were only
346 observed to be downregulated in AD in iNs rather than fibroblast (Figure 6C and Supplementary
347 Table 5). KEGG pathway enrichment analysis revealed that the pathways related to
348 neurodegeneration were enriched in AD-upregulated genes both in fibroblasts and iNs. In
349 contrast, genes involved in synaptic transmission and neuron development were significantly
350 downregulated only in AD iNs (Figure 6E and Supplementary Table 5).

351 Regarding the methylome, we identified 160,879 aDMRs, most distinct in either
352 fibroblast or iN. We detected 3,753 (2,863) aDMRs hypomethylated (hypermethylated) in AD


https://paperpile.com/c/3ZI3YH/hRWUN
https://paperpile.com/c/3ZI3YH/dpju0
https://doi.org/10.1101/2023.10.15.562394
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562394; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

353 shared between fibroblast and iN states (Figure 6F). These aDMR patterns depicted distinct
354 DNA methylation signatures between AD and CTRL for fibroblast and iN identities (Figure 6G).
355 To gain insights into the potential impact of DNA methylation on the binding of TFs, we
356 conducted motif analysis on these aDMRs, revealing 4 top TF families (ETS, ZFs, bHLH, and
357 bZIP) with a significant score (-log(p-value) > 15). Most ETS TFs were assigned to
358 hypomethylated DMRs in CTRL fibroblasts and iNs. In contrast, bHLH TF enrichments were
359 specific to fibroblast cell states, and bZIP TF enrichments were specific to aDMRs
360 hypomethylated in CTRL fibroblasts (Figure S6A). By examining the RNA expression of these
361 TFs from the same cells, we narrowed down the putative TF candidates within each TF family
362 and dissected the interactions between expressing TF and methylation states of their binding
363 motifs (Figure S6B). For instance, the AD upregulated TFs, BHLHE40 and its close homolog
364 BHLHE41, have specific enrichments at hypomethylated aDMRs in AD fibroblast, consistent
365 with their binding preference of unmethylated CpG sequences. ®° Both TFs are crucial in the
366 regulation of cholesterol clearance and lysosomal processing in microglia and may be
367 associated with AD pathogenesis.®'%2

368 Furthermore, we integrated information on DEGs and DMRs to identify putative CREs in
369 fibroblasts and iNs. DMRs were associated with genes by GREAT algorithms.®® In total, 10,070
370 aDMRs were paired with 659 DEGs in fibroblasts, and 2,963 aDMRs were identified associated
371 with 197 DEGs in iNs. The RNA expression changes of these DEGs and methylation alteration
372 of the associated aDMRs revealed an orchestrated gene regulation program between AD and
373 CTRL in vitro cellular models (Figure S6C and S6D). For example, the downregulated shared
374 DEG, FAM155A, was associated with 130 aDMRs in fibroblast and 83 aDMRs in iN that were
375 hypomethylated in AD on average. In contrast, 63(35) aDMRs in fibroblast (iN) assigned to the
376 up-regulated PAX3 gene were hypermethylated in AD samples. Concordantly, EWAS of AD has
377 reported PAX3 to be a hotspot, showing hypermethylation in AD hippocampus.®* Systematic
378 examination of RNA fold changes of DEGs and methylation difference of associated aDMRs
379 revealed a positive correlation and the correlation coefficient increased with the number of
380 associated aDMRs (Figure S6E). This positive correlation between gene expression and mCG
381 had been observed previously in cultured cell lines as a depletion of methylation in repressive
382 genes located in partially methylated domains (PMDs), resulting in the reactivation of gene
383 expression.®

384

385 Shared aDMRs between the in vitro fibroblast/iN model and isogenic entorhinal cortex
386 cell types.

387 There has been no systematic comparison on genome-wide epigenome between in vitro
388 iIN modeling and in vivo primary brain tissues from isogenic patients. We had profiled both the
389 entorhinal cortical tissue and cultured fibroblasts and iNs of 2 AD and 1 CTRL donors. Overall,
390 there is a small fraction (3,733) of aDMRs overlapping between in vitro fibroblast/iNs and in vivo
391 entorhinal cortex; 2,274 of them have the same direction of methylation changes and are
392 consistent across individuals and vitro/vivo cell types (Figure 7A and 7B). To validate the
393 reliability of these aDMRs and investigate individual differences, we did a random sampling of
394 aDMRs from in vitro or in vivo aDMR pools. We compared them to the 2,274 aDMRs between
395 the 2 AD patients and 1 CTRL donor. Distinguishable methylation patterns were evident in the
396 shared aDMRs, whereas those identified from either in vitro or in vivo methods lacked
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397 consistency (Figure 7C). The motif enrichment analysis on these shared DMRs revealed
398 putative TFs candidates (Figure S7A), like pluripotency associated TF, Pou5F1 (OCT4), as well
399 as early growth response-1 (EGR1) which have already been found to play crucial roles in early
400 stages of AD,%¢%" are specifically enriched in the hypomethylated aDMRs in AD samples.

401

402 A reliable set of differentially methylated sites for AD prediction.

403 Both cell type variations and individual differences influence the methylation fractions of
404 differentially methylated sites (DMSs) between AD and CTRL groups. To identify DMSs
405 consistent across cell types and resilient to individual variability, we devised a machine learning
406 (ML) method (Figure 7D). A meticulous iterative feature selection was employed to hone in on
407 candidate CpG sites (see Methods), resulting in a prediction accuracy of 97.1% to distinguish
408 AD v.s. CTRL donors (Figure 7E). We further filtered out sites influenced by individual effects
409 (METHODS) to enhance the prediction robustness, ultimately pinpointing 859 CpG sites.
410 Although samples exhibited variances between in vivo and in vitro conditions, the methylation
411 patterns of these sites consistently differentiated AD from the CTRL group, remaining stable
412 across diverse cell types and individuals (Figure 7F, 7G, and Supplementary Table 6).
413 Remarkably, when trained on in vivo snm3C datasets combined with in vitro snrmCT datasets
414 and applied to a separate validation dataset (Figure S7B and Supplementary Table 1) using
415 different technologies (snmC-seq, only methylome modality) comprising shared individuals and
416 three unseen donors, our prediction model, grounded on these sites, achieved a flawless
417 accuracy of 100%. Given the robustness of these sites and the predictive model across cell
418 types and donors, they promise valuable insights for subsequent research. The ML-selected
419 CpG sites also have biological importance. For example, 8 ML-selected CpG sites around the
420 BCL6 gene overlapped with aDMRs-enriched TPRG1 and P3H2 genes (Figure S7C). BCL6 is
421 one of the DEGs in microglia and astrocytes, whereas the TPRG1 locus comprises aDMRs that
422 could work as CREs of the BCL6 gene via loop interactions.

