

1 **TITLE:**

2 Keratinocytes Drive the Epithelial Hyperplasia Key to Sea Lice Resistance in Coho Salmon

3

4 **AUTHORS:**

5 S.J. Salisbury^{1*†}, R. Ruiz Daniels^{1†}, S.J. Monaghan², J.E. Bron², P.R. Villamayor^{1,3}, O.

6 Gervais¹, M.D. Fast⁴, L. Sveen⁵, R.D. Houston⁶, N. Robinson^{5,7*}, and D. Robledo^{1*}

7

8 **ASSOCIATIONS:**

9 1. The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of

10 Edinburgh, Edinburgh, UK.

11 2. Institute of Aquaculture, University of Stirling, Stirling, UK.

12 3. University of Santiago de Compostela, Santiago de Compostela, Spain.

13 4. Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.

14 5. Nofima AS, Tromsø, Norway.

15 6. Benchmark Genetics, 1 Pioneer Building, Edinburgh Technopole, Milton Bridge, Penicuik,

16 UK.

17 7. Sustainable Aquaculture Laboratory -Temperate and Tropical (SALTT), Deakin University,

18 Victoria 3225, Australia.

19

20 * Corresponding authors: sarahsalisbury13@gmail.com, nicholas.robinson@nofima.no,

21 diego.robledo@roslin.ed.ac.uk,

22

23 † Co-first authors

24

25 **KEYWORDS:** snRNAseq, salmon, aquaculture, disease, parasite, sea lice, cell type, skin,
26 immunity, wound-healing

27 **ABSTRACT:**

28

29 *Background:*

30 Salmonid species have followed markedly divergent evolutionary trajectories in their
31 interactions with sea lice. While sea lice parasitism poses significant economic, environmental,
32 and animal welfare challenges for Atlantic salmon (*Salmo salar*) aquaculture, coho salmon
33 (*Oncorhynchus kisutch*) exhibit near-complete resistance to sea lice, achieved through a potent
34 epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms
35 underlying these divergent responses to sea lice are unknown.

36

37 *Results:*

38 We characterised the cellular and molecular responses of Atlantic salmon and coho
39 salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to
40 copepodid sea lice (*Lepeophtheirus salmonis*), and lice-attached pelvic fin and skin samples
41 were collected 12h, 24h, 36h, 48h, and 60h after exposure, along with control samples.
42 Comparative analysis of control and treatment samples revealed an immune and wound-healing
43 response that was common to both species, but attenuated in Atlantic salmon, potentially
44 reflecting greater sea louse immunomodulation. Our results revealed unique but
45 complementary roles of three layers of keratinocytes in the epithelial hyperplasia response
46 leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes
47 direct the expansion and mobility of intermediate and, especially, superficial keratinocytes,
48 which eventually encapsulate the parasite.

49

50 *Conclusion:*

51 Our results highlight the key role of keratinocytes to coho salmon's sea lice resistance, and the
52 diverged biological response of the two salmonid host species when interacting with this
53 parasite. This study has identified key pathways and candidate genes that could be manipulated
54 using various biotechnological solutions to improve Atlantic salmon sea lice resistance.

55

56 **INTRODUCTION:**

57

58 Parasitism by sea lice is one of the greatest economic, environmental, and animal
59 welfare issues facing the Atlantic salmon (*Salmo salar*, Linnaeus, 1758) aquaculture industry,
60 with annual global costs exceeding £700 million [1]. Sea lice species, including the northern
61 hemisphere's *Lepeophtheirus salmonis* (Krøyer, 1837) and the southern hemisphere's *Caligus*
62 *rogercresseyi* [2], feed on salmon skin and fins, causing chronic open wounds in Atlantic
63 salmon that can contribute to secondary infections [3]. Additionally, sea lice significantly
64 reduce the market value of aquaculture fish – infestations have been estimated to cost
65 US\$0.46/kg of biomass [4] – and can also cause considerable impacts on wild salmonids [5].
66 A variety of treatment strategies have been developed to mitigate sea lice infestations in
67 Atlantic salmon aquaculture, but these can be costly, ineffective, environmentally-damaging,
68 and cause reduced animal welfare [6]. For example, sea lice have evolved increasing resistance
69 to the costly and potentially environmentally damaging chemical parasiticides that have
70 historically been commonly applied to salmon aquaculture pens [5,7]. Preventative methods,
71 particularly those improving the innate resistance of Atlantic salmon to sea lice, are therefore
72 considered a more effective route to address this problem [6].

73 Relatively high heritabilities for sea lice resistance in Atlantic salmon [e.g., 8-10]
74 suggest that selective breeding should be effective, particularly when informed by genotype
75 information via genomic selection [11, 12]. However, counts of sessile lice are the only

76 measure of resistance that is currently used, and genetic variation in the immune response of
77 Atlantic salmon has been difficult to assess. In addition, despite the identification of some
78 significant QTL [e.g., 13-15], sea lice resistance has proven to be a polygenic trait [11]. Given
79 the absence of loci of large effect to target, the relatively long generation time of Atlantic
80 salmon (3-4 years), and that modern salmon breeding programs must include multiple
81 additional traits in their breeding goal, selective breeding is unlikely to result in clear
82 improvements to sea lice resistance in the short-term [6]. More rapid increases in genetic
83 resistance to sea lice through gene editing or other biotechnological approaches may be
84 informed by investigation of closely related salmonid species demonstrating greater resistance
85 to sea lice [16].

86 Coho salmon (*Oncorhynchus kisutch*, Walbaum, 1792) demonstrate an innate ability
87 to kill and expel sea lice. Within 24 hours of louse attachment, coho salmon mount an acute
88 epithelial hyperplasia response associated with a thickening of the skin, inflammation, cell
89 proliferation, and an infiltration of immune cells [17-19]. This localized swelling can even
90 encapsulate attached lice after 10 days post exposure [17, 19] and causes 90% of lice to drop
91 off their coho salmon hosts between 7 – 14 days post exposure [18, 20]. In contrast, minimal
92 swelling and rapid degradation of the epidermis occurs in response to an attached louse in
93 highly susceptible Atlantic salmon [17]. The resistance of coho salmon to sea lice has therefore
94 been proposed to be the result of an immune and wound-healing response that is greater in
95 magnitude and very different in character compared to that of Atlantic salmon [21, 22]. This is
96 supported by the upregulation of multiple genes associated with inflammation, tissue
97 remodelling, and cell adhesion in the skin of coho salmon but not Atlantic salmon in response
98 to sea lice [22, 23]. Both Atlantic salmon and coho salmon have also been suggested to mount
99 a nutritional immune response to sea lice [24, 25], where iron availability is limited to deter

100 iron-seeking pathogens [26]. However, the exact molecular and cellular mechanisms
101 underlying coho salmon's resistance to sea lice remain elusive.

102 This uncertainty is in part due to the cellular heterogeneity of fish skin. The skin's
103 multiple layers demonstrate distinct transcriptomic profiles reflecting each layer's unique
104 composition of cell types [27]. The outermost layer of skin, the epidermis, is populated
105 primarily by filament-filled keratinocytes [28] in three layers: an upper layer of flattened
106 superficial keratinocytes, an intermediate layer of amorphous keratinocytes, and a lower layer
107 of cuboidal basal keratinocytes [29, 30]. Specialized mucous cells are found individually
108 throughout the epithelium and play an important role in maintaining skin integrity through
109 mucus production [30, 31]. The dermal layer below contains fibroblasts, blood vessels, and
110 chromatophores [30, 31] as well as scales in the trunk and fin rays in the fins, both maintained
111 by osteoblasts [30, 32, 33]. Both epidermal and dermal layers are punctuated by endothelial
112 blood vessels and neural structures [34]. Muscle and fat lie below the dermis and are not
113 considered part of the skin [30]. There is also a variety of resident immune cells in the skin
114 including T cells, B cells, neutrophils, dendritic cells, and macrophages [35].

115 The large diversity of specialised cell types present within the skin therefore poses a
116 problem for traditional bulk transcriptomic approaches which average gene expression across
117 all cell types within a tissue and may therefore be unable to detect biologically relevant cell-
118 type specific differential gene expression in highly heterogeneous tissues [36]. Single nuclei
119 RNA sequencing (snRNAseq) offers a solution to this issue by generating individual
120 transcriptomes for thousands of individual cells [37]. Cells can be grouped based on their
121 individual transcriptomes into distinct cell type clusters, whose identities can be ascertained
122 from diagnostic marker genes, uniquely expressed in each cluster. These technologies allow
123 the study of biological processes with unparalleled resolution, facilitating the comparison of
124 the same cell type across groups or species.

125 The aim of this work was therefore to use snRNAseq to investigate the cell types and
126 gene expression patterns characterizing the response to sea lice in the skin of Atlantic salmon
127 and coho salmon. We specifically targeted the first 60 hours post infection by *L. salmonis*
128 copepodids. This time frame has been largely unexplored from a transcriptomic perspective
129 despite being associated with significant histological changes leading to lice rejection in coho
130 salmon [23]. Comparing the cell type-specific responses of resistant and susceptible species to
131 sea lice allowed us to identify cell types and molecular pathways involved in determining the
132 mechanisms of resistance in coho salmon and to pinpoint candidate genes that could be targeted
133 to improve sea lice resistance in Atlantic salmon aquaculture.

134

135 **RESULTS:**

136

137 A total of 10 and 12 snRNAseq libraries passed filtration for Atlantic salmon and coho
138 salmon, respectively. These had over 244 million reads each, and at least 73% and 86% of
139 those reads aligned uniquely to the genome, for Atlantic salmon and coho salmon, respectively
140 (Table S1,S2). The final total number of cells obtained for each species was 50328 for Atlantic
141 and 48341 for coho salmon (Table S3).

142

143 *1. Cell Type Identities and Marker Genes*

144 A total of 23 cell clusters were observed within each species, after clustering cells
145 independently by species (Fig.1a,b). These clusters demonstrated distinct transcriptomic
146 profiles and their inferred identities were consistent across species (Fig.1). Marker genes were
147 frequently identical for the same cell type across species (Fig.1 c,d, see Fig.S1,S2 for dot plots
148 of additional cell markers, Table 1 for functional relevance of all marker genes for ascribed
149 cell type identity, Table S4,S5 for counts per cell type and sample) and highly concordant

150 between fin and skin tissue types (Fig.S3,S4). We identified all cell types expected in these
151 tissues [30, 92] as well as several previously unreported cell types including a tuft-like
152 “secretory” cell type.

153 The integration of samples from both species demonstrated the majority of cell types
154 observed in each of the species-specific datasets (Fig.2 a). Two clusters of immune cells were
155 uncovered in the combined dataset which we designated “lymphocyte” and “myeloid” given
156 their expression of *itgae* [93] and *cd163* [94], respectively. The marker genes for each cluster
157 of the combined dataset were often identical to those marker genes in the corresponding cluster
158 in the species-specific dataset and always highly expressed (Fig.2 b,c,d), confirming the
159 presence of identical cell types in the skin of Atlantic salmon and coho salmon. However, the
160 species-specific datasets presented additional clusters and had a greater number of marker
161 genes given more genes were used in the clustering (salmonids present a recent whole-genome
162 duplication and the establishment of 1:1 orthologies are not straightforward, which resulted in
163 many genes being removed when the datasets of the two species were combined). Therefore,
164 all further analyses were conducted using the species-specific datasets, which we refer to
165 exclusively from this point forward.

166

167 1.1 Non-Immune Cell Types

168 Keratinocytes were among the most abundant cell types. Three keratinocyte clusters
169 were identified: basal keratinocytes, superficial keratinocytes and a third cluster of
170 “intermediate keratinocytes”, likely located between the former two keratinocyte layers and
171 consistent with the three layers of keratinocytes observed in fish skin [29, 30]. Keratinocytes
172 were abundant in all samples, but notably increased at 48h and 60h post infection only in coho
173 salmon (Fig.1 e,f).

174 Other abundant cell types include fibroblasts, endothelial cells, and osteoblasts.
175 Mucous cells were split into two clusters in coho salmon with many overlapping markers
176 (Fig.S5,S6), but differing in their relative expression of different paralogs of *spdef* and *p2rx1*
177 (see Fig.S2,S5,S6). Interestingly, *muc5* (associated with mucous cells, [85]) was expressed
178 only in Atlantic salmon mucous cells (Fig.S1,S2). A “secretory” cell type was abundant in
179 both species, and expressed tuft-cell marker genes (Table 1). Tuft cells line the epithelium of
180 the gut and airway in mammals, and although their function is not well-characterized, they are
181 associated with initiating immune responses (e.g., activating Th2 cells in response to helminth
182 endoparasitism in mice) [95]. We speculate these may be a sacciform cell type, previously
183 noted in coho salmon [20]. However, the noted absence of sacciform cells in Atlantic salmon
184 [20], means that the location, morphology, and function of this newly identified cell type
185 requires further investigation.

186 Neural crest cells were characterized by multiple pigment cell genes (Table 1) including
187 *ltk*, which directs multipotent neural crest cell development into pigment cells in zebrafish [56],
188 suggesting these cells are pigment cell progenitors. The detection of neural crest cells, red
189 blood cells, and muscle cells predominately in trunk skin samples (Fig.1 e,f), is consistent with
190 expectations of greater abundance of these cell types in the trunk skin than in the fins [30] given
191 the potential to cut deeper into the dermal layer. Additionally, several clusters of neuronal and
192 glial cells were observed, but most were observed in a single sample per species (Fig.1 e,f)
193 suggesting they comprise neural structures which are present sporadically throughout the skin
194 (e.g., peripheral axons [34], or the lateral line). Given their inconsistent presence within our
195 samples we do not further consider the response of these cell types to sea lice, but note their
196 potential to confound bulk RNAseq skin data.

197 Several cell types were identified in only one species. A small cluster of cells detected
198 in coho salmon demonstrated a number of marker genes observed in cluster 196 “Integument-

199 “Taste Bud” of a zebrafish cell atlas [53] (Table 1), which we refer to as “integument” cells
200 henceforth. We speculate this cell cluster may represent a rare chemosensory cell type in coho
201 salmon, which may also be present in Atlantic salmon but was unobserved due to its rarity (N
202 = 93 cells in coho salmon). Fibroblasts (2) were detected in Atlantic salmon but not coho
203 salmon and expressed *lamc1* and *col6a6* but also marker genes of the keratinocyte clusters
204 (e.g., *itga6* and *pof1b*) (Fig.S1). A final cell cluster unique to Atlantic salmon was termed
205 “Undifferentiated” because of its few distinctive marker genes (Fig.S1,S7).

206

207 *1.2 Immune Cell Types*

208 The immune cell marker gene *cd45* [96] was expressed in four and two clusters for
209 Atlantic salmon and coho salmon, respectively (Fig.S8). These clusters were re-clustered to
210 investigate for additional immune cell types expected to be present in the skin and potentially
211 involved in sea lice response [18]. Sub-structuring within *cd45*+ cells revealed six main types
212 of immune cells in both species: T cells, B cells, dendritic cells, neutrophils, macrophages, and
213 monocytes (Fig.3 a,b). Myeloid and lymphocyte cells were clearly differentiated by the
214 expression of *spi1b*, a marker for the myeloid lineage in zebrafish [39]. Marker genes for all
215 immune cell types were consistent with the literature (Table 1) with the curious exception of
216 the monocyte marker gene *mitfa*, typically associated with melanophores [56], suggesting these
217 monocytes might develop into melanomacrophages known to be present in salmonid skin [19]
218 (Fig.1 c,d, Fig.3 c,d, see Fig.S9-31 for violin plots of top marker genes).

219 While multiple macrophage and T cell subclusters were apparent in each species, their
220 top marker genes were either largely overlapping among subclusters, mostly ribosomal genes,
221 or had unknown biological relevance (Fig.S9-12,S17-19,S21-23,S25,S29-30), suggesting these
222 are clustering artefacts or previously undescribed immune cell types. For instance, expression
223 of *cd4* and *cd8* also did not conclusively differentiate T cell subclusters (Fig.S32), however, T

224 cells (5) in Atlantic salmon (Fig.S13) and T cells (4) in coho salmon (Fig.S24) expressed *gata3*,
225 associated with Th2 cell activation [97]. Given this general lack of clear, biologically relevant
226 expression differences within T cell and macrophage subclusters, and to maximize power for
227 subsequent differential expression analyses (given the low numbers of cells in each T cell and
228 macrophage subcluster, Table S6,S7) we grouped together all T cell subclusters and all
229 macrophage subclusters for downstream analysis.

230

231 2. Common Responses to Sea Lice in Resistant and Susceptible Salmonid Species

232 A total of 4567 and 1799 unique genes were found to be differentially expressed
233 between any treatment time point and the control in Atlantic salmon and coho salmon,
234 respectively (see Fig.S33-35 for the distribution of differentially expressed genes within a
235 given cell type, see Fig.S36,S37 for GO enrichment results). Some conserved wound-healing
236 and immune responses to sea lice infection were detected in Atlantic salmon and coho salmon.

237

238 2.1 Wound-Healing Response to Sea Lice

239 Both species showed a clear activation of wound-healing mechanisms in response to
240 the parasite in a variety of cell types (Fig.4). Upregulation of genes linked to limb development
241 such as *pax9* [98] and *meis2* [99] were evident in keratinocytes, mucous cells, and/or
242 fibroblasts. Genes associated with extracellular matrix integrity including *pdgfra* [100] and
243 *col21a* [101] were upregulated in fibroblasts of both species. Another gene associated with
244 healing of individual cells, *abr* [102], was significantly upregulated in macrophages and T cells
245 in coho salmon and in mucous cells, keratinocytes, and T cells in Atlantic salmon. The
246 upregulation of *agr2* observed in mucous cells of both species probably reflects an increased
247 production of mucus in response to sea lice [103] potentially to aid in wound-healing [30, 92].
248 A gene previously found to be upregulated at louse attachment sites in Atlantic salmon [104],

249 *aloxe3*, was upregulated in mucous cells of both species but only significantly in Atlantic
250 salmon. Mutations to *aloxe3* are associated with ichthyosis, a condition resulting in the build-
251 up of skin cells [105], suggesting this gene could contribute to wound-healing-associated cell
252 growth. Similarly, epidermal reinforcement-related genes *cldn8* [106] and *cntn1* [107] were
253 more upregulated in Atlantic salmon. However, *bnc2*, associated with wound-healing and
254 fibrosis [108], as well as black pigmentation [109], was upregulated earlier and more strongly
255 in coho salmon basal keratinocytes. Similarly, *hspe2*, associated with cell proliferation and
256 extracellular matrix strengthening [110], was upregulated in coho salmon fibroblasts but
257 downregulated in Atlantic salmon fibroblasts. Therefore, while general wound-healing
258 mechanisms are activated in both species, differences can be detected.

