

1 Competing adaptations maintain non-adaptive variation 2 in a wild cricket population

3 Jack G. Rayner, Franca Eichenberger, Jessica V. A. Bainbridge, Shangzhe Zhang, Xiao Zhang,
4 Leeban H. Yusuf, Susan Balenger, Oscar E. Gaggiotti, & Nathan W. Bailey

5 **Corresponding authors:** Jack G. Rayner, Nathan W. Bailey

6 **Email:** jackgrayner@gmail.com, nwb3@st-andrews.ac.uk

7 **Author Contributions:** JGR, OEG, NWB designed and conceived the original study; JGR, FE, JVAB
8 conducted experiments; JGR, JVAB, SZ led data analysis with input from all authors; XZ contributed
9 genomic resources; JGR, LHY, SB, OEG performed fieldwork; JGR & FE performed labwork; JGR led
10 writing of the manuscript with input from all authors.

11 **Competing Interest Statement:** We disclose that we have no competing interests.

12 **Data availability:** Previously unpublished sequencing whole genome, RNA- and RAD-sequencing
13 data are available (or will be once finished processing) in the NCBI SRA under BioProject
14 PRJNA1019311. Scripts used for processing and analysing data are available at
15 https://github.com/jackgrayner/competing_adaptations alongside data collected from mate preference
16 trials, crosses, and life history experiments which will be made permanently available upon
17 acceptance.

18

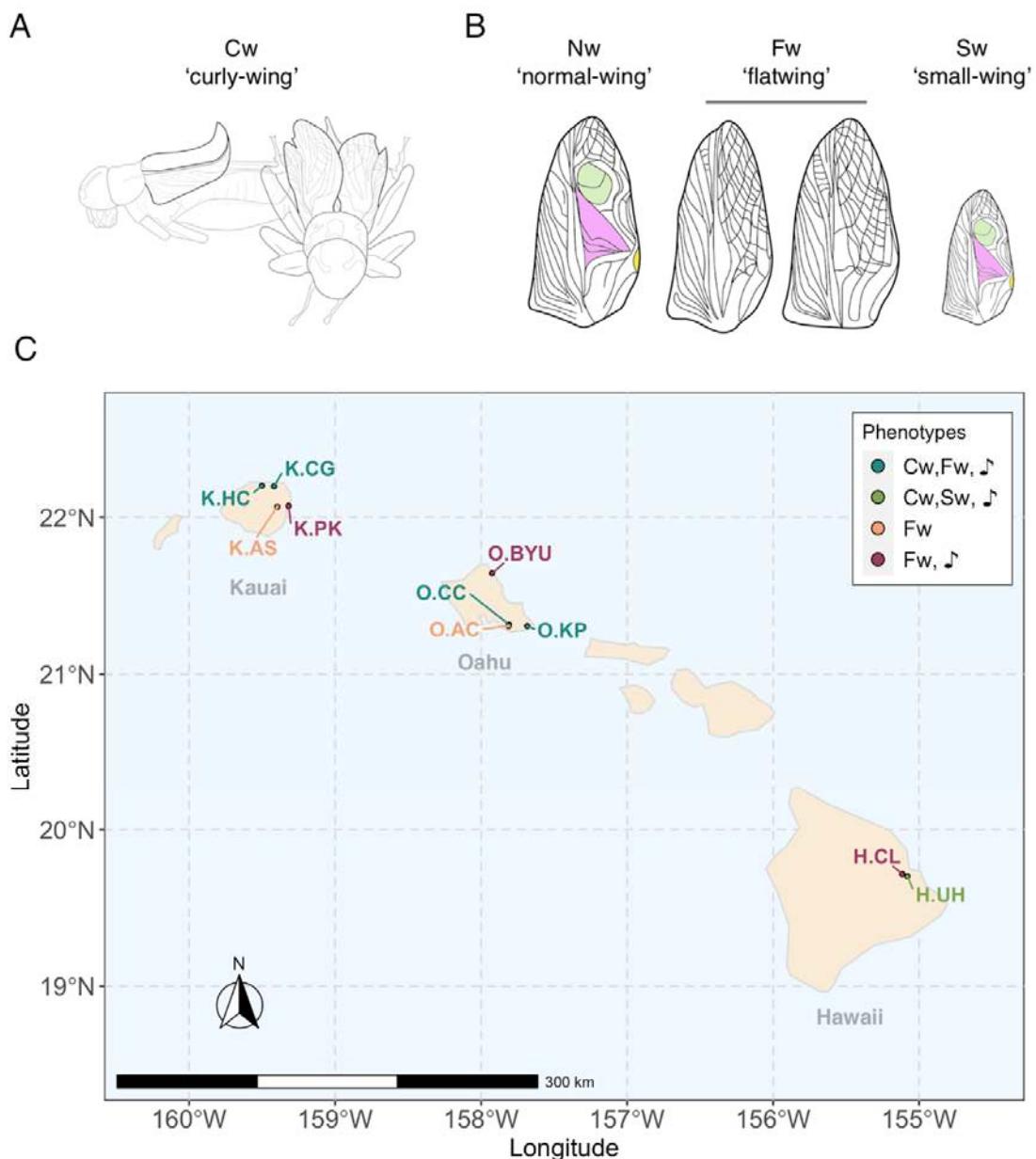
19 **Abstract**

20 How emerging adaptive variants interact is an important factor in the evolution of wild
21 populations. However, the opportunity to empirically study this interaction is rare. We
22 recently documented the emergence of an adaptive phenotype 'curly-wing' in Hawaiian
23 populations of field crickets (*Teleogryllus oceanicus*). Curly-wing inhibits males' ability to
24 sing, protecting them from eavesdropping parasitoid flies (*Ormia ochracea*). Surprisingly,
25 curly-wing co-occurs with similarly protective silent 'flatwing' phenotypes in multiple
26 populations, in which neither phenotype has spread to fixation. These two phenotypes are
27 frequently co-expressed, but since either phenotype sufficiently reduces song amplitude to
28 evade the fly, co-expression confers no additional fitness benefit. Numerous negative fitness
29 consequences are known to accompany flatwing, and we find that curly-wing, too, incurs
30 fitness costs via reduced male courtship success and reduced female longevity. We show
31 through crosses, genomic and mRNA sequencing that curly-wing expression is associated
32 with variation on a single autosome. In parallel analyses of flatwing, our results reinforce
33 previous findings of X-linked single-locus inheritance, with the phenotype likely arising
34 through down-regulation of *doublesex*. By combining insights about the genetic architecture
35 of these alternative phenotypes with simulations and field observations, we show that the co-
36 occurrence of these two adaptations impedes either from fixing, despite extreme fitness
37 benefits. Interestingly, both flatwing and curly-wing are statistically associated with nearby
38 inversions, which are also retained as polymorphisms. This co-occurrence of similar
39 adaptive forms in the same populations might be more common than generally considered,
40 and could be an important force inhibiting adaptive evolution in wild populations.