423
424 Discussion:
425 The intricacy of age-related dependencies in human brain neurodegeneration is

426 challenging to recapitulate in cell models, significantly constraining our investigation of the
427 molecular mechanisms underlying LOAD pathogenesis. Direct reprogrammed neurons were
428 confirmed to retain aging and AD transcriptomic signatures, providing a novel approach to
429 dissect the biological events occurring in AD brains. For in vitro cellular iN models, we
430 characterized six distinct cell states along the iN-induction process. We found that AD fibroblast
431 nuclei had a more permissive epigenetic state for ectopic expression of induction factors. We
432 also identified the DEGs and DMRs between AD and CTRL in a cell state-specific manner,
433 which are potential molecular biomarkers in the iN model and can be further explored in the
434 functional studies of AD pathogenesis.

435 In addition, we generated the first single-cell multi-omics datasets capturing methylome
436 and 3D chromatin conformation on the entorhinal cortex from LOAD patients. Moreover, we
437 compared brain cell types with isogenic in vitro cultured fibroblasts and iNs derived from the
438 same brain donors. Based on the comparison between the in vitro cellular model and in vivo
439 primary brain tissues, we identified robust aDMR candidates that demonstrated consistency
440 across cell types and individuals. Utilizing ML algorithms using these datasets, we developed a
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441 minimum and reliable prediction model to conduct LOAD diagnosis on in vitro cellular
442 fibroblast/iN models and primary brain tissues. Moreover, we found global chromosomal
443 epigenome erosion in brain cell types from LOAD donors, consisting of disrupted
444 active/repressive chromatin compartments, weakened chromatin domain boundaries, and
445 decreased short DNA loop interactions. Furthermore, by integrating our data with published
446 snRNA-seq datasets on LOAD patients, we identified the potential CREs interacting with the
447 DEGs involved in the AD process at a cell type-specific level. These findings suggest that an
448 age-dependent dysfunctional genome architecture in brain cell types plays a fundamental role in
449 neurodegeneration. In addition to the current molecular brain cell atlas efforts in the BICCN
450 consortium,® our datasets provide a comprehensive landscape and pilot study to phenotype the
451 epigenome of the aging brain and AD cognitive disorders.

452
453 Limitations:
454 Like other plate-based, genome-wide single-cell multi-omics assays, the relatively high

455 genome coverage and sequencing cost limit the number of cells and individuals profiled.
456 However, with the new generation short reads sequencer continually reducing sequencing
457 costs, our technologies and findings will become feasible to be validated in a larger group.
458 Nevertheless, recent studies on the methylation clock and EWAS suggest that the methylome
459 and epigenetic regulations play a key role in aging and age-dependent neurodegeneration
460 disorders like LOAD. We observed that part of the aDMRs overlapped with these
461 microarray-based methylated loci found in large cohorts; it will be necessary to see how the
462 robustness and consistency of our identified aDMRs and ML-selected loci working in a large
463 population in either brain cell types or fibroblast/iN cellular models. Although we revealed the
464 phenotype of chromosomal epigenome erosion using sequencing-based snm3C-seq
465 technology, the imaging approach may be another way to confirm the global chromatin
466 alterations in AD brain cell types, at least in some locus-specific manner. Nevertheless, our
467 findings have generated insights and provided pilot candidates to study the interplay between
468 and among methylome, transcriptome, and 3D chromosome for AD pathogenesis in both in vitro
469 cellular models and in vivo primary brain cell types, suggesting our datasets' unique and
470 constructive value for multiple fields.

471

472 Lead contact

473 Further information and requests for resources and reagents should be directed to and will be
474 fulfiled by the Lead Contacts Fred H. Gage (gage@salk.edu) and Joseph R. Ecker
475 (ecker@salk.edu).

476

477 Data and code availability

478 Our raw data is under uploading to GEO. The pseudo bulk methylation, RNA bams and aDMRs
479 tracks can be accessed in a browser as well.

480

481 METHODS

482 Ethics statement and IRB clinical information of AHA-Allen cohort
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483 Based on the clinical criteria published by the Consortium to Establish a Registry for Alzheimer’s
484 Disease (CERAD), National Institutes of Health (NIH) standards, and Braak staging, subjects in
485 AHA-Allen cohorts were recruited by Shiley-Marcos UCSD Alzheimer’s Disease Center. Dermal
486 human fibroblasts and postmortem entorhinal cortex were collected with informed consent and
487 strict adherence to legal and ethical guidelines from patients of the Shiley-Marcos UCSD
488 Alzheimer’s Disease Center.

489

490 Human iPSC lines and generation of iNs

491 Human iPSCs were obtained from the Salk Stem Cell Core. Fibroblasts were reprogrammed via
492 CytoTune™-iPS 2.0 Sendai Reprogramming Kit (ThermoFisher Cat # A165167) per
493 manufacturer recommendations. All iPSCs were Kkaryotypically validated via g-banded
494 karyotyping (WiCell) and are regularly screened for mycoplasm via MycoAlert™ PLUS
495 Mycoplasma Detection Kit (Lonza Cat # 75860-362). Two major approaches to generating
496 neurons in a dish are based on overexpression of proneural factors combined with chemicals
497 from iPSCs differentiation or directly converted from fibroblasts. Age-dependent transcriptional
498 signatures are more likely to be retained in directly converted neurons from fibroblasts rather
499 than in differentiated iPSCs.°' To assess different differentiation strategies to generate iNs and
500 characterize their epigenome modality, we conducted single nucleus methylome sequencing
501 (snmC-seq) to profile the methylome of iN cells differentiated from either human pluripotent
502 stem cells or human fibroblast cells via the overexpression of proneuronal factor NGN2
503 approach. Using young (1 yr. old, male) and aged (76 yrs. old, male) fibroblasts as cell
504 resources, we found that iNs generated from fibroblasts retained aging methylation features and
505 individual differentially methylated region (DMR) signatures, whereas the iPSC-iN method did
506 not. DMRs were erased during iPSC reprogramming and reconfigured during NPC
507 differentiation, and iPSC-iN cells from young and aged samples became indistinguishable
s08 (Figure S4). Direct conversion of iNs was performed via doxycycline-inducible
509 NGN2-P2A-ASCL1 (N2A) as previously described.®' Briefly, stable N2A fibroblast lines were
510 generated with lentivirus. Fibroblasts were maintained in dense cultures and passaged three
511 times under puromycin selection before induction. Upon confluence, media was replaced with
512 neural conversion media containing doxycycline for 21 days. For single-nuclei experiments, iNs
513 were washed with PBS, incubated for 20 minutes at 37°C with TrypLE (Gibco cat #12604039),
514 diluted in PBS up to 15 mL, pelleted at 100 x g for 5 minutes, aspirated, and snap frozen.