259

260 *2.2 Immune Response to Sea Lice*

261 A clear immune response was observed in both species in response to sea lice (Fig.5).
262 Multiple paralogs of genes associated with immune cell development including *runx3* [111],
263 *rarab* [112], and *gnai2* [113] were upregulated in response to sea lice in a variety of immune
264 cell types including T cells, macrophages, and dendritic cells (Fig.5a). *Myo9b*, a gene
265 associated with immune cell motility and activation [114] was upregulated in dendritic cells,
266 neutrophils, and macrophages in both species, though showing a faster and more intense
267 upregulation in coho salmon (Fig.5a). Major histocompatibility components were significantly
268 upregulated in macrophages and T cells (*MHCII* only) but surprisingly in non-immune cell
269 types too, mainly keratinocytes, and particularly superficial keratinocytes (Fig.5b). The
270 involvement of the complement immune system was unclear. Two paralogs of *c4* were
271 upregulated in Atlantic salmon fibroblasts while in coho salmon fibroblasts, one paralog was
272 not differentially expressed, and the other was upregulated at 24h but downregulated at 36h
273 and 60h (Fig.5c). *Cfd* was significantly downregulated in Atlantic salmon fibroblasts but was

274 not significantly differentially expressed in coho salmon (Fig.5c). This is consistent with
275 previous observations of the downregulation of this gene in Atlantic salmon in response to *L.*
276 *salmonis* sea lice [104]. Though Atlantic salmon demonstrated robust activation of T cells
277 through the significant upregulation of *cd28*, *ifit9*, *sox4* [115], *cxcr4* [116], and *ly-9* [117], they
278 also significantly upregulated anti-inflammatory *socs3* [118] (Fig.5d).

279

280 *3. Responses to Sea Lice Unique to Coho Salmon*

281 *3.1 Downregulation in Coho Salmon Red Blood Cells in Response to Sea Lice*

282 Atlantic salmon red blood cells upregulated a number of genes associated with iron
283 binding including several hemoglobin and ferritin subunits, and *tfr1a* [119] and other genes
284 key to red blood cell function including *slc4a1a* (ion transportation, [120], and *alas2* (heme
285 biosynthesis, [25]) (Fig.6a). On the contrary, there was a significant downregulation of these
286 genes in coho salmon red blood cells (Fig.6a). A regulation of iron in coho salmon red blood
287 cells was further supported by the enrichment of a variety of iron-related GO terms (e.g., iron
288 ion transport – GO:0006826) in sea louse infected samples of coho salmon but not Atlantic
289 salmon (Fig.6b).

290

291 *3.2 Keratinocytes are Key to Epithelial Hyperplasia Response to Sea Lice in Coho Salmon*

292 Coho salmon keratinocytes exclusively significantly upregulated a variety of genes
293 associated with epidermal re-organization (Fig.7a,b). Keratinocytes in both species were
294 enriched for intermediate filament cytoskeleton organization (GO:0045104) and intermediate
295 filament-based process (GO:0045103), consistent with the known abundance of filaments
296 observed in salmon keratinocytes [28] (Fig.7c). However, the fold enrichment was much higher
297 in coho salmon, indicating greater cell movement and restructuring of keratinocytes in this
298 species (Fig.7c).

299 Coho salmon superficial keratinocytes expressed genes more associated with cell
300 motility and immune cell localization, consistent with their location in the outermost layer of
301 the epidermis and in direct contact with attached lice [30] (Fig.7b). The GO term epidermis
302 development (GO:0008544) was enriched in coho salmon superficial keratinocytes and to a
303 lesser extent in intermediate keratinocytes (Fig.7c). Increased cell motility in coho salmon
304 superficial keratinocytes and intermediate keratinocytes was also evident by the increased
305 expression of *glipr2*, associated with cell migration particularly in response to hypoxia [121],
306 and *egfra*, associated with epidermal cell proliferation [122] (Fig.7a). Coho salmon superficial
307 keratinocytes also upregulated genes related to inflammation and immune cell infiltration
308 including: *sat1* [123], *spns2* [124], and *cdh26* [125], (Fig.7a).

In contrast, the basal keratinocyte response in coho salmon was characterized by the upregulation of genes associated with extracellular matrix reinforcement, consistent with their location in the outermost layer of the dermis [30] (Fig.7b). Genes associated with cell adhesion and the extracellular matrix including *plecb* [126] and *mmp30* [127] were significantly upregulated in coho salmon (Fig.7a). GO terms associated with extracellular matrix development (e.g., cell-cell adhesion via plasma-membrane adhesion molecules – GO:0098742, and cell adhesion – GO: 0007155, which is also enriched in intermediate keratinocytes) were also significantly enriched in coho salmon basal keratinocytes (Fig.7c). This layer of keratinocytes may also be responsible for directing the movement of upper layers of keratinocytes through the upregulation of genes known to regulate cell motility including *plekhgb5b* [128] and *quo* [129] (Fig.7a) and supported by the significant enrichment for GO: 0032231, regulation of actin filament bundle assembly (Fig.7b,c). Coho salmon basal keratinocytes also upregulated the immune gene *jak2a* (Fig.7a), which regulates hematopoiesis [130], promotes cell proliferation [131] and is inhibited by *socs3* [132] (upregulated only in Atlantic salmon (Fig.5d)). An aerolysin-like protein, which breaks down cell membranes [133]

324 and is upregulated in fish in response to bacterial infections [e.g., 134, 135], was also
325 significantly upregulated exclusively in coho salmon basal keratinocytes (Fig.7a), confirming
326 earlier observations of the upregulation of this gene exclusively in the skin of coho salmon but
327 not of Atlantic salmon in response to sea lice [23].

328 The differentially expressed genes characterizing the intermediate keratinocytes
329 response to sea lice in coho salmon largely overlapped with either the basal or superficial
330 keratinocytes (Fig.7a). This less specialized role is consistent with their location between the
331 superficial and basal keratinocytes. It may also reflect their recent generation from basal
332 keratinocytes [136] as evidenced by the particular increase in abundance of this layer of
333 keratinocytes at 48-60h (Fig.1f).

334

335 *3.3 Other Cell Types Potentially Contributing to Coho Salmon Epithelial Hyperplasia in*
336 *Response to Sea Lice*

337 Several additional cell types express genes related to inflammation in coho salmon
338 (Fig.8). Secretory cells significantly upregulate *ttc7a* from 24h onward in coho salmon but this
339 gene was only significantly upregulated at 36h in Atlantic salmon. This gene is associated with
340 epithelial inflammation in mice [137]. Alternatively, *mrc1*, a gene linked to inflammation [138]
341 and associated with increased *C. rogercresseyi* sea lice count on Atlantic salmon [139], was
342 significantly upregulated in coho salmon but not Atlantic salmon endothelial cells. Coho
343 salmon macrophages also demonstrated upregulation of the inflammation-associated gene
344 *usp47* [140]. Multiple cell types may therefore potentially regulate the keratinocyte epithelial
345 hyperplasia response to sea lice observed in coho salmon.

346

347 **DISCUSSION:**

348

349 Our results suggest that Atlantic salmon and coho salmon skin share a common set of
350 cell types consistent with their recent divergence 30 million years ago [141]. Many of these
351 cell types demonstrate a clear response to sea lice, which includes the activation of wound-
352 healing and immune mechanisms, often common to both species. Conversely, lice
353 immunomodulation of a variety of cell types was evident only in Atlantic salmon. Additionally,
354 the coho salmon response to sea lice presented unique signatures, characterized by iron-
355 limitation in red blood cells and a dramatic stimulation and re-organization of keratinocytes.
356 These processes are likely to be major contributors to the greater resistance of this species to
357 sea lice, and the underlying genes and regulatory networks detected here are potential
358 candidates whose expression and functioning could be disrupted to “rewire” the host response
359 to sea lice in Atlantic salmon via biotechnological approaches such as gene editing [16].

360

361 *Wound-Healing Response*

362 Both species appear to employ a common wound-healing response to sea lice using a
363 combination of keratinocytes, fibroblasts, mucous cells, and immune cells, in agreement with
364 the critical role of these cell types in response to skin laceration [92]. The expression of limb
365 development-related genes in multiple cell types also confirms a large-scale rearrangement of
366 the skin in response to wounding [30]. Fibroblastic repair of the dermis, as expected shortly
367 after wounding [30], was also evident through the upregulation of genes related with
368 extracellular matrix reconstruction in fibroblasts in both species. Mucous cell upregulation of
369 *abr2* also suggests both species increased mucus production in response to sea lice. Though
370 sea lice feed on mucus [142], increased mucus production is a characteristic wound-healing
371 response in Atlantic salmon [30, 92]. Alternatively, mucus upregulation may be particularly
372 adaptive in coho salmon since, unlike Atlantic salmon, mucus of this species does not prompt

373 a protease increase from sea lice, suggesting coho salmon mucus may contain protective
374 qualities [143].

375

376 *Immune Response*

377 Both species mount a common immune response to sea lice invoking the innate,
378 adaptive, and complement immune systems. The upregulation of major histocompatibility
379 proteins in the skin of both species is consistent with previous observations [24, 144]. However,
380 the expression of *MHCII* in the superficial keratinocytes was surprising given that these cells
381 are not typically associated with antigen presentation. Nonetheless, this result is consistent with
382 and may explain previous observations of *MHCII* expression in Atlantic salmon epidermis in
383 response to sea lice [24, 145]. Our results support the potential importance of superficial
384 keratinocytes for sensing pathogens via antigen presentation and initiating immune and
385 inflammatory responses [146].

386 Similarly, keratinocytes and fibroblasts seem to be key to the activation of the
387 complement immune system. However, our results do not provide clear support for the
388 importance of the complement immune response to sea lice resistance. This is consistent with
389 previous observations of both the upregulation [139, 147] and downregulation [104] of
390 complement proteins in Atlantic salmon in response to sea lice. Our results therefore support
391 earlier suggestions that activation of the complement pathway may not be sufficient to grant
392 sea lice immunity in Atlantic salmon [139].

393 Our results also potentially indicate that Atlantic salmon and coho salmon preferentially
394 employ different immune cells in response to sea lice. Atlantic salmon had far more T cells
395 than coho salmon (Fig.1e,f) perhaps as a consequence of artificial selection in this aquaculture
396 strain of Atlantic salmon for greater disease resistance [148]. Atlantic salmon also
397 demonstrated greater upregulation of genes associated with T cell activation. This observation

398 may be partly attributable to differences in power among species to detect differential
399 expression in T cells but is consistent with previous evidence suggesting a T cell dominated
400 response to sea lice in Atlantic salmon [149]. In contrast, coho salmon potentially show a
401 greater use of their macrophages in response to sea lice, as evidenced by the significant
402 enrichment for “antigen processing and presentation” (GO:0019882) in coho salmon but not
403 Atlantic salmon macrophages. Our results also support the key role of macrophages in directing
404 coho salmon skin inflammation in response to sea lice [17], specifically through the
405 upregulation of *usp47* and *ndst1a*, genes which are both associated with macrophage-driven
406 inflammation [140, 150]. We speculate that coho salmon employ a macrophage-dominant
407 innate immune response to sea lice, while Atlantic salmon try (and fail) to employ a T cell-led
408 adaptive immune response. More sampling or targeted snRNAsequencing of immune cells,
409 allowing for greater power to detect cell type heterogeneity within macrophages and T cells in
410 each species, could be helpful to test this hypothesis.

411 A surprising result was the seeming lack of response in neutrophils to sea lice in either
412 species. Few differentially expressed genes were observed in this cell type and no GO terms
413 were enriched for either species, likely a result of low power due to the few neutrophils detected
414 in each species. This scarcity of neutrophils was itself somewhat surprising given that previous
415 histological work has suggested increased abundance of neutrophils at the site of wound
416 healing in both species [17]. Upregulation of genes identified in this study as markers for
417 neutrophils (e.g., *mmp9*, *mmp13*, *csf3r*) have also been observed to be upregulated at the site
418 of sea lice attachment in both species [e.g., 22, 151]. This discrepancy may reflect a true relative
419 rarity of neutrophils in comparison to other skin cell types (e.g., keratinocytes and fibroblasts
420 which dominated our samples). Alternatively, this may be a sampling bias due to the
421 demonstrated difficulty in capturing this cell type with scRNAseq [152]. More sampling,
422 adjustment of nuclei isolation protocols to target immune cells, or integration of

423 snRNAsequencing data with spatial transcriptomic data may therefore help us to learn more
424 about what immune cells are doing in response to sea lice.

425

426 *Potential Immunomodulation of Atlantic Salmon By Sea Lice*

427 Given the known susceptibility of Atlantic salmon to sea louse immunomodulation
428 [153, 154], differences in immune and wound-healing response between Atlantic salmon and
429 coho salmon may not only reflect host physiological differences but also the differential
430 capacity of sea lice to immunomodulate each species. For example, upregulation of the
431 inflammation-dampening *socs3* [118] in Atlantic salmon may be induced by sea louse
432 immunomodulation. This gene is also upregulated in Atlantic salmon skin and head kidney in
433 response to *C. rogercresseyi*, but is downregulated when Atlantic salmon are fed an
434 immunostimulatory diet associated with lower lice counts, suggesting that this upregulation in
435 response to *C. rogercresseyi* is maladaptive [155]. *Socs* genes are commonly targeted by fish
436 pathogens to dampen host immunity [156] and may be particularly effective at preventing
437 macrophage activation (e.g., in turbot in response to bacterial pathogens [157]). Our results
438 therefore suggest that *L. salmonis* induce *socs3* upregulation in Atlantic salmon in order to
439 weaken their hosts.

440 Lice immunomodulation may have also caused the dampened expression of *hspe2* and
441 *bnc2* in Atlantic salmon, potentially resulting in reduced capacity for wound-healing, and, in
442 the case of *bnc2*, melanism [109]. Melanism is frequently observed at the louse attachment
443 sites in Atlantic salmon [30] and is more pronounced in Atlantic salmon with more sea lice
444 resistance [158]. Therefore, sea lice may downregulate *bnc2* in Atlantic salmon to prevent
445 effective wound healing.

446 Upregulation of haemoglobin and ferritin in Atlantic salmon red blood cells could also
447 reflect lice immunomodulation for the purposes of increasing the parasite's access to the host's

448 iron. Many pathogens manipulate iron homeostasis to increase available iron both for
449 nutritional purposes and potentially as a method of weakening their host [159, 160], as excess
450 iron can contribute to Fenton Chemistry production of harmful reactive oxygen-containing
451 species [161]. Ferritin and genes related to heme biosynthesis have previously been observed
452 to be upregulated in the skin of Atlantic salmon in response to *L. salmonis* [162]. This was
453 suggested to be an adaptive compensatory response to blood loss from *L. salmonis* parasitism,
454 however, we suggest that this may instead be a maladaptive response due to *L. salmonis*
455 immunomodulation of Atlantic salmon. This is supported by the observation that haemoglobin
456 is downregulated in Atlantic salmon infected with *C. rogercresseyi* when they are fed an
457 immunostimulatory diet [155]. *L. salmonis* secretion of prostaglandin E2 or other vasodilators
458 may underlie this response in Atlantic salmon [163]. Our results therefore suggest the potential
459 for sea lice to manipulate a wide-range of molecular pathways and phenotypes in Atlantic
460 salmon related to immune response, wound healing and iron availability. Additional molecular
461 research from the perspective of the sea louse would be useful to substantiate these findings
462 and elucidate the precise molecular strategies employed by the sea louse to elicit these
463 responses in Atlantic salmon.

464

465 *Potential Nutritional Immune Response in Coho Salmon Red Blood Cells May Discourage Sea*
466 *Lice*

467 In contrast to Atlantic salmon, coho salmon red blood cells downregulate multiple iron-
468 binding genes in response to sea lice. This could reflect differential wound-healing strategies
469 in each species or may potentially indicate an adaptive nutritional immune response.
470 Nutritional immunity, where hosts reduce the availability of iron in their tissues, is commonly
471 employed to dissuade iron-seeking pathogens [26]. Pink salmon downregulate iron-associated
472 genes in response to sea lice [164] and a nutritional immune response resulting from the

473 upregulation of *hepcidin 1* has been suggested for both Atlantic salmon and coho salmon [24].
474 However, we found low expression of hepcidin in both species in all samples. Instead, our
475 results suggest that this nutritional immune response in coho salmon is derived from the
476 downregulation of a variety of iron-binding genes in red blood cells.

477 Yet, Atlantic salmon are clearly capable of mounting a similar nutritional immune
478 response to other pathogens. For example, plasma iron significantly decreased in Atlantic
479 salmon exposed to live and dead *Piscirickettsia salmonis* bacteria [119]. Intriguingly, Atlantic
480 salmon seem capable of mounting a similar nutritional immune response by upregulating genes
481 associated with heme degradation when parasitized by *C. rogercresseyi* but not *L. salmonis*
482 [162]. *L. salmonis*' longer co-evolutionary history with Atlantic salmon [165] may have
483 resulted in its greater capacity to immunomodulate Atlantic salmon in comparison to *C.*
484 *rogercresseyi*. Given the susceptibility of Atlantic salmon to both sea louse species, restoring
485 Atlantic salmon's adaptive nutritional immunity may not be sufficient to confer resistance to
486 *L. salmonis*. However, this may still result in positive animal welfare consequences given that
487 iron limitation can prevent opportunistic microbial infections [166] that are often associated
488 with the sites of sea lice attachment [167].

489

490 *Keratinocytes Key to Coho Salmon Epithelial Hyperplasia Immune Response to Sea Lice*

491 Our results strongly suggest that keratinocytes are responsible for the epithelial
492 hyperplasia response characterized by filament development, inflammation, and cell
493 proliferation that coho salmon employ to expel sea lice [17, 18, 21]. This is evidenced by our
494 observations of a significant upregulation of genes associated with cell proliferation, cell
495 motility, and extracellular matrix strengthening in keratinocytes, in addition to their dramatic
496 increase in abundance during sea lice infection. However, our results further reveal
497 keratinocytes play an active immunological role in response to sea lice. Given their capacity

498 for antigen presentation through the expression of *MHCII*, superficial keratinocytes may play
499 a sentinel role in the detection of sea lice and subsequently attract immune cells to the site of
500 an attached sea lice. Superficial keratinocytes, and to a lesser extent intermediate keratinocytes
501 also seem to be responsible for the dramatic increase in filament cell proliferation typifying
502 coho salmon response to sea lice [17, 18] as evidenced by their upregulation of genes related
503 to cell motility and filament reorganization. The intermediate keratinocytes, which we suggest
504 lie between the superficial and basal keratinocytes due to their shared marker and differentially
505 expressed genes, rapidly increase in abundance at 48-60h post sea lice infection and are likely
506 responsible for the observed skin thickening in coho salmon in response to sea lice [17, 18].
507 Basal keratinocytes, alternatively, regulate the cell motility and proliferation of the upper layers
508 of keratinocytes, strengthen the basement membrane of the epidermis, and emit antibacterial
509 aerolysin proteins to prevent secondary microbial infections. Therefore, each layer of
510 keratinocytes plays a unique but integrated role in the observed epithelial hyperplasia
511 characterising coho salmon's response to sea lice.

