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ABSTRACT:

Background:

Salmonid species have followed markedly divergent evolutionary trajectories in their
interactions with sea lice. While sea lice parasitism poses significant economic, environmental,
and animal welfare challenges for Atlantic salmon (Sa/mo salar) aquaculture, coho salmon
(Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent
epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms

underlying these divergent responses to sea lice are unknown.

Results:

We characterised the cellular and molecular responses of Atlantic salmon and coho
salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to
copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples
were collected 12h, 24h, 36h, 48h, and 60h after exposure, along with control samples.
Comparative analysis of control and treatment samples revealed an immune and wound-healing
response that was common to both species, but attenuated in Atlantic salmon, potentially
reflecting greater sea louse immunomodulation. Our results revealed unique but
complementary roles of three layers of keratinocytes in the epithelial hyperplasia response
leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes
direct the expansion and mobility of intermediate and, especially, superficial keratinocytes,

which eventually encapsulate the parasite.

Conclusion:
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Our results highlight the key role of keratinocytes to coho salmon’s sea lice resistance, and the
diverged biological response of the two salmonid host species when interacting with this
parasite. This study has identified key pathways and candidate genes that could be manipulated

using various biotechnological solutions to improve Atlantic salmon sea lice resistance.

INTRODUCTION:

Parasitism by sea lice is one of the greatest economic, environmental, and animal
welfare issues facing the Atlantic salmon (Salmo salar, Linnaeus, 1758) aquaculture industry,
with annual global costs exceeding £700 million [1]. Sea lice species, including the northern
hemisphere’s Lepeophtheirus salmonis (Krayer, 1837) and the southern hemisphere’s Caligus
rogercresseyi [2], feed on salmon skin and fins, causing chronic open wounds in Atlantic
salmon that can contribute to secondary infections [3]. Additionally, sea lice significantly
reduce the market value of aquaculture fish — infestations have been estimated to cost
US$0.46/kg of biomass [4] — and can also cause considerable impacts on wild salmonids [5].
A variety of treatment strategies have been developed to mitigate sea lice infestations in
Atlantic salmon aquaculture, but these can be costly, ineffective, environmentally-damaging,
and cause reduced animal welfare [6]. For example, sea lice have evolved increasing resistance
to the costly and potentially environmentally damaging chemical parasiticides that have
historically been commonly applied to salmon aquaculture pens [5,7]. Preventative methods,
particularly those improving the innate resistance of Atlantic salmon to sea lice, are therefore
considered a more effective route to address this problem [6].

Relatively high heritabilities for sea lice resistance in Atlantic salmon [e.g., 8-10]
suggest that selective breeding should be effective, particularly when informed by genotype

information via genomic selection [11, 12]. However, counts of sessile lice are the only
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measure of resistance that is currently used, and genetic variation in the immune response of
Atlantic salmon has been difficult to assess. In addition, despite the identification of some
significant QTL [e.g., 13-15], sea lice resistance has proven to be a polygenic trait [11]. Given
the absence of loci of large effect to target, the relatively long generation time of Atlantic
salmon (3-4 years), and that modern salmon breeding programs must include multiple
additional traits in their breeding goal, selective breeding is unlikely to result in clear
improvements to sea lice resistance in the short-term [6]. More rapid increases in genetic
resistance to sea lice through gene editing or other biotechnological approaches may be
informed by investigation of closely related salmonid species demonstrating greater resistance
to sea lice [16].

Coho salmon (Oncorhynchus kitsutch, Walbaum, 1792) demonstrate an innate ability
to kill and expel sea lice. Within 24 hours of louse attachment, coho salmon mount an acute
epithelial hyperplasia response associated with a thickening of the skin, inflammation, cell
proliferation, and an infiltration of immune cells [17-19]. This localized swelling can even
encapsulate attached lice after 10 days post exposure [17, 19] and causes 90% of lice to drop
off their coho salmon hosts between 7 — 14 days post exposure [18, 20]. In contrast, minimal
swelling and rapid degradation of the epidermis occurs in response to an attached louse in
highly susceptible Atlantic salmon [17]. The resistance of coho salmon to sea lice has therefore
been proposed to be the result of an immune and wound-healing response that is greater in
magnitude and very different in character compared to that of Atlantic salmon [21, 22]. This is
supported by the upregulation of multiple genes associated with inflammation, tissue
remodelling, and cell adhesion in the skin of coho salmon but not Atlantic salmon in response
to sea lice [22, 23]. Both Atlantic salmon and coho salmon have also been suggested to mount

a nutritional immune response to sea lice [24, 25], where iron availability is limited to deter
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100 iron-seeking pathogens [26]. However, the exact molecular and cellular mechanisms
101  underlying coho salmon’s resistance to sea lice remain elusive.
102 This uncertainty is in part due to the cellular heterogeneity of fish skin. The skin’s
103  multiple layers demonstrate distinct transcriptomic profiles reflecting each layer’s unique
104  composition of cell types [27]. The outermost layer of skin, the epidermis, is populated
105 primarily by filament-filled keratinocytes [28] in three layers: an upper layer of flattened
106  superficial keratinocytes, an intermediate layer of amorphous keratinocytes, and a lower layer
107  of cuboidal basal keratinocytes [29, 30]. Specialized mucous cells are found individually
108  throughout the epithelium and play an important role in maintaining skin integrity through
109  mucus production [30, 31]. The dermal layer below contains fibroblasts, blood vessels, and
110  chromatophores [30, 31] as well as scales in the trunk and fin rays in the fins, both maintained
111 by osteoblasts [30, 32, 33]. Both epidermal and dermal layers are punctuated by endothelial
112  blood vessels and neural structures [34]. Muscle and fat lie below the dermis and are not
113 considered part of the skin [30]. There is also a variety of resident immune cells in the skin
114  including T cells, B cells, neutrophils, dendritic cells, and macrophages [35].
115 The large diversity of specialised cell types present within the skin therefore poses a
116  problem for traditional bulk transcriptomic approaches which average gene expression across
117  all cell types within a tissue and may therefore be unable to detect biologically relevant cell-
118  type specific differential gene expression in highly heterogeneous tissues [36]. Single nuclei
119 RNA sequencing (snRNAseq) offers a solution to this issue by generating individual
120  transcriptomes for thousands of individual cells [37]. Cells can be grouped based on their
121  individual transcriptomes into distinct cell type clusters, whose identities can be ascertained
122 from diagnostic marker genes, uniquely expressed in each cluster. These technologies allow
123 the study of biological processes with unparalleled resolution, facilitating the comparison of

124  the same cell type across groups or species.
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125 The aim of this work was therefore to use snRNAseq to investigate the cell types and
126  gene expression patterns characterizing the response to sea lice in the skin of Atlantic salmon
127  and coho salmon. We specifically targeted the first 60 hours post infection by L. salmonis
128  copepodids. This time frame has been largely unexplored from a transcriptomic perspective
129  despite being associated with significant histological changes leading to lice rejection in coho
130  salmon [23]. Comparing the cell type-specific responses of resistant and susceptible species to
131  sea lice allowed us to identify cell types and molecular pathways involved in determining the
132 mechanisms of resistance in coho salmon and to pinpoint candidate genes that could be targeted
133 to improve sea lice resistance in Atlantic salmon aquaculture.
134
135 RESULTS:
136
137 A total of 10 and 12 snRNAseq libraries passed filtration for Atlantic salmon and coho
138  salmon, respectively. These had over 244 million reads each, and at least 73% and 86% of
139  those reads aligned uniquely to the genome, for Atlantic salmon and coho salmon, respectively
140  (Table S1,S2). The final total number of cells obtained for each species was 50328 for Atlantic
141 and 48341 for coho salmon (Table S3).
142
143 [. Cell Type Identities and Marker Genes
144 A total of 23 cell clusters were observed within each species, after clustering cells
145  independently by species (Fig.la,b). These clusters demonstrated distinct transcriptomic
146  profiles and their inferred identities were consistent across species (Fig.1). Marker genes were
147  frequently identical for the same cell type across species (Fig.1 c,d, see Fig.S1,S2 for dot plots
148  of additional cell markers, Table 1 for functional relevance of all marker genes for ascribed