515

516 Nuclei purification from in vivo fibroblasts and iNs cells for shrmCT-seq

517 Cultured fibroblast and induced iN cells in the dish were dissociated in TrpLE medium. Cells
518 were counted and aliquoted at 1 million per experimental sample and then pelleted by
519 centrifugation at 100 x g for 5 min. The supernatant medium was aspirated, and cell pellets
520 were resuspended in 600 ul NIBT [250 mM Sucrose, 10 mM Tris-Cl pH = 8, 25 mM KCI, 5mM
521 MgClI2, 0.1% Triton X-100, 1 mM DTT, 1:100 Proteinase inhibitor (Sigma-Aldrich P8340), 1:1000
522 SUPERaseln RNase Inhibitor (ThermoFisher Scientific AM2694), and 1:1000 RNaseOUT
523 RNase Inhibitor (ThermoFisher Scientific 10777019). After gently pipetting up and down 40
524 times, the lysate was mixed with 400 ml of 50% lodixanol (Sigma-Aldrich D1556) and loaded on
525 top of a 500 ml 25% lodixanol cushion. Nuclei were pelleted by centrifugation at 10,000 x g at
526 4°C for 20 minutes using a swing rotor. The pellet was resuspended in 2 mL of DPBS
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527 supplemented with 1:1000 SUPERaseln RNase Inhibitor and 1:1000 RNaseOUT RNase
528 Inhibitor. Hoechst 33342 was added to the sample to a final concentration of 1.25 nM and
529 incubated on ice for 5 minutes for nuclei staining. Nuclei were pelleted by 1,000 x g at 4°C for 10
530 minutes and resuspended in 1 mL of DPBS supplemented with RNase inhibitors.

531

532 snmCT-seq library preparation

533 The optimized snmCT-seq library preparation is based on the snmCAT-seq published previously
534 8, A detailed bench protocol can be found at

535 https://www.protocols.io/view/snmcat-v2-x54v9jby1g3e/v2. In general, the purified nuclei were
536 sorted into a 384-well plate (ThermoFisher 4483285) containing 1 ul mCT reverse transcription
537 reaction per well. The mCT reverse transcription reaction contained 1X Superscript |l
538 First-Strand Buffer, 5 mM DTT, 0.1% Triton X-100, 2.5 mM MgCI2, 30 mM NaCl, 500 mM each
539 of 50-methyl-dCTP (NEB N0356S), dATP, dTTP and dGTP, 1.2 mM dT30VN_5 oligo-dT primer,
540 2.4 mM TSO_4 template switching oligo, 2 mM N6_3 random primer, 1U RNaseOUT RNase
541 inhibitor, 0.5 U SUPERaseln RNase inhibitor, and 10 U Superscript || Reverse Transcriptase
542 (ThermoFisher 18064-071). The plates were placed in a thermocycler and incubated using the
543 following program: 25 °C for 5 minutes, 42 °C for 90 minutes, 10 cycles of 50 °C for 2 minutes
544 and 42 °C for 2 minutes, 85 °C 5 minutes followed by 4 °C. Three pl of cDNA amplification mix
545 was added into each snmCT-seq reverse transcription reaction. Each cDNA amplification
546 reaction contained 1X KAPA 2G Buffer A, 600 nM ISPCR23_3 PCR primer, and 0.08U KAPA2G
547 Robust HotStart DNA Polymerase (5 U/mL, Roche KK5517). PCR reactions were performed
548 using a thermocycler with the following conditions: 95 °C 3 minutes -> [95 °C 15 seconds -> 60
549 °C 30 seconds -> 72 °C 2 minutes] -> 72 °C 5 minutes -> 4 °C. The cycling steps were repeated
550 for 12 cycles. One pl uracil cleavage mix was added into cDNA ampilification reaction. Each 1 pl
551 uracil cleavage mix contained 0.5 pl Uracil DNA Glycosylase (Enzymatics G5010) and 0.5 ul
552 Elution Buffer (QIAGEN 19086). Unincorporated DNA oligos were digested at 37 °C for 30
553 minutes using a thermocycler. After addition of 25 pl of conversion reagent (Zymo Research)
554 was added to each well of a 384-well plate, the following bisulfite conversion and library
555 preparation was based on snmC-seq2 (described previously®) and on an updated version
556 snmC-seq3 used in BICCN.%®

557

558 Nuclei purification from human postmortem tissues for snm3C-seq

559 Brain blocks were ground in liquid nitrogen with cold mortar and pestle and then aliquoted and
560 stored at - 80 °C. Approximately 100 mg of ground tissue was resuspended in 3 mL NIBT as
561 above. The lysate was transferred to a pre-chilled 7 mL Dounce homogenizer (Sigma-Aldrich
562 D9063) and Dounced using loose and tight pestles for 40 times each. The lysate was then
563 mixed with 2 mL of 50% lodixanol (Sigma-Aldrich D1556) to generate a nuclei suspension with
564 20% lodixanol. One ml of the nuclei suspension was gently transferred on top of a 500 ml 25%
565 lodixanol cushion in each of the 5 freshly prepared 2-ml microcentrifuge tubes. Nuclei were
566 pelleted by centrifugation at 10,000 x g at 4 °C for 20 minutes using a swing rotor. The pellet
567 was resuspended in 1ml of DPBS supplemented with 1:1000 SUPERaseln RNase Inhibitor and
568 1:1000 RNaseOUT RNase Inhibitor. A 10-pl aliquot of the suspension was taken for nuclei
569 counting using a Biorad TC20 Automated Cell Counter. One million nuclei aliquots were pelleted
570 by 1,000 x g at 4 °C for 10 minutes and resuspended in 800 pl of ice-cold DPBS.


https://paperpile.com/c/3ZI3YH/CquF3
https://www.protocols.io/view/snmcat-v2-x54v9jby1g3e/v2
https://paperpile.com/c/3ZI3YH/jkHcD
https://paperpile.com/c/3ZI3YH/ftg17
https://doi.org/10.1101/2023.10.15.562394
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562394; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

571
572 snm3C-seq library preparation

573 The purified nuclei for snm3C-seq were cross-linked with additional digestion and ligation to
574 capture in situ long-range DNA interaction following a modified protocol of Arima-3C kit (Arima
575 Genomics). A detailed bench protocol can be found in the BICCN atlas paper.®®

576

577 Automation and lllumina sequencing

578 The prepared nuclei from either shrmCT-seq or snm3C-seq were sorted into a 384-well plate by
579 Influx (BD) on a one-drop single mode. Then the automation handling of plates and library
580 preparation for both snmCT-seq and snm3C-seq libraries followed the same bisulfite
581 conversion-based methylation sequencing pipelines described previously '®%® and an updated
582 version snmC-seq3 used in BICCN.® To facilitate large-scale profiling, Beckman Biomek i7
583 instrument was used and running scripts were shared.®® The snm3C-seq, snmCT-seq and
584 snmC-seq libraries were sequenced on an illumina NovaSeq 6000 instrument using one S4 flow
585 cell per 16 384-well plates on 150-bp paired-end mode.