512

513 **CONCLUSIONS:**

514 In this study, we revealed the cell-specific mechanisms underlying responses to sea lice
515 in a susceptible and a resistant salmonid species. Single nuclei RNA sequencing allowed us to
516 identify the importance of genes with cell type-specific expression patterns, teasing apart cell-
517 type specific responses, including variation in the functional roles among keratinocytes. Our
518 results suggest a complex interplay of genes and cell types associated with sea lice response in
519 both Atlantic salmon and coho salmon. The susceptibility of Atlantic salmon to sea lice
520 infection despite clear activation of the complement, innate, and adaptive immune systems,
521 confirms the insufficiency of this species immune response to effectively repel sea lice. Coho
522 salmon, alternatively, demonstrate multiple interesting strategies in response to sea lice but

523 keratinocytes seem to be key to the epithelial hyperplasia underlying coho salmon sea lice
524 resistance.

525 The candidate genes we identified underlying coho salmon's resistance and Atlantic
526 salmon's susceptibility hold significant promise for enhancing sea lice resistance in Atlantic
527 salmon via biotechnological approaches such as gene editing. Knocking out genes in Atlantic
528 salmon that we identified as upregulated during lice infestation and potentially linked to
529 immunodeficiency and sea lice immunomodulation through CRISPR-Cas9 editing holds the
530 potential to significantly enhance the species' resistance to sea lice. Furthermore, promoting
531 the expression of those genes associated with a dampened immune response in Atlantic salmon
532 or those associated with epithelial hyperplasia in coho salmon could also effectively strengthen
533 lice resistance in Atlantic salmon. Our findings thus offer actionable insights to mitigate the
534 economic and ecological toll of sea lice infestations in the Atlantic salmon aquaculture
535 industry.

536

537 **METHODS:**

538

539 *Experimental Design*

540 Atlantic salmon eggs with poorer than average estimated breeding values for resistance
541 to sea lice were sourced from Benchmark Genetics Iceland. Coho salmon (1 - 2 g) were
542 provided by the Quinsam River Hatchery, Quinsam River, BC, Canada. Both species were
543 reared in a Recirculating Aquaculture System at the Center for Aquaculture Technologies (PEI,
544 Canada) in freshwater until post-smolt stage (approximately 15 g), after which fish were
545 gradually transferred to saltwater and reared to a target weight of approximately 25 g. During
546 the experiment, fish were kept in 135 L tanks at approximately 12 °C. Triplicate tanks of each
547 species were treated with locally-sourced (n = 49 / fish, [147]) *Lepeophtheirus salmonis*

548 copepodids and maintained for 60 hours and sampled every 12 hours. Untreated control fish
549 were maintained in parallel tanks and sampled at 36 hours into the experiment. Fish were
550 sedated before sampling with Tricaine methanesulfonate (100 mg L⁻¹), and then subjected to a
551 lethal blow to the head. Tissue samples (skin and pelvic fin), from louse attachment sites for
552 treated fish, were collected and immediately frozen in dry ice.

553

554 *Library Preparation and Sequencing*

555 Nuclei were isolated from one skin and one fin sample from each of the 5 treatment
556 timepoints (12, 24, 36, 48, and 60 hours post exposure) as well as the control for each species (N
557 = 24 tissue samples total) using a custom protocol optimized for salmon epidermis [168]. In
558 brief, approximately 45 mg tissue samples were cut with scissors in 1 mL of TST buffer for 10
559 minutes on ice before being filtered through a 40 µm Falcon™ cell strainer (Thermo Fisher
560 Scientific, catalog no. 08-771-2). A further 1 mL of TST and 3 mL of 1X PBS + BSA buffer were
561 added to each sample before centrifuging at 4°C for 5 minutes at 500 g. Samples were
562 resuspended in 1 mL 1X ST buffer filtered again through a 40 µm cell strainer, stained with
563 Hoechst 33342 Solution (Thermo Fisher Scientific, catalog no. 62249) and then nuclei integrity
564 was visually assessed using a fluorescent microscope. A disposable flow haemocytometer (C-
565 Chip Neubauer Improved (100 µm depth), NanoEnTek, catalog no. DHC-N01) was then used to
566 estimate nuclei counts.

567 Samples were processed with Chromium Next GEM Single Cell 3' Reagent Kits v3.1
568 (Dual Index) (10X Genomics) using the protocol outlined in the User Guide (CG000315 Rev C).
569 Samples were diluted with nuclease-free water to a target concentration that would recover
570 approximately 7000 nuclei in the final library. Samples were then loaded on the Chromium
571 Controller for nuclei droplet formation. After subsequent nuclei and UMI barcoding and reverse
572 transcription, resulting cDNA was then amplified, fragmented, and indexed with Truseq adapters

573 and Illumina sample indexes. Sequencing was performed on a NovaSeq 6000 platform (Illumina)
574 by Azenta for approximately 220 million paired end 2x150bp reads per sample.

575

576 *Genome Indexing and Read Alignment with STAR*

577 Genome indexing and library mapping was performed with STAR (version 2.7.10a,
578 [169, 170]). We appended the mitochondrial genome from the ENSEMBL V2 Atlantic salmon
579 genome (Salmo_salar.ICSASG_v2.dna_rm.toplevel.fa.gz, v2, release 105, masked genome,
580 assembly ID: GCA_000233375.4) to the ENSEMBL V3 Atlantic salmon genome
581 (Salmo_salar.Ssal_v3.1.dna_rm.toplevel.fa.gz, v3.1, release 106, masked genome, assembly
582 ID: GCA_905237065.2) for both the .gff and .fna files prior to indexing. For coho salmon, we
583 appended this species mitochondrial genome (version NC_009263.1, NCBI) to the ENSEMBL
584 V2 coho salmon genome (Oncorhynchus_kisutch.Okis_V2.dna_rm.toplevel.fa.gz, v2, release
585 106, masked genome, assembly ID: GCA_002021735.2) for both the .gff and .fna files prior to
586 indexing. Prior to this concatenation, the coho salmon mitochondrial genome .gff file was
587 manually edited to convert “CDS” annotations to “exon” annotations (consistent with the
588 Atlantic salmon mitochondrial genome .gff file) as STAR assigns transcripts to “exon”
589 annotations in the .gff file. gffread (v0.10.1) was used to convert .gff to .gtf files [171]. Both
590 genomes were indexed using STAR (--runMode genomeGenerate). Each library was then
591 mapped against its corresponding genome with the 10X V3 cell barcode whitelist (3M-
592 february-2018.txt) and using standard parameters for single cell libraries (--soloMultiMappers
593 Unique --soloBarcodeReadLength 28 --soloType CB_UMI_Simple --soloUMIlen 12 --
594 soloCBwhitelist 3M-february-2018.txt --soloFeatures GeneFull --clipAdapterType
595 CellRanger4 --outFilterScoreMin 30 --soloCBmatchWLtype
596 1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR --soloUMIdedup
597 1MM_CR --readFilesCommand zcat --outSAMtype BAM Unsorted). The raw (unfiltered) files

598 (*genes.tsv*, *barcodes.tsv*, and *matrix.mtx*) generated for each sample were then used for
599 downstream analysis. On average, there were 300 million reads per sample with 94% of reads
600 with valid barcodes, and a 62% saturation (for more details see Fig.S38, Table S1,S2).

601

602 *Quality Control, Clustering, Integration*

603 Samples were then analysed in an R (v4) environment using Seurat (v4.1, [172]). We
604 created Seurat objects for each library after removing nuclei with less than 200 features and
605 features occurring in fewer than three nuclei. One Atlantic salmon sample (Atlantic_12h_fin)
606 retained only 60 nuclei after this initial filtration and was therefore discarded from downstream
607 analysis (Table S3). We then merged samples by species into a single Seurat object. Nuclei
608 where mtDNA features accounted for 10% or more of their total UMIs were removed (Table
609 S3, Fig.S39) before removing all mtDNA features (leaving 48608 and 39312 features
610 remaining for Atlantic salmon and coho salmon, respectively). After sub-setting the Seurat
611 object into individual samples, upper and lower thresholds for UMI and feature counts per
612 nuclei were then applied individually to each sample based on knee plot visualization. For all
613 Atlantic salmon samples, only nuclei with more than 500 UMIs but less than 6000 UMIs and
614 more than 500 features and less than 3500 features were retained (Fig.S40). For coho salmon
615 samples, a lower UMI and feature count limit of 300, 500, or 750 was applied to each sample;
616 an upper UMI limit of 2000 or 6000 was applied while an upper feature limit of 1500 or 3500
617 was applied (Fig.S41). A single Atlantic salmon sample (Atlantic_24h_fin) retained only 338
618 nuclei after this initial filtration and was therefore discarded from downstream analysis (Table
619 S3).

620 Samples were then merged again into a single Seurat object by species before splitting
621 samples again into individual sample datasets. This was done to ensure that the same features
622 were considered across samples. Counts were then normalized for each sample using the

623 “NormalizeData” function prior to calculating cell cycle scores using the “CellCycleScoring”
624 function (see Tables S8,S9 for list of genes used). The “v2” SCTtransform version with the
625 glmGamPoi method (v 1.8.0, [173]) was used to normalize RNA counts for each sample,
626 regressing out scores for the S and G2M cell cycle stages. Linear dimension reduction was
627 conducted for each sample using the “RunPCA” function with 50 PCs. After consulting
628 Elbowplots for each sample, a UMAP using 20 PCs was run for each sample and the
629 “FindNeighbours” function was applied using 20 PCs, before using the “FindClusters” function
630 with a resolution of 0.2. DoubletFinder (v 2.0.3, [174]) was then applied independently to each
631 sample selecting pK values with the highest associated BCmvn value. We assumed a 4%
632 doublet formation rate (based on the Chromium instrument specifications) and adjusted for
633 homotypic doublets (see Table S3 for remaining cells per sample after doublet removal).

634 Samples were integrated by species using 5000 features and anchors that were
635 identified with the “rpca” reduction method and the “FindIntegrationAnchors” function. A
636 PCA was rerun on the integrated dataset using 50 PCs, and 30 PCs were used for subsequent
637 UMAP generation and clustering with a resolution of 0.2 (Fig.S42a,S43a). Markers for each
638 cluster were assessed using the logistic regression method and the FindAllMarkers function on
639 the “SCT” assay and “data” slot, using sample ID as a latent variable to help reduce batch
640 effects among samples. We used a pseudocount of 0.001, set a p-value threshold of 0.01, and
641 only considered genes that were upregulated, expressed in at least 25% of all nuclei (in either
642 of the compared groups), and demonstrated the default threshold of 0.25 X difference (log-
643 scale) between the two compared groups.

644 Two clusters (0 and 4) were removed from the Atlantic salmon dataset due to low
645 average feature/UMI counts (Fig.S42c,d). Many of the marker genes for cluster 0 were
646 ribosomal genes, suggesting poor quality nuclei (Fig.S44). Cluster 4 was also found almost
647 exclusively in a single sample (Atlantic_Control_skin), again suggesting it was poor quality

648 (Fig.S42b). Similarly, cluster 1 from the coho salmon dataset was removed for having low
649 average feature/UMI counts and because many of its markers were ribosomal genes
650 (Fig.S43c,d,S45). The SCTransformation was then redone for each sample based on the RNA
651 assay as described above, and integration of samples for each species was conducted as
652 described above using 30 PCs for UMAP generation and a resolution of 0.2 for clustering for
653 Atlantic salmon and 20 PCs for UMAP generation and a resolution of 0.2 for clustering for
654 coho salmon. An additional cluster (11) was subsequently removed from the coho salmon
655 dataset for having many ribosomal marker genes (Fig.S46,S47). The SCTransformation of each
656 sample and integration of samples was again redone for the coho salmon dataset after removing
657 this cluster, again using 20 PCs for UMAP generation and a resolution of 0.2 for clustering.
658 (See Table S3 for remaining cells per sample and Fig.S48 for the distribution of UMIs and
659 features per sample after all filtering.)

660

661 *Sub-clustering*

662 Clusters identified as immune cells based on the expression (Fig.S8) of *cd45 (ptprc)* (a
663 marker gene for immune cells, [96]) were then considered separately for each species to
664 investigate for the presence of additional immune cell types. For immune cells identified within
665 Atlantic salmon samples, a PCA was rerun on the integrated assay using 10 PCs, and UMAP
666 generation and clustering were conducted using 9 PCs and a resolution of 0.3, respectively. For
667 coho salmon immune cells, a PCA was rerun on the integrated dataset using 20 PCs, UMAP
668 was generated using 15 PCs and clustering was conducted using a resolution of 0.4. Marker
669 genes comparing each immune cell cluster with all other immune cells were then identified
670 using the same marker gene detection method described above using the “FindAllMarkers”
671 function but UMI counts were not re-corrected based on the sub-setted datasets (recorrect_umi
672 = FALSE). Marker genes were investigated and visualized to assess cell type. All clusters

673 identified as macrophages were grouped together as were all clusters identified as T-Cells (see
674 Results).

675 Within a single cluster of the coho salmon dataset (cluster 12) we observed expression
676 of the *ltk* gene (a marker of neural crest cells in Atlantic salmon, see results below) in a small
677 subset of cells within this cluster while other cells within this cluster demonstrated expression
678 of *casq1b* (a marker of muscle cells in Atlantic salmon, see results below) (Fig.S49a,b). To
679 investigate the potential for multiple cell types within this cluster, we reran a PCA on cells
680 from this cluster using the integrated assay and 10 PCs, before performing UMAP generation
681 using 3 PCs and clustering with a resolution of 0.02. The resulting UMAP revealed two clusters
682 of cells, one expressing *ltk*, the other expressing *casq1b* (Fig.S49c-f).

683 These detected subclusters were then incorporated into the larger dataset for each
684 species including all cell types (see Fig.S50 for distribution of UMIs and features per cluster).
685 Marker genes were then assessed for all newly identified immune cell types using the
686 “FindAllMarkers” function (as described above) in the context of all other cell types. The top
687 markers based on the average log 2-fold change were then considered for each cluster to assess
688 cell type identity. Gene annotations from the ENSEMBL genome were supplemented with
689 EntrezID (NCBI, [175]) and UniProt [176] annotations based on querying BioMart (v 2.50.3,
690 [177]).

691

692 *Differential Gene Expression Detection*

693 We next identified genes which were differentially expressed between the control
694 samples and each of the infection timepoints (12, 24, 36, 48, 60 hrs post infection) for both
695 species and all cell types using the “FindMarkers” function and the default Wilcox method.
696 We used the SCT assay and “data” slot, imposed a minimum percent threshold (percent of cells
697 in either considered group that had to express the gene) of 0.1, set a minimum threshold p-

698 value of 0.01, and used the default threshold of 0.25 X difference (log-scale) between the two
699 compared groups. We excluded results from cell types that had fewer than 50 nuclei in the
700 control samples and comparisons where the treatment timepoint had fewer than 50 nuclei.
701 Genes were considered differentially expressed if their adjusted p-value < 0.001. Enriched GO
702 Biological Processes for differentially expressed genes detected for each cell type for each
703 species were identified using ShinyGO (v 0.80, [178]). We used default parameters and limited
704 the gene universe to all features in the RNA assay for each species (N = 48608, N = 39312
705 genes for Atlantic salmon and coho salmon, respectively). GO terms were considered
706 significantly enriched if the FDR-adjusted p-value < 0.001.

707

708 *Integration of Samples Across Species*

709 We then directly compared Atlantic salmon and coho salmon samples using 6494 genes
710 identified using Orthofinder v2.5.4 [179] as 1:1 orthologs between the two species. The
711 transcriptomes of the Atlantic salmon and coho salmon Ensembl genomes used as reference
712 for the snRNAseq analyses were used (Salmo_salar.Ssal_v3.1.cdna.all.fa and
713 Oncorhynchus_kisutch.Okis_V2.cdna.all.fa). A single isoform per gene was retained using a
714 custom python script that selects the longest transcript for each gene, and Orthofinder was run
715 using default parameters. The orthogroups with one gene per species were considered 1:1
716 orthologs between Atlantic salmon and coho salmon.

717 Atlantic salmon and coho salmon samples were re-processed using the same quality
718 control methods as described above, but features were winnowed down to this set of 1:1
719 orthologous genes just prior to the SCTransformation of individual samples. Samples from
720 both species were then integrated together using 2000 features using anchors identified with
721 the “rpca” reduction method with the “FindIntegrationAnchors” function. A PCA was run on
722 the integrated dataset using 50 PCs with clustering and a UMAP was generated using 20 PCs

723 and a resolution of 0.2. Markers were then detected for each cluster and species using the
724 “FindAllMarkers” function as described above. The distribution of features and UMIs as well
725 as the top markers based on the average log 2-fold change were then considered for each
726 cluster. A single cluster (cluster 0) was removed due to a lack of defining marker genes
727 (Fig.S51,S52), following reclustering as above a second cluster (cluster 1) was again removed
728 due to a lack of defining marker genes (Fig.S53,S54). After removing these clusters the
729 SCTransformation was redone for each sample based on the RNA assay, and integration of
730 samples for each species was conducted as described above (using 2000 features for
731 integration, 50 PCs for the PCA, 20 PCs and a resolution of 0.2 for clustering and UMAP
732 generation, see Fig.S55 for distribution of UMIs and features per cell type and cell type counts
733 per sample). Markers were then detected for each cluster using the “FindAllMarkers” function
734 as described above. The top markers based on the average log 2-fold change were then
735 considered for each cluster to assess cell type identity.

736

737 **Ethics Approval and Consent to Participate:**

738 CATC and UPEI Animal Care Committees (AUP 21-008) approved all fish handling
739 procedures, which were conducted in accordance with the Canadian Council for Animal Care
740 regulations (<http://www.ccac.ca/>) and ARRIVE guidelines.

741

742 **Consent for Publication:**

743 Not applicable.

744

745 **Availability of Data and Materials:**

746 Sequencing data for all samples used in this study will be deposited to NCBI SRA upon article
747 acceptance. Scripts used to analyse and visualize data are available at

748 https://github.com/SarahSalisbury/Atlantic_Salmon_vs_Coho_Salmon_Lice_Response_snR

749 NAseq.

750

751 **Competing Interests:**

752 The authors declare that they have no competing interests.

753

754 **Funding:**

755 This work was supported by FHF grant 901631 (“CrispResist”), BBSRC grant BB/V009818-1 (“GenoLice”) and BBSRC Institute Strategic Grants to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/30002275, BBS/E/D/10002070 and BBS/E/RL/230002A).