41

42 **Main Text**

43 **Introduction**


44 Mutations that confer strong fitness benefits are expected to spread through populations.
45 However, adaptive mutations do not arise in isolation. They interact at the individual level
46 with other fitness-associated alleles in the same genome (1) and at the population level with
47 other segregating alleles. Within a population, multiple beneficial mutations might emerge
48 and segregate contemporaneously. In this case, a given mutation's adaptive spread will also
49 depend on factors such as its likelihood of recombining into the same genome as other
50 adaptive mutations (2–5). Models of interacting mutations often assume additive fitness
51 benefits in the combined state, suggesting an individual carrying multiple adaptive mutations
52 will have greater fitness than an individual carrying just one. However, this is not necessarily
53 the case, for example if alleles are epistatic (6). Besides epistasis, similar adaptations
54 frequently emerge in lineages evolving under similar selection pressures (7, 8), and can
55 occur through diverse genetic changes even in closely related species (9–12). In such cases
56 it is not obvious that co-expression of alternative adaptations to the same selection pressure
57 should confer any additional fitness advantage.
58

59 Here, we investigate this scenario of co-occurring adaptations in a system where multiple
60 phenotypes – adaptive under the same selection pressure, but through a diverse range of
61 morphological changes – have recently emerged across multiple populations of the field
62 cricket *Teleogryllus oceanicus*. Male crickets ordinarily produce song to attract females by
63 rubbing their two forewings together, causing scraper and file structures on opposite wings to
64 make contact (13). However, Hawaiian populations of *T. oceanicus* are attacked by an
65 introduced endoparasitoid fly, *Ormia ochracea*, which uses cricket song to locate hosts for its
66 larvae (14). Researchers have subsequently observed the repeated emergence and spread
67 of multiple song-reducing phenotypes in these populations. First, Zuk et al. (15) observed
68 the emergence of 'flatwing' phenotypes, which remove males' ability to sing via loss or
69 reduction of sound producing structures ordinarily present on the male wing. Flatwing
70 variants have spread through populations on at least three different islands: Kauai, Oahu
71 and Hawaii, but were not observed before 2003. Of the three flatwing phenotypes from
72 across these islands that have been subject to genetic analysis, all are underpinned by X-
73 linked mutations (11, 16–18), but show differing patterns of genomic association that suggest
74 the phenotypes arose independently (11, 16).
75

76 We recently documented the emergence of two more reduced-song wing phenotypes, 'curly-
77 wing' and 'small-wing', in Hawaiian *T. oceanicus* populations (19) (Fig. 1A, Fig. 1B; see also
78 a further protective morph described by (20)). Like flatwing (Fig. 1B), these phenotypes
79 benefit males by reducing or eliminating their ability to sing, which permits them to evade
80 detection by *O. ochracea* (19, 21). A distinguishing feature of curly-wing and small-wing is
81 that both can be visibly expressed by females, whereas the *flatwing* mutation does not affect
82 female wings. Usefully, the three phenotypes are readily distinguishable, allowing us to
83 document their contemporaneous spread. While we have only observed small-wing in two
84 nearby populations, curly-wing – like flatwing – is observed in several populations across the
85 Hawaiian archipelago, perhaps due to recent gene flow (11). Surprisingly, we find that curly-
86 wing and flatwing phenotypes are frequently present in the same populations, and are
87 frequently co-expressed by males. Flatwing phenotypes are present in four of the five study
88 populations in which we observe curly-wing phenotypes, while curly-wing and small-wing co-
89 occur in the fifth (Fig. 1C). The co-occurrence of curly-wing and flatwing is surprising
90 because either phenotype appears to be sufficient to protect males against parasitism (19);
91 flatwing males in particular are almost inaudible in the field. We speculate the co-occurrence
92

94 of these alternative phenotypes might impede their adaptive fixation, by weakening
95 respective selection coefficients. This would in turn maintain singing-capable phenotypes
96 despite being selectively disfavoured, as the non-adaptive, song-associated variants of
97 either phenotype (i.e., the absence of curly or flatwing morphologies) are shielded from
98 selection when co-expressed with the alternate adaptive variant. Consistent with this, a
99 proportion of audible singing males remain in all populations where two or more reduced-
100 song morphs co-occur, in contrast with two populations in which flatwing alone spread to
101 fixation.

102
103 Here, we evaluate the genetic architecture, fitness consequences, and evolutionary
104 dynamics of co-segregating adaptive variants. The first goal of our study was to assess the
105 heritability of Cw and identify associated genomic regions, as these are as yet unknown. Our
106 second goal was to compare genetic and transcriptomic features of co-occurring curly-wing
107 and flatwing phenotypes, across multiple populations. We present simulations informed by
108 our findings regarding curly-wing and flatwing's genetic architectures to test our intuition: that
109 co-occurrence of alternative adaptive phenotypes has impeded their adaptive spread in
110 wild *T. oceanicus* populations. Finally, mutant phenotypes which are strongly adaptive in a
111 given context are expected and are often observed to have negative fitness consequences
112 for a range of related and unrelated traits (4, 22). We investigate fitness consequences of
113 curly-wing and flatwing expression in the context of male sexual advertisement, and on adult
114 life history traits of size and longevity in both sexes.

115
116 **Figure 1. Presence of male-silencing *T. oceanicus* phenotypes across Hawaii. A)** Side
117 and front-view diagrams of Cw morphology, showing unusually curled forewings, which
118 would ordinarily sit flat. **B)** Diagrams illustrating singing-capable normal-wing (Nw) male wing
119 vein morphology, alongside that of two song-reducing phenotypes: flatwing (Fw) and small-
120 wing (Sw). The two Fw diagrams illustrate variation in Fw morphology between islands and
121 populations in the degree of reduction of sound-producing structures (highlighted in colour).
122 **C)** Distribution of reduced-song phenotypes across the Hawaiian archipelago. In each case,
123 colours indicate which phenotypes are present in each population (i.e., 'Cw, Fw' indicates
124 that both Cw and Fw phenotypes are present). ♂ indicates that singing-capable males (i.e.,
125 those not expressing any of Cw, Fw or Sw) remain in the population, and this is true of all but
126 K.AgStation and O.AstronomyCenter populations in which Fw has alone spread to fixation.