149  cell type identity, Table S4,S5 for counts per cell type and sample) and highly concordant
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150 between fin and skin tissue types (Fig.S3,S4). We identified all cell types expected in these
151  tissues [30, 92] as well as several previously unreported cell types including a tuft-like
152  “secretory” cell type.
153 The integration of samples from both species demonstrated the majority of cell types
154  observed in each of the species-specific datasets (Fig.2 a). Two clusters of immune cells were
155  uncovered in the combined dataset which we designated “lymphocyte” and “myeloid” given
156 their expression of itgae [93] and cd163 [94], respectively. The marker genes for each cluster
157  of'the combined dataset were often identical to those marker genes in the corresponding cluster
158 in the species-specific dataset and always highly expressed (Fig.2 b,c,d), confirming the
159  presence of identical cell types in the skin of Atlantic salmon and coho salmon. However, the
160  species-specific datasets presented additional clusters and had a greater number of marker
161  genes given more genes were used in the clustering (salmonids present a recent whole-genome
162  duplication and the establishment of 1:1 orthologies are not straightforward, which resulted in
163  many genes being removed when the datasets of the two species were combined). Therefore,
164  all further analyses were conducted using the species-specific datasets, which we refer to
165  exclusively from this point forward.
166
167 1.1 Non-Immune Cell Types
168 Keratinocytes were among the most abundant cell types. Three keratinocyte clusters
169  were identified: basal keratinocytes, superficial keratinocytes and a third cluster of
170  “intermediate keratinocytes”, likely located between the former two keratinocyte layers and
171  consistent with the three layers of keratinocytes observed in fish skin [29, 30]. Keratinocytes
172 were abundant in all samples, but notably increased at 48h and 60h post infection only in coho

173 salmon (Fig.1 e,f).
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174 Other abundant cell types include fibroblasts, endothelial cells, and osteoblasts.
175  Mucous cells were split into two clusters in coho salmon with many overlapping markers
176  (Fig.S5,S6), but differing in their relative expression of different paralogs of spdef and p2rx1
177  (see Fig.S2,S85,S6). Interestingly, muc5 (associated with mucous cells, [85]) was expressed
178  only in Atlantic salmon mucous cells (Fig.S1,S2). A “secretory” cell type was abundant in
179  both species, and expressed tuft-cell marker genes (Table 1). Tuft cells line the epithelium of
180 the gut and airway in mammals, and although their function is not well-characterized, they are
181  associated with initiating immune responses (e.g., activating Th2 cells in response to helmith
182  endoparasitism in mice) [95]. We speculate these may be a sacciform cell type, previously
183  noted in coho salmon [20]. However, the noted absence of sacciform cells in Atlantic salmon
184  [20], means that the location, morphology, and function of this newly identified cell type
185  requires further investigation.
186 Neural crest cells were characterized by multiple pigment cell genes (Table 1) including
187  Itk, which directs multipotent neural crest cell development into pigment cells in zebrafish [56],
188  suggesting these cells are pigment cell progenitors. The detection of neural crest cells, red
189  blood cells, and muscle cells predominately in trunk skin samples (Fig.1 e,f), is consistent with
190  expectations of greater abundance of these cell types in the trunk skin than in the fins [30] given
191 the potential to cut deeper into the dermal layer. Additionally, several clusters of neuronal and
192 glial cells were observed, but most were observed in a single sample per species (Fig.1 e,f)
193  suggesting they comprise neural structures which are present sporadically throughout the skin
194  (e.g., peripheral axons [34], or the lateral line). Given their inconsistent presence within our
195 samples we do not further consider the response of these cell types to sea lice, but note their
196  potential to confound bulk RNAseq skin data.
197 Several cell types were identified in only one species. A small cluster of cells detected

198  in coho salmon demonstrated a number of marker genes observed in cluster 196 “Integument-
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199  Taste Bud” of a zebrafish cell atlas [53] (Table 1), which we refer to as “integument” cells
200  henceforth. We speculate this cell cluster may represent a rare chemosensory cell type in coho
201  salmon, which may also be present in Atlantic salmon but was unobserved due to its rarity (N
202 = 93 cells in coho salmon). Fibroblasts (2) were detected in Atlantic salmon but not coho
203  salmon and expressed lamcl and col6a6 but also marker genes of the keratinocyte clusters
204  (e.g., itga6 and pof1b) (Fig.S1). A final cell cluster unique to Atlantic salmon was termed
205  “Undifferentiated” because of its few distinctive marker genes (Fig.S1,S7).
206
207 1.2 Immune Cell Types
208 The immune cell marker gene cd45 [96] was expressed in four and two clusters for
209  Atlantic salmon and coho salmon, respectively (Fig.S8). These clusters were re-clustered to
210 investigate for additional immune cell types expected to be present in the skin and potentially
211  involved in sea lice response [18]. Sub-structuring within cd45+ cells revealed six main types
212 of immune cells in both species: T cells, B cells, dendritic cells, neutrophils, macrophages, and
213 monocytes (Fig.3 a,b). Myeloid and lymphocyte cells were clearly differentiated by the
214 expression of spilb, a marker for the myeloid lineage in zebrafish [39]. Marker genes for all
215  immune cell types were consistent with the literature (Table 1) with the curious exception of
216  the monocyte marker gene mitfa, typically associated with melanophores [56], suggesting these
217  monocytes might develop into melanomacrophages known to be present in salmonid skin [19]
218  (Fig.1 c,d, Fig.3 c.d, see Fig.S9-31 for violin plots of top marker genes).
219 While multiple macrophage and T cell subclusters were apparent in each species, their
220  top marker genes were either largely overlapping among subclusters, mostly ribosomal genes,
221 or had unknown biological relevance (Fig.S9-12,S17-19,S21-23,S25,529-30), suggesting these
222 are clustering artefacts or previously undescribed immune cell types. For instance, expression

223 of cd4 and cd§ also did not conclusively differentiate T cell subclusters (Fig.S32), however, T
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224 cells (5) in Atlantic salmon (Fig.S13) and T cells (4) in coho salmon (Fig.S24) expressed gata3,
225  associated with Th2 cell activation [97]. Given this general lack of clear, biologically relevant
226 expression differences within T cell and macrophage subclusters, and to maximize power for
227  subsequent differential expression analyses (given the low numbers of cells in each T cell and
228  macrophage subcluster, Table S6,S7) we grouped together all T cell subclusters and all
229  macrophage subclusters for downstream analysis.
230
231 2. Common Responses to Sea Lice in Resistant and Susceptible Salmonid Species
232 A total of 4567 and 1799 unique genes were found to be differentially expressed
233 between any treatment time point and the control in Atlantic salmon and coho salmon,
234 respectively (see Fig.S33-35 for the distribution of differentially expressed genes within a
235  given cell type, see Fig.S36,S37 for GO enrichment results). Some conserved wound-healing
236  and immune responses to sea lice infection were detected in Atlantic salmon and coho salmon.
237
238 2.1 Wound-Healing Response to Sea Lice
239 Both species showed a clear activation of wound-healing mechanisms in response to
240  the parasite in a variety of cell types (Fig.4). Upregulation of genes linked to limb development
241 such as pax9 [98] and meis2 [99] were evident in keratinocytes, mucous cells, and/or
242 fibroblasts. Genes associated with extracellular matrix integrity including pdgfra [100] and
243 col2la [101] were upregulated in fibroblasts of both species. Another gene associated with
244 healing of individual cells, abr [102], was significantly upregulated in macrophages and T cells
245 in coho salmon and in mucous cells, keratinocytes, and T cells in Atlantic salmon. The
246  upregulation of agr2 observed in mucous cells of both species probably reflects an increased
247  production of mucus in response to sea lice [103] potentially to aid in wound-healing [30, 92].

248 A gene previously found to be upregulated at louse attachment sites in Atlantic salmon [104],
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249  aloxe3, was upregulated in mucous cells of both species but only significantly in Atlantic
250  salmon. Mutations to aloxe3 are associated with ichthyosis, a condition resulting in the build-
251  up of skin cells [105], suggesting this gene could contribute to wound-healing-associated cell
252  growth. Similarly, epidermal reinforcement-related genes cldn8 [106] and cntnl [107] were
253  more upregulated in Atlantic salmon. However, bnc2, associated with wound-healing and
254  fibrosis [108], as well as black pigmentation [109], was upregulated earlier and more strongly
255  in coho salmon basal keratinocytes. Similarly, Aspe2, associated with cell proliferation and
256  extracellular matrix strengthening [110], was upregulated in coho salmon fibroblasts but
257  downregulated in Atlantic salmon fibroblasts. Therefore, while general wound-healing
258  mechanisms are activated in both species, differences can be detected.
259
260 2.2 Immune Response to Sea Lice
261 A clear immune response was observed in both species in response to sea lice (Fig.5).
262  Multiple paralogs of genes associated with immune cell development including runx3 [111],
263 rarab [112], and gnai2 [113] were upregulated in response to sea lice in a variety of immune
264 cell types including T cells, macrophages, and dendritic cells (Fig.5a). Myo9b, a gene
265  associated with immune cell motility and activation [114] was upregulated in dendritic cells,
266  neutrophils, and macrophages in both species, though showing a faster and more intense
267  upregulation in coho salmon (Fig.5a). Major histocompatibility components were significantly
268  upregulated in macrophages and T cells (MHCII only) but surprisingly in non-immune cell
269  types too, mainly keratinocytes, and particularly superficial keratinocytes (Fig.5b). The
270  involvement of the complement immune system was unclear. Two paralogs of c4 were
271 upregulated in Atlantic salmon fibroblasts while in coho salmon fibroblasts, one paralog was
272 not differentially expressed, and the other was upregulated at 24h but downregulated at 36h