758 SJS gratefully acknowledges funding from an NSERC PDF award.

759

760 **Authors’ Contributions:**

761 MDF, SJM, JEB, MDF, RDH, NR, and DR created the experimental design. MDF, RRD, and
762 DR conducted the experiment and collected tissue samples. RRD led the lab work with
763 assistance from SJS, PRV, and OG. SJS led the data analysis, interpretation, and figure
764 generation, with assistance from DR. SJS led the writing in consultation with DR and with
765 assistance from RRD, SJM, JEB, PRV, MDF, LS, RDH, and NR. All authors approved the
766 final manuscript.

767

768 **Acknowledgements:**

769 We gratefully acknowledge Paige Ackerman, Edward Walls, Sherri Higgins, Cindy Ederis for
770 contributing coho salmon from Quinsam River Hatchery as well as Ólafur H. Kristjánsson of
771 StofnFiskur, Benchmark Genetics in Iceland and Morten Rye of Benchmark Genetics in
772 Norway for contributing Atlantic salmon eggs. Our thanks go to Dr. Mark Polinski and Russell

773 Anderson from FAS delivery for ensuring the safe and efficient transfer of animals; and Dr.
774 Mark Braceland and Dr. Hiatham Mohammed from CATC, as well as Dylan Michaud for
775 ensuring the welfare of animals throughout the experiment.

776

777 **References:**

- 778 1. Brooker AJ, Skern-Mauritzen R, Bron JE. Production, mortality, and infectivity of
779 planktonic larval sea lice, *Lepeophtheirus salmonis* (Krøyer, 1837): current knowledge and
780 implications for epidemiological modelling. ICES Journal of Marine Science. 2018;
781 75(4):1214-34.
- 782 2. Boxshall GA, Bravo S. On the identity of the common *Caligus* (Copepoda:
783 Siphonostomatoida: Caligidae) from salmonid netpen systems in southern Chile. *Contributions*
784 *to Zoology*. 2000;69(1-2):137-46.
- 785 3. Carvalho LA, Whyte SK, Braden LM, Purcell SL, Manning AJ, Muckle A, Fast, M. D.
786 Impact of co-infection with *Lepeophtheirus salmonis* and *Moritella viscosa* on inflammatory
787 and immune responses of Atlantic salmon (*Salmo salar*). *Journal of fish diseases*.
788 2020);43(4):459-73.
- 789 4. Abolofia J, Asche F, Wilen, JE. The cost of lice: quantifying the impacts of parasitic sea lice
790 on farmed salmon. *Marine Resource Economics*. 2017;32(3):329-49.
- 791 5. Torrisen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, et al. Salmon lice—
792 impact on wild salmonids and salmon aquaculture. *Journal of fish diseases*. 2013;36(3):171-
793 94.
- 794 6. Barrett LT, Oppedal F, Robinson N, Dempster T. Prevention not cure: a review of methods
795 to avoid sea lice infestations in salmon aquaculture. *Reviews in Aquaculture*. 2020;12(4):2527-
796 43.

797 7. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K. Chemical use in salmon aquaculture:
798 a review of current practices and possible environmental effects. *Aquaculture*. 2010;306(1-
799 4):7-23.

800 8. Glover KA, Aasmundstad T, Nilsen F, Storset A, Skaala Ø. Variation of Atlantic salmon
801 families (*Salmo salar* L.) in susceptibility to the sea lice *Lepeophtheirus salmonis* and *Caligus*
802 *elongatus*. *Aquaculture*. 2005;245(1-4):19-30.

803 9. Gjerde B, Ødegård J, Thorland I. Estimates of genetic variation in the susceptibility of
804 Atlantic salmon (*Salmo salar*) to the salmon louse *Lepeophtheirus salmonis*. *Aquaculture*.
805 2011;314(1-4):66-72.

806 10. Holborn MK, Rochus CM, Ang KP, Elliott JA, Leadbeater S, Powell F, Boulding EG.
807 Family-based genome wide association analysis for salmon lice (*Lepeophtheirus salmonis*)
808 resistance in North American Atlantic salmon using a 50 K SNP array. *Aquaculture*.
809 2019;511:734215.

810 11. Tsai HY, Hamilton A, Tinch AE, Guy DR, Bron JE, Taggart JB, et al. Genomic prediction
811 of host resistance to sea lice in farmed Atlantic salmon populations. *Genetics Selection
812 Evolution*. 2016;48(1):1-11.

813 12. Correa K, Bangera R, Figueroa R, Lhorente JP, Yáñez JM. The use of genomic information
814 increases the accuracy of breeding value predictions for sea louse (*Caligus rogercresseyi*)
815 resistance in Atlantic salmon (*Salmo salar*). *Genetics Selection Evolution*. 2017;49(1):1-5.

816 13. Correa K, Lhorente JP, Bassini L, López ME, Di Genova A, Maass A, et al. Genome wide
817 association study for resistance to *Caligus rogercresseyi* in Atlantic salmon (*Salmo salar* L.)
818 using a 50K SNP genotyping array. *Aquaculture*. 2017;472:61-5.

819 14. Rochus CM, Holborn MK, Ang KP, Elliott JA, Glebe BD, Leadbeater S, et al. Genome-
820 wide association analysis of salmon lice (*Lepeophtheirus salmonis*) resistance in a North
821 American Atlantic salmon population. *Aquaculture Research*. 2018;49(3):1329-38.

822 15. Robledo D, Gutiérrez AP, Barría A, Lhorente JP, Houston RD, Yáñez JM. Discovery and
823 functional annotation of quantitative trait loci affecting resistance to sea lice in Atlantic salmon.
824 Frontiers in genetics. 2019;10:56.

825 16. Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, et al. Applying
826 genetic technologies to combat infectious diseases in aquaculture. Reviews in Aquaculture.
827 2023;15(2):491-535.

828 17. Johnson SC, Albright LJ. Comparative susceptibility and histopathology of the response of
829 naive Atlantic, chinook and coho salmon to experimental infection with *Lepeophtheirus*
830 *salmonis* (Copepoda: Caligidae). Diseases of Aquatic Organisms. 1992;14(3):179-93.

831 18. Fast MD. Fish immune responses to parasitic copepod (namely sea lice) infection.
832 Developmental & Comparative Immunology. 2014;43(2):300-12.

833 19. Braden LM, Michaud D, Groman D, Byrne P, Hori TS, Fast MD. Rejection of
834 *Lepeophtheirus salmonis* driven in part by chitin sensing is not impacted by seawater
835 acclimatization in Coho salmon (*Oncorhynchus kisutch*). Scientific Reports. 2023;13(1):1-19.

836 20. Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW. Skin morphology and humoral non-
837 specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon.
838 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.
839 2002;132(3):645-57.

840 21. Johnson SC, Fast MD. Interactions between sea lice and their hosts. In: Wiegertjes GF, Flik
841 G. Host-Parasite Interactions. Abingdon, UK: Taylor & Francis; 2004. p. 131–59.

842 22. Valenzuela-Muñoz V, Boltaña S, Gallardo-Escárate C. Comparative immunity of *Salmo*
843 *salar* and *Oncorhynchus kisutch* during infestation with the sea louse *Caligus rogercresseyi*:
844 An enrichment transcriptome analysis. Fish & shellfish immunology. 2016;59:276-87.

845 23. Fast MD, Braden LM. Salmon-louse interaction and immunological consequences for the
846 host. In: Treasurer J, Bricknell IR, Bron JE. Sea Lice Biology and Control. Essex UK: 5M
847 Books Ltd; 2022. p. 272-93.

848 24. Braden LM, Koop BF, Jones SR. Signatures of resistance to *Lepeophtheirus salmonis*
849 include a TH2-type response at the louse-salmon interface. *Developmental & Comparative*
850 *Immunology*. 2015;48(1):178-91.

851 25. Valenzuela-Muñoz V, Boltaña S, Gallardo-Escárate C. Uncovering iron regulation with
852 species-specific transcriptome patterns in Atlantic salmon and coho salmon during a *Caligus*
853 *rogercresseyi* infestation. *Journal of fish diseases*. 2017;40(9):1169-84.

854 26. Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host–
855 pathogen interface. *Nature Reviews Microbiology*. 2022;20(11):657-70.

856 27. Sveen LR, Robinson N, Krasnov A, Daniels RR, Vaadal M, Karlsen C, Ytteborg E,
857 Robledo D, Salisbury S, Dagnachew B, Lazado CC. Transcriptomic landscape of Atlantic
858 salmon (*Salmo salar* L.) skin. *G3*. 2023;jkad215.

859 28. Hawkes JW. The structure of fish skin: I. General organization. *Cell and Tissue Research*.
860 1974;149(2):147-58.

861 29. Quilhac A, Sire JY. Spreading, proliferation, and differentiation of the epidermis after
862 wounding a cichlid fish, *Hemichromis bimaculatus*. *The Anatomical Record: An Official*
863 *Publication of the American Association of Anatomists*. 1999;254(3):435-51.

864 30. Sveen L, Karlsen C, Ytteborg E. Mechanical induced wounds in fish—a review on models
865 and healing mechanisms. *Reviews in Aquaculture*. 2020;12(4):2446-65.

866 31. Elliott, D. G. (2011). THE SKIN| Functional morphology of the integumentary system in
867 fishes. In: Farrell AP. *Encyclopedia of Fish Physiology*. Academic Press. p.476-88.

868 32. Elliott DG. Integumentary system. In: The laboratory fish. 2000. Academic Press. p. 271-
869 306.

870 33. Sehring IM, Weidinger G. Recent advancements in understanding fin regeneration in
871 zebrafish. Wiley Interdisciplinary Reviews: Developmental Biology. 2020;9(1):e367.

872 34. Rasmussen JP, Vo NT, Sagasti A. Fish scales dictate the pattern of adult skin innervation
873 and vascularization. Developmental cell. 2018;46(3):344-59.

874 35. Esteban MÁ, Cerezuela R. Fish mucosal immunity: skin. In: Beck BH, Peatman E. Mucosal
875 health in aquaculture. 2015. Academic Press. p. 67-92.

876 36. Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data
877 analysis. Frontiers in genetics. 2019;10:317.

878 37. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and
879 biology of single-cell RNA sequencing. Molecular cell. 2015;58(4):610-20.

880 38. Sun S, Liu Z, Jiang Q, Zou Y. Embryonic expression patterns of *TBC1D10* subfamily genes
881 in zebrafish. Gene Expression Patterns. 2022;43:119226.

882 39. Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJ, Cvejic A, et al.
883 Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of
884 vertebrate immune cell types. Genome research. 2017;27(3):451-61.

885 40. Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, et al. T cell receptor “inside-out”
886 pathway via signaling module *SKAPI*-RapL regulates T cell motility and interactions in lymph
887 nodes. Immunity. 2010;32(4):541-56.

888 41. Mason DY, Cordell J, Brown M, Pallesen G, Ralfkiaer E, Rothbard J, Crumpton M, Gatter
889 KC. Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide
890 sequence from the *CD3* antigen. Journal of Clinical Pathology. 1989;42(11):1194-200.

891 42. Lang G, Wotton D, Owen MJ, Sewell WA, Brown MH, Mason DY, et al. The structure of
892 the human *CD2* gene and its expression in transgenic mice. The EMBO Journal.
893 1988;7(6):1675-82.

894 43. Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T, Ramamoorthy S, et al.
895 Transcription factor *EBF1* is essential for the maintenance of B cell identity and prevention of
896 alternative fates in committed cells. *Nature immunology*. 2013;14(8):867-75.

897 44. Borggrefe T, Keshavarzi S, Gross B, Wabl M, Jessberger R. Impaired *IgE* response in
898 *SWAP-70*-deficient mice. *European journal of immunology*. 2001;31(8):2467-75.

899 45. Liu X, Li YS, Shinton SA, Rhodes J, Tang L, Feng H, et al. Zebrafish B cell development
900 without a pre-B cell stage, revealed by *CD79* fluorescence reporter transgenes. *The Journal of*
901 *Immunology*. 2017;199(5):1706-15.

902 46. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. *Flt3* ligand regulates dendritic
903 cell development from *Flt3*+ lymphoid and myeloid-committed progenitors to *Flt3*+ dendritic
904 cells in vivo. *The Journal of experimental medicine*. 2003 ;198(2):305-13.

905 47. Marafioti T, Paterson JC, Ballabio E, Reichard KK, Tedoldi S, Hollowood K, et al. Novel
906 markers of normal and neoplastic human plasmacytoid dendritic cells. *Blood, The Journal of*
907 *the American Society of Hematology*. 2008;111(7):3778-92.

908 48. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased
909 apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice.
910 *Immunity*. 1996;5(5):491-501.

911 49. Taylor RS, Ruiz Daniels R, Dobie R, Naseer S, Clark TC, Henderson NC, et al. Single cell
912 transcriptomics of Atlantic salmon (*Salmo salar* L.) liver reveals cellular heterogeneity and
913 immunological responses to challenge by *Aeromonas salmonicida*. *Frontiers in Immunology*.
914 2022;13:984799.

915 50. Sharma A, Rijavec M, Tomar S, Yamani A, Ganesan V, Krempski J, et al. Acute systemic
916 myeloid inflammatory and stress response in severe food allergic reactions. *Clinical &*
917 *Experimental Allergy*. 2023;53(5):536-549.

918 51. Ito D, Kumanogoh A. The role of *Sema4A* in angiogenesis, immune responses,
919 carcinogenesis, and retinal systems. *Cell adhesion & migration*. 2016;10(6):692-9.

920 52. Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA. The role of
921 *CSF1R*-dependent macrophages in control of the intestinal stem-cell niche. *Nature
922 communications*. 2018;9(1):1272.

923 53. Farnsworth DR, Saunders LM, Miller AC. A single-cell transcriptome atlas for zebrafish
924 development. *Developmental biology*. 2020;459(2):100-8.

925 54. Liuzzo JP, Petanceska SS, Moscatelli D, Devi LA. Inflammatory mediators regulate
926 cathepsin S in macrophages and microglia: a role in attenuating heparan sulfate interactions.
927 *Molecular medicine*. 1999;5:320-33.

928 55. Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network
929 support distinct roles of classical and non-classical monocytes in human. *International reviews
930 of immunology*. 2014;33(6):470-89.

931 56. Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS,
932 et al. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors.
933 *Nature Communications*. 2023;14(1):1258.

934 57. Ruhrberg C, Hajibagheri MN, Parry DA, Watt FM. Periplakin, a novel component of
935 cornified envelopes and desmosomes that belongs to the plakin family and forms complexes
936 with envoplakin. *The Journal of cell biology*. 1997;139(7):1835-49.

937 58. Berdyshev E, Goleva E, Bronova I, Dyjack N, Rios C, Jung J, et al. Lipid abnormalities in
938 atopic skin are driven by type 2 cytokines. *JCI insight*. 2018;3(4):e98006.

939 59. Perez CJ, Jaubert J, Guénet JL, Barnhart KF, Ross-Inta CM, Quintanilla VC, Aubin I, et al.
940 Two hypomorphic alleles of mouse *Ass1* as a new animal model of citrullinemia type I and
941 other hyperammonemic syndromes. *The American journal of pathology*. 2010;177(4):1958-
942 68.

943 60. Rizzolio F, Bione S, Villa A, Berti E, Cassetti A, Bulfone A, et al. Spatial and temporal
944 expression of *POF1B*, a gene expressed in epithelia. *Gene expression patterns*. 2007;7(4):529-
945 34.

946 61. Malaisse J, Hermant M, Hayez A, Poumay Y, Lambert de Rouvroit C. Meaning of relative
947 gene expression in multilayered cultures of epidermal keratinocytes. *Experimental*
948 *dermatology*. 2014;23(10):754-6.

949 62. Brinckmann J, Hunzelmann N, Kahle B, Rohwedel J, Kramer J, Gibson MA, et al.
950 Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential
951 alteration of cell attachment and storage of *TGF-β*. *Laboratory investigation*. 2010;90(5):739-
952 52.

953 63. Koch M, Bohrmann B, Matthison M, Hagios C, Trueb B, Chiquet M. Large and small
954 splice variants of collagen XII: differential expression and ligand binding. *The Journal of cell*
955 *biology*. 1995;130(4):1005-14.

956 64. Usuba R, Pauty J, Soncin F, Matsunaga YT. *EGFL7* regulates sprouting angiogenesis and
957 endothelial integrity in a human blood vessel model. *Biomaterials*. 2019;197:305-16.

958 65. Ruppert AL, Keshavarz M, Winterberg S, Oberwinkler J, Kummer W, Schütz B. Advillin
959 is a tuft cell marker in the mouse alimentary tract. *Journal of molecular histology*. 2020;51:421-
960 35.

961 66. Willms RJ, Jones LO, Hocking JC, Foley E. A cell atlas of microbe-responsive processes
962 in the zebrafish intestine. *Cell Reports*. 2022;38(5).

963 67. Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, et al. Intestinal
964 epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. *Nature*.
965 2016;529(7585):226-30.

966 68. Middelhoff M, Nienhüser H, Valenti G, Maurer HC, Hayakawa Y, Takahashi R, et al.
967 *Prox1*-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche.
968 *Nature communications*. 2020;11(1):111.

969 69. Song Y, Meng Z, Zhang S, Li N, Hu W, Li H. miR-4739/*ITGA10/PI3K* signaling regulates
970 differentiation and apoptosis of osteoblast. *Regenerative Therapy*. 2022;21:342-50.

971 70. Cool S, Jackson R, Pincus P, Dickinson I, Nurcombe V. Fibroblast growth factor receptor
972 4 (*FGFR4*) expression in newborn murine calvaria and primary osteoblast cultures.
973 *International Journal of Developmental Biology*. 2004;46(4):519-23.

974 71. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, Nori A. Calsequestrins in
975 skeletal and cardiac muscle from adult *Danio rerio*. *Journal of muscle research and cell*
976 *motility*. 2016;37:27-39.

977 72. Yoshimoto Y, Ikemoto-Uezumi M, Hitachi K, Fukada SI, Uezumi A. Methods for accurate
978 assessment of myofiber maturity during skeletal muscle regeneration. *Frontiers in cell and*
979 *developmental biology*. 2020;8:267.

980 73. Van der Loop FT, Van Eys GJ, Schaart G, Ramaekers FC. Titin expression as an early
981 indication of heart and skeletal muscle differentiation in vitro. *Developmental re-organisation*
982 in relation to cytoskeletal constituents. *Journal of Muscle Research & Cell Motility*.
983 1996;17:23-36.

984 74. Kimura T, Takehana Y, Naruse K. *pnp4a* is the causal gene of the medaka iridophore
985 mutant guanineless. *G3: Genes, Genomes, Genetics*. 2017;7(4):1357-63.