127

128

129 **Results**

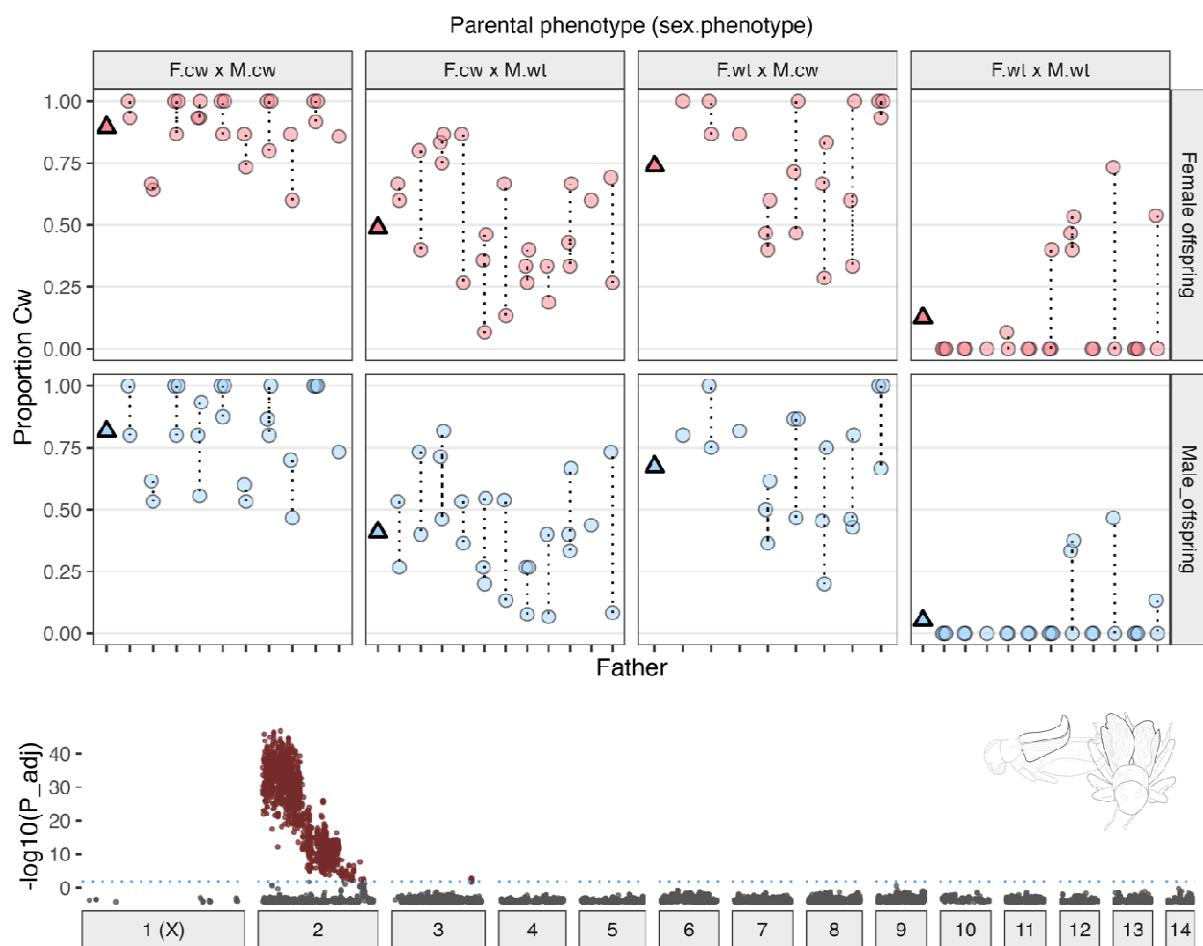
130

131 ***Cw is highly heritable and more strongly expressed by females***

132

133 Half-sibling crosses, performed using laboratory stock originally derived from the Community
134 Center population in Oahu (Oahu.CC), showed curly-wing (Cw) is highly heritable and
135 segregates in a manner consistent with autosomal inheritance (Fig. 2A). In a linear mixed
136 model, a random effect term including parental phenotypes and identities explained an
137 estimated 90% of variance in the proportion of Cw offspring (est. R^2 of random
138 effects=0.903). Replacing our response variable with average offspring curliness score (Fig.
139 S1, Table S1) slightly reduced the estimated proportion of variance explained (est. R^2 of
140 random effects = 0.878), so we treat Cw as a discrete trait. Fifty-eight percent of males used
141 in crosses expressed flatwing (Fw), and patterns of inheritance were consistent with X-
142 linkage previously observed for Fw variants (16, 17) (Fig. S2). Among male offspring, there
143 was no correlation between expression of Cw and Fw phenotypes, supporting the view that
144 causal regions are located on different chromosomes (Table S2), which is likely to be a key
145 feature of their evolutionary interaction.

146


147 Although an overwhelming proportion of variance in curliness observed between families
148 was explained by parental ID and phenotype, curliness was also associated with offspring
149 sex ($X^2_1 = 24.816$, $P < 0.001$) and rearing density ($X^2_1 = 8.107$, $P = 0.004$; full model est. R^2 of
150 0.932). Females and offspring reared at lower density were each more likely to express Cw,
151 and females were assigned higher curliness scores (females: $x \pm 3.86 \pm 0.003$ SE, males:
152 $x \pm 3.06 \pm 0.003$ SE). Sex and rearing density also influence expression, in the same
153 direction, of an analogous curled wing phenotype, 'curly', in *Drosophila* (23, 24). Across field
154 cricket taxa, sex and rearing density each affect development rate (25, 26), suggesting a
155 plausible explanation is that wing curliness is influenced by growth rate, as has been found
156 in *Drosophila* (27).

157

158 As expected in the case of Cw being underpinned by one or a few co-localised major effect
159 loci, Cw \times Cw and Wt \times Wt crosses produced predominantly Cw and Wt offspring,
160 respectively (Fig. 2A), albeit with exceptions attributable to incomplete penetrance. In
161 crosses where just one parent visibly expressed Cw, paternal phenotype was more strongly
162 correlated with the proportion of Cw offspring. The cause of this parent-of-origin effect is not
163 clear, as inheritance patterns do not support sex-linkage, but it is plausible that Cw
164 penetrance is influenced by one or more X-linked alleles, which might also contribute to sex
165 differences in expression.

166

167

168
169 **Figure 2. Inheritance and genetic architecture of Cw.** (A) Each circle shows the
170 proportion of full-sib F_1 offspring expressing curly-wing following mating of the respective F_0
171 male (X-axis) with a single female. Dotted lines connect half-sib families. Panels are
172 separated into groups based on parental curly-wing phenotype (F.cw x M.cw = female curly-
173 wing mated with male curly-wing, and so on), and by offspring sex. Triangles show mean
174 values for each panel. (B) Genome-wide association significance ($-\log_{10}$ Bonferroni-adjusted
175 P) between allelic variants and Cw phenotype.

176

177 **Cw is genetically associated with a single autosome, Chromosome 2**

178

179 We performed genome-wide association tests between 178 Cw vs. 197 Wt individuals from
180 a single inbred F_2 family, with 13,822 filtered RAD markers mapped to the *T. oceanicus*
181 reference genome V2 (Zhang et al. *in review*). This family was produced from laboratory
182 stock derived from the wild Oahu.CC population. Phenotype-genotype association tests
183 detected significantly Cw-associated variants across nearly the full length of the 245 Mb
184 Chromosome 2 (Chr2), with the association strongest across the first ca. 85 Mb (Fig. 2B).
185 While there were no discrete peaks within this region, inspection of heterozygosity and

186 genotypes across Chr2 highlighted a region between 66:83 Mb showing consistent
187 differences between Wt and Cw phenotypes (Fig. S3).

188
189 Chr2 also showed elevated numbers of differentially expressed (DE) genes associated with
190 Cw (Fig. S4). Fifty-two genes were DE between developing wings of Cw vs Wt males
191 (DE_{Cw}), whereas 225 were DE between those of Nw and Fw males (DE_{Fw}). In both cases,
192 DE genes were concentrated on chromosomes harbouring the respective causative variants,
193 particularly for DE_{Cw} genes, 50% of which were located on Chr2 (Fig. S4). This represents
194 strong overrepresentation given that Chr2 accounted for just 12.2% of the 12,049 genes
195 present in the filtered transcriptome ($X^2_1 = 64.707$, $P < 0.001$). Moreover, 24 of these 26 were
196 within the 0:85 Mb region strongly associated with Cw in the RAD-seq data.

197
198 To perform tests of functional enrichment of gene ontology (GO) terms among differentially
199 expressed genes, we first relaxed the threshold for the DE_{Cw} gene set to $FDR < 0.1$ to
200 increase our statistical power. Of 98 such genes, a similarly high proportion ($N=45$; 46%)
201 were located on Chr2, indicating this subset was biologically meaningful. Of 52 genes that
202 could be assigned GO terms, one molecular function (*endopeptidase inhibitor activity* [$N = 4$
203 genes, versus 24 in the transcriptome; binomial test $P_{adj}=0.033$]) showed evidence of
204 enrichment. This was driven by serpin genes, homologous with *Spn55B*, *SPn42Dd* and
205 *Spn43Aa* in *Drosophila*, which were enriched 22-fold. In insects, serpins play a primary role
206 in innate immunity via the melanisation cascade (28), but have also been repeatedly
207 implicated in abnormal wing development. In *Drosophila*, *Serpin88Ea* is expressed in
208 developing wings, and knockdown results in defective unfolding and wing expansion
209 following the adult moult, with the adult phenotype showing similarity with curly-wing (29). A
210 similarly altered wing phenotype, again showing visible similarity to curly-wing, was observed
211 following knockdown in *Drosophila* of another serpin gene, *Serpin-27A* (30).