273 and 60h (Fig.5¢c). Cfd was significantly downregulated in Atlantic salmon fibroblasts but was
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274  not significantly differentially expressed in coho salmon (Fig.5c). This is consistent with
275  previous observations of the downregulation of this gene in Atlantic salmon in response to L.
276  salmonis sea lice [104]. Though Atlantic salmon demonstrated robust activation of T cells
277  through the significant upregulation of cd28, ifit9, sox4 [115], cxcr4 [116], and [y-9 [117], they
278 also significantly upregulated anti-inflammatory socs3 [118] (Fig.5d).
279
280 3. Responses to Sea Lice Unique to Coho Salmon
281 3.1 Downregulation in Coho Salmon Red Blood Cells in Response to Sea Lice
282 Atlantic salmon red blood cells upregulated a number of genes associated with iron
283  binding including several hemoglobin and ferritin subunits, and #fr/a [119] and other genes
284  key to red blood cell function including s/c4ala (ion transportation, [120], and alas2? (heme
285  biosynthesis, [25]) (Fig.6a). On the contrary, there was a significant downregulation of these
286  genes in coho salmon red blood cells (Fig.6a). A regulation of iron in coho salmon red blood
287  cells was further supported by the enrichment of a variety of iron-related GO terms (e.g., iron
288  ion transport — GO:0006826) in sea louse infected samples of coho salmon but not Atlantic
289  salmon (Fig.6b).
290
291 3.2 Keratinocytes are Key to Epithelial Hyperplasia Response to Sea Lice in Coho Salmon
292 Coho salmon keratinocytes exclusively significantly upregulated a variety of genes
293 associated with epidermal re-organization (Fig.7a,b). Keratinocytes in both species were
294  enriched for intermediate filament cytoskeleton organization (GO:0045104) and intermediate
295 filament-based process (GO:0045103), consistent with the known abundance of filaments
296  observed in salmon keratinocytes [28] (Fig.7¢). However, the fold enrichment was much higher
297  in coho salmon, indicating greater cell movement and restructuring of keratinocytes in this

298  species (Fig.7c¢).
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299 Coho salmon superficial keratinocytes expressed genes more associated with cell
300 motility and immune cell localization, consistent with their location in the outermost layer of
301 the epidermis and in direct contact with attached lice [30] (Fig.7b). The GO term epidermis
302 development (GO:0008544) was enriched in coho salmon superficial keratinocytes and to a
303 lesser extent in intermediate keratinocytes (Fig.7¢). Increased cell motility in coho salmon
304 superficial keratinocytes and intermediate keratinocytes was also evident by the increased
305 expression of glipr2, associated with cell migration particularly in response to hypoxia [121],
306 and egfra, associated with epidermal cell proliferation [122] (Fig.7a). Coho salmon superficial
307  keratinocytes also upregulated genes related to inflammation and immune cell infiltration
308 including: satl [123], spns2 [124], and cdh26 [125], (Fig.7a).
309 In contrast, the basal keratinocyte response in coho salmon was characterized by the
310 upregulation of genes associated with extracellular matrix reinforcement, consistent with their
311  location in the outermost layer of the dermis [30] (Fig.7b). Genes associated with cell adhesion
312  and the extracellular matrix including plecb [126] and mmp30 [127] were significantly
313  upregulated in coho salmon (Fig.7a). GO terms associated with extracellular matrix
314  development (e.g., cell-cell adhesion via plasma-membrane adhesion molecules —
315  GO:0098742, and cell adhesion — GO: 0007155, which is also enriched in intermediate
316  keratinocytes) were also significantly enriched in coho salmon basal keratinocytes (Fig.7c¢).
317  This layer of keratinocytes may also be responsible for directing the movement of upper layers
318  of keratinocytes through the upregulation of genes known to regulate cell motility including
319  plekhgb5b [128] and quo [129] (Fig.7a) and supported by the significant enrichment for GO:
320 0032231, regulation of actin filament bundle assembly (Fig.7b,c). Coho salmon basal
321  keratinocytes also upregulated the immune gene jak2a (Fig.7a), which regulates hematopoiesis
322 [130], promotes cell proliferation [131] and is inhibited by socs3 [132] (upregulated only in

323 Atlantic salmon (Fig.5d)). An aerolysin-like protein, which breaks down cell membranes [133]
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324 and is upregulated in fish in response to bacterial infections [e.g., 134, 135], was also
325  significantly upregulated exclusively in coho salmon basal keratinocytes (Fig.7a), confirming
326  carlier observations of the upregulation of this gene exclusively in the skin of coho salmon but
327  not of Atlantic salmon in response to sea lice [23].
328 The differentially expressed genes characterizing the intermediate keratinocytes
329 response to sea lice in coho salmon largely overlapped with either the basal or superficial
330 keratinocytes (Fig.7a). This less specialized role is consistent with their location between the
331  superficial and basal keratinocytes. It may also reflect their recent generation from basal
332 keratinocytes [136] as evidenced by the particular increase in abundance of this layer of
333  keratinocytes at 48-60h (Fig.1f).
334
335 3.3 Other Cell Types Potentially Contributing to Coho Salmon Epithelial Hyperplasia in
336  Response to Sea Lice
337 Several additional cell types express genes related to inflammation in coho salmon
338  (Fig.8). Secretory cells significantly upregulate ##c7a from 24h onward in coho salmon but this
339  gene was only significantly upregulated at 36h in Atlantic salmon. This gene is associated with
340  epithelial inflammation in mice [137]. Alternatively, mrcl, a gene linked to inflammation [138]
341  and associated with increased C. rogercresseyi sea lice count on Atlantic salmon [139], was
342  significantly upregulated in coho salmon but not Atlantic salmon endothelial cells. Coho
343  salmon macrophages also demonstrated upregulation of the inflammation-associated gene
344  usp47 [140]. Multiple cell types may therefore potentially regulate the keratinocyte epithelial
345  hyperplasia response to sea lice observed in coho salmon.
346

347  DISCUSSION:

348
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349 Our results suggest that Atlantic salmon and coho salmon skin share a common set of
350 cell types consistent with their recent divergence 30 million years ago [141]. Many of these
351 cell types demonstrate a clear response to sea lice, which includes the activation of wound-
352  healing and immune mechanisms, often common to both species. Conversely, lice
353  immunomodulation of a variety of cell types was evident only in Atlantic salmon. Additionally,
354  the coho salmon response to sea lice presented unique signatures, characterized by iron-
355  limitation in red blood cells and a dramatic stimulation and re-organization of keratinocytes.
356  These processes are likely to be major contributors to the greater resistance of this species to
357 sea lice, and the underlying genes and regulatory networks detected here are potential
358 candidates whose expression and functioning could be disrupted to “rewire” the host response
359  to sea lice in Atlantic salmon via biotechnological approaches such as gene editing [16].
360
361  Wound-Healing Response
362 Both species appear to employ a common wound-healing response to sea lice using a
363  combination of keratinocytes, fibroblasts, mucous cells, and immune cells, in agreement with
364 the critical role of these cell types in response to skin laceration [92]. The expression of limb
365  development-related genes in multiple cell types also confirms a large-scale rearrangement of
366  the skin in response to wounding [30]. Fibroblastic repair of the dermis, as expected shortly
367 after wounding [30], was also evident through the upregulation of genes related with
368  extracellular matrix reconstruction in fibroblasts in both species. Mucous cell upregulation of
369  abr2 also suggests both species increased mucus production in response to sea lice. Though
370  sea lice feed on mucus [142], increased mucus production is a characteristic wound-healing
371  response in Atlantic salmon [30, 92]. Alternatively, mucus upregulation may be particularly