986 75. Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L, Böhne A, Belting HG, Affolter
987 M, Salzburger W. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change.
988 *Nature communications*. 2014;5(1):5149.

989 76. Jang HS, Chen Y, Ge J, Wilkening AN, Hou Y, Lee HJ, Choi YR, Lowdon RF, Xing X, Li
990 D, Kaufman CK. Epigenetic dynamics shaping melanophore and iridophore cell fate in
991 zebrafish. *Genome biology*. 2021;22:1-18.

992 77. Yamada S, Sakakibara SI. Expression profile of the STAND protein *Nwd1* in the
993 developing and mature mouse central nervous system. *Journal of Comparative Neurology*.
994 2018;526(13):2099-114.

995 78. Fernandez T, Morgan T, Davis N, Klin A, Morris A, Farhi A, Lifton RP. Disruption of
996 contactin 4 (*CNTN4*) results in developmental delay and other features of 3p deletion
997 syndrome. *The American Journal of Human Genetics*. 2004;74(6):1286-93.

998 79. Maroille T, Tsai MH, Mascarenhas R, Diao C, Khanbabaei M, Kaya S, Depienne C,
999 Tarailo-Graovac M, Klein KM. A novel FAME1 repeat configuration in a European family
1000 identified using a combined genomics approach. *Epilepsia Open*. 2023;8(2):659-65.

1001 80. Zhou Z, Peng X, Insolera R, Fink DJ, Mata M. Interleukin-10 provides direct trophic
1002 support to neurons. *Journal of neurochemistry*. 2009;110(5):1617-27.

1003 81. Joseph DB, Henry GH, Malewska A, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC,
1004 Malladi VS, Roehrborn CG, Vezina CM, Strand DW. Single-cell analysis of mouse and human
1005 prostate reveals novel fibroblasts with specialized distribution and microenvironment
1006 interactions. *The Journal of Pathology*. 2021;255(2):141-54.

1007 82. He H, Suryawanshi H, Morozov P, Gay-Mimbrera J, Del Duca E, Kim HJ, et al. Single-
1008 cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and
1009 enrichment of immune subsets in atopic dermatitis. *Journal of Allergy and Clinical
1010 Immunology*. 2020;145(6):1615-28.

1011 83. Song H, Sun W, Ye G, Ding X, Liu Z, Zhang S, et al. Long non-coding RNA expression
1012 profile in human gastric cancer and its clinical significances. *Journal of translational medicine*.
1013 2013;11(1):1-10.

1014 84. Park KS, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, et al. *SPDEF*
1015 regulates goblet cell hyperplasia in the airway epithelium. *The Journal of clinical investigation*.
1016 2007;117(4):978-88.

1017 85. Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. *Chest*. 2018;154(1):169-
1018 76.

1019 86. Tarr PT, Edwards PA. *ABCG1* and *ABCG4* are coexpressed in neurons and astrocytes of
1020 the CNS and regulate cholesterol homeostasis through *SREBP-2*. *Journal of lipid research*.
1021 2008;49(1):169-82.

1022 87. Gerrits E, Giannini LA, Brouwer N, Melhem S, Seilhean D, Le Ber I, et al. Neurovascular
1023 dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA
1024 sequencing of human cerebral cortex. *Nature neuroscience*. 2022;25(8):1034-48.

1025 88. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. *Pax7* is
1026 required for the specification of myogenic satellite cells. *Cell*. 2000;102(6):777-86.

1027 89. Kuo DS, Labelle-Dumais C, Gould DB. *COL4A1* and *COL4A2* mutations and disease:
1028 insights into pathogenic mechanisms and potential therapeutic targets. *Human molecular
1029 genetics*. 2012;21(R1):R97-110.

1030 90. Vernersson E, Khoo NK, Henriksson ML, Roos G, Palmer RH, Hallberg B.
1031 Characterization of the expression of the ALK receptor tyrosine kinase in mice. *Gene
1032 Expression Patterns*. 2006;6(5):448-61.

1033 91. Mo ES, Cheng Q, Reshetnyak AV, Schlessinger J, Nicoli S. Alk and Ltk ligands are
1034 essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase *Ltk*.
1035 *Proceedings of the National Academy of Sciences*. 2017;114(45):12027-32.

1036 92. Sveen LR, Timmerhaus G, Krasnov A, Takle H, Handeland S, Ytteborg E. Wound healing
1037 in post-smolt Atlantic salmon (*Salmo salar* L.). *Scientific reports*. 2019;9(1):3565.

1038 93. Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RA, ten Berge IJ. *CD103* is a
1039 marker for alloantigen-induced regulatory *CD8+* T cells. *The Journal of Immunology*.
1040 2006;177(5):2775-83.

1041 94. Lau SK, Chu PG, Weiss LM. *CD163*: a specific marker of macrophages in paraffin-
1042 embedded tissue samples. *American journal of clinical pathology*. 2004;122(5):794-801.

1043 95. Gerbe F, Jay P. Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune
1044 system. *Mucosal immunology*. 2016;9(6):1353-9.

1045 96. Rheinländer A, Schraven B, Bommhardt U. *CD45* in human physiology and clinical
1046 medicine. *Immunology letters*. 2018;196:22-32.

1047 97. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. *GATA-3* promotes Th2 responses
1048 through three different mechanisms: induction of Th2 cytokine production, selective growth of
1049 Th2 cells and inhibition of Th1 cell-specific factors. *Cell research*. 2006;16(1):3-10.

1050 98. Mise T, Iijima M, Inohaya K, Kudo A, Wada H. Function of *Pax1* and *Pax9* in the
1051 sclerotome of medaka fish. *Genesis*. 2008;46(4):185-92.

1052 99. Douglas G, Cho MT, Telegrafi A, Winter S, Carmichael J, Zackai EH, et al. De novo
1053 missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate
1054 abnormalities, developmental delay, intellectual disability and dysmorphic features. *American*
1055 *Journal of Medical Genetics Part A*. 2018;176(9):1845-51.

1056 100. Ushakumary MG, Riccetti M, Perl AK. Resident interstitial lung fibroblasts and their role
1057 in alveolar stem cell niche development, homeostasis, injury, and regeneration. *Stem cells*
1058 *translational medicine*. 2021;10(7):1021-32.

1059 101. Chou MY, Li HC. Genomic organization and characterization of the human type XXI
1060 collagen (*COL21A1*) gene. *Genomics*. 2002;79(3):395-401.

1061 102. Vaughan EM, Miller AL, Hoi-Ying EY, Bement WM. Control of local Rho GTPase
1062 crosstalk by *Abr*. *Current biology*. 2011;21(4):270-7.

1063 103. Bergström JH, Berg KA, Rodríguez-Piñeiro AM, Stecher B, Johansson ME, Hansson GC.

1064 *AGR2*, an endoplasmic reticulum protein, is secreted into the gastrointestinal mucus. PLoS
1065 One. 2014;9(8):e104186.

1066 104. Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, et al.

1067 Transcriptomic profiling in fins of Atlantic salmon parasitized with sea lice: Evidence for an
1068 early imbalance between chalimus-induced immunomodulation and the host's defense
1069 response. International journal of molecular sciences. 2020;21(7):2417.

1070 105. Ullah R, Ansar M, Durrani ZU, Lee K, Santos-Cortez RL, Muhammad D, et al. Novel
1071 mutations in the genes *TGM 1* and *ALOXE 3* underlying autosomal recessive congenital
1072 ichthyosis. International journal of dermatology. 2016;55(5):524-30.

1073 106. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in
1074 expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and
1075 barrier dysfunction in active Crohn's disease. Gut. 2007;56(1):61-72.

1076 107. Houreld NN, Ayuk SM, Abrahamse H. Cell adhesion molecules are mediated by
1077 photobiomodulation at 660 nm in diabetic wounded fibroblast cells. Cells. 2018 Apr
1078 16;7(4):30.

1079 108. Bobowski-Gerard M, Boulet C, Zummo FP, Dubois-Chevalier J, Gheeraert C, Bou Saleh
1080 M, et al. Functional genomics uncovers the transcription factor *BNC2* as required for
1081 myofibroblastic activation in fibrosis. Nature Communications. 2022;13(1):5324.

1082 109. Patterson LB, Parichy DM. Interactions with iridophores and the tissue environment
1083 required for patterning melanophores and xanthophores during zebrafish adult pigment stripe
1084 formation. PLoS genetics. 2013;9(5):e1003561.

1085 110. Peretti T, Waisberg J, Mader AM, de Matos LL, da Costa RB, Conceição GM, et al.

1086 Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma.

1087 European journal of gastroenterology & hepatology. 2008;20(8):756-65.

1088 111. Puig-Kröger A, Corbí A. *RUNX3*: a new player in myeloid gene expression and immune
1089 response. *Journal of cellular biochemistry*. 2006;98(4):744-56.

1090 112. Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic
1091 acid. *The Journal of Immunology*. 2014;192(7):2953-8.

1092 113. Han SB, Moratz C, Huang NN, Kelsall B, Cho H, Shi CS, et al. *Rgs1* and *Gnai2* regulate
1093 the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node
1094 follicles. *Immunity*. 2005;22(3):343-54.

1095 114. Maravillas-Montero JL, Santos-Argumedo L. The myosin family: unconventional roles
1096 of actin-dependent molecular motors in immune cells. *Journal of leukocyte biology*.
1097 2012;91(1):35-46.

1098 115. Kuwahara M, Yamashita M, Shinoda K, Tofukuji S, Onodera A, Shinnakasu R, et al. The
1099 transcription factor *Sox4* is a downstream target of signaling by the cytokine *TGF-β* and
1100 suppresses TH2 differentiation. *Nature immunology*. 2012;13(8):778-86.

1101 116. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, Hedin KE.
1102 *CXCR4* physically associates with the T cell receptor to signal in T cells. *Immunity*.
1103 2006;25(2):213-24.

1104 117. Mathieson BJ, Sharroff SO, Bottomly K, Fowlkes BJ. *Ly 9*, an alloantigenic marker of
1105 lymphocyte differentiation. *Journal of immunology*. 1980;125(5):2127-36.

1106 118. Carow B, Rottenberg ME. *SOCS3*, a major regulator of infection and inflammation.
1107 *Frontiers in immunology*. 2014;5:58.

1108 119. Martínez D, Oyarzún-Salazar R, Quilapi AM, Coronado J, Enriquez R, Vargas-Lagos C,
1109 et al. Live and inactivated *Piscirickettsia salmonis* activated nutritional immunity in Atlantic
1110 salmon (*Salmo salar*). *Frontiers in Immunology*. 2023;14:1187209.

1111 120. Jennings ML. Cell physiology and molecular mechanism of anion transport by erythrocyte
1112 band 3/AE1. *American Journal of Physiology-Cell Physiology*. 2021;321(6):C1028-59.

1113 121. Huang SG, Zhang LL, Niu Q, Xiang GM, Liu LL, Jiang DN, et al. Hypoxia promotes
1114 epithelial-mesenchymal transition of hepatocellular carcinoma cells via inducing *GLIPR-2*
1115 expression. *PLoS one*. 2013;8(10):e77497.

1116 122. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways.
1117 *Cancers*. 2017;9(5):52.

1118 123. Mou Y, Zhang L, Liu Z, Song X. Abundant expression of ferroptosis-related *SAT1* is
1119 related to unfavorable outcome and immune cell infiltration in low-grade glioma. *BMC cancer*.
1120 2022;22(1):1-15.

1121 124. Chen J, Ingham N, Kelly J, Jadeja S, Goulding D, Pass J, et al. Spinster homolog 2 (*spns2*)
1122 deficiency causes early onset progressive hearing loss. *PLoS genetics*. 2014;10(10):e1004688.

1123 125. Caldwell JM, Collins MH, Kemme KA, Sherrill JD, Wen T, Rochman M, et al. Cadherin
1124 26 is an alpha integrin-binding epithelial receptor regulated during allergic inflammation.
1125 *Mucosal immunology*. 2017;10(5):1190-201.

1126 126. Wiche G. Commentary: Role of plectin in cytoskeleton organization and dynamics.
1127 *Journal of cell science*. 1998;111(17):2477-86.

1128 127. Granadeiro L, Dirks RP, Ortiz-Delgado JB, Gavaia PJ, Sarasquete C, Laize V, et al.
1129 Warfarin-exposed zebrafish embryos resembles human warfarin embryopathy in a dose and
1130 developmental-time dependent manner–From molecular mechanisms to environmental
1131 concerns. *Ecotoxicology and environmental safety*. 2019;181:559-71.

1132 128. Qian M, Chen Z, Wang S, Guo X, Zhang Z, Qiu W, et al. *PLEKHG5* is a novel prognostic
1133 biomarker in glioma patients. *International Journal of Clinical Oncology*. 2019;24:1350-8.

1134 129. Daggett DF, Boyd CA, Gautier P, Bryson-Richardson RJ, Thisse C, Thisse B, et al.
1135 Developmentally restricted actin-regulatory molecules control morphogenetic cell movements
1136 in the zebrafish gastrula. *Current Biology*. 2004;14(18):1632-8.

1137 130. Ma AC, Ward AC, Liang R, Leung AY. The role of *jak2a* in zebrafish hematopoiesis.

1138 Blood, The Journal of the American Society of Hematology. 2007;110(6):1824-30.

1139 131. Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets *JAK2* and inhibits

1140 gastric cancer cell proliferation. Cancer biology & therapy. 2012;13(5):281-8.

1141 132. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A. *CIS3/SOCS-3*

1142 suppresses erythropoietin (*EPO*) signaling by binding the *EPO* receptor and *JAK2*. Journal of

1143 Biological Chemistry. 2000;275(38):29338-47.

1144 133. Podobnik M, Kisovec M, Anderluh G. Molecular mechanism of pore formation by

1145 aerolysin-like proteins. Philosophical Transactions of the Royal Society B: Biological

1146 Sciences. 2017;372(1726):20160209.

1147 134. Chen LL, Xie J, Cao DD, Jia N, Li YJ, Sun H, et al. The pore-forming protein Aep1 is an

1148 innate immune molecule that prevents zebrafish from bacterial infection. Developmental &

1149 Comparative Immunology. 2018;82:49-54.

1150 135. Xiong Y, Dan C, Ren F, Su Z, Zhang Y, Mei J. Proteomic profiling of yellow catfish

1151 (*Pelteobagrus fulvidraco*) skin mucus identifies differentially-expressed proteins in response

1152 to *Edwardsiella ictaluri* infection. Fish & Shellfish Immunology. 2020;100:98-108.

1153 136. Lee RT, Asharani PV, Carney TJ. Basal keratinocytes contribute to all strata of the adult

1154 zebrafish epidermis. PloS one. 2014;9(1):e84858.

1155 137. Leclerc-Mercier S, Lemoine R, Bigorgne AE, Sepulveda F, Leveau C, Fischer A, et al.

1156 Ichthyosis as the dermatological phenotype associated with *TTC7A* mutations. British Journal

1157 of Dermatology. 2016;175(5):1061-4.

1158 138. Subramanian K, Neill DR, Malak HA, Spelmink L, Khandaker S, Marchiori GDL, et al.

1159 Pneumolysin binds to the mannose receptor C type 1 (*MRC-1*) leading to anti-inflammatory

1160 responses and enhanced pneumococcal survival. Nature microbiology. 2019;4(1):62-70.

1161 139. Robledo D, Gutiérrez AP, Barría A, Yáñez JM, Houston RD. Gene expression response
1162 to sea lice in Atlantic salmon skin: RNA sequencing comparison between resistant and
1163 susceptible animals. *Frontiers in genetics*. 2018;9:287.

1164 140. Palazón-Riquelme P, Worboys JD, Green J, Valera A, Martín-Sánchez F, Pellegrini C,
1165 Brough D, López-Castejón G. *USP7* and *USP47* deubiquitinases regulate *NLRP3*
1166 inflammasome activation. *EMBO reports*. 2018;19(10):e44766.

1167 141. Lecaudey LA, Schliewen UK, Osinov AG, Taylor EB, Bernatchez L, Weiss SJ. Inferring
1168 phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei:
1169 Salmonidae) using RAD-sequencing. *Molecular phylogenetics and evolution*. 2018;124:82-99.

1170 142. Pike AW. Sea lice—major pathogens of farmed Atlantic salmon. *Parasitology today*.
1171 1989;5(9):291-7.

1172 143. Fast MD, Burka JF, Johnson SC, Ross NW. Enzymes released from *Lepeophtheirus*
1173 *salmonis* in response to mucus from different salmonids. *Journal of Parasitology*. 2003;89(1):7-
1174 13.

1175 144. Fast MD, Muise DM, Easy RE, Ross NW, Johnson SC. The effects of *Lepeophtheirus*
1176 *salmonis* infections on the stress response and immunological status of Atlantic salmon (*Salmo*
1177 *salar*). *Fish & Shellfish Immunology*. 2006;21(3):228-41.

1178 145. Holm HJ, Skugor S, Bjelland AK, Radunovic S, Wadsworth S, Koppang EO, Evensen Ø.
1179 Contrasting expression of immune genes in scaled and scaleless skin of Atlantic salmon
1180 infected with young stages of *Lepeophtheirus salmonis*. *Developmental & Comparative
1181 Immunology*. 2017;67:153-65.

1182 146. Barker JN, Griffiths CE, Nickoloff BJ, Mitra RS, Dixit VM. Keratinocytes as initiators of
1183 inflammation. *The Lancet*. 1991;337(8735):211-4.

1184 147. Cai W, Kumar S, Navaneethaiyer U, Caballero-Solares A, Carvalho LA, Whyte SK, et al.
1185 Transcriptome analysis of Atlantic salmon (*Salmo salar*) skin in response to sea lice and

1186 infectious Salmon Anemia Virus co-infection under different experimental functional diets.

1187 Frontiers in Immunology. 2022;12. doi:<https://doi.org/10.3389/fimmu.2021.787033>.

1188 148. Robinson NA, Gjedrem T, Quillet E. Improvement of disease resistance by genetic

1189 methods. In: Jeney G. Fish diseases. Academic Press; 2017. p. 21-50

1190 149. Skugor S, Glover KA, Nilsen F, Krasnov A. Local and systemic gene expression responses

1191 of Atlantic salmon (*Salmo salar* L.) to infection with the salmon louse (*Lepeophtheirus*

1192 *salmonis*). BMC genomics. 2008;9:1-18.

1193 150. Swart M, Troeberg L. Effect of polarization and chronic inflammation on macrophage

1194 expression of heparan sulfate proteoglycans and biosynthesis enzymes. Journal of

1195 Histochemistry & Cytochemistry. 2019;67(1):9-27.

1196 151. Øvergård AC, Eichner C, Nuñez-Ortiz N, Kongshaug H, Borchel A, Dalvin S.