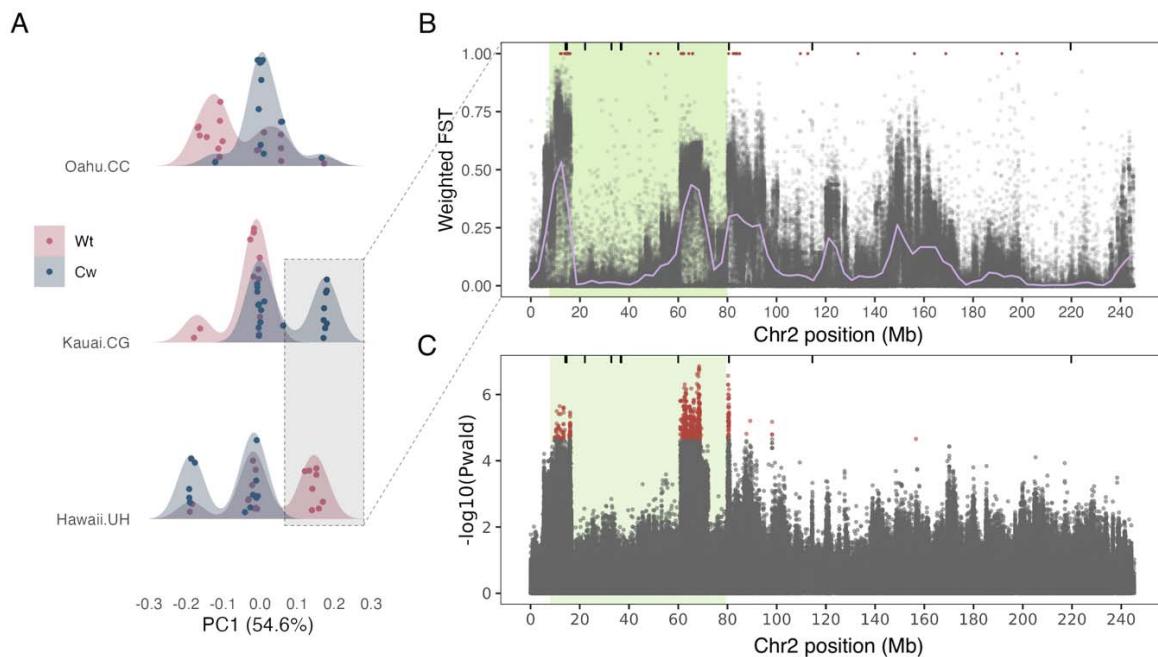
212
213 Among the 225 DE_{Fw} genes, 50 (22.25%) were located on the X chromosome (cf. 12.0% of
214 all genes in the filtered transcriptome; $X^2_1 = 20.616$, $P < 0.001$) (Fig. S4). Two were 14Kb and
215 3Kb upstream of the annotated *dsx* gene (259.05 – 259.44 Mb), the latter of which showed
216 significant blastx homology with 'doublesex and mab-3 related transcription factor' in the
217 desert locust (*Schistocerca gregaria*). Both were down-regulated in Fw males, consistent
218 with down-regulation of *dsx* in developing Fw wing tissue observed by Zhang et al. (11), but
219 at a later stage of tissue development and in a population not previously examined.

220
221 ***Evidence for a large Cw-associated inversion***

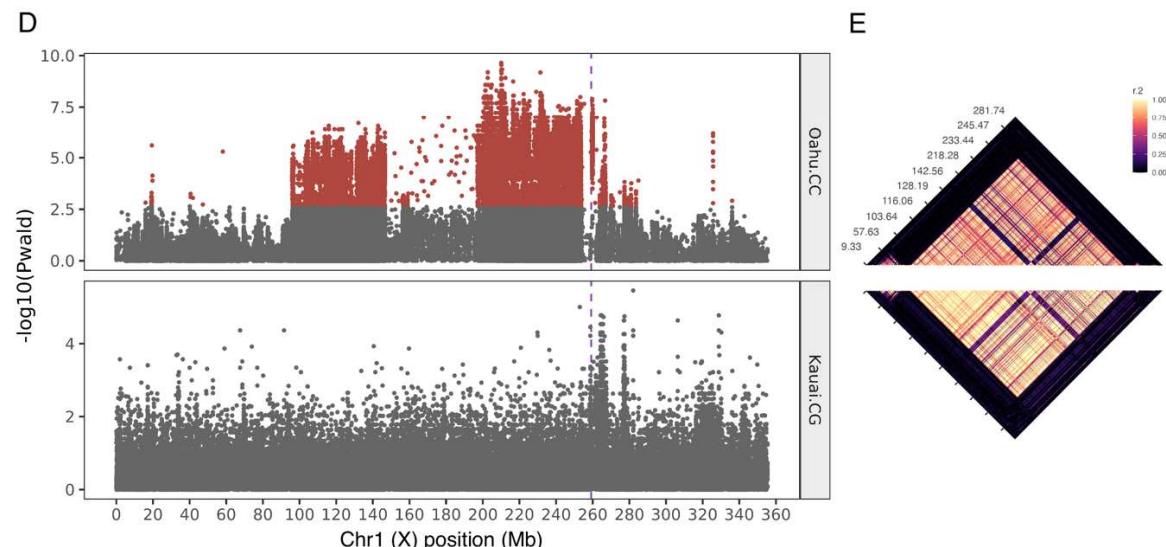
222
223 The large Cw-associated region between on Chr2, without an obvious peak of genetic
224 association (Fig. 2B), could implicate a large structural variant such as a chromosomal
225 inversion. Using existing whole genome sequencing (WGS) data collected in 2017 from the
226 wild Oahu.CC population, the same individuals from which our lab stock was derived, we
227 found strong evidence of a segregating inversion in this region. Specifically, principal
228 component analysis (PCA) separated samples into three discrete clusters: representing
229 homozygotes for the two divergent non-recombining haplotypes, and an intermediate cluster
230 of heterozygote samples (31) (Figs. S5, S6). Samples from these clusters showed drastically
231 different rates of heterozygosity and strong patterns of linkage within the first 80 Mb of Chr2,
232 consistent with expectations under the scenario of a segregating inversion (32, 33) (Figs. S5,
233 S6). We used *svdetect* to predict breakpoints associated with large (> 5Mb) inversions in this
234 region based on paired-end read alignments (34). After filtering for location and expected
235 frequencies across samples based on PCA clustering, there remained a large predicted
236 inversion corresponding to our observations between 7.5 and 80 Mb on Chr2. This approach

237 has a high false positive rate with WGS data, but for convenience we henceforth treat the
238 inversion as located within the region of 7.5–80 Mb on Chr2.
239

240 ***Phenotype-genotype associations of similar morphologies across populations***
241


242 Cw and Fw phenotypes show surprising geographical overlap in their occurrence across *T.*
243 *oceanicus* populations. To investigate the genomic architecture of Cw and Fw phenotypes in
244 share populations, and extend our analysis of Cw across multiple populations, we examined
245 WGS data collected in 2021/2022 from males of known phenotype from the focal Oahu.CC
246 population (13 Cw, 17 Wt; 8 Fw, 22 Nw), alongside populations from two other Hawaiian
247 islands: Kauai.CG (19 Cw, 11 Wt; 16 Fw, 14 Nw), and Hawaii.UH (18 Wt, 12 Cw, all Nw)
248 (see Fig. 1). Neither Cw nor Fw phenotypes have reached fixation in any of these
249 populations, and in Oahu.CC and Kauai.CG, 7 and 12 males, respectively, co-expressed Cw
250 and Fw. Given prior knowledge regarding their genetic architectures, we focussed analyses
251 of Cw and Fw phenotypes on Chr2 and the X, respectively. For analyses of Fw, the
252 Oahu.CC data was combined with data collected from 2017 for a total sample of 50 (18 Fw,
253 32 Nw).