372 adaptive in coho salmon since, unlike Atlantic salmon, mucus of this species does not prompt
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373 a protease increase from sea lice, suggesting coho salmon mucus may contain protective
374  qualities [143].
375
376  Immune Response
377 Both species mount a common immune response to sea lice invoking the innate,
378 adaptive, and complement immune systems. The upregulation of major histocompatibility
379  proteins in the skin of both species is consistent with previous observations [24, 144]. However,
380 the expression of MHCII in the superficial keratinocytes was surprising given that these cells
381  arenot typically associated with antigen presentation. Nonetheless, this result is consistent with
382  and may explain previous observations of MHCII expression in Atlantic salmon epidermis in
383  response to sea lice [24, 145]. Our results support the potential importance of superficial
384  keratinocytes for sensing pathogens via antigen presentation and initiating immune and
385 inflammatory responses [146].
386 Similarly, keratinocytes and fibroblasts seem to be key to the activation of the
387 complement immune system. However, our results do not provide clear support for the
388  importance of the complement immune response to sea lice resistance. This is consistent with
389 previous observations of both the upregulation [139, 147] and downregulation [104] of
390 complement proteins in Atlantic salmon in response to sea lice. Our results therefore support
391  earlier suggestions that activation of the complement pathway may not be sufficient to grant
392  sea lice immunity in Atlantic salmon [139].
393 Our results also potentially indicate that Atlantic salmon and coho salmon preferentially
394  employ different immune cells in response to sea lice. Atlantic salmon had far more T cells
395 than coho salmon (Fig.1e,f) perhaps as a consequence of artificial selection in this aquaculture
396 strain of Atlantic salmon for greater disease resistance [148]. Atlantic salmon also

397  demonstrated greater upregulation of genes associated with T cell activation. This observation
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398 may be partly attributable to differences in power among species to detect differential
399 expression in T cells but is consistent with previous evidence suggesting a T cell dominated
400 response to sea lice in Atlantic salmon [149]. In contrast, coho salmon potentially show a
401  greater use of their macrophages in response to sea lice, as evidenced by the significant
402  enrichment for “antigen processing and presentation” (GO:0019882) in coho salmon but not
403  Atlantic salmon macrophages. Our results also support the key role of macrophages in directing
404  coho salmon skin inflammation in response to sea lice [17], specifically through the
405  upregulation of usp47 and ndstla, genes which are both associated with macrophage-driven
406  inflammation [140, 150]. We speculate that coho salmon employ a macrophage-dominant
407  innate immune response to sea lice, while Atlantic salmon try (and fail) to employ a T cell-led
408  adaptive immune response. More sampling or targeted snRNAsequencing of immune cells,
409  allowing for greater power to detect cell type heterogeneity within macrophages and T cells in
410  each species, could be helpful to test this hypothesis.
411 A surprising result was the seeming lack of response in neutrophils to sea lice in either
412 species. Few differentially expressed genes were observed in this cell type and no GO terms
413  were enriched for either species, likely a result of low power due to the few neutrophils detected
414  in each species. This scarcity of neutrophils was itself somewhat surprising given that previous
415  histological work has suggested increased abundance of neutrophils at the site of wound
416  healing in both species [17]. Upregulation of genes identified in this study as markers for
417  neutrophils (e.g., mmp9, mmp13, csf3r) have also been observed to be upregulated at the site
418  of'sealice attachment in both species [e.g., 22, 151]. This discrepancy may reflect a true relative
419  rarity of neutrophils in comparison to other skin cell types (e.g., keratinocytes and fibroblasts
420  which dominated our samples). Alternatively, this may be a sampling bias due to the
421  demonstrated difficulty in capturing this cell type with scRNAseq [152]. More sampling,

422  adjustment of nuclei isolation protocols to target immune cells, or integration of
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423  snRNAsequencing data with spatial transcriptomic data may therefore help us to learn more
424  about what immune cells are doing in response to sea lice.
425
426  Potential Immunomodulation of Atlantic Salmon By Sea Lice
427 Given the known susceptibility of Atlantic salmon to sea louse immunomodulation
428  [153, 154], differences in immune and wound-healing response between Atlantic salmon and
429  coho salmon may not only reflect host physiological differences but also the differential
430  capacity of sea lice to immunomodulate each species. For example, upregulation of the
431  inflammation-dampening socs3 [118] in Atlantic salmon may be induced by sea louse
432  immunomodulation. This gene is also upregulated in Atlantic salmon skin and head kidney in
433  response to C. rogercresseyi, but is downregulated when Atlantic salmon are fed an
434  immunostimulatory diet associated with lower lice counts, suggesting that this upregulation in
435  response to C. rogercresseyi is maladaptive [155]. Socs genes are commonly targeted by fish
436  pathogens to dampen host immunity [156] and may be particularly effective at preventing
437  macrophage activation (e.g., in turbot in response to bacterial pathogens [157]). Our results
438  therefore suggest that L. salmonis induce socs3 upregulation in Atlantic salmon in order to
439  weaken their hosts.
440 Lice immunomodulation may have also caused the dampened expression of Aspe2 and
441 bnc2 in Atlantic salmon, potentially resulting in reduced capacity for wound-healing, and, in
442  the case of bnc2, melanism [109]. Melanism is frequently observed at the louse attachment
443  sites in Atlantic salmon [30] and is more pronounced in Atlantic salmon with more sea lice
444  resistance [158]. Therefore, sea lice may downregulate bnc2 in Atlantic salmon to prevent
445  effective wound healing.
446 Upregulation of haemoglobin and ferritin in Atlantic salmon red blood cells could also

447  reflect lice immunomodulation for the purposes of increasing the parasite’s access to the host’s
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448  iron. Many pathogens manipulate iron homeostasis to increase available iron both for
449  nutritional purposes and potentially as a method of weakening their host [159, 160], as excess
450  iron can contribute to Fenton Chemistry production of harmful reactive oxygen-containing
451  species [161]. Ferritin and genes related to heme biosynthesis have previously been observed
452  to be upregulated in the skin of Atlantic salmon in response to L. salmonis [162]. This was
453  suggested to be an adaptive compensatory response to blood loss from L. salmonis parasitism,
454  however, we suggest that this may instead be a maladaptive response due to L. salmonis
455  immunomodulation of Atlantic salmon. This is supported by the observation that haemoglobin
456  is downregulated in Atlantic salmon infected with C. rogercresseyi when they are fed an
457  immunostimulatory diet [155]. L. salmonis secretion of prostaglandin E2 or other vasodilators
458  may underlie this response in Atlantic salmon [163]. Our results therefore suggest the potential
459  for sea lice to manipulate a wide-range of molecular pathways and phenotypes in Atlantic
460  salmon related to immune response, wound healing and iron availability. Additional molecular
461  research from the perspective of the sea louse would be useful to substantiate these findings
462 and elucidate the precise molecular strategies employed by the sea louse to elicit these
463  responses in Atlantic salmon.
464
465  Potential Nutritional Immune Response in Coho Salmon Red Blood Cells May Discourage Sea
466  Lice
467 In contrast to Atlantic salmon, coho salmon red blood cells downregulate multiple iron-
468  binding genes in response to sea lice. This could reflect differential wound-healing strategies
469 in each species or may potentially indicate an adaptive nutritional immune response.
470  Nutritional immunity, where hosts reduce the availability of iron in their tissues, is commonly
471  employed to dissuade iron-seeking pathogens [26]. Pink salmon downregulate iron-associated

472  genes in response to sea lice [164] and a nutritional immune response resulting from the
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473  upregulation of hepcidin 1 has been suggested for both Atlantic salmon and coho salmon [24].
474  However, we found low expression of hepcidin in both species in all samples. Instead, our
475  results suggest that this nutritional immune response in coho salmon is derived from the
476  downregulation of a variety of iron-binding genes in red blood cells.
477 Yet, Atlantic salmon are clearly capable of mounting a similar nutritional immune
478  response to other pathogens. For example, plasma iron significantly decreased in Atlantic
479  salmon exposed to live and dead Piscirickettsia salmonis bacteria [119]. Intriguingly, Atlantic
480  salmon seem capable of mounting a similar nutritional immune response by upregulating genes
481  associated with heme degradation when parasitized by C. rogercresseyi but not L. salmonis
482  [162]. L. salmonis’ longer co-evolutionary history with Atlantic salmon [165] may have
483  resulted in its greater capacity to immunomodulate Atlantic salmon in comparison to C.
484  rogercresseyi. Given the susceptibility of Atlantic salmon to both sea louse species, restoring
485  Atlantic salmon’s adaptive nutritional immunity may not be sufficient to confer resistance to
486 L. salmonis. However, this may still result in positive animal welfare consequences given that
487  iron limitation can prevent opportunistic microbial infections [166] that are often associated
488  with the sites of sea lice attachment [167].
489
490  Keratinocytes Key to Coho Salmon Epithelial Hyperplasia Immune Response to Sea Lice
491 Our results strongly suggest that keratinocytes are responsible for the epithelial
492  hyperplasia response characterized by filament development, inflammation, and cell
493  proliferation that coho salmon employ to expel sea lice [17, 18, 21]. This is evidenced by our
494  observations of a significant upregulation of genes associated with cell proliferation, cell
495  motility, and extracellular matrix strengthening in keratinocytes, in addition to their dramatic
496 increase in abundance during sea lice infection. However, our results further reveal