1197 Transcriptomic and targeted immune transcript analyses confirm localized skin immune

1198 responses in Atlantic salmon towards the salmon louse. Fish & Shellfish Immunology.

1199 2023;138:108835.

1200 152. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, et al. Single-cell RNA-seq analysis

1201 reveals *BHLHE40*-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic

1202 tumour microenvironment. Gut. 2023;72(5):958-71.

1203 153. Fast MD, Johnson SC, Eddy TD, Pinto D, Ross NW. *Lepeophtheirus salmonis*

1204 secretory/excretory products and their effects on Atlantic salmon immune gene regulation.

1205 Parasite immunology. 2007;29(4):179-89.

1206 Braden LM, Monaghan SJ, Fast MD. Salmon immunological defence and interplay with the

1207 modulatory capabilities of its ectoparasite *Lepeophtheirus salmonis*. Parasite Immunology.

1208 2020;42(8):e12731.

1209 154. Braden LM, Monaghan SJ, Fast MD. Salmon immunological defence and interplay with
1210 the modulatory capabilities of its ectoparasite *Lepeophtheirus salmonis*. Parasite Immunology.
1211 2020;42(8):e12731.

1212 155. Núñez-Acuña G, Gonçalves AT, Valenzuela-Munoz V, Pino-Marambio J, Wadsworth S,
1213 Gallardo-Escárate C. Transcriptome immunomodulation of in-feed additives in Atlantic
1214 salmon *Salmo salar* infested with sea lice *Caligus rogercresseyi*. Fish & shellfish immunology.
1215 2015;47(1):450-60.

1216 156. Wang T, Gorgoglione B, Maehr T, Holland JW, Vecino JL, Wadsworth S, Secombes CJ.
1217 Fish suppressors of cytokine signaling (SOCS): gene discovery, modulation of expression and
1218 function. Journal of signal transduction. 2011;905813.

1219 157. Zhang M, Xiao ZZ, Sun L. Suppressor of cytokine signaling 3 inhibits head kidney
1220 macrophage activation and cytokine expression in *Scophthalmus maximus*. Developmental &
1221 Comparative Immunology. 2011;35(2):174-81.

1222 158. Kittilsen S, Johansen IB, Braastad BO, Øverli Ø. Pigments, parasites and personality:
1223 towards a unifying role for steroid hormones? PloS one. 2012;7(4):e34281.

1224 159. Weinberg ED. Iron availability and infection. Biochimica et Biophysica Acta (BBA)-
1225 General Subjects. 2009;1790(7):600-5.

1226 160. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nature Reviews
1227 Immunology. 2015;15(8):500-10.

1228 161. Drakesmith H, Prentice A. Viral infection and iron metabolism. Nature Reviews
1229 Microbiology. 2008;6(7):541-52.

1230 162. Valenzuela-Muñoz V, Gallardo-Escárate C. Iron metabolism modulation in Atlantic
1231 salmon infested with the sea lice *Lepeophtheirus salmonis* and *Caligus rogercresseyi*: A matter
1232 of nutritional immunity? Fish & shellfish immunology. 2017;60:97-102.

1233 163. Fast MD, Ross NW, Craft CA, Locke SJ, MacKinnon SL, Johnson SC. *Lepeophtheirus*
1234 *salmonis*: characterization of prostaglandin E2 in secretory products of the salmon louse by
1235 RP-HPLC and mass spectrometry. *Experimental parasitology*. 2004;107(1-2):5-13.

1236 164. Sutherland BJ, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, Jones SR.
1237 Comparative transcriptomics of Atlantic *Salmo salar*, chum *Oncorhynchus keta* and pink
1238 salmon *O. gorbuscha* during infections with salmon lice *Lepeophtheirus salmonis*. *BMC*
1239 *genomics*. 2014;15:1-17.

1240 165. Burka JF, Fast MD, Revie CW. *Lepeophtheirus salmonis* and *Caligus rogercresseyi*. In:
1241 Woo PTK, Buchmann K. *Fish parasites: Pathobiology and protection*. Wallingford UK: Cabi;
1242 2012. p. 350-70.

1243 166. Sheldon JR, Skaar EP. Metals as phagocyte antimicrobial effectors. *Current Opinion in*
1244 *Immunology*. 2019;60:1-9.

1245 167. Caballero-Solares A, Umasuthan N, Xue X, Katan T, Kumar S, Westcott JD, et al.
1246 Interacting Effects of Sea Louse (*Lepeophtheirus salmonis*) Infection and Formalin-Killed
1247 *Aeromonas salmonicida* on Atlantic Salmon Skin Transcriptome. *Frontiers in Immunology*.
1248 2022;13. doi:<https://doi.org/10.3389/fimmu.2022.804987>.

1249 168. Ruiz Daniels R, Taylor RS, Dobie R, Salisbury S, Furniss JJ, Clark E, Macqueen DJ,
1250 Robledo D. A versatile nuclei extraction protocol for single nucleus sequencing in non-model
1251 species—Optimization in various Atlantic salmon tissues. *Plos one*. 2023;18(9):e0285020.

1252 169. Dobin A. STAR manual 2.7. 0a. Weill Cornell Medicine. 2019.

1253 170. Kaminow B, Yunusov D, Dobin A. STARsolo: accurate, fast and versatile
1254 mapping/quantification of single-cell and single-nucleus RNA-seq data. *Biorxiv*. 2021.
1255 doi:10.1101/2021.05.05.442755.

1256 171. Pertea G, Pertea M. GFF utilities: GffRead and GffCompare. *F1000Research*.
1257 2020;9:ISCB Comm J-304.

1258 172. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated
1259 analysis of multimodal single-cell data. *Cell*. 2021;184(13):3573-87.

1260 173. Ahlmann-Eltze C, Huber W. *glmGamPoi*: fitting Gamma-Poisson generalized linear
1261 models on single cell count data. *Bioinformatics*. 2020;36(24):5701-2.

1262 174. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell
1263 RNA sequencing data using artificial nearest neighbors. *Cell systems*. 2019;8(4):329-37.

1264 175. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at
1265 NCBI. *Nucleic acids research*. 2005;33(suppl_1):D54-8.

1266 176. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. *Nucleic acids
1267 research*. 2019;47(D1):D506-15.

1268 177. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A.
1269 BioMart—biological queries made easy. *BMC genomics*. 2009;10(1):1-12.

1270 178. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and
1271 plants. *Bioinformatics*. 2020;36(8):2628-9.

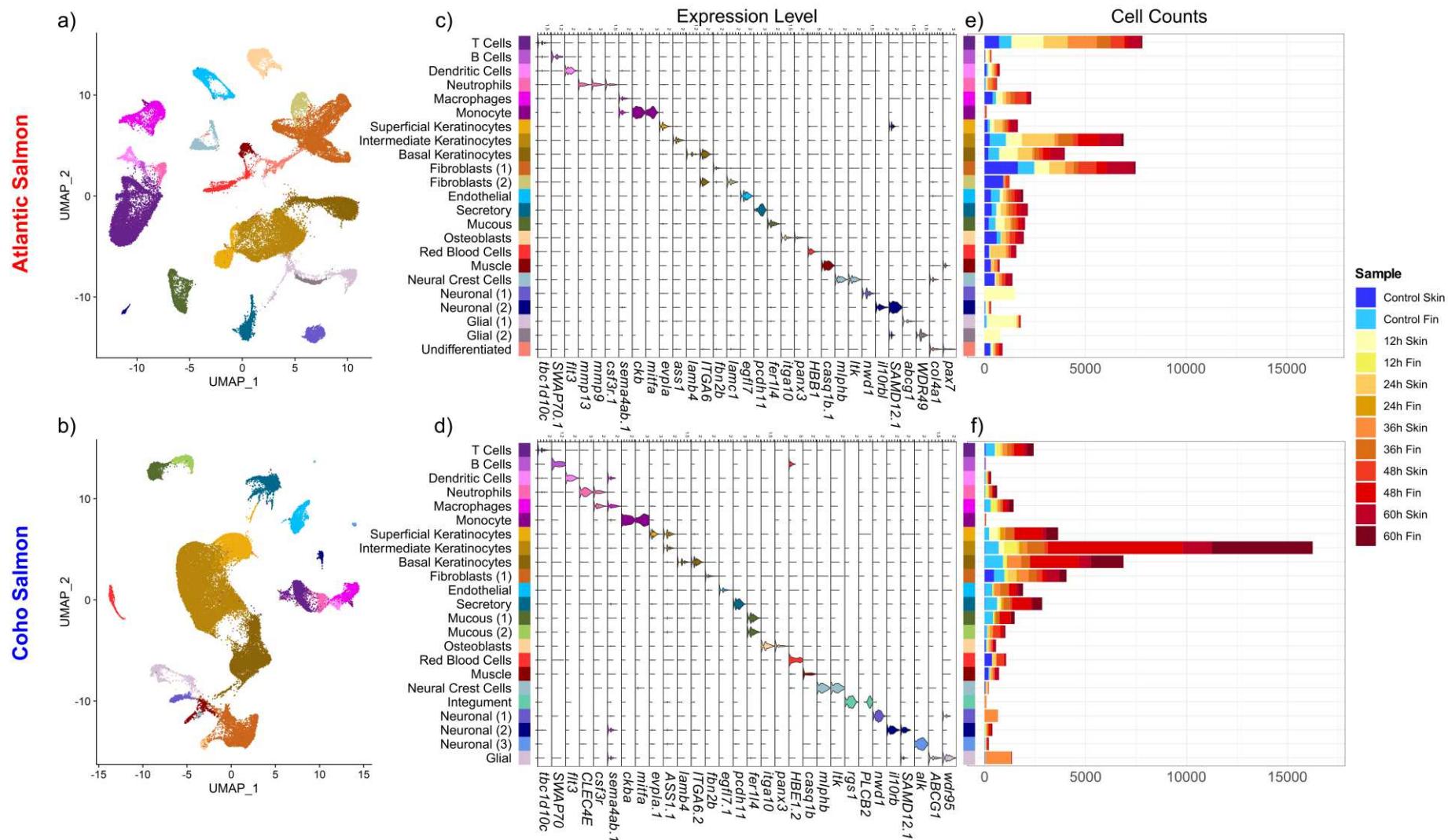
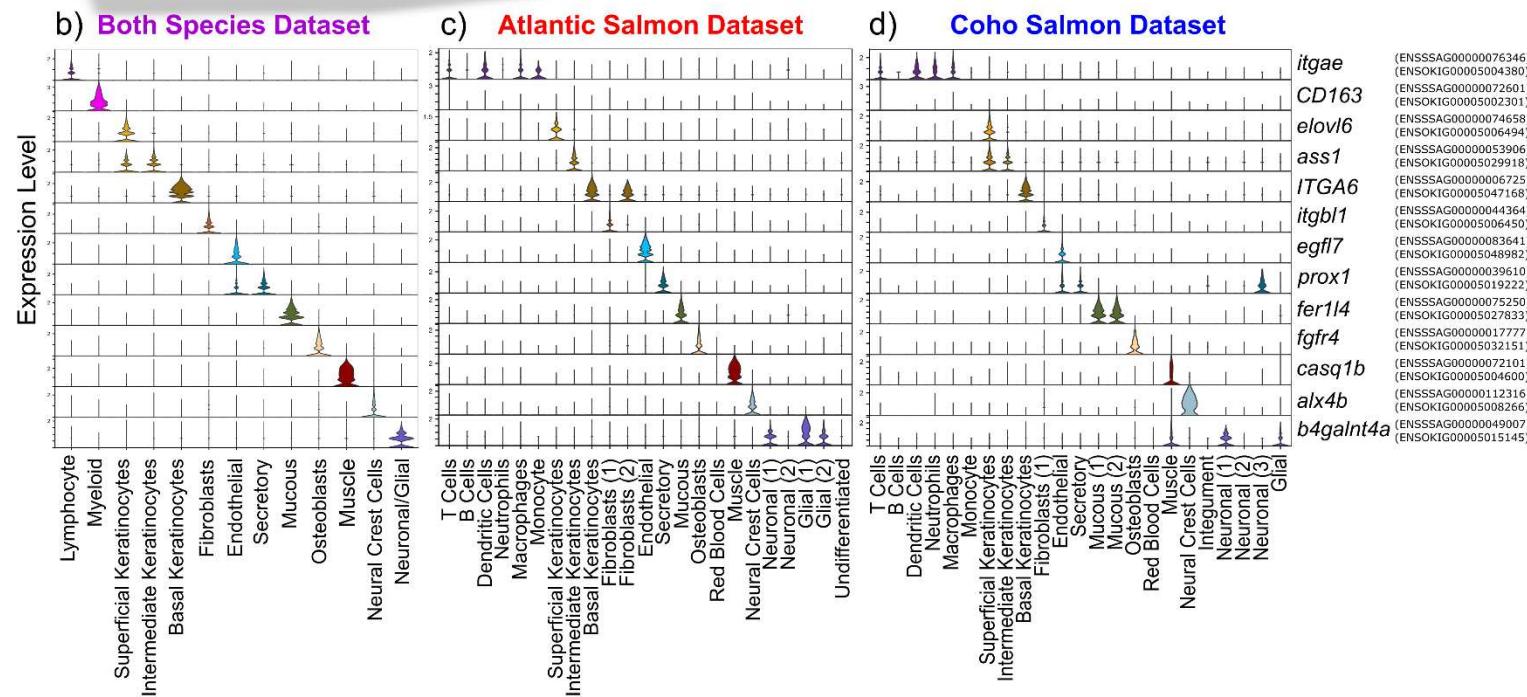
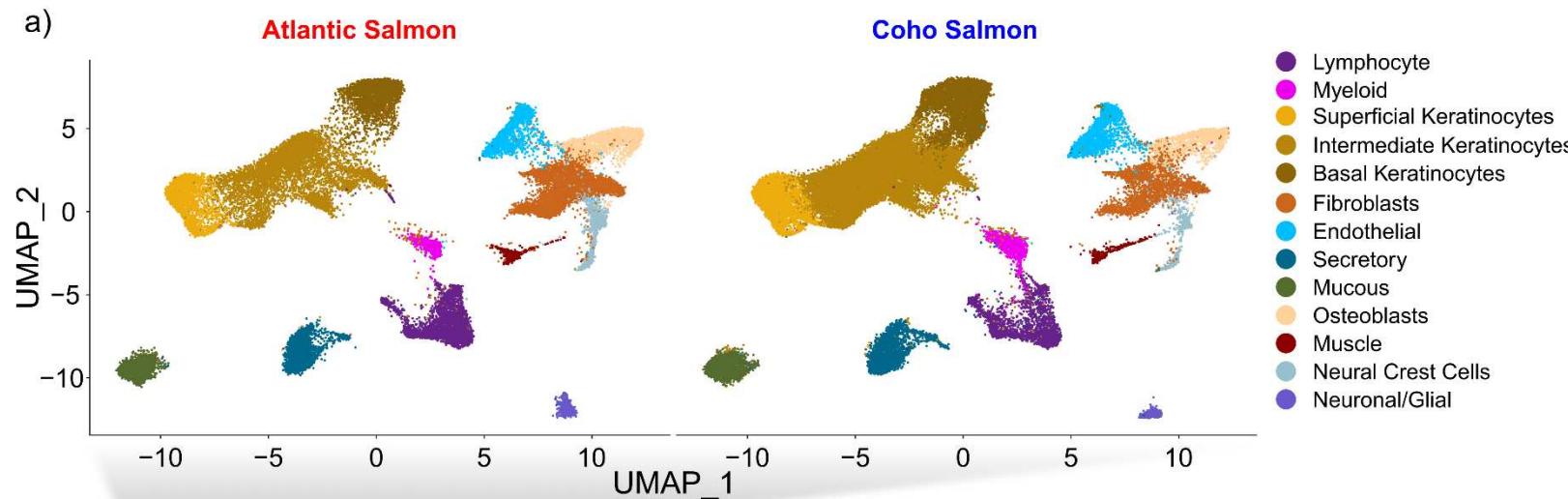

1272 179. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative
1273 genomics. *Genome biology*. 2019;20:1-14.

Table 1 Marker genes for cell types found in skin and fin samples of Atlantic salmon and coho salmon. All noted genes were significantly ($p << 0.001$) upregulated in the given species' cell type cluster relative to all other cells.