254
255 We found a strong association between Cw and genetic variation across the region of the
256 predicted inversion at 7.5:80 Mb on Chr2. The pattern of clustering across populations was
257 again strongly consistent with the presence of an inversion in this region, separating
258 samples from all populations into three discrete clusters on PC1 (Fig. 4A). Moreover, the
259 inferred frequency of the inverted haplotype differed significantly between Cw and Wt
260 samples in all three populations (Wilcoxon rank-sum test: $P_{\text{Hawaii.UH}}=0.005$; $P_{\text{Kauai.CG}}=0.005$;
261 $P_{\text{Oahu.CC}}=0.011$), however, the pattern of Cw – PC1 association in Hawaii.UH was opposite
262 that of Kauai.CG and Oahu.CC. To investigate this incongruity, we performed an F_{ST} scan
263 (10 kb window, 10 kb step size, using Weir and Cockham's F_{ST} implemented in vcftools (35))
264 between samples inferred to be homozygous for the inverted haplotype in Kauai.CG and
265 Hawaii.UH, but which expressed opposite phenotypes (Fig. 4A). F_{ST} values of up to 1 were
266 identified in three regions of striking genetic divergence: ca. 7.5:15 Mb, 60:70 Mb, and 80 Mb
267 (Fig. 4B). Visualisation of linkage and heterozygosity along Chr2 also revealed the
268 Hawaii.UH population showed quite different patterns in the region of 7.5:80 Mb compared
269 with Oahu.CC and Kauai.CG populations (Fig. S7). This might suggest recurrent
270 chromosomal rearrangements in this region, a pattern that seems to be relatively common
271 (33, 36, 37). We anticipated that the Cw-associated variant(s) might sit in one of these three
272 windows showing high F_{ST} , as variants in these windows are likely to be statistically
273 associated with the inversion in each population via linkage, but could show opposite
274 patterns of association between populations (i.e., gametic coupling in Kauai.CC and
275 Oahu.CC, but repulsion in Hawaii.UH).

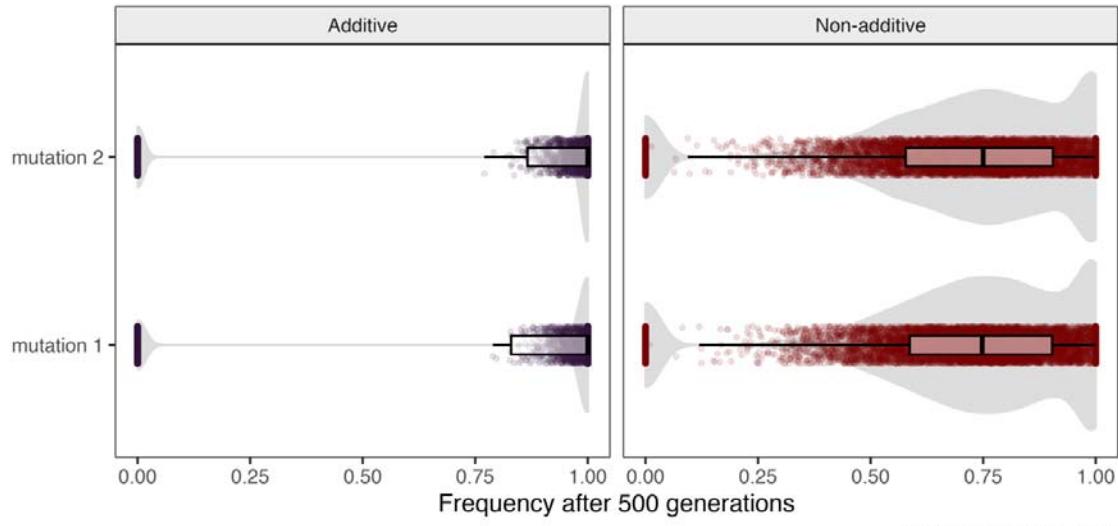

276
277 In an association test between Cw and Chr2 SNPs across samples from all three
278 populations ($N = 1,438,882$ SNPs), performed using GEMMA (38), several SNPs reported a
279 significant ($P_{\text{adj}} < 0.05$) association with Cw (Fig. 4C). All were within or immediately adjacent
280 to the putative inversion in Kauai.CG and Oahu.CC, and nearly all were within candidate
281 regions highlighted by the F_{ST} analysis above. We observed strong linkage between the 100
282 top SNPs (Fig. S8, S9), impeding our ability to identify candidate regions. While these SNPs
283 showed clear divergence between Cw and Wt phenotypes (Fig. S9), there were also
284 exceptions; in particular, four of the 46 Wt samples were consistently genotyped for Cw-
285 associated variants, which we expect is due to the incomplete penetrance of the Cw
286 mutation(s) previously observed (Fig. 2A). Five of these SNPs were located within annotated
287 genes. These included a SNP at 80,625,117 bp within *ITIH4*, which has an annotated
288 function in endopeptidase inhibitor activity (GO:0004867; highlighted by the RNA-seq

289 analysis and by involvement in Cw-like mutant phenotypes in *Drosophila*), and sits within a
290 region containing several DE_{Cw} genes (Fig. S10).
291

Curly-wing phenotype-genotype association

Flatwing phenotype-genotype association

29
293 **Figure 3. Genomic regions associated with Cw and Fw.** **A**) PC1 clustering across populations
294 from PCA analysis of SNPs within 7.5 Mb and 80 Mb regions of Chr2. Points are jittered on
295 the Y-axis to fill the density distribution illustrated by curves, and both are coloured by
296 sample phenotype. **B**) Weighted F_{ST} values between Kauai.CG and Hawaii.UH populations
297 along Chr2, using samples in the highlighted rectangle from (A). Windows with an F_{ST} of 1
298 are highlighted in red. **C**) SNP-wise association tests between Cw and Wt phenotypes
299 across all populations, with a single SNP with Bonferroni-adjusted $P < 0.05$ in red. Vertical
300 lines on the top of the plots B and C show the locations of genes with an annotated function
301 in serine-type endopeptidase inhibitor activity, and the region of the putative inversion is


302 highlighted in green. **D)** SNP-wise association tests between Fw and Nw phenotypes within
303 Kauai.CG and Oahu.CC populations, on the X chromosome. The dashed purple line
304 indicates the position of *dsx*. **E)** Linkage across the full X-chromosome in Oahu.CC (top) and
305 Kauai.CG (bottom).

306
307 Flatwing phenotypes have been repeatedly associated with *dsx* at genomic and
308 transcriptomic levels (11). We investigated Fw-associated variants in Oahu.CC and
309 Kauai.CG (N = 997,680 and 587,058 X-linked SNPs, respectively). We analysed each
310 population separately as prior analysis have suggested Fw variants from these islands have
311 independent genetic architectures. In Kauai.CG, none of the most strongly associated SNPs
312 reached statistical significance at $P_{adj} < 0.05$, probably in part due to the small sample,
313 whereas in Oahu.CC, there were strongly Fw-associated SNPs across nearly the full range
314 of X chromosome (Fig. 4D). In both populations, we observed strong linkage between SNPs
315 across a very large portion of the X chromosome (Fig. 4E). PCA of X-linked variants led
316 samples to group into two non-overlapping clusters, shared between populations, supporting
317 the presence of another, extremely large, inversion. This may have contributed to the low
318 density of RAD SNPs on the X in our inbred mapping family (Fig. 2B). Fw and Nw samples
319 were not separated on PC1 or PC2 in either population (Fig. S11), indicating the inversion is
320 not causally associated with Fw – though there was a statistical association between the
321 inversion and Fw in Oahu.CC (Wilcoxon rank-sum test: $P = 0.001$). Inspection of linkage
322 patterns in both populations suggested the inversion spans the region of ca. 95.7 – 253.2
323 Mb, so we considered the top 50 Fw-associated SNPs outside of this region from each
324 populations. None of these were shared between populations. However, 39 (78%) of these
325 top 50 SNPs in the Oahu.CC population were within 1 Mb of *dsx* (259.05 – 259.44 Mb),
326 whereas in Kauai.CG one SNP, at 258,733,070, was ca. 320 Kb from *dsx*. These SNPs
327 showed consistent and strong, but imperfect genotypic divergence between Nw and Fw
328 samples in each population (Fig. S12). This potentially indicates causative Fw mutations are
329 near to but not included in this set of SNPs, which could be the case if Fw is caused by an
330 indel, or variant otherwise filtered from our dataset. Generally speaking, our results support
331 those of (11, 16) in finding no overlap in the most strongly Fw-associated SNPs between
332 populations, but repeatedly highlighting the region surrounding *dsx*.