497  keratinocytes play an active immunological role in response to sea lice. Given their capacity
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498  for antigen presentation through the expression of MHCII, superficial keratinocytes may play
499  a sentinel role in the detection of sea lice and subsequently attract immune cells to the site of
500 an attached sea lice. Superficial keratinocytes, and to a lesser extent intermediate keratinocytes
501 also seem to be responsible for the dramatic increase in filament cell proliferation typifying
502  coho salmon response to sea lice [17, 18] as evidenced by their upregulation of genes related
503 to cell motility and filament reorganization. The intermediate keratinocytes, which we suggest
504 lie between the superficial and basal keratinocytes due to their shared marker and differentially
505  expressed genes, rapidly increase in abundance at 48-60h post sea lice infection and are likely
506 responsible for the observed skin thickening in coho salmon in response to sea lice [17, 18].
507  Basal keratinocytes, alternatively, regulate the cell motility and proliferation of the upper layers
508  of keratinocytes, strengthen the basement membrane of the epidermis, and emit antibacterial
509 aerolysin proteins to prevent secondary microbial infections. Therefore, each layer of
510 keratinocytes plays a unique but integrated role in the observed epithelial hyperplasia
511  characterising coho salmon’s response to sea lice.
512

513 CONCLUSIONS:

514 In this study, we revealed the cell-specific mechanisms underlying responses to sea lice
515 in a susceptible and a resistant salmonid species. Single nuclei RNA sequencing allowed us to
516 identify the importance of genes with cell type-specific expression patterns, teasing apart cell-
517  type specific responses, including variation in the functional roles among keratinocytes. Our
518 results suggest a complex interplay of genes and cell types associated with sea lice response in
519  both Atlantic salmon and coho salmon. The susceptibility of Atlantic salmon to sea lice
520 infection despite clear activation of the complement, innate, and adaptive immune systems,
521  confirms the insufficiency of this species immune response to effectively repel sea lice. Coho

522  salmon, alternatively, demonstrate multiple interesting strategies in response to sea lice but
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523  keratinocytes seem to be key to the epithelial hyperplasia underlying coho salmon sea lice
524  resistance.
525 The candidate genes we identified underlying coho salmon’s resistance and Atlantic
526  salmon’s susceptibility hold significant promise for enhancing sea lice resistance in Atlantic
527  salmon via biotechnological approaches such as gene editing. Knocking out genes in Atlantic
528 salmon that we identified as upregulated during lice infestation and potentially linked to
529  immunodeficiency and sea lice immunomodulation through CRISPR-Cas9 editing holds the
530 potential to significantly enhance the species' resistance to sea lice. Furthermore, promoting
531 the expression of those genes associated with a dampened immune response in Atlantic salmon
532  orthose associated with epithelial hyperplasia in coho salmon could also effectively strengthen
533 lice resistance in Atlantic salmon. Our findings thus offer actionable insights to mitigate the
534  economic and ecological toll of sea lice infestations in the Atlantic salmon aquaculture
535  industry.
536
537 METHODS:
538
539  Experimental Design
540 Atlantic salmon eggs with poorer than average estimated breeding values for resistance
541 to sea lice were sourced from Benchmark Genetics Iceland. Coho salmon (1 - 2 g) were
542  provided by the Quinsam River Hatchery, Quinsam River, BC, Canada. Both species were
543  reared in a Recirculating Aquaculture System at the Center for Aquaculture Technologies (PEI,
544  Canada) in freshwater until post-smolt stage (approximately 15 g), after which fish were
545  gradually transferred to saltwater and reared to a target weight of approximately 25 g. During
546  the experiment, fish were kept in 135 L tanks at approximately 12 °C. Triplicate tanks of each

547  species were treated with locally-sourced (n = 49 / fish, [147]) Lepeophtheirus salmonis
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copepodids and maintained for 60 hours and sampled every 12 hours. Untreated control fish
were maintained in parallel tanks and sampled at 36 hours into the experiment. Fish were
sedated before sampling with Tricaine methanesulfonate (100 mg L), and then subjected to a
lethal blow to the head. Tissue samples (skin and pelvic fin), from louse attachment sites for

treated fish, were collected and immediately frozen in dry ice.

Library Preparation and Sequencing

Nuclei were isolated from one skin and one fin sample from each of the 5 treatment
timepoints (12, 24, 36, 48, and 60 hours post exposure) as well as the control for each species (N
= 24 tissue samples total) using a custom protocol optimized for salmon epidermis [168]. In
brief, approximately 45 mg tissue samples were cut with scissors in 1 mL of TST bufter for 10
minutes on ice before being filtered through a 40 um Falcon™ cell strainer (Thermo Fisher
Scientific, catalog no. 08-771-2). A further 1 mL of TST and 3 mL of 1X PBS + BSA buffer were
added to each sample before centrifuging at 4°C for 5 minutes at 500 g. Samples were
resuspended in 1 mL 1X ST buffer filtered again through a 40 pm cell strainer, stained with
Hoechst 33342 Solution (Thermo Fisher Scientific, catalog no. 62249) and then nuclei integrity
was visually assessed using a fluorescent microscope. A disposable flow haemocytometer (C-
Chip Neubauer Improved (100 pm depth), NanoEnTek, catalog no. DHC-NO1) was then used to
estimate nuclei counts.

Samples were processed with Chromium Next GEM Single Cell 3’ Reagent Kits v3.1
(Dual Index) (10X Genomics) using the protocol outlined in the User Guide (CG000315 Rev C).
Samples were diluted with nuclease-free water to a target concentration that would recover
approximately 7000 nuclei in the final library. Samples were then loaded on the Chromium
Controller for nuclei droplet formation. After subsequent nuclei and UMI barcoding and reverse

transcription, resulting cDNA was then amplified, fragmented, and indexed with Truseq adapters
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573  and Illumina sample indexes. Sequencing was performed on a NovaSeq 6000 platform (Illumina)
574 by Azenta for approximately 220 million paired end 2x150bp reads per sample.
575
576  Genome Indexing and Read Alignment with STAR
577 Genome indexing and library mapping was performed with STAR (version 2.7.10a,
578 [169, 170]). We appended the mitochondrial genome from the ENSEMBL V2 Atlantic salmon
579  genome (Salmo salar.ICSASG v2.dna rm.toplevel.fa.gz, v2, release 105, masked genome,
580 assembly ID: GCA 000233375.4) to the ENSEMBL V3 Atlantic salmon genome
581  (Salmo salar.Ssal v3.1.dna rm.toplevel.fa.gz, v3.1, release 106, masked genome, assembly
582  ID: GCA 905237065.2) for both the .gff and .fna files prior to indexing. For coho salmon, we
583  appended this species mitochondrial genome (version NC 009263.1, NCBI) to the ENSEMBL
584 V2 coho salmon genome (Oncorhynchus_kisutch.Okis V2.dna rm.toplevel.fa.gz, v2, release
585 106, masked genome, assembly ID: GCA 002021735.2) for both the .gff and .fna files prior to
586 indexing. Prior to this concatenation, the coho salmon mitochondrial genome .gff file was
587  manually edited to convert “CDS” annotations to “exon” annotations (consistent with the
588  Atlantic salmon mitochondrial genome .gff file) as STAR assigns transcripts to “exon”
589 annotations in the .gff file. gffread (v0.10.1) was used to convert .gff to .gtf files [171]. Both
590 genomes were indexed using STAR (--runMode genomeGenerate). Each library was then
591 mapped against its corresponding genome with the 10X V3 cell barcode whitelist (3M-
592  february-2018.txt) and using standard parameters for single cell libraries (--soloMultiMappers
593  Unique --soloBarcodeReadLength 28 --soloType CB_UMI Simple --soloUMllen 12 --
594  soloCBwhitelist 3M-february-2018.txt  --soloFeatures = GeneFull --clipAdapterType
595  CellRanger4 --outFilterScoreMin 30 --soloCBmatchWLtype
596 1MM multi Nbase pseudocounts --soloUMIfiltering MultiGeneUMI CR --soloUMIdedup