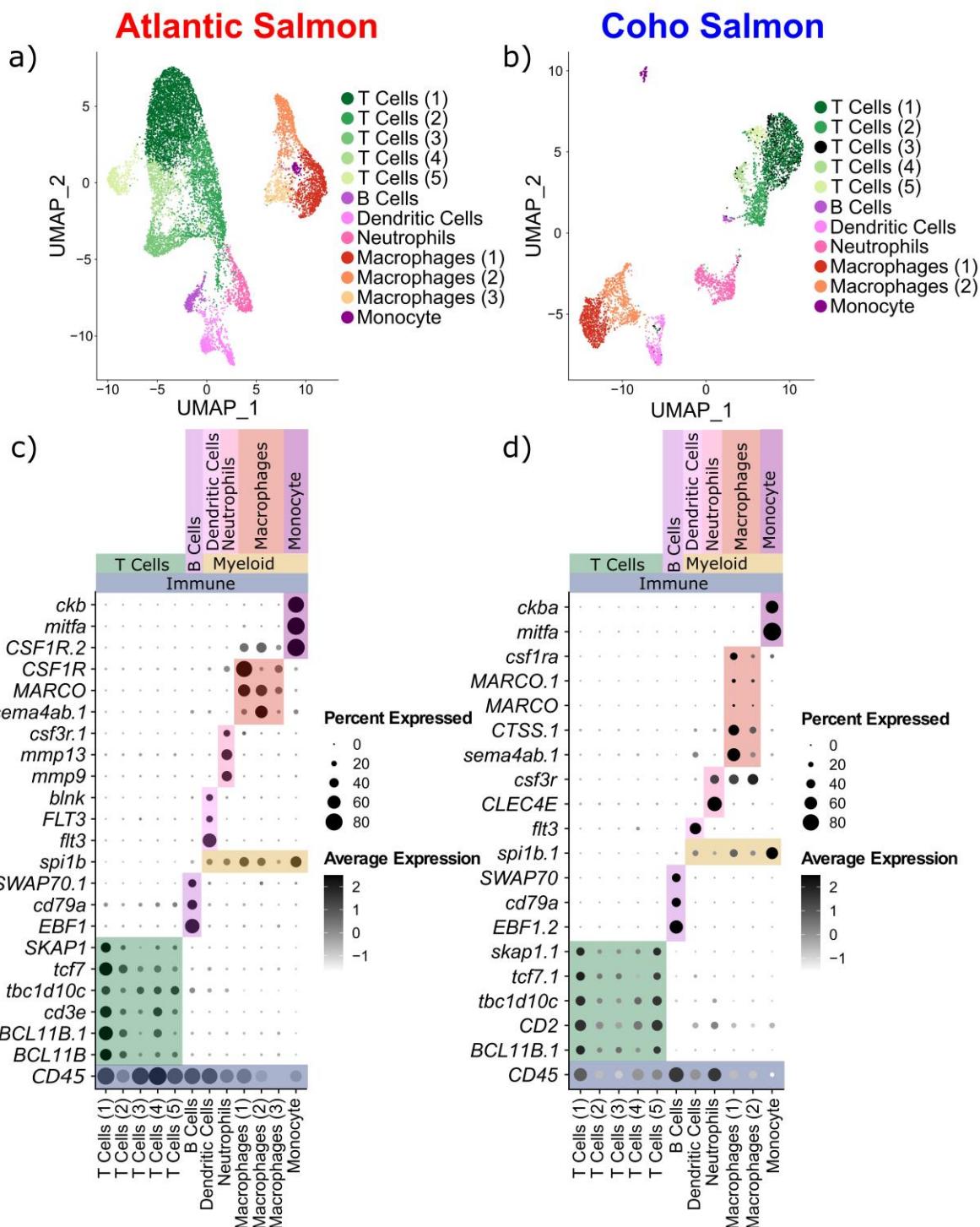
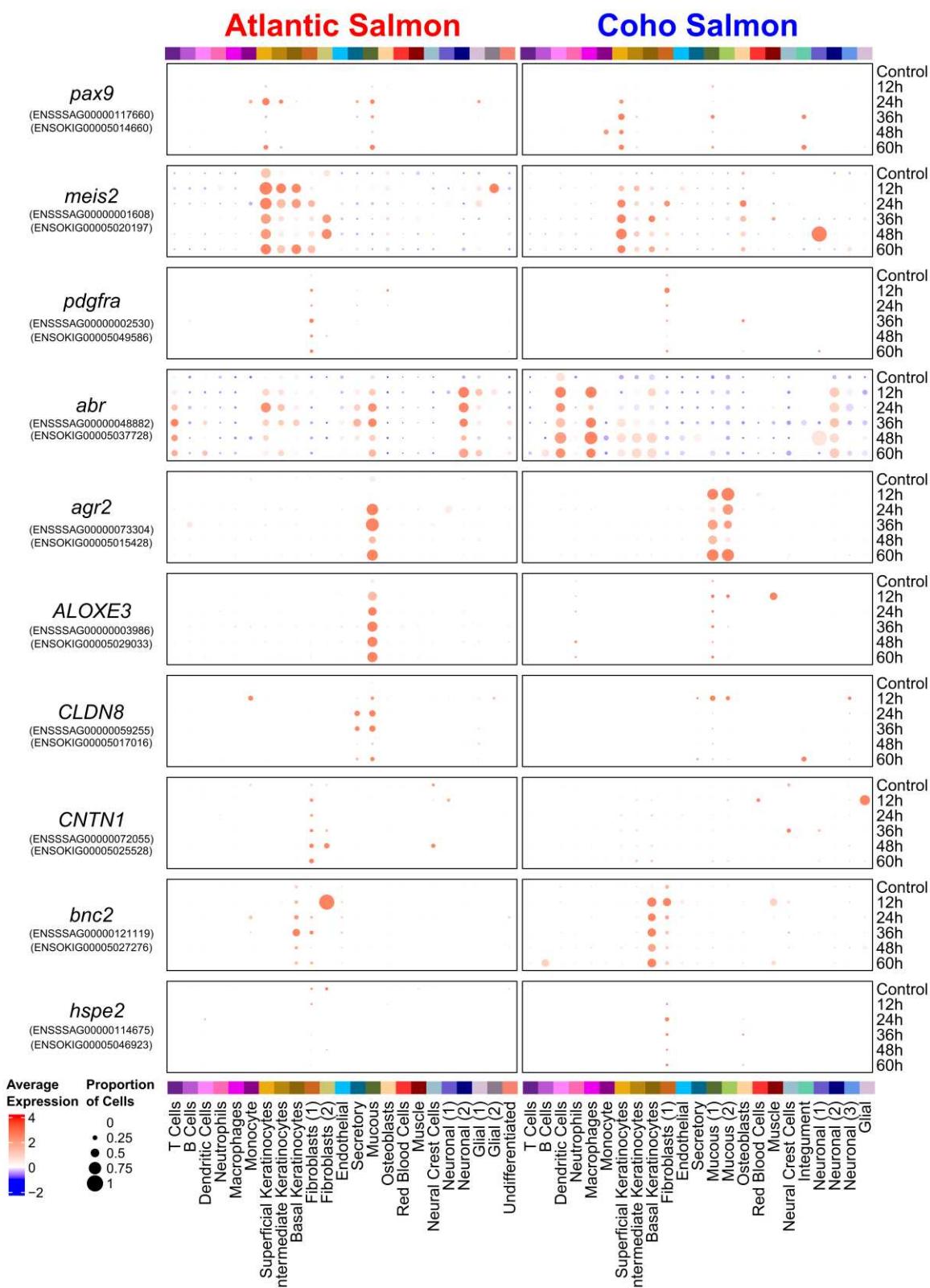
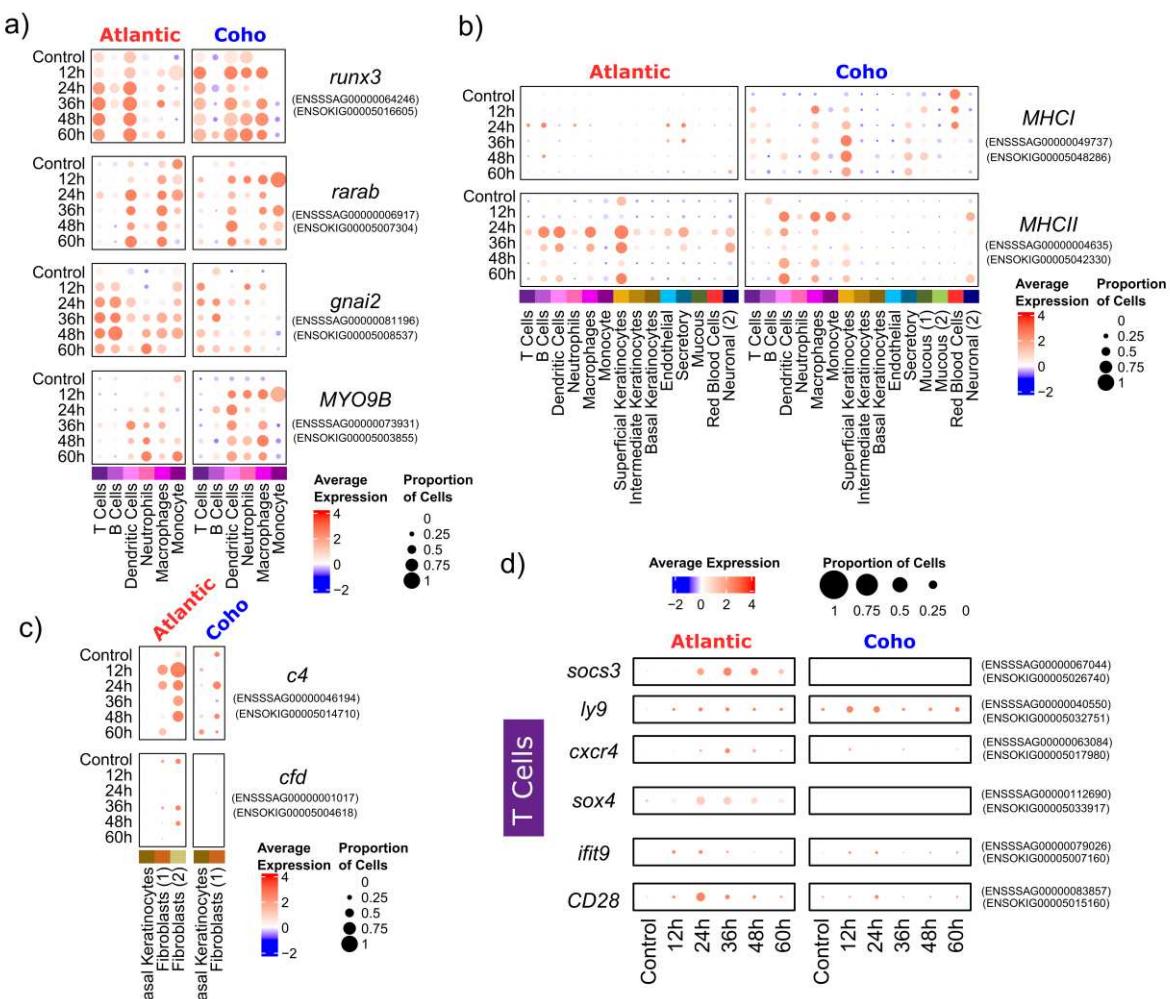


	Cell Type	Marker Gene	Atlantic Salmon ENSEMBL ID	Coho Salmon ENSEMBL ID	Support for Cell Type Identity
Both Species	T Cells	<i>tbc1d10c</i>	ENSSSAG00000055420	ENSOKIG00005011012	Expressed in T cells [38]
		<i>bcl11b</i>	ENSSSAG00000071984	ENSOKIG00005023187	Expressed in T cells [39]
			ENSSSAG00000045088		
		<i>tcf7</i>	ENSSSAG0000006857	ENSOKIG00005033777	Expressed in T cells [39]
		<i>skap1</i>	ENSSSAG00000066533	ENSOKIG00005050132	Expressed in T cells [40]
		<i>cd3</i>	ENSSSAG00000076824		Marker for T cells [41]
		<i>cd2</i>		ENSOKIG00005012541	Marker for T cells [42]
	B Cells	<i>ebfl</i>	ENSSSAG00000079780	ENSOKIG00005001939	Marker for B cells [43]
			ENSSSAG00000070298		
		<i>swap70</i>	ENSSSAG00000115076	ENSOKIG00005020004	Marker for B cells [44]
	Dendritic Cells	<i>cd79</i>	ENSSSAG00000113980	ENSOKIG00005014962	Marker for B cells [45]
		<i>flt3</i>	ENSSSAG0000009390	ENSOKIG00005021723	Marker for dendritic cells [46]
			ENSSSAG00000060395		
	Neutrophils	<i>blnk</i>	ENSSSAG0000023874		Expressed in dendritic cells [47]
		<i>csf3r</i>	ENSSSAG0000072535	ENSOKIG00005018820	Expressed in neutrophils [48]
		<i>mmp9</i>	ENSSSAG0000069874		Marker for neutrophils in Atlantic Salmon [49]
		<i>mmp13</i>	ENSSSAG0000070495		Marker for neutrophils in Atlantic Salmon [49]
	Macrophages	<i>clec4e</i>		ENSOKIG00005020977	Expressed in neutrophils [50]
		<i>sema4ab</i>	ENSSSAG00000056722	ENSOKIG00005023500	Expressed in macrophages [51]
		<i>csf1r</i>	ENSSSAG00000047020		Expressed in macrophages [52]
			ENSSSAG00000061479		
	Monocyte	<i>marco</i>	ENSSSAG0000063051		Marker gene for macrophages in zebrafish cell atlas [53]
		<i>ctss1</i>		ENSOKIG00005022279	Expressed in macrophages [54]
		<i>ckb</i>	ENSSSAG0000003466	ENSOKIG00005016475	Expressed in monocytes [55]
	Superficial Keratinocytes	<i>mitfa</i>	ENSSSAG00000077659	ENSOKIG00005012208	Associated with melanophores [56]
		<i>csf1r</i>	ENSSSAG00000047020		
		<i>evpla</i>	ENSSSAG00000048370	ENSOKIG00005025303	Expressed in mouse suprabasal keratinocytes [57]
	Intermediate Keratinocytes	<i>ppl</i>	ENSSSAG0000003101	ENSOKIG00005024627	Expressed in mouse suprabasal keratinocytes [57]
		<i>elovl6</i>	ENSSSAG0000074658	ENSOKIG00005006494	Facilitates lipid metabolism in human skin keratinocytes [58]
	Basal Keratinocytes	<i>ass1</i>	ENSSSAG00000053906	ENSOKIG00005029918	Expressed in mouse keratinocytes [59]
		<i>pof1b</i>	ENSSSAG00000040788	ENSOKIG00005024403	Expressed in human keratinocytes [60]
	Fibroblasts (1)	<i>itga6</i>	ENSSSAG0000006725	ENSOKIG00005047168	Expressed in basal epidermal cells in humans [61]
		<i>lamb4</i>	ENSSSAG00000106537	ENSOKIG00005007077	Marker for "fin basal cells" in zebrafish cell atlas [53]
	Endothelial	<i>fbn2b</i>	ENSSSAG0000057875	ENSOKIG00005007419	Associated with fibroblast-driven wound healing in humans [62]
		<i>coll2a1</i>	ENSSSAG0000070858	ENSOKIG00005043212	Expressed in the fibroblasts of chick skin [63]

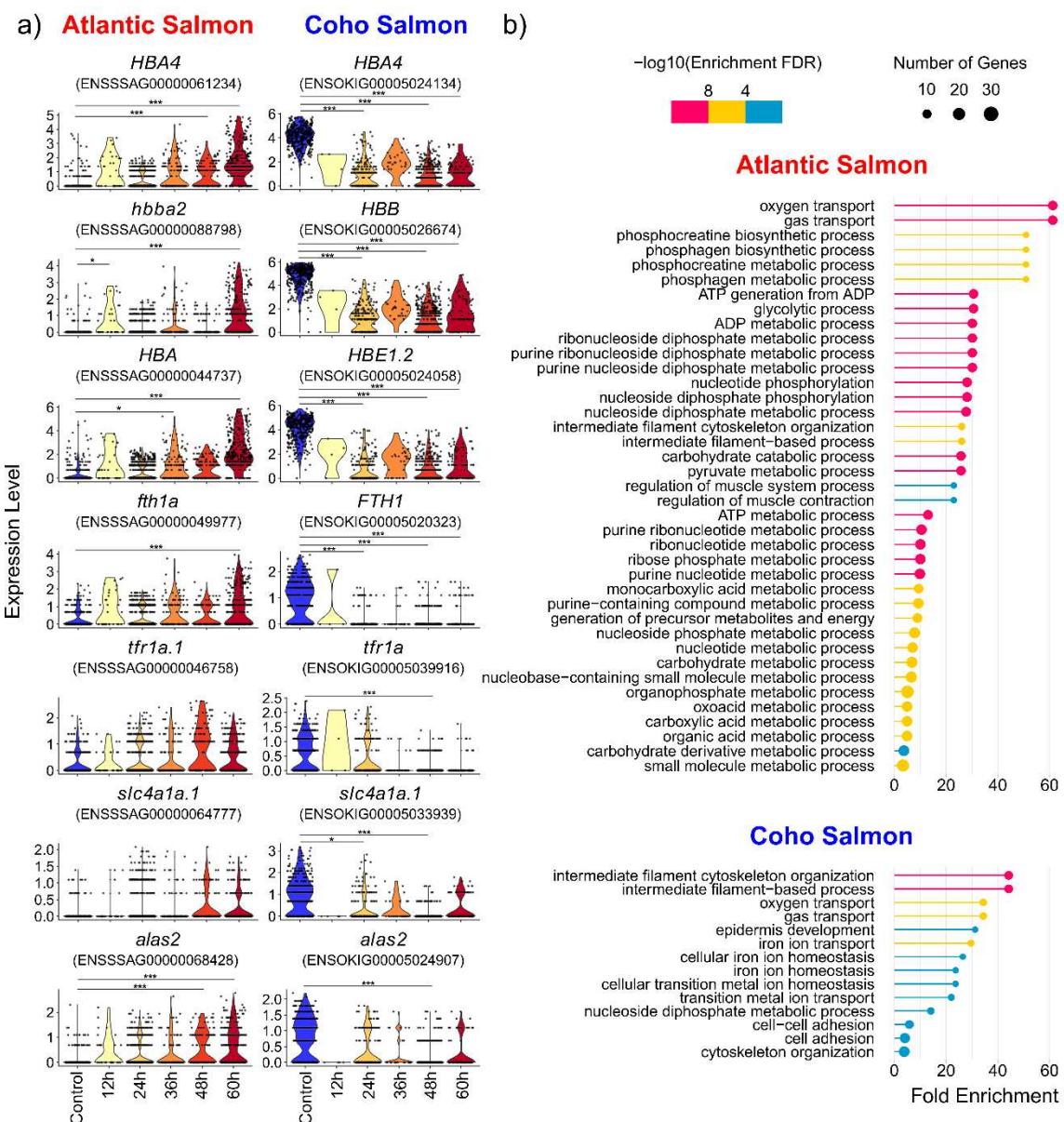
		<i>tie1</i>	ENSSSAG00000079214	ENSOKIG00005004729	Marker for the blood vessel cell type in zebrafish cell atlas [53]
		<i>flt4</i>	ENSSSAG00000084309	ENSOKIG00005035303	Marker for the the blood vessel cell type in zebrafish cell atlas [53]
Secretory		<i>pcdh11</i>	ENSSSAG00000057824	ENSOKIG00005037957	
		<i>avil</i>	ENSSSAG00000084911	ENSOKIG00005031571	Associated with tuft cells [65] and expressed in a rare tuft cell-like group of cells within zebrafish intestine [66]
		<i>pou2f3</i>	ENSSSAG00000039114	ENSOKIG00005026363	Associated with tuft cells [67] and expressed in a rare tuft cell-like group of cells within zebrafish intestine [66]
		<i>prox1</i>	ENSSSAG00000039610	ENSOKIG00005019222	Associated with tuft cells [68]
Osteoblasts		<i>panx3</i>	ENSSSAG00000068856	ENSOKIG00005040175	Marker for osteoblasts in zebrafish cell atlas [53]
		<i>itga10</i>	ENSSSAG00000119547	ENSOKIG00005041776	Associated with bone development [69]
		<i>fgfr4</i>	ENSSSAG00000017777	ENSOKIG00005032151	Expressed in mouse osteoblasts [70], marker for bone in Atlantic Salmon [27]
Red Blood Cells		<i>hemoglobin subunit beta</i>	ENSSSAG00000045065	ENSOKIG00005024058	Key component of red blood cells
Muscle		<i>casqlb</i>	ENSSSAG00000072101	ENSOKIG00005004600	Expressed in zebrafish skeletal muscle [71]
		<i>tnni2a</i>	ENSSSAG00000055259	ENSOKIG00005033031	Critical to muscle function [72]
		<i>ttn</i>	ENSSSAG00000119643		A crucial component of skeletal muscle function [73]
			ENSSSAG00000095939		
Neural Crest Cells		<i>ltk</i>	ENSSSAG00000110394	ENSOKIG00005047857	Directs multipotent neural crest cell development into pigment cells in zebrafish [56]
		<i>mlphb</i>	ENSSSAG00000053095	ENSOKIG00005009265	Marker gene for xanthophores and melanophores in zebrafish cell atlas [53]
		<i>pnp4a</i>	ENSSSAG00000044409	ENSOKIG00005022133	Expressed in iridophores [74]
		<i>fhl2</i>	ENSSSAG00000080837	ENSOKIG00005031455	Expressed in iridophores [75]
				ENSOKIG00005012190	
Neuronal (1)		<i>alx4b</i>	ENSSSAG00000112316	ENSOKIG00005008266	Expressed in iridophores [76]
		<i>nwd1</i>	ENSSSAG00000047318	ENSOKIG00005015132	Associated with neuron development in mice [77]
		<i>cntn4</i>	ENSSSAG00000057173	ENSOKIG00005044284	Associated with neuron development in humans [78]
Neuronal (2)	<i>samd12</i>	ENSSSAG00000118720	ENSOKIG00005014439		Linked to neurological disease in humans [79]
	<i>il10rb</i>	ENSSSAG00000038884	ENSOKIG00005025589		Expressed in neurons [80]
Atlantic Salmon Only	Fibroblasts (2)	<i>lamc1</i>	ENSSSAG00000008380		Expressed in mouse fibroblasts [81]
		<i>col6a6</i>	ENSSSAG00000040824		Expressed in human skin fibroblasts [82]
	Mucous	<i>fer1l4</i>	ENSSSAG00000075250		lncRNA associated with gastric cancer [83]
		<i>spdef</i>	ENSSSAG00000074163		Critical to mucus cell differentiation [84]
		<i>p2rx1</i>	ENSSSAG00000039817		Marker for mucus cells in zebrafish cell atlas [53]
		<i>muc5bl</i>	ENSSSAG00000055014		Associated with mucus cells [85]
		<i>abcg1</i>	ENSSSAG00000074633		Expressed in glial but also neuronal cells [86]
	Glial (2)	<i>wdr49</i>	ENSSSAG00000064639		Associated with astrocytes [87]
		<i>pax7l</i>	ENSSSAG00000006052		Associated with myoskeleton [88]