333
334 **Interacting mutations under conditions of additive benefits and redundancy**
335 Informed by the non-overlapping genetic architectures of the two phenotypes, we evaluated
336 the prediction that Cw and Fw segregating in the same population would impede either from
337 reaching fixation, by running simulations in SLiM v4.0.1 (39). The results supported our
338 prediction. In a single population of 500 diploid individuals, we introduced two dominant
339 mutations *m1* and *m2*, each, on unlinked chromosomes in a separate random subset of 5
340 genomes. Simulations were run under two conditions: in the ‘additive’ scenario, the
341 mutations each conferred an additive fitness benefit of 0.15, meaning a combined fitness
342 benefit of 0.3 when co-expressed. In the ‘non-additive’ scenario, the mutations each
343 conferred a fitness benefit of 0.3, unless co-expressed, in which case they each conferred a
344 fitness benefit of 0.15 (resulting in a combined fitness benefit of 0.3). We chose these
345 parameters because they result in equal fitness benefit across scenarios when the two
346 mutations are co-expressed. Supporting our intuition, we found across 10,000 simulations
347 that both mutations were much more likely to be segregating at intermediate frequencies
348 after 500 generations in the non-additive scenario. In the additive scenario, both mutations
349 were still segregating after 500 generations in just 6.44% of simulations, versus 76.93% in
350 the non-additive scenario (Fig. 5): in which, as for Cw and Fw, the two mutations do not
351 confer additive fitness benefits.

352

353

354

Figure 4. Non-additive fitness benefits of competing mutations impedes their spread. Frequencies of two mutations with equal fitness benefits after 500 generations of evolution under simulated scenarios of additive and non-additive fitness benefits in the co-expressed state. Boxplots show medians and interquartile ranges. Points are randomly jittered on the Y-axis for interpretability, and the grey filled areas illustrate their density distribution.

355

356 **Correlated fitness consequences**

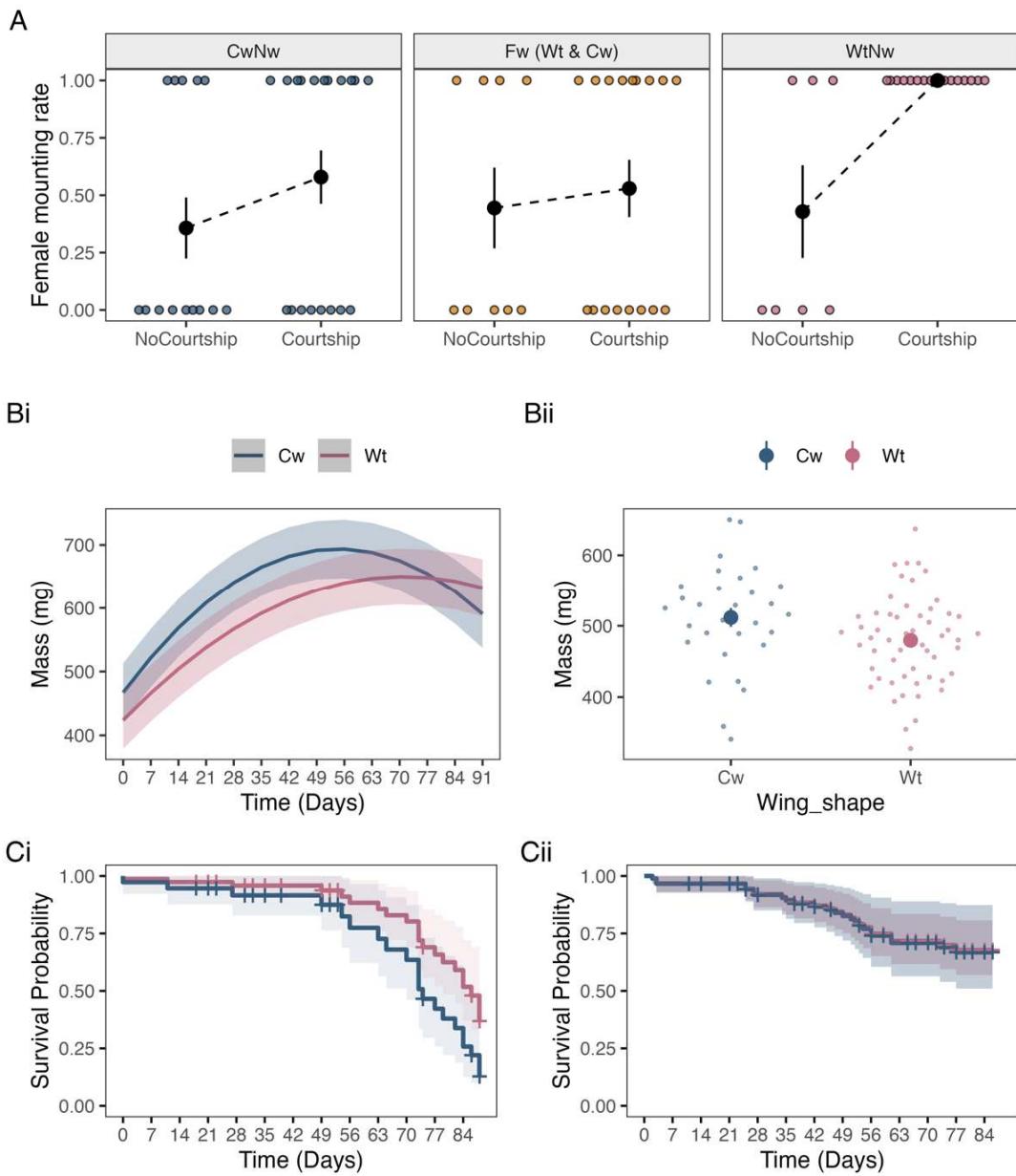
357

358 Although Cw and Fw do not appear to combine to confer greater fitness benefits in the co-
359 expressed state, mutations that spread under strong selection frequently also incur fitness
360 costs through direct or indirect pleiotropic effects and genetic hitchhiking. Such negative
361 fitness consequences are more likely in cases where large effect mutations are favoured due
362 to extreme displacement of a population from a fitness optimum (4, 40), as is the case in *T.*
363 *oceanicus* populations parasitized by *O. ochracea* (18, 41), and would likely combine
364 additively. As a result, males expressing both phenotypes could actually be disadvantaged,
365 and female carriers might also suffer negative fitness-associated consequences of Cw and
366 Fw, despite male-limited fitness benefits (females being obligately silent).