597 1MM_CR --readFilesCommand zcat --outSAMtype BAM Unsorted). The raw (unfiltered) files
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598  (genmes.tsv, barcodes.tsv, and matrix.mtx) generated for each sample were then used for
599  downstream analysis. On average, there were 300 million reads per sample with 94% of reads
600  with valid barcodes, and a 62% saturation (for more details see Fig.S38, Table S1,S2).
601
602  Quality Control, Clustering, Integration
603 Samples were then analysed in an R (v4) environment using Seurat (v4.1, [172]). We
604  created Seurat objects for each library after removing nuclei with less than 200 features and
605  features occurring in fewer than three nuclei. One Atlantic salmon sample (Atlantic_12h_fin)
606  retained only 60 nuclei after this initial filtration and was therefore discarded from downstream
607  analysis (Table S3). We then merged samples by species into a single Seurat object. Nuclei
608  where mtDNA features accounted for 10% or more of their total UMIs were removed (Table
609  S3, Fig.S39) before removing all mtDNA features (leaving 48608 and 39312 features
610 remaining for Atlantic salmon and coho salmon, respectively). After sub-setting the Seurat
611  object into individual samples, upper and lower thresholds for UMI and feature counts per
612  nuclei were then applied individually to each sample based on knee plot visualization. For all
613  Atlantic salmon samples, only nuclei with more than 500 UMIs but less than 6000 UMIs and
614  more than 500 features and less than 3500 features were retained (Fig.S40). For coho salmon
615  samples, a lower UMI and feature count limit of 300, 500, or 750 was applied to each sample;
616  an upper UMI limit of 2000 or 6000 was applied while an upper feature limit of 1500 or 3500
617  was applied (Fig.S41). A single Atlantic salmon sample (Atlantic 24h_fin) retained only 338
618  nuclei after this initial filtration and was therefore discarded from downstream analysis (Table
619  S3).
620 Samples were then merged again into a single Seurat object by species before splitting
621  samples again into individual sample datasets. This was done to ensure that the same features

622  were considered across samples. Counts were then normalized for each sample using the
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623  “NormalizeData” function prior to calculating cell cycle scores using the “CellCycleScoring”
624  function (see Tables S8,S9 for list of genes used). The “v2” SCTransform version with the
625  glmGamPoi method (v 1.8.0, [173]) was used to normalize RNA counts for each sample,
626  regressing out scores for the S and G2M cell cycle stages. Linear dimension reduction was
627  conducted for each sample using the “RunPCA” function with 50 PCs. After consulting
628  Elbowplots for each sample, a UMAP using 20 PCs was run for each sample and the
629  “FindNeighbours” function was applied using 20 PCs, before using the “FindClusters” function
630  with aresolution of 0.2. DoubletFinder (v 2.0.3, [174]) was then applied independently to each
631  sample selecting pK values with the highest associated BCmvn value. We assumed a 4%
632  doublet formation rate (based on the Chromium instrument specifications) and adjusted for
633  homotypic doublets (see Table S3 for remaining cells per sample after doublet removal).
634 Samples were integrated by species using 5000 features and anchors that were
635 identified with the “rpca” reduction method and the “FindIntegrationAnchors” function. A
636  PCA was rerun on the integrated dataset using 50 PCs, and 30 PCs were used for subsequent
637  UMAP generation and clustering with a resolution of 0.2 (Fig.S42a,S43a). Markers for each
638  cluster were assessed using the logistic regression method and the FindAllMarkers function on
639  the “SCT” assay and “data” slot, using sample ID as a latent variable to help reduce batch
640  effects among samples. We used a pseudocount of 0.001, set a p-value threshold of 0.01, and
641  only considered genes that were upregulated, expressed in at least 25% of all nuclei (in either
642  of the compared groups), and demonstrated the default threshold of 0.25 X difference (log-
643  scale) between the two compared groups.
644 Two clusters (0 and 4) were removed from the Atlantic salmon dataset due to low
645  average feature/UMI counts (Fig.S42c,d). Many of the marker genes for cluster 0 were
646  ribosomal genes, suggesting poor quality nuclei (Fig.S44). Cluster 4 was also found almost

647  exclusively in a single sample (Atlantic Control skin), again suggesting it was poor quality


https://doi.org/10.1101/2023.10.15.562030
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562030; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Page: 28
648  (Fig.S42b). Similarly, cluster 1 from the coho salmon dataset was removed for having low
649 average feature/UMI counts and because many of its markers were ribosomal genes
650  (Fig.S43c,d,S45). The SCTransformation was then redone for each sample based on the RNA
651 assay as described above, and integration of samples for each species was conducted as
652  described above using 30 PCs for UMAP generation and a resolution of 0.2 for clustering for
653  Atlantic salmon and 20 PCs for UMAP generation and a resolution of 0.2 for clustering for
654  coho salmon. An additional cluster (11) was subsequently removed from the coho salmon
655  dataset for having many ribosomal marker genes (Fig.S46,S47). The SCTransformation of each
656  sample and integration of samples was again redone for the coho salmon dataset after removing
657  this cluster, again using 20 PCs for UMAP generation and a resolution of 0.2 for clustering.
658  (See Table S3 for remaining cells per sample and Fig.S48 for the distribution of UMIs and
659  features per sample after all filtering.)
660
661  Sub-clustering
662 Clusters identified as immune cells based on the expression (Fig.S8) of cd45 (ptprc) (a
663  marker gene for immune cells, [96]) were then considered separately for each species to
664  investigate for the presence of additional immune cell types. For immune cells identified within
665  Atlantic salmon samples, a PCA was rerun on the integrated assay using 10 PCs, and UMAP
666  generation and clustering were conducted using 9 PCs and a resolution of 0.3, respectively. For
667  coho salmon immune cells, a PCA was rerun on the integrated dataset using 20 PCs, UMAP
668  was generated using 15 PCs and clustering was conducted using a resolution of 0.4. Marker
669  genes comparing each immune cell cluster with all other immune cells were then identified
670  using the same marker gene detection method described above using the “FindAllMarkers”
671  function but UMI counts were not re-corrected based on the sub-setted datasets (recorrect umi

672 = FALSE). Marker genes were investigated and visualized to assess cell type. All clusters
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673  identified as macrophages were grouped together as were all clusters identified as T-Cells (see
674  Results).
675 Within a single cluster of the coho salmon dataset (cluster 12) we observed expression
676  of the [tk gene (a marker of neural crest cells in Atlantic salmon, see results below) in a small
677  subset of cells within this cluster while other cells within this cluster demonstrated expression
678  of casqlb (a marker of muscle cells in Atlantic salmon, see results below) (Fig.S49a,b). To
679  investigate the potential for multiple cell types within this cluster, we reran a PCA on cells
680  from this cluster using the integrated assay and 10 PCs, before performing UMAP generation
681  using 3 PCs and clustering with a resolution of 0.02. The resulting UMAP revealed two clusters
682  of cells, one expressing /tk, the other expressing casqlb (Fig.S49c-f).
683 These detected subclusters were then incorporated into the larger dataset for each
684  species including all cell types (see Fig.S50 for distribution of UMIs and features per cluster).
685  Marker genes were then assessed for all newly identified immune cell types using the
686  “FindAllMarkers” function (as described above) in the context of all other cell types. The top
687  markers based on the average log 2-fold change were then considered for each cluster to assess
688  cell type identity. Gene annotations from the ENSEMBL genome were supplemented with
689  EntrezID (NCBI, [175]) and UniProt [176] annotations based on querying BioMart (v 2.50.3,
690 [177]).
691
692  Differential Gene Expression Detection
693 We next identified genes which were differentially expressed between the control
694  samples and each of the infection timepoints (12, 24, 36, 48, 60 hrs post infection) for both
695  species and all cell types using the “FindMarkers” function and the default Wilcox method.
696  We used the SCT assay and “data” slot, imposed a minimum percent threshold (percent of cells

697 in either considered group that had to express the gene) of 0.1, set a minimum threshold p-
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698  value of 0.01, and used the default threshold of 0.25 X difference (log-scale) between the two
699  compared groups. We excluded results from cell types that had fewer than 50 nuclei in the
700  control samples and comparisons where the treatment timepoint had fewer than 50 nuclei.
701  Genes were considered differentially expressed if their adjusted p-value < 0.001. Enriched GO
702  Biological Processes for differentially expressed genes detected for each cell type for each
703  species were identified using ShinyGO (v 0.80, [178]). We used default parameters and limited
704  the gene universe to all features in the RNA assay for each species (N = 48608, N = 39312
705  genes for Atlantic salmon and coho salmon, respectively). GO terms were considered
706  significantly enriched if the FDR-adjusted p-value < 0.001.
707
708  Integration of Samples Across Species
709 We then directly compared Atlantic salmon and coho salmon samples using 6494 genes
710  identified using Orthofinder v2.5.4 [179] as 1:1 orthologs between the two species. The
711  transcriptomes of the Atlantic salmon and coho salmon Ensembl genomes used as reference
712 for the snRNAseq analyses were wused (Salmo_salar.Ssal v3.1.cdna.all.fa and
713 Oncorhynchus_kisutch.Okis V2.cdna.all.fa). A single isoform per gene was retained using a
714  custom python script that selects the longest transcript for each gene, and Orthofinder was run
715  using default parameters. The orthogroups with one gene per species were considered 1:1
716  orthologs between Atlantic salmon and coho salmon.
717 Atlantic salmon and coho salmon samples were re-processed using the same quality
718  control methods as described above, but features were winnowed down to this set of 1:1
719  orthologous genes just prior to the SCTransformation of individual samples. Samples from
720  both species were then integrated together using 2000 features using anchors identified with
721 the “rpca” reduction method with the “FindIntegrationAnchors” function. A PCA was run on