586

ss7 QUANTIFICATION AND STATISTICAL ANALYSIS

588 Single-cell methylation and multi-omics data mapping (alignment, quality control
589 (QC))

599 The snmC-seq3, snmCT-seq and snm3C-seq mapping were using the YAP pipeline
591 (cemba-data package, v1.6.8, https://hg-1.gitbook.io/mc/) as previously described.?'® The major
592 steps of the processing steps include:

593 1) Demultiplexing FASTQ files into single cells (cutadapt™, v2.10);

594 2)reads level QC;

595 For snmCT-seq (methylome part):

59¢ 3a) Reads from step 2 were mapped onto human hg38 genome (one-pass mapping for
597 snmCT-seq, two-pass mapping for snm3C) (bismark’" v0.20, bowtie2’?, v2.3);

598 4a) PCR duplicates were removed using Picard MarkDuplicates, the non-redundant reads
599 were filtered by MAPQ > 10. To select genomic reads from the filtered BAM, we used the
600 “XM-tag” generated by Bismark to calculate reads methylation level and keep reads with mCH
601 ratio < 0.5 and the number of cytosines > 3.

602 5a) Tab-delimited (ALLC) files containing methylation level for every cytosine position were
603 generated using allcools ® (v1.0.8) bam-to-allc function on the BAM file from step 4a.

604

605 For snmCT-seq (RNA part):

606 3b) To map transcriptome reads, reads from step 2 were mapped to GENCODE human v30
607 indexed hg38 genome using STAR™ (v2.7.3a) with the following parameters: --alignEndsType
608 Local --outSAMstrandField intronMotif --outSAMtype BAM Unsorted --outSAMunmapped None
609 --outSAMattributes NH HI AS NM MD --sjdbOverhang 100 --outFilterType BySJout
610 --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1

611 --outFilterMismatchNmax 999 ' # ENCODE standard options --outFilterMismatchNoverLmax
612 0.04  --alignintronMin 20 --alignintronMax 1000000 --alignMatesGapMax 1000000
613 --outFileNamePrefix rna_bam/TotalRNA
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614 4b) The STAR mapped reads were first filtered by MAPQ > 10. To select RNA reads from the
615 filtered BAM, we used the “MD” tag to calculate reads methylation level and kept reads with
616 mCH ratio > 0.9 and the number of cytosines =3. The stringency of read partitioning was tested
617 previously.®

618 5b) BAM files from step 4b were counted across gene annotations using featureCount™ (1.6.4)
619 with the default parameters. Gene expression was quantified using either only exonic reads with
620 “-t exon” or both exonic and intronic reads with “-t gene.”

621

622 For snm3C-seq (3C modality part):

623 4b) After the initial mC reads alignment as above, unmapped reads were retained and splitted
624 into 3 pieces by 40bp, 42bp, and 40bp resulting in six subreads (read1 and read2). The
625 subreads derived from unmapped reads were mapped separately using HISAT-3N " adapted in
626 YAP pipeline (cemba-data package). All aligned reads were merged into BAM using Picard
627 SortSam tool with query names sorted. For each fragment, the outermost aligned reads were
628 chosen for the chromatin conformation map generation. The chromatin contacts and following
629 analysis were processed using the scHiCluster described previously.”
630 (https://zhoujt1994.github.io/scHiCluster/intro.html)

631

632 Preprocessing of snmC-seq, snmCT-seq and snhm3C-seq data

633 Primary QC for DNA methylome cells was (1) overall mCCC level < 0.05; (2) overall mCH level
634 < 0.2; (3) overall mCG level < 0.5; (4) total final DNA reads > 100,000 and < 10,000,000; and (5)
635 Bismarck mapping rate > 0.5. Note that the mCCC level estimates the upper bound of the
636 cell-level bisulfite non-conversion rate. Additionally, we calculated lambda DNA spike-in
637 methylation levels to estimate each sample's non-conversion rate. For the transcriptome
638 modality in snmCT-seq, we only kept the cells containing < 5% mitochondrial reads, total RNA
639 reads > 5,000. For snm3C-seq cells, we also required cis-long-range (two anchors > 2500 bp
640 apart) > 50,000.

641

642 Clustering analysis of snmCT-seq and snm3C-seq data

643 For snmCT-seq (RNA part):

644 The whole gene RNA read count matrix was used for shrmCT-seq transcriptome analysis. Cells
645 were filtered by the number of genes expressed > 1,000 and genes were filtered by the number
646 of cells expressed > 10. The count matrix X was then normalized per cell and transformed by
647 In(X + 1). After log transformation, we used the scanpy.pp.highly_variable_genes to select the
648 top genes based on normalized dispersion. The selected feature matrix was scaled to unit
649 variance and zero mean per feature followed by PCA calculation. To correct batch effects across
650 individuals, we established a highly efficient framework based on the Seurat R integration
651 algorithm.”” The integration framework consisted of 3 major steps to align snmCT-seq datasets
652 on fibroblasts and iNs from different donors onto the same space: (1) using dimension reduction
653 to derive embedding of the multiple datasets separated by donors in the same space; (2) using
654 canonical correlation analysis (CCA) to capture the shared variance across cells between
655 datasets and find anchors as 5 mutual nearest neighbors (MNN) between each two paired
656 datasets; and (3) aligning the low-dimensional representation of the paired data sets together
657 with the anchors.
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658 To consensus clustering based on fixed resolution parameters (range from 0.2 to 0.6), we first
659 performed Leiden clustering "® 200 times, using different random seeds. We then combined
660 these result labels to establish preliminary cluster labels. Following this, we trained predictive
661 models in the principal component (PC) space to predict labels and compute the confusion
662 matrix. Finally, we merged clusters with high similarity to minimize confusion. The cluster
663 selection was guided by the R1 and R2 normalization applied to the confusion matrix, as
664 outlined in the SCCAF” package. This framework was incorporated in
665 "ALLCools.clustering.ConsensusClustering" function.