367

368 In grylline field cricket species such as *T. oceanicus*, females exert control over mating
369 interactions as they must mount males in order for mating to occur. Male song is an
370 important courtship trait, and males that can sing have a strong advantage in mating
371 interactions (21). In mating trials, we found female mate choice differed predictably between
372 song-producing normal-wing (WtNw), flatwing (WtFw and CwFw) and Cw (CwNw)
373 phenotypes in accordance with their varying ability to produce courtship song (binomial GLM
374 of female decision to mount: MaleMorph X Courtship $\chi^2_2 = 7.54$, $P = 0.023$). As expected,
375 males expressing Cw or Fw morphology were strongly disadvantaged in the context of
376 courtship, compared with WtNw males for which courtship consistently elicited female
377 mounting (Fig. 6A). Including repeated measures from replicate trials that re-used
378 previously-tested individuals produced qualitatively similar patterns, indicating their reliability
379 (Fig. S12), but impeded model fit after inclusion of random intercepts for male and female ID.
380 While the fitness cost associated with reduced courtship ability is evidently substantial,
381 though the spread of songless phenotypes in *T. oceanicus* across the Hawaiian archipelago,
382

383


384

385

386

387 in some cases to fixation (19, 42), suggests this cost is secondary to fitness benefits gained
388 from evading detection by *O. ochracea* (21).
389

390

391

392

393

394

395

396

397

398

399

400

401

402

Figure 5. Correlated fitness consequences of adaptive mutations. **A)** Effects of courtship (measured by attempt to produce courtship song) by males of different wing phenotypes upon rates of female mounting (i.e, decision to mate). Black points and error bars show means \pm SE. **B)** **(i)** Predicted mass \pm standard error across adult ages in females. **(ii)** Observed mass at 14-days post-eclosion for males, with solid points showing means \pm standard error. **(iii, iv)** Probability of survival (solid lines) at adulthood based on proportional hazards regression of Wt and Cw phenotypes in females and males, with shading indicating 95% confidence intervals.

Apart from direct effects of reduced signalling ability on male fitness, adaptive mutations might also exert pleiotropic, or other indirect fitness consequences. Most strikingly, females

403 expressing Cw morphology had significantly reduced longevity ($P<0.001$; Table S3),
404 providing evidence of strong negative fitness effects of the phenotype in females, who also
405 do not benefit directly from loss of song. Neither Cw nor Fw phenotypes appeared to affect
406 male longevity, though we recorded low male mortality in general over the course of the
407 experiment (27.3% dying in the 91 days post-adulthood, vs 45.7% in females) (Table S3; Fig.
408 5). Similarly, male mass at 14 days adulthood was unaffected by wing shape (Cw vs. Wt) or
409 wing venation (Nw vs. Fw) (Table S4). In females, however, Cw interacted non-linearly with
410 adult age in affecting mass; Cw females typically had greater mass, but this effect
411 diminished at later ages. This pattern was also largely reflected in scaled mass index,
412 sometimes used as a measure of body condition (43). Fitness consequences of greater body
413 mass in female carriers of Cw are thus unclear, contrasting with clear fitness costs
414 demonstrated by reduced longevity. (Fig. 5; Table S3-S5)

415

416 Discussion

417

418 Evolutionary dynamics following the contemporaneous emergence of multiple beneficial
419 mutations have long attracted interest, but opportunities to observe such dynamics
420 empirically are rare – exceedingly so in wild populations. This limitation does not exist for the
421 Hawaiian field cricket populations we studied. Under extreme selection against song, two
422 different adaptive song-loss phenotypes, Fw and Cw, have repeatedly spread in *T.*
423 *oceanicus*. We find these two phenotypes have non-overlapping genetic architectures, and
424 are frequently co-expressed despite their lack of additive fitness benefits when combined.
425 Our findings suggest the co-occurrence of these two phenotypes, either of which is sufficient
426 to protect males from parasitism, has impeded the fixation of either causative mutation.

427

428 Adaptive mutations are expected to be very rare (44). This has clearly not been the case
429 among typically small and fragmented Hawaiian populations of *T. oceanicus* evolving under
430 fatal parasitism by *O. ochracea*, across which four different and apparently novel song loss
431 'morphs' have emerged within the last 20 years (15, 19, 20). On top of these divergent wing
432 morphs, superficially similar flatwing phenotypes have apparently arisen independently on at
433 least three occasions (11, 16). The reason for this exceptional proliferation of adaptive forms
434 seems clear. The introduction of *O. ochracea* to Hawaiian populations of *T. oceanicus*
435 radically changed the fitness landscape, from one in which male singing ability is strongly
436 favoured by benefits in attracting female mates, to one in which any mutation that corrupts a
437 male's ability to sing offered a selective advantage. While this scenario of similar adaptive
438 mutations competing within a population might be presumed to be rare, we point to the
439 widely observed potential for similarly adaptive phenotypes to emerge and spread across
440 populations and species (i.e., parallel, convergent, or repeated evolution (45)), at least some
441 of the time through different genetic mutations (8). The opportunity for alternative adaptive
442 mutations to be introduced to the same populations through either, or a combination, of gene
443 flow and mutational input might therefore be underappreciated, and frequently overlooked.

444

445 The maintenance of non-adaptive variation underlying singing ability in male crickets is of
446 particular evolutionary importance because silent male *T. oceanicus* benefit from the
447 retention of singing males, which they rely upon to adopt satellite mating tactics (15).
448 Additionally, cricket song plays an important role in the social environment, affecting a range
449 of traits such as adult reproductive investment (46), neural gene expression (41), and
450 locomotive activity (47). Should selection against song decrease in severity (e.g., via *O.*
451 *ochracea* population decline) in populations in which co-occurrence of Cw and Fw
452 phenotypes has impeded the loss of variation underlying singing-capable male phenotypes,
453 the latter would be expected to once more spread through the population. Males would thus

454 regain the ability to attract female mates, without requiring the secondary evolution of song
455 or other signalling modalities (48, 49).
456

457 While Cw and Fw do not combine additively in the context of fitness benefits, non-adaptive
458 consequences of the two phenotypes could combine additively to reduce net fitness benefits,
459 further impeding their spread. We found evidence of correlated fitness consequences of the
460 curly-wing phenotype, particularly in females, who suffered greater adult mortality and
461 exhibited greater mass, while males suffered reduced courtship ability. Size and longevity,
462 assayed here, are only a subset of many traits that might be impacted by negative pleiotropy
463 or genetic hitchhiking associated with a strongly adaptive mutation. While we did not observe
464 an effect of flatwing upon male longevity or size in the Oahu.CC stock population, previous
465 work has found flatwing variants are associated with various phenotypic effects including
466 altered male reproductive investment (25, 46, 50, 51); accelerated growth rate (25); and
467 reduced female fecundity (52). Differences in the magnitude of fitness costs associated with
468 either phenotype would also lead to different selection coefficients acting upon each
469 phenotype. However, this would be challenging to quantify systematically, and in populations
470 such as those of Hawaiian *T. oceanicus*, which are typically small and fragmented, might
471 have little influence upon long-term evolutionary dynamics.
472

473 Standing genetic variation is of central importance to understanding the ability of wild
474 populations to adapt under extreme selection, particularly when selection is strong and
475 adaptation must occur quickly (53). However, selective sweeps erode genetic variation. In
476 wild populations of *T. oceanicus*, we find phenotypic and genetic variation in the form of
477 multiple, contrasting wing morphologies has been maintained despite extreme selection for
478 reduced song amplitude. In addition, flatwing and curly-wing phenotypes are each
479 statistically associated with large, polymorphic inversions. This maintenance of variation in
480 the face of strong selection is due, at least in part, to non-additive fitness benefits of
481 interacting adaptation; however, rather than facilitate adaptive evolution by maintaining
482 variation, competition between alternative adaptations impedes their fixation. Our findings
483 demonstrate that the interaction between selection and genetic variation can be difficult to
484 predict, highlight distinctive evolutionary dynamics when similar adaptations co-occur, and
485 illustrate the importance of studying adaptive evolution prior to the fixation of adaptive
486 variants.
487

488 **Materials and Methods**

489

490 Full details of methods are provided in the supporting information.
491

492

493 **Acknowledgments**

494

495 We thank landowners in Hawaii for permission to collect crickets on their grounds, and
496 gratefully acknowledge the Natural Environment Research Council (NE/T0006191/1) for
497 funding to NWB, OEG & JGR that supported this study. We acknowledge computational
498 resources and generous technical support from the James Hutton Institute Bioinformatics
499 HPC (BBSRC grant BB/S019669/1). We thank Tanya Sneddon, Audrey Grant, Megan
500 McGunnigle, and David Forbes for assistance with laboratory work, Ana Drago Rosa and
501 Renjie Zhang for assistance with fieldwork, and Michael Ritchie, Renjie Zhang, and Thomas
502 Hitchcock for useful comments, discussion, and feedback in preparing the manuscript.
503
504

505 **References**

506

507 1. J. M. Smith, J. Haigh, The hitch-hiking effect of a favourable gene. *Genet. Res. (Camb)*. **23**,
508 23–35 (1974).