722 the integrated dataset using 50 PCs with clustering and a UMAP was generated using 20 PCs
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723  and a resolution of 0.2. Markers were then detected for each cluster and species using the
724  “FindAllMarkers” function as described above. The distribution of features and UMIs as well
725  as the top markers based on the average log 2-fold change were then considered for each
726  cluster. A single cluster (cluster 0) was removed due to a lack of defining marker genes
727  (Fig.S51,S52), following reclustering as above a second cluster (cluster 1) was again removed
728  due to a lack of defining marker genes (Fig.S53,S54). After removing these clusters the
729  SCTransformation was redone for each sample based on the RNA assay, and integration of
730 samples for each species was conducted as described above (using 2000 features for
731 integration, 50 PCs for the PCA, 20 PCs and a resolution of 0.2 for clustering and UMAP
732 generation, see Fig.S55 for distribution of UMIs and features per cell type and cell type counts
733 per sample). Markers were then detected for each cluster using the “FindAllMarkers” function
734  as described above. The top markers based on the average log 2-fold change were then
735  considered for each cluster to assess cell type identity.
736

737  Ethics Approval and Consent to Participate:

738 CATC and UPEI Animal Care Committees (AUP 21-008) approved all fish handling
739 procedures, which were conducted in accordance with the Canadian Council for Animal Care
740  regulations (http://www.ccac.ca/) and ARRIVE guidelines.

741

742 Consent for Publication:

743 Not applicable.
744

745 Availability of Data and Materials:

746  Sequencing data for all samples used in this study will be deposited to NCBI SRA upon article

747  acceptance. Scripts used to analyse and visualize data are available at
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748  https://github.com/SarahSalisbury/Atlantic_Salmon vs Coho Salmon Lice Response snR
749  NAseq.
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Table1 Marker genesfor cell typesfound in skin and fin samples of Atlantic sailmon and coho salmon. All noted genes were significantly

(p << 0.001) upregulated in the given species’ cell type cluster relative to al other cells.

[64]

Cell Type Mar ker Atlantic Salmon Coho Salmon Support for Cell Type Identity
Gene ENSEMBL ID ENSEMBL ID
Both T Cells thc1d10c ENSSSAG00000055420 | ENSOKI1G00005011012 | Expressed in T cells [38]
Species bcl11b ENSSSAG00000071984 | ENSOKI1G00005023187 | Expressed in T cells [39]
ENSSSAG00000045088
tcf7 ENSSSAG00000006857 | ENSOKI1G00005033777 | Expressed in T cells [39]
skapl ENSSSAG00000066533 | ENSOKIG00005050132 | Expressed in T cells [40]
cd3 ENSSSAG00000076824 Marker for T cells[41]
cd2 ENSOKIG00005012541 | Marker for T cells[42]
B Cells ebfl ENSSSAG00000079780 | ENSOKIG00005001939 | Marker for B cells [43]
ENSSSAG00000070298
swap70 ENSSSAG00000115076 | ENSOKIG00005020004 | Marker for B cells[44]
cd79 ENSSSAG00000113980 | ENSOKIG00005014962 | Marker for B cells [45]
Dendritic Cells flt3 ENSSSAG00000009390 | ENSOKI1G00005021723 | Marker for dendritic cells [46]
ENSSSAG00000060395
blnk ENSSSAG00000023874 Expressed in dendritic cells [47]
Neutrophils csf3r ENSSSAG00000072535 | ENSOKIG00005018820 | Expressed in neutrophils [48]
mmp9 ENSSSAG00000069874 Marker for neutrophilsin Atlantic Salmon [49]
mmpl3 ENSSSAG00000070495 Marker for neutrophilsin Atlantic Salmon [49]
clecde ENSOKI1G00005020977 | Expressed in neutrophils [50]
Macrophages semadab ENSSSAG00000056722 | ENSOKIG00005023500 | Expressed in macrophages [51]
csflr ENSSSAG00000047020 Expressed in macrophages [52]
ENSSSAG00000061479
marco ENSSSAG00000063051 Marker gene for macrophages in zebrafish cell atlas [53]
ctscl ENSOKIG00005022279 | Expressed in macrophages [54]
Monocyte ckb ENSSSAG00000003466 | ENSOKIG00005016475 | Expressed in monocytes [55]
mitfa ENSSSAG00000077659 | ENSOKIG00005012208 | Associated with melanophores [56]
csfir ENSSSAG00000047020
Superficial evpla ENSSSAG00000048370 | ENSOKIG00005025303 | Expressed in mouse suprabasal keratinocytes [57]
Keratinocytes ppl ENSSSAG00000003101 | ENSOKIG00005024627 | Expressed in mouse suprabasal keratinocytes [57]
- elovie ENSSSAG00000074658 | ENSOKIG00005006494 | Facilitates lipid metabolism in human skin keratinocytes [58]
Intermediate assl ENSSSAG00000053906 | ENSOKIG00005029918 | Expressed in mouse keratinocytes [59]
Keratmocytes poflb ENSSSAG00000040788 | ENSOKIG00005024403 | Expressed in human keratinocytes [60]
itgab ENSSSAG00000006725 | ENSOKIG00005047168 | Expressed in basal epidermal cellsin humans[61]
Ker atinocytes lamb4 ENSSSAG00000106537 | ENSOKIGO00005007077 | Marker for “fin basal cells’ in zebrafish cell atlas[53]
Fibroblasts (1) fbn2b ENSSSAG00000057875 | ENSOKIG00005007419 | Associated with fibroblast-driven wound healing in humans [62]
col12al ENSSSAG00000070858 | ENSOKIG00005043212 | Expressed in the fibroblasts of chick skin [63]
T egfl7 ENSSSAG00000083641 | ENSOKIG00005048982 | Associated with endothelial development — specifically blood vessels