666

667 For snmCT-seq (methylome part):

668 We performed clustering analysis with the mCH and mCG fractions of chrom100k matrices
669 described previously.® Most functions were derived from allcools®, scanpy® and scikit-learn®’
670 packages. In general, the major steps in the clustering included: (1) feature filtering based on
671 coverage, exclude ENCODE blacklist and located in autosomes; (2) Highly Variable Feature
672 (HVF) selection; (3) generation of posterior chrom100k mCH and mCG fraction matrices; (4)
673 clustering with HVF and calculating Cluster Enriched Features (CEF) of the HVF clusters with
674 “ALLCools.clustering.cluster_enriched_features” function; (5) calculating PC in the selected
675 cell-by-CEF matrices and generating the t-SNE® and UMAP® embeddings for visualization; and
676 (6) consensus clustering process using "ALLCools.clustering.ConsensusClustering" function.
677

678 ldentification of DEGs, DMRs and aDMRs enriched hotspots

679 After finalizing clustering in in vitro fibroblast-iN snmCT-seq data analysis, we used a paired
680 strategy to calculate RNA DEGs within a specific cluster for AD-specific (AD versus CTRL) or
681 within a specific individual line for conversional DEGs (fibroblast versus iNs). We used all the
682 protein-coding and long non-coding RNA genes from hg38 gencode v30 with the
683 scanpy.tl.rank_genes_group function with the Wilcoxon test and filtered the resulting marker
684 gene by adjusted P value < 0.01 and log2(fold-change) > 1.

685 For DMRs identification, we merged the single-cell ALLC files into pseudo-bulk level using the
686 “allcools merge-allc” command. Next, we performed DMR calling with methylpy®* on a grouped
687 pseudo-bulk allc files. For example, to identify AD-specific methylation signatures in fibroblasts
688 and iN clusters, we merged the samples from all individuals in AD and CTRL groups separately
689 and then we called DMRs between these two groups. After getting the primary set of DMRs, we
690 counted the methylation level at these DMRs from all individuals using the “methylpy
691 add-methylation-level” function. Additional filtering on the DMRs was performed by comparing
692 the methylation levels among different individuals within groups using Student's t-test. Only
693 DMRs with a minimum p-value less than 0.05 between any two groups were retained. The same
694 processes were used to identify aDMRs in each specific brain cell type of shm3C-seq datasets.
695 aDMRs enriched hotspots of the in vivo entorhinal cortex were identified by a sliding window of
696 5kb bin across the autosomes, with normalized GC content. We employed PyComplexHeatmap
697 8 to visualize methylation level at these DMRs in the complex heatmaps. Hypomethylated
698 DMRs in the corresponding sample groups and cell types were labeled for better visualization.
699 The heatmap rows were split according to sample groups, and the columns were split based on
700 DMR groups and cell types. Within each subgroup, rows and columns were clustered using
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701 ward linkage and the Jaccard metric. The aDMRs-enriched hotspots were visualized by tagore
702 package.®

703

704 Gene set enrichment test, motif enrichment, chromatin states and functional
705 enrichment of DMRs

706 To validate the DEGs found in snmCT-seq dataset in vitro fibroblast/iN models, we performed
707 GO enrichment test using GSEApy & and Enrichr ® open source. The -log(adjusted P value) of
708 KEGG pathway enrichment in each selected gene set was color-coded on the enrichr combined
709 score with KEGG terms. For motif enrichment analysis, we obtained the hypomethylated and
710 hypermethylated DMRs reported by methylpy from the columns ‘hypermethylated_samples’ and
711 ‘hypomethylated_samples’. HOMER was used to identify enriched motifs within these different
712 sets of DMRs for each comparison. The results from HOMER’s ‘knownResults.txt’ output files
713 were used for downstream analysis. Only motif enrichments with a p-value < 0.01 were
714 retained. The motif enrichment results were visualized using scatterp‘ots in seaborn. To perfrm
715 fu‘ctional enrichment analysis of DMRs, we utilized GREAT
716 (http://great.stanford.edu/public/html/index.php). The genome feature annotation of aDMRs
717 enriched hotspots and ML identified DMSs in the entorhinal cortex was conducted using
718 “annotatePeaks.pl” functions in HOMER. The chromHMM states enrichment analysis of aDMRs
719 were quantified by “bedtools intersect” the overlapping of aDMRs with the corresponding
720 ChromHMM states based on histone ChiP-Seq peaks from the Roadmap Epigenomics project
721 derived from frontal cortex (67 and 80 years old female donors), the accession number is
722 ENCSR867UKF in the ENCODE database. Enrichment tests were performed using Fisher’s
723 tests with the significance of FDR adjusted p-value calculated by multiple tests.

724

725 Integration and annotation between snm3C-seq datasets and human brain atlas
726 To integrate our snm3C-seq dataset to the reference human brain methylation atlas (HBA),® we
727 used methylation information from both CHN and CGN sites. We derived log scaled
728 cell-by-100kb-bin methylation fraction matrices for CGN and CHN separately. After removing all
729 low quality bins (hg38 genome blacklist, coverage<500, or coverage>3000), we selected
730 features that were both highly variable and cluster enriched in HBA for PCA. The first 100 PCs
731 of mCG and mCH matrices were normalized by their standard deviations and then
732 concatenated horizontally for integration. We used canonical correlation analysis (CCA) to
733 capture the shared variance across cells between datasets and then selected 5 mutual nearest
734 neighbors (MNNs) as anchors between the datasets. Next, we used HBA as a reference dataset
735 to pull our dataset into the same space. More details on our integration algorithms are described
736 in Tian et al.® Lastly, we used Harmony on the CCA integrated matrix for better integration
737 between individuals. After integration, we annotated major cell types by the most numerous
738 HBA cell type within each leiden cluster in the joint embedding.

739

740 Chromation contact matrix and preprocessing imputation of snm3C-seq datasets
741 We performed imputation using scHiCluster (https://zhoujt1994.github.io/scHiCluster/intro.html)
742 to the contact matrices at 100kb, 25kb and 10kb resolution for single cell contacts within
743 10.05Mb (100kb and 25kb), and 5.05Mb (10kb). For imputation at 10kb resolution specifically,
744 convolution and random walk were performed to speed up the imputation. For pseudo-bulk
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745 analysis, we merged cells from each donor by major cell type (ASC, MGC, ODC, Inh, Ex) with
746 cell number across individuals as closely as possible to reduce bias created by different
747 sequencing depth. Most cell types across individuals had at least 150 cells for pseudo-bulk
748 analysis. For pseudo-bulk analysis that compared AD and CTRL cell types, the same number of
749 cells (n=400) were randomly selected and merged among AD and CTRL individuals.

750

751 Contacts, loop, domain, and compartment analysis

752 As described above, pseudo-bulk cell type groups were merged by individual and disease
753 status. We used imputed contact matrices for both single-cell and pseudo-bulk domain calling at
754 25 kb resolution and loop calling at 10 kb resolution. Raw contact matrices were used instead to
755 infer A/B compartments for pseudo-bulk groups at 100k resolution to better capture detailed
756 genome interaction. Differential loops, domains, and compartments were derived as described
757 previously,® so as saddle plots, compartment strengths, and loop summits. We calculated the cis
758 (intra-chromosomal) contact probability normalized by CG counts for each cell. DNA contacts
759 were binned by an exponent step of 0.125 with a base of 2, ranging from contact distance
760 between 2500bp to 249Mb. The start and end of the bin were calculated by 2500x270. 125i and
761 2500x270.125(i + 1). The short-long ratio in Fig.4C was defined as the mean probability of
762 contact in 51st (200k) to 76th (2M) binds divided by the probability of contact in 103rd (20M) to
763 114th (50M) bins. Based on the loop interactions mapped in 3C contacts, we assigned aDMRs
764 to a gene if the transcription start site (TSS) located in one 10kb-bin had interactions with the
765 bin where aDMRs were located. Then, aDRMs were considered as putative CREs of DEGs if
766 the aDMRs paired with genes found differential expressed in published sn-RNA datasets
767 between AD and CTRL.*

768

769 Determination of reliable CpG sites for AD prediction

770 ldentifying aDMRs to predict AD is multifaceted, involving various steps from preprocessing and
771 feature selection to validation.