509 2. W. G. Hill, A. Robertson, The effect of linkage on limits to artificial selection. *Genet. Res. (Camb)*. **8**, 269–294 (1966).

511 3. J. Felsenstein, THE EVOLUTIONARY ADVANTAGE OF RECOMBINATION. *Genetics* **78**,
512 737–756 (1974).

513 4. R. A. Fisher, *The genetical theory of natural selection* (1958) <https://doi.org/10.1111/jeb.12566>.

514 5. H. J. Muller, The relation of recombination to mutational advance. *Mutat. Res. Mol. Mech. Mutagen.* **1**, 2–9 (1964).

516 6. C. C. Steiner, J. N. Weber, H. E. Hoekstra, Adaptive Variation in Beach Mice Produced by Two
517 Interacting Pigmentation Genes. *PLOS Biol.* **5**, e219 (2007).

518 7. J. B. Losos, Convergence, adaptation, and constraint. *Evolution (N. Y.)*. **65**, 1827–1840 (2011).

519 8. D. L. Stern, The genetic causes of convergent evolution. *Nat. Rev. Genet.* **14**, 751–764 (2013).

520 9. B. Fang, P. Kemppainen, P. Momigliano, X. Feng, J. Merilä, On the causes of geographically
521 heterogeneous parallel evolution in sticklebacks. *Nat. Ecol. Evol.* **4**, 1105–1115 (2020).

522 10. K. G. Ferris, *et al.*, The genomics of rapid climatic adaptation and parallel evolution in North
523 American house mice. *PLOS Genet.* **17**, e1009495 (2021).

524 11. X. Zhang, J. G. Rayner, M. L. Blaxter, N. W. Bailey, Rapid parallel adaptation despite gene
525 flow in silent crickets. *Nat. Commun.* **12**, 50 (2021).

526 12. B. A. Gould, J. R. Stinchcombe, Population genomic scans suggest novel genes underlie
527 convergent flowering time evolution in the introduced range of *Arabidopsis thaliana*. *Mol. Ecol.*
528 **26**, 92–106 (2017).

529 13. Pfau, Koch, The functional morphology of singing in the cricket. *J. Exp. Biol.* **195**, 147–167
530 (1994).

531 14. W. Cade, Acoustically Orienting Parasitoids: Fly Phonotaxis to Cricket Song. *Science (80-.)*.
532 **190**, 1312–1313 (1975).

533 15. M. Zuk, J. T. Rotenberry, R. M. Tinghitella, Silent night: adaptive disappearance of a sexual
534 signal in a parasitized population of field crickets. *Biol. Lett.* **2**, 521–524 (2006).

535 16. S. Pascoal, *et al.*, Rapid convergent evolution in wild crickets. *Curr. Biol.* **24**, 1369–1374
536 (2014).

537 17. R. M. Tinghitella, Rapid evolutionary change in a sexual signal: genetic control of the mutation
538 “flatwing” that renders male field crickets (*Teleogryllus oceanicus*) mute. *Heredity (Edinb)*. **100**,
539 261–267 (2008).

540 18. S. Pascoal, *et al.*, Field cricket genome reveals the footprint of recent, abrupt adaptation in the

541 wild. *Evol. Lett.* (2020) <https://doi.org/10.1002/evl3.148>.

542 19. J. G. Rayner, S. Aldridge, F. Montealegre-Z, N. W. Bailey, A silent orchestra: convergent song
543 loss in Hawaiian crickets is repeated, morphologically varied, and widespread. *Ecology* **100**,
544 e02694 (2019).

545 20. J. H. Gallagher, D. M. Zonana, E. D. Broder, B. K. Herner, R. M. Tinghitella, Decoupling of
546 sexual signals and their underlying morphology facilitates rapid phenotypic diversification.
547 *Evol. Lett.* **6**, 474–489 (2022).

548 21. J. C. Tanner, E. Swanger, M. Zuk, Sexual signal loss in field crickets maintained despite
549 strong sexual selection favoring singing males. *Evolution (N. Y.)* **73**, 1482–1489 (2019).

550 22. A. Rivero, A. Magaud, A. Nicot, J. Vézilier, Energetic Cost of Insecticide Resistance in Culex
551 pipiens Mosquitoes. *J. Med. Entomol.* **48**, 694–700 (2011).

552 23. L. Ward, The Genetics of Curly Wing in Drosophila. Another Case of Balanced Lethal Factors.
553 *Genetics* **8**, 276–300 (1923).

554 24. K. Nozawa, The effects of the environmental conditions on curly expressivity in Drosophila
555 melanogaster. *Japanese J. Genet.* **31**, 163–171 (1965).

556 25. J. Richardson, J. L. Heinen-Kay, M. Zuk, Sex-specific associations between life-history traits
557 and a novel reproductive polymorphism in the Pacific field cricket. *J. Evol. Biol.* (2021)
558 <https://doi.org/https://doi.org/10.1111/jeb.13758>.

559 26. M. Iba, T. Nagao, A. Urano, Effects of Population Density on Growth, Behavior and Levels of
560 Biogenic Amines in the Cricket, *Gryllus bimaculatus*. *Zoolog. Sci.* **12**, 695–702 (1995).

562 27. T. R. Hurd, F.-X. Liang, R. Lehmann, Curly Encodes Dual Oxidase, Which Acts with Heme
563 Peroxidase Curly Su to Shape the Adult Drosophila Wing. *PLOS Genet.* **11**, e1005625 (2015).

564 28. M. Shakeel, X. Xu, S. De Mandal, F. Jin, Role of serine protease inhibitors in insect-host-
565 pathogen interactions. *Arch. Insect Biochem. Physiol.* **102**, e21556 (2019).

566 29. Y. Charron, *et al.*, The serpin Spn5 is essential for wing expansion in Drosophila
567 melanogaster. *Int. J. Dev. Biol.* **52**, 933–942 (2008).

568 30. E. De Gregorio, *et al.*, An Immune-Responsive Serpin Regulates the Melanization Cascade in
569 *Drosophila*. *Dev. Cell* **3**, 581–592 (2002).

570 31. J. Ma, C. I. Amos, Investigation of Inversion Polymorphisms in the Human Genome Using
571 Principal Components Analysis. *PLoS One* **7**, e40224 (2012).

572 32. O. S. Harringmeyer, H. E. Hoekstra, Chromosomal inversion polymorphisms shape the
573 genomic landscape of deer mice. *Nat. Ecol. Evol.* (2022) <https://doi.org/10.1038/s41559-022-01890-0>.

575 33. A. Mykhailenko, *et al.*, Complex genomic landscape of inversion polymorphism in Europe's
576 most destructive forest pest. *bioRxiv*, 2023.10.10.561670 (2023).

577 34. B. Zeitouni, *et al.*, SVDetect: a tool to identify genomic structural variations from paired-end

578 and mate-pair sequencing data. *Bioinformatics* **26**, 1895–1896 (2010).

579 35. P. Danecek, *et al.*, The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).

580 36. K. W. Kim, *