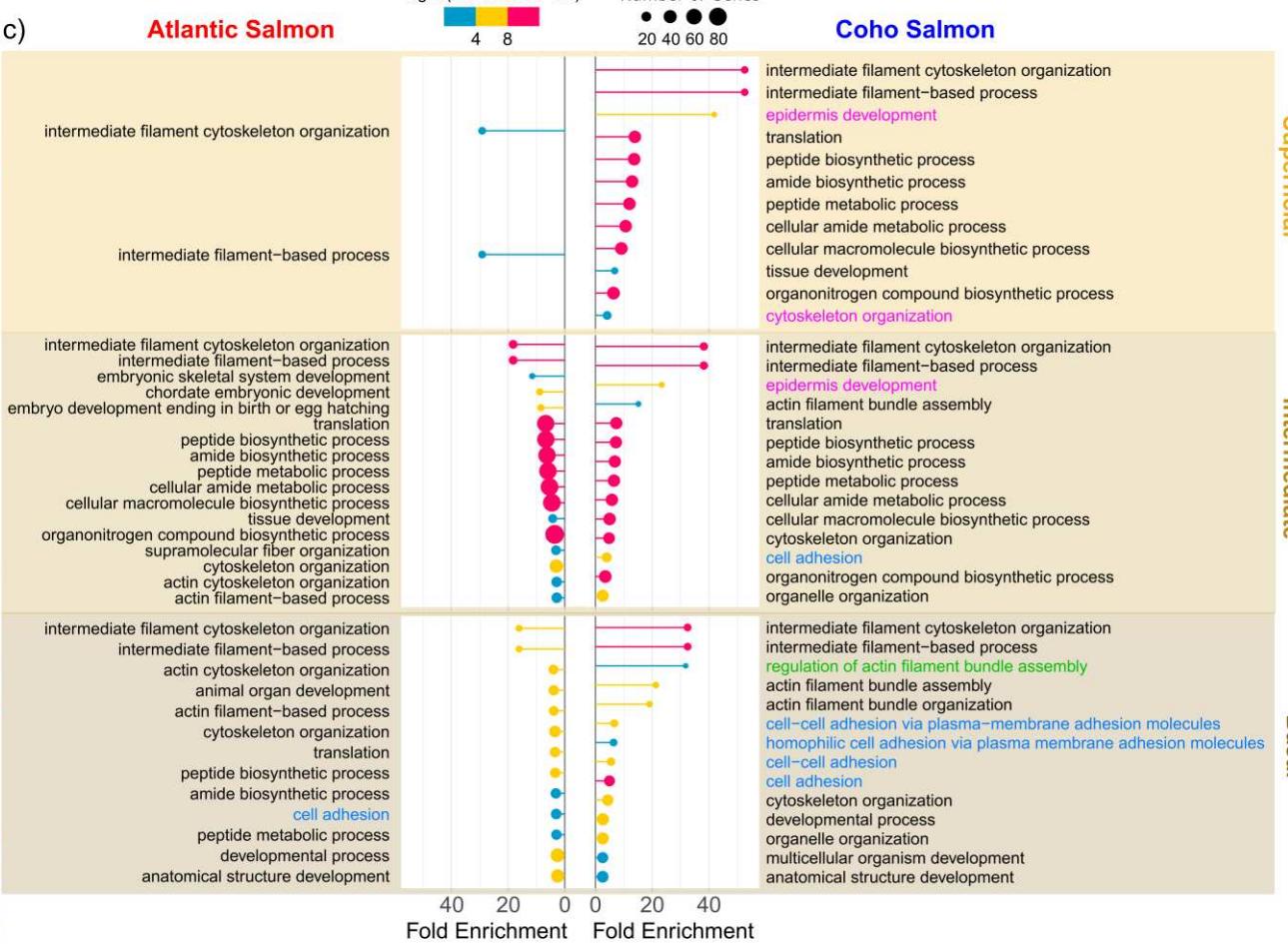
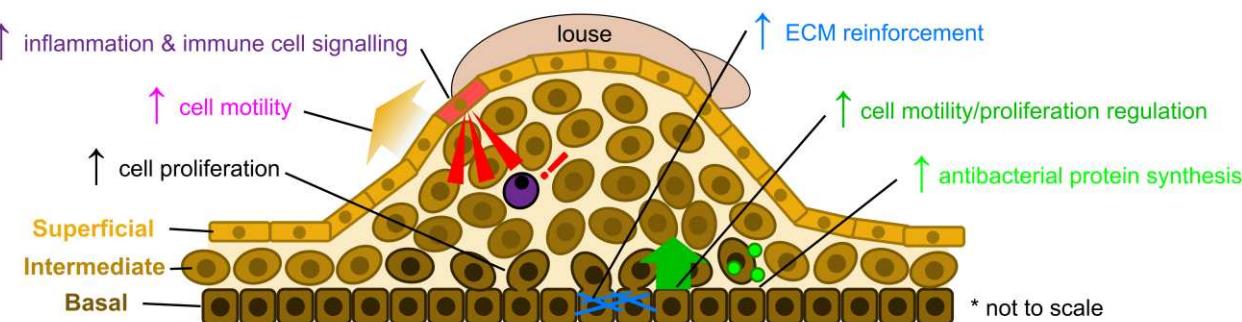
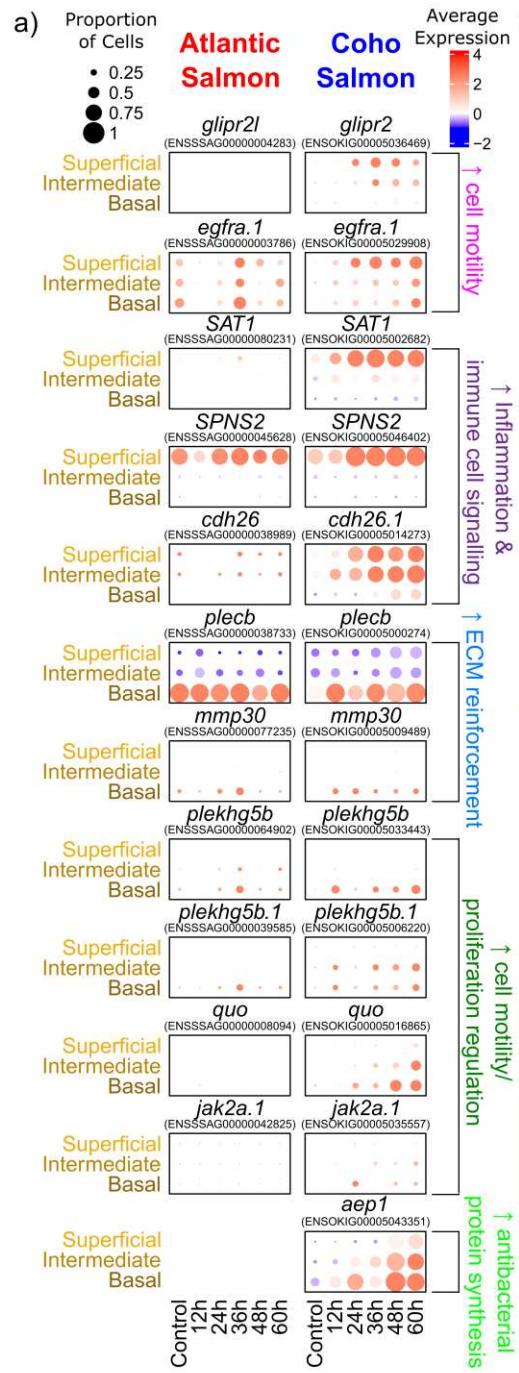
		<i>col4a1</i>	ENSSSAG00000029801		Widely expressed in basement membrane [89]
Coho Salmon Only	Mucous (1)	<i>ferll4</i>		ENSOKIG00005027833	lncRNA associated with gastric cancer [83]
		<i>spdef</i>		ENSOKIG00005000031	Critical to mucus cell differentiation [84]
		<i>p2rx1</i>		ENSOKIG00005008860	Marker for mucus cells in zebrafish cell atlas [53]
				ENSOKIG00005028810	
	Mucous (2)	<i>ferll4</i>		ENSOKIG00005027833	lncRNA associated with gastric cancer [83]
		<i>spdef</i>		ENSOKIG00005003413	Critical to mucus cell differentiation [84]
		<i>p2rx1</i>		ENSOKIG00005028810	Marker for mucus cells in zebrafish cell atlas [53]
	Integument	<i>plcb2</i>		ENSOKIG00005013873	Marker for "Integument – taste bud" cell type in zebrafish cell atlas [53]
		<i>rgs1</i>		ENSOKIG00005032617	Marker for "Integument – taste bud" cell type in zebrafish cell atlas [53]
				ENSOKIG00005021878	Marker for "Integument – taste bud" cell type in zebrafish cell atlas [53]
		<i>trpm5</i>		ENSOKIG00005033333	Marker for "Integument – taste bud" cell type in zebrafish cell atlas [53]
		<i>kcnk17</i>		ENSOKIG00005039197	Marker for "Integument – taste bud" cell type in zebrafish cell atlas [53]
	Neuronal (3)	<i>alk</i>		ENSOKIG00005020768	A widely-expressed neuronal-related gene [90], also associated with pigmentation in fish [91]
	Glial	<i>abcg1</i>		ENSOKIG00005034390	Expressed in glial but also neuronal cells [86]
		<i>wdr95</i>		ENSOKIG00005007677	An ortholog of WDR49, which is associated with astrocytes [87]

Fig.1 Cell types detected in Atlantic (a-c) and Coho (d-f) Salmon. UMAPs of cell clusters coloured by putative identity for (a) Atlantic salmon and (b) coho salmon. Violin Plots of marker genes for each cell cluster for (c) Atlantic salmon and (d) Coho Salmon. Counts of each cell type by sample for (e) Atlantic salmon and (f) coho salmon. Note there is no 12h Fin or 24h Fin sample for Atlantic salmon.

Fig.2 Cell clusters identified integrating both Atlantic salmon and coho salmon samples using 1:1 orthologous genes. a) UMAP of cell clusters split by species, b) violin plot of expression of a marker gene for each cluster. Violin plots visualize the expression of these same features in the species-specific datasets: c) Atlantic salmon, d) coho salmon. The Atlantic salmon and coho salmon ortholog ENSEMBL codes are noted to the right of each gene.


Fig.3 Sub-clustering of putative immune cells expressing CD45. UMAP visualization of immune clusters in Atlantic (a) and Coho (b) Salmon. Dot Plots of features characterizing immune cell types in Atlantic (c) and Coho (d) Salmon.




Fig.4 Dotplots of wound healing-related gene expression in Atlantic salmon and/or coho salmon in response to sea lice. All genes shown were significantly differentially expressed ($p_{adj} < 0.001$) in at least one pairwise comparison between the control and any treatment timepoint in either species.

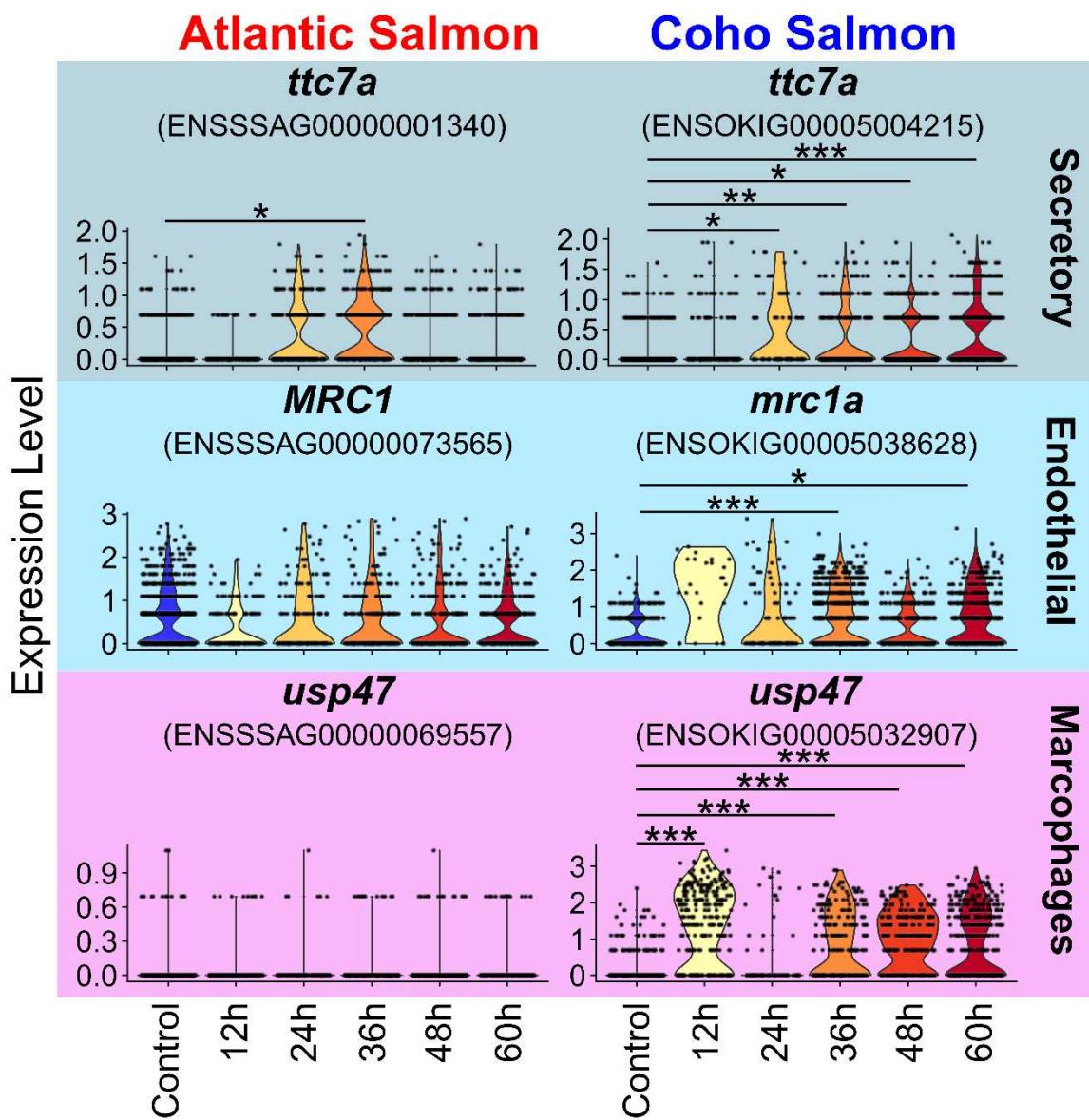

Fig.5 Dotplots of immune-related gene expression in Atlantic salmon and/or coho salmon in response to sea lice. a) immune genes upregulated in both species, b) MHC genes upregulated in both species, c) complement immune system gene expression, d) immune-related genes particularly upregulated in Atlantic salmon in response to sea lice. All genes shown were significantly differentially expressed ($p_{adj} < 0.001$) in at least one pairwise comparison between the control and any treatment timepoint in either species.

Fig.6 Red blood cell response to sea lice in Atlantic salmon and coho salmon. a) violin plots of gene expression in Atlantic salmon and coho salmon of genes significantly upregulated in coho salmon keratinocytes ($p_{\text{adj}} < 0.001$) in response to sea lice in at least one treatment timepoint relative to the control (* - $p_{\text{adj}} < 0.001$, ** - $p_{\text{adj}} < 0.0001$, *** - $p_{\text{adj}} < 0.00001$), b) significantly enriched biological GO terms ($p_{\text{adj}} < 0.001$) for red blood cells in response to sea lice in Atlantic salmon and coho salmon.

Fig.7 Keratinocyte response to sea lice underlies coho salmon resistance to sea lice. a) dotplots of gene expression in Atlantic salmon and coho salmon of genes significantly upregulated in coho salmon keratinocytes ($p_{adj} < 0.001$) in response to sea lice in at least one treatment timepoint relative to the control, b) proposed unique contributions of superficial, intermediate, and basal keratinocytes to epithelial hyperplasia immune response to sea lice in coho salmon, c) significantly enriched biological GO terms ($p_{adj} < 0.001$) for superficial, intermediate, and basal keratinocytes in response to sea lice in Atlantic salmon and coho salmon. Differentially expressed genes in a) and GO terms in c) are colour-coded by the biological processes depicted in b) that they are potentially associated with.

Fig.8 Violin plots of gene expression in Atlantic salmon and coho salmon in response to sea lice that are potentially regulating coho salmon's epithelial hyperplasia response to sea lice. The cell type for which the expression of each gene is shown is noted to the right of each plot. (* - $p_{adj} < 0.001$, ** - $p_{adj} < 0.0001$, *** - $p_{adj} < 0.00001$.)