772 Data preprocessing: Our initial step was to merge DMR sites between AD and CTRL groups for
773 every cell type. The methylation fraction was then extracted for all these sites for every sample.
774 To maintain data reliability, we filtered out any sites where the change in the methylation fraction
775 across samples was less than 0.4, or the standard deviation was less than 0.1. Given the
776 inherent biases in sample data, we further normalized these data within each sample using the
777 z-score. Following this preprocessing, the resultant data served as the primary candidate set we
778 considered for subsequent feature selection.

779 Feature selection: We employed an iterative feature selection approach to ensure a
780 comprehensive feature selection that captured as much reliable and informative data as
781 possible. This was done over 30 rounds. We used stratified 3-fold cross-validation (CV) in every
782 round to train Random Forest classifiers (RFCs). The importance of the remaining features was
783 gauged by the average feature importance derived from the RFCs. The top 500 features were
784 chosen in every round, and the rest were reserved for the next round. The parameters set for
785 the RFCs included utilizing 500 trees with a max_depth of 3 for each RFC.

786 Method evaluation: To ascertain the predictive capability of our selected features, we performed
787 a stratified 4-fold CV, ensuring that the stratification was based on the combined label of AD
788 versus CTRL and in vivo versus in vitro conditions. In each fold, the 3 training subsets
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789 underwent the feature selection process mentioned earlier. Following this, an RFC was trained
790 based on the chosen features, which was then used on the remaining fold to determine its
791 accuracy. After completing the 4-fold CV, we found that the overall prediction accuracy was
792 97.1%.

793 Mitigating donor effects: It is essential to account for donor variability. To do this, we selected
794 shared features from the prior 4-fold CV as candidates. We then evaluated their importance in
795 predicting AD vs. CTRL or determining the donor. Figure 7E demonstrates how each feature
796 played a role in these 2 prediction tasks. We finalized only those features that held a positive
797 importance for AD vs. CTRL predictions and an importance of less than 5e-4 for donor
798 predictions. This meticulous process resulted in 859 CpG sites.

799 Final predictor and validation: To validate our method, we trained an RFC using the 859
800 selected sites and then applied it to a separate snmC dataset comprising individual repeats and
801 3 unseen donors. This resulted in an accuracy of 100%.

802
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854 Figure 1. Overview of single-nucleus multi-omics to dissect epigenome erosion of LOAD

855 in in vivo entorhinal cortex and in vitro iNs.
856 (A)
857 entorhinal cortex and fibroblast-derived iNs.
858 (B)
859 comparison.
860

861

Design to conduct AD versus CTRL differential analysis and in vivo versus in vitro

Schematic illustration of generating single-nucleus multi-omics datasets on postmortem
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863 Figure 2. Epigenomic profiling of AD entorhinal cortex with snm3C-seq.

864 (A) Iterative clustering and annotation of human brain nuclei. Clustering and visualization by
865 t-distributed stochastic neighbor embedding (t-SNE) were based on mCG and mCH levels at
866 100kb bins. Major cell types were annotated and colored based on the integration analysis of
867 methylome datasets from the Human Brain atlas published previously.®

868 (B) t-SNE visualization on the clustering colored by groups and individuals.

869 (C) t-SNE visualization of gene body mCH levels for cell type marker genes, such as SATB2
870 (excitatory neurons), SLC6A1 (inhibitory neurons), MEF2C (all neurons), CUX2 (layer 2 and 3
871 neurons), SULF1 (oligodendrocytes), and RELN (astrocytes and oligodendrocytes).
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872 (D) The number of cell types, individual fractions and hypomethylated aDMRs. aDMRs bar
873 plot was colored by genome features of the aDMRs located. For example, ASC_AD represents
874 the aDMRs identified in astrocytes and hypomethylated in AD compared to CTRL.

875 (E) Heatmap showing the average methylation level at aDMRs in pseudo bulk of major cell
876 types across individuals. The columns were pseudo bulk samples grouped and colored by major
877 cell types, groups (AD or CTRL) and individuals. The rows are hypomethylated aDMRs grouped
878 and colored by finding cell types and hypomethylated groups.

879

880
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882 Figure 3. aDMR-enriched hotspots and interaction between aDMRs with repressive
883 promoters of DEGs.

884 (A)

The distribution of 1,795 aDMR-enriched hotspots across the genomes, chr1-5 shown as

885 examples. 5kb-bin hotspots were flanked to 1M for visualization and colored by the cell types
886 where hotspots were identified from. For each chromosome, the top copy shows the cell type
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887 specific hotspots, the lower copy shows the shared hotspots found in at least two brain cell

888 types.

889 (B) Genome feature enrichments, Y-axis present log2 value of fold changes across the

890 genome features (X-axis) between the aDMRs hotspots compared to the genome 5kb bin

891 background. The star marked the p-value < 0.01 in fisher's exact test.

892 (C-D) Heatmap showing the log2 value of fold changes of ChromHMM states enrichment for
893 the aDMRs (C) and the promoter of aDMRs linked DEGs in corresponding cell types (D). The
894 star marked p-value < 0.01 in fisher's exact test.

895 (E) ChromHMM states enrichment analysis of the selected states (Repressive: EnhBiy,

896 ReprPC, TssBiv; Active: TssA and EnhA1) on the promoter of aDMRs linked DEGs in excitatory
897 neurons over the number of aDMRs linked.

898 (F) Venn diagrams showing the overlapping of aDMRs linked DEGs, DEGs harboring

899 promoters in repressive states (TssBiv and ReprPC), and DEGs from published snRNA-seq

900 datasets.™

901 (G) Scatter plot of the average log2 RNA expression fold changes (AD/CTRL) of DEGs as
902 X-axis and average methylation difference (AD-CTRL) of aDMRs linked to corresponding DEGs
903 in excitatory and inhibitory neurons. The size and color represent the number of linked aDMRs
904 and whether the promoter of the DEG is on repressive chromHMM states (TssBiv and ReprPC).
905 (H) KEGG pathway enrichment analysis for aDMRs linked DEGs in excitatory neurons.