Endothelial
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tiel ENSSSAG00000079214 | ENSOKIG00005004729 | Marker for the blood vessel cell type in zebrafish cell atlas [53]
flt4 ENSSSAG00000084309 | ENSOKIG00005035303 | Marker for the the blood vessel cell typein zebrafish cell atlas [53]
Secretory pcdhll ENSSSAG00000057824 | ENSOKI1G00005037957
avil ENSSSAG00000084911 | ENSOKIG00005031571 | Associated with tuft cells[65] and expressed in arare tuft cell-like
group of cells within zebrafish intestine [66]
pou2f3 ENSSSAG00000039114 | ENSOKIG00005026363 | Associated with tuft cells[67] and expressed in arare tuft cell-like
group of cells within zebrafish intestine [66]
prox1 ENSSSAG00000039610 | ENSOKI1G00005019222 | Associated with tuft cells[68]
Osteoblasts panx3 ENSSSAG00000068856 | ENSOKIG00005040175 | Marker for osteoblasts in zebrafish cell atlas [53]
itgal0 ENSSSAG00000119547 | ENSOKIG00005041776 | Associated with bone development [69]
fofrd ENSSSAG00000017777 | ENSOKIG00005032151 | Expressed in mouse osteoblasts [70], marker for bonein Atlantic
Salmon [27]
Red Blood Cells hemoglobin | ENSSSAG00000045065 | ENSOKIG00005024058 | Key component of red blood cells
subunit
beta
Muscle casqlb ENSSSAG00000072101 | ENSOKIG00005004600 | Expressed in zebrafish skeletal muscle [71]
tnni2a ENSSSAG00000055259 | ENSOKI1G00005033031 | Critical to muscle function [72]
ttn ENSSSAG00000119643 A crucial component of skeletal muscle function [73]
ENSSSAG00000095939
Neural Crest Cells | Itk ENSSSAG00000110394 | ENSOKIG00005047857 | Directs multipotent neural crest cell development into pigment cellsin
zebrafish [56]
miphb ENSSSAG00000053095 | ENSOKIG00005009265 | Marker gene for xanthophores and melanophores in zebrafish cell atlas
(53]
pnp4a ENSSSAG00000044409 | ENSOKIG00005022133 | Expressed in iridophores [74]
fhi2 ENSSSAG00000080837 | ENSOKIG00005031455 | Expressed in iridophores [75]
ENSOK1G00005012190
alx4b ENSSSAG00000112316 | ENSOKIG00005008266 | Expressed in iridophores [76]
Neuronal (1) nwdl ENSSSAG00000047318 | ENSOKIG00005015132 | Associated with neuron development in mice [77]
cntnd ENSSSAG00000057173 | ENSOKIG00005044284 | Associated with neuron development in humans [78]
Neuronal (2) samd12 ENSSSAG00000118720 | ENSOKIG00005014439 | Linked to neurological diseasein humans[79]
i110rb ENSSSAG00000038884 | ENSOKIG00005025589 | Expressed in neurons [80]
Atlantic Fibroblasts (2) lamcl ENSSSAG00000008380 Expressed in mouse fibroblasts [81]
Salmon col6a6 ENSSSAG00000040824 Expressed in human skin fibroblasts [82]
Only Mucous ferll4 ENSSSAG00000075250 INcRNA associated with gastric cancer [83]
spdef ENSSSAG00000074163 Critical to mucus cell differentiation [84]
p2rx1 ENSSSAG00000039817 Marker for mucus cellsin zebrafish cell atlas [53]
muc5bl ENSSSAG00000055014 Associated with mucus cells [85]
Glial (1) abcgl ENSSSAG00000074633 Expressed in glial but also neuronal cells [86]
Glia (2) wdr49 ENSSSAG00000064639 Associated with astrocytes [87]
Undifferentiated pax7l ENSSSAG00000006052 Associated with myoskeleton [88]
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coldal ENSSSAG00000029801 Widely expressed in basement membrane [89]
Coho Mucous (1) ferll4 ENSOKIG00005027833 | IncRNA associated with gastric cancer [83]
Salmon spdef ENSOKIG00005000031 | Critical to mucus cell differentiation [84]
Only p2rx1 ENSOKIG00005008860 | Marker for mucus cellsin zebrafish cell atlas [53]
ENSOK1G00005028810
Mucous (2) ferll4 ENSOKIG00005027833 | IncRNA associated with gastric cancer [83]
spdef ENSOKIG00005003413 | Critical to mucus cell differentiation [84]
p2rx1 ENSOKIG00005028810 | Marker for mucus cellsin zebrafish cell atlas [53]
Integument plch2 ENSOKIG00005013873 | Marker for “Integument — taste bud” cell typein zebrafish cell atlas
(53]
rgsl ENSOKIG00005032617 | Marker for “Integument — taste bud” cell typein zebrafish cell atlas
[53]
ENSOKIG00005021878 | Marker for “Integument — taste bud” cell typein zebrafish cell atlas
[53]
trpmb ENSOKIG00005033333 | Marker for “Integument — taste bud” cell typein zebrafish cell atlas
(53]
kenk17 ENSOKIG00005039197 | Marker for “Integument — taste bud” cell typein zebrafish cell atlas
(53]
Neuronal (3) ak ENSOKIG00005020768 | A widely-expressed neuronal-related gene [90], also associated with
pigmentation in fish [91]
Glia abcgl ENSOKIG00005034390 | Expressed in glial but also neuronal cells [86]
wdr95 ENSOKIG00005007677 | An ortholog of WDR49, which is associated with astrocytes [87]
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Fig.1 Cell types detected in Atlantic (a-c) and Coho (d-f) Salmon. UMAPs of cell clusters coloured by putative identity for (a) Atlantic
salmon and (b) coho salmon. Violin Plots of marker genes for each cell cluster for (c) Atlantic salmon and (d) Coho Salmon. Counts of each cell
type by sample for (e) Atlantic salmon and (f) coho salmon. Note there is no 12h Fin or 24h Fin sample for Atlantic salmon.
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are noted to the right of each gene.


https://doi.org/10.1101/2023.10.15.562030
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562030; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Atlantic Salmon

a) b) .. 1
5 oT Cells (1) ®T Cells (1)
O T Cells (2) o T Cells (2)
T Celis (3) 5 ® T Cells (3)
T Cells (4) T Cells (4)
N| 0 T Cells (5) NI T Cells (5)
o ®B Cells o
% ®B Cells
< Dendritic Cells < Dendritic Celis
S & Noutrophiks £ ° @ Neutrophils
= ®Macrophages (1) = ' D
% pnag ® Macrophages (1)
Macropnages g; k23 » Macrophages (2)
acrophages
® Monocyte = % : . ®Monocyte
-10 : :
-0 5 0 5 10 =10 0 10
UMAP_1 UMAP_1
192} 1]
= wn = (92}
<) e & d) So &
g8 £ & 28 £ 8
< 5 el < SNele
= S oo 25 INEE
oz = = oz = =
T Cells o Myeloid T Cells o Myeloid
Immune Immune
ckb A : ckba - [ )
mitfa 1 mitfa -
CSF1R.21 . ] ; .
csflra .
CSF1R A @ e MARCO. 11 i
MARCO A 00 - MARCb
semad4ab.1 °® - 1 i
CSF3r.1- g omEeesed orssy. ‘e PeroentBxpressed
mmp134- - - - - o - . 20 sema4ab.1 - S . 20
mmp9 1 ° ® 40 CSF3r - LA ® 40
bink - d B ® 60 CLECHE { ® ® 0
FLT3 A ° @ 30 fit3 - ° @® 30
flt3 1 N .
spith 1 «s®e - @® Average Expression SP/ 1b.1 1 ® © ® ° ® Average Expression
SWAP70.1 1 ° - . 2 SWAP70 - ° .
cd79aq* = = - @ 1 cd79a 1 ° 1
EBF1 1 ( B 0 EBF1.2 1 ® 0
SKAP1{® « =« - -1 skap1.1{® « =« « o -1
wetaror SN r71- .
iz I thc1d10c{@ « « = ®
BCL11B.1{1@e - o - CD2{®@ s - s @ ®
BCL11B{@e « = « BCL11B.1{® = = « o
CD45 990000008 & Ch45{® s e@- @
cdoTo222-qu0 clBTELL2-0 e
vvvvv PQE———2 === e —— R
RLana000s 908 222320088809
SSSE8 LSRR RS 88888 PES RS
FH-H- S2888 F-F-- S286§
5790909 8- g8
o 8§88 O &8
=== ==

Coho Salmon

Fig.3 Sub-clustering of putative immune cells expressing CD45. UMAP visualization of
immune clusters in Atlantic (a) and Coho (b) Salmon. Dot Plots of features characterizing
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Fig.5 Dotplots of immune-related gene expression in Atlantic salmon and/or coho
salmon in response to sea lice. a) immune genes upregulated in both species, b) MHC genes
upregulated in both species, ¢) complement immune system gene expression, d) immune-
related genes particularly upregulated in Atlantic salmon in response to sea lice. All genes
shown were significantly differentially expressed (pagj < 0.001) in at least one pairwise
comparison between the control and any treatment timepoint in either species.
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Fig.6 Red blood cell response to sea lice in Atlantic salmon and coho salmon. a) violin
plots of gene expression in Atlantic salmon and coho salmon of genes significantly
upregulated in coho salmon keratinocytes (pagj < 0.001) in response to sea lice in at least one
treatment timepoint relative to the control( * - pagj < 0.001, ** - pagj < 0.0001, *** - pagj <
0.00001), b) significantly enriched biological GO terms (padj < 0.001) for red blood cells in
response to sea lice in Atlantic salmon and coho salmon.
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Fig.7 Keratinocyte response to sea lice underlies coho salmon resistance to sea lice. a) dotplots of gene expression in Atlantic salmon and
coho salmon of genes significantly upregulated in coho salmon keratinocytes (pagj < 0.001) in response to sea lice in at least one treatment
timepoint relative to the control, b) proposed unique contributions of superficial, intermediate, and basal keratinocytes to epithelial hyperplasia
immune response to sea lice in coho salmon, c) significantly enriched biological GO terms (padj < 0.001) for superficial, intermediate, and basal
keratinocytes in response to sea lice in Atlantic salmon and coho salmon. Differentially expressed genes in a) and GO terms in c¢) are colour-
coded by the biological processes depicted in b) that they are potentially associated with.
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Fig.8 Violin plots of gene expression in Atlantic salmon and coho salmon in response to
sea lice that are potentially regulating coho salmon’s epithelial hyperplasia response to
sea lice. The cell type for which the expression of each gene is shown is noted to the right of
each plot. (* - padgj < 0.001, ** - pagj < 0.0001, **%* - pag; < 0.00001.)
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