906 X-axis shows the enrichment significance as -log (adjusted p-value), and Y-axis represents

907 pathways. The size and color represent the number of related genes and combined score,

908 respectively.

909

910
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912 Figure 4: Chromosomal epigenome erosion in AD entorhinal cortex.

913 (A) Chromatin contact map of AD and CTRL microglia at chromosome 5.

914 (B) Frequency of contacts against genomic distance in each single cell of microglial type,
915 Z-score normalized within each cell (column). The y-axis is binned at log2 scale. Each cell in the
916 x-axis is grouped and colored by individuals and CTRL or AD.

917 (C) The log2 short/long contacts ratio of major types across individuals. Centerline denotes
918 the median, box limits denote the first and third quartiles, and whiskers denote 1.5 x the

919 interquartile range.

920 (D) Chromosome-wide Pearson’s correlation matrix of microglia cells from AD and CTRL.
921 Chr5 as an example. Color bar ranges from -0.16 to 0.21.

922 (E) Saddle plots (method) of microglial cells from AD and CTRL shown in (B), colored by
923 contact frequency enrichment showing the interaction of A/B compartment in cis.
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924 (F) The compartment strength (AA+BB)/(AB+BA) across major cell types between AD (Red)
925 and CTRL individuals (Blue).

926 (G) Chromatin conformation around the gene TEMES9 shows A to B compartment switching
927 and decreased loop interactions in AD inhibitory neurons. Upper panel, chromatin contact map
928 of AD and CTRL inhibitory neurons with differential loops between AD and CTRL marked in

929 cyan box. Lower panel, A(Red) and B(Blue) compartments track across individuals

930 (H) The total loop interaction numbers of major types across individuals.

931 (I-J)  llustration of 3D chromatin conformation in normal brain cell types (I) and AD (J).

932

933
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935 Figure 5. Single nucleus methylome and transcriptome sequencing (snmCT-seq)

936 characterizing distinct cell states in direct converted neurons from fibroblasts.

937 (A) Two-dimensional UMAP visualization of snrmCT-seq data for fibroblasts and

938 direct-converted iNs. Each dot represents a nucleus colored by annotated cell states.

939 (B) Nucleus clustering colored by cell states in AD and CTRL.

940 (C) UMAP of nucleus colored by logarithmized CPM of marker gene VIM (fibroblasts), MAP2
941 (iNs) and two proneuronal factors ASCL1 and NGN2.

942 (D) The top RNA marker genes in each specific cell state in AD and CTRL.

943 (E) Venn diagrams of shared Fibroblast -> iN conversional DMRs between AD and CTRL.
944 Hypomethylated Fibroblast->iN DMRs presenting the DMRs loss of methylation from fibroblasts
945 to iNs and hypermethylated means gain of methylation during iN induction.

946 (F) Heatmap showing the average methylation fraction at conversional DMRs in pseudo

947 bulk of fibroblasts and iN cell states across individuals. The columns are pseudo bulk samples
948 grouped and colored by group (AD or CTRL), cell states (fibroblasts and iNs) and individuals.
949 The rows are hypomethylated conversional DMRs grouped and colored by group (AD or CTRL)
950 and cell states (fibroblasts and iNs).

951
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954 Figure 6: Joint analysis of DNA methylome and RNA identifies DEGs and aDMRs in
955 human fibroblasts and fibroblast-induced neurons.
DEGs between AD versus CTRL in fibroblast (A) and iN (B) states, colored by up- (Red)
957 or down-regulated (Blue) DEGs in AD samples.
The top up- or down-regulated DEGs in fibroblasts and iNs.

UpSet plots summarized up- or down-regulated DEGs in fibroblasts and iNs. The bottom
960 left horizontal bar graph shows the total number of DEGs. The top bar graph presents unique or
961 overlapping DEGs.
KEGG pathway enrichment analysis for up-regulated DEGs in fibroblasts and iNs. X-axis
963 shows the enrichment significance as -log(adjusted p-value), and Y-axis represents pathways.
964 The size and color represent the number of related genes and combined score, respectively.

956 (A-B)

958 (C)
959 (D)

962 (E)
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965 (F) Venn diagrams showing the overlapping of aDMRs in both fibroblasts and iNs. For

966 example, hypomethylated aDMRs present the aDMRs hypomethylated in AD whereas hyper
967 aDMRs means hypermethylated in AD samples.

%68 (G) Heatmap showing the average methylation level at aDMRs in pseudo bulk of fibroblast
969 and iN cell states across individuals. The columns are pseudo bulk samples grouped and

970 colored by cell states (fibroblasts and iNs), groups (AD or CTRL) and individuals. The rows are
971 hypomethylated aDMRs grouped and colored by cell states (fibroblasts and iNs) and group (AD
972 or CTRL).

973
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975
976 Figure 7: A methylome-based predictive model captures AD-specific DNA methylation

977 signatures in in vitro Fibroblast/iNs and in vivo entorhinal cortex brain cell types.

978 (A) Venn diagrams of shared aDMRs between in vitro iN cellular models and in vivo primary
979 entorhinal cortex.

980 (B) Heatmap showing the average methylation level at shared aDMRs (1,095

981 hypomethylated and 1,179 hypermethylated in AD) in pseudo bulk of major cell types including
982 in vivo brain cell types and in vitro fibroblast/iNs across individuals.

983 (C) Heatmap showing the average methylation level in isogenic individuals have both in vitro
984 and in vivo cell types at shared aDMRs, and random selected aDMRs identified only from in

985 Vitro or in vivo systems (aDMRs number: 2,274 shared, 2,207 random sampling from 160,879 in
986 vitro aDMRs, 1,798 random sampling from 206,239 in vivo aDMRs)

987 (D) Design of methylome predictors across in vitro fibroblast/iN and entorhinal cortex

988 tissues.

989 (E) The bar plot shows the accuracy of AD predictors used in validation for cross-individuals.
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990 (F) Heatmap presents the normalized mC level at the selected features of AD predictors
991 across the individuals, groups and cell types. The prediction results were marked as correct in
992 gray and wrong in white.

993 (G)  The Pearson coefficient correlation shows the similarity of the pseudo bulk methylation
994 pattern at selected features across individuals, groups and cell types.

995
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997
998 Figure S1: QC metrics of snhm3C-seq in entorhinal cortex and cell type-specific aDMRs.
999 (A) DNA modality QC metrics per cell grouped by individuals on distribution of overall

1000 mapping rate, total reads number and global mCG level.

1001 (B) Chromatin conformation modality QC metrics per cell grouped by individuals on

1002 distribution of total cis-contact reads, total trans-contact reads and cis—contact ratio.

1003 (C) t-SNE visualization of global methylation level at CG, CH and CCC context.

1004 (D) Examples of cell type-specific aDMRs.

1005 (E) Scatter plot shows the significant enrichment of motifs (E, -log(p-value) > 15) at

1006 hypomethylated aDMRs identified in corresponding brain cell types, with the size of the dot

1007 indicating the -log(p-value).
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1011 Figure S2: DEGs linked by loop interaction with aDMRs.

1012 (A) 1,795 hotspots of aDMRs across the total autosomes. 5kb-bin hotspots are flanked to
1013 1M only for visualization and colored by cell types where hotspots are identified from. The left
1014 chromosome copy shows the cell type specific hotspots, the right copy shows the hotspots
1015 found in at least two brain cell types.

1016 (B) Scatter plot of the average log2 RNA expression fold changes (AD/CTRL) of DEGs as
1017 X-axis and average methylation difference (AD-CTRL) of DEGs linked aDMRs in glia cell types
1018 (ASC, MGC, ODC and OPC). The size and color represent the number of linked aDMRs and
1019 whether the promoter of the gene is on repressive chromHMM states (TssBiv and ReprPC).
1020 (C) KEGG pathway enrichment analysis for aDMRs linked DEGs in ASC, MGC, ODC and
1021 OPC. X-axis shows the enrichment significance as -log (adjusted p-value), and Y-axis
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1022 represents pathways. The size and color represent the number of related genes and combined
1023 score, respectively.
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1027 Figure S3: Chromosomal epigenome erosion occurs in multiple cell types.

1028 (A) Chromatin contact map of excitatory neurons (Ex), inhibitory neurons (Inh), astrocytes
1029 (ASC) and oligodendrocytes (ODC) from AD and CTRL across chromosomes, chr5 as an
1030 example.
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1031 (B) Frequency of contacts against genomic distance in each single cell of Ex, Inh, ASC and
1032 ODC cell types, Z-score normalized within each cell (column). The y-axis is binned at log2

1033 scale. Each cell in the x-axis is grouped and colored by individuals and CTRL or AD.

1034 (C) The log2 ratio between AD and CTRL of frequency of contacts grouped by genomic
1035 distance and the difference of raw compartment scores at the two anchors of a contact across
1036 cell types.

1037 (D) Contact scores between the intra-compartment, inter-compartment regions and the ratio
1038 between inter- and intra-compartment interactions.

1039 (E) Contacts correlation around domain boundaries of major types across individuals.
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1043 Figure S4. Fibroblast iNs retain aging-related methylation signatures compared to iPSCs
1044 derived iNs.

1045 (A) Schematic representation of comparing iPSC-differentiated iNs and fibroblast directly
1046 converted iNs via inducible expression of the same proneuronal factors NGN2-2A-ASCLA1

1047 (N2A).

1048 (B-D) Clustering and annotation of iNs generated via two methods based on methylation levels
1049 of 100kb bins. Cells were colored by samples (B), starter cell sources (C), and collection days
1050 (D).

1051 (E-F) Global methylation levels of mCH (E) and mCG (F) on 2D umap clustering.

1052 (G-H) Violin plots showing the average levels of mCG (G) and mCH (H) across donor and cell
1053 types.

1054 (I) The genome coverage consists of partially methylated domains (PMDs) across cell

1055 types.

1056 (J) DNAm age prediction of fibroblast/iNs and iPSC/iNs by multi-tissue age estimator *°
1057 compared to chronological age.

1058
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1061 Figure S5. snmCT-seq quality control (QC) metrics and cell state annotation.

1062 (A)

1063 rate, total reads number and genome coverages.

1064 (B)

1065 reads, gene detected, and mitochondria read ratio.

1066 (C)

DNA modality QC metrics per cell grouped by individuals on distribution of total mapping
RNA modality QC metrics per cell grouped by individuals on distribution of total RNA

UMAP embedding before and after batch correction of mCG and mCH level at 100kb

1067 bins. Cells were colored by individuals, groups and collection day separately.

1068 (D)

1069 colored by individuals, groups and collection day separately.

UMAP embedding before and after batch correction of RNA expression. Cells were
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1070 (E-F) Cell number distribution of collection day (E) and cell states on Day 21 (F) across
1071 individuals.

1072 (G) Genomic feature fraction of conversional DMRs grouped by hypermethylated or
1073 hypomethylated between fibroblasts versus iNs in AD and CTRL groups.

1074 (H-1)  Scatter plot shows the enrichment of TF motifs (H) at hypomethylated conversional
1075 DMRs in iNs compared to fibroblasts in AD and CTRL, with the size of the dot indicating the
1076 -log(p-value). The corresponding RNA expression of TF candidates is shown in (l), the size of
1077 dot presents the fraction of expressed cells whereas colors show the mean expression (log
1078 (CPM+1)) of cell populations.

1079
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1082 Figure S6: Motif enrichment analysis of aDMRs and their linked DEGs in in vitro cellular
1083 models.

1084 (A-B) Scatter plot shows the motif enrichment analysis of the hypomethylated aDMRs in AD
1085 and CTRL in fibroblasts/iNs states, with the size of the dot indicating the -log(p-value). The

1086 corresponding RNA expression of TF candidates is shown in (B), the size of dot presents the
1087 fraction of expressed cells whereas colors show the mean expression (log (CPM+1)) of cell

1088 populations.

1089 (C) Venn diagrams showing the overlapping of shared DEGs identified in fibroblast with

1090 DEGs linked with aDMRs by GREAT algorithm.®?

1091 (D) RNA expression scatter of DEGs in fibroblasts (upper panel) and iN (lower panel) with
1092 linked aDMRs by GREAT algorithm. X axis and Y axis present log2 value of normalized gene
1093 expression as CPM (Counts per million) in AD and CTRL samples. The size and color represent
1094 the number of linked aDMRs and average methylation changes, respectively. Top DEGs’ names
1095 are labeled beside the dot.

1096 (E) The distribution of DEGs number in fibroblast and iN over the minimal number of aDMRs
1097 associated by GREAT algorithm, colored by the Pearson correlation coefficient between log2
1098 fold changes of RNA expression (AD/CTRL) and average methylation difference (AD-CTRL) of
1099 associated aDMRs by GREAT algorithm.®®

1100
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1103 Figure S7: Examples of ML selected features in AD predictors.

1104 (A) Top 3 motif enrichment of shared aDMRs

1105 (B) Datasets used for training and testing of AD predictors.

1106 (C) De novo selective AD predictors by machine learning are overlapped with shared

1107 aDMRs across cell types. Upper panel, chromatin conformation around the gene BCL6 shows
1108 the decreased loop contacts in AD microglia. Middle panels, the selected features in the AD
1109 predictor are located at LINC01991, TPRG1 and P3H2 intronic regions, overlapped with shared
1110 aDMRs across cell types. Lower panel, browser view of methylation level surrounds the AD
1111 predictors in AD and CTRL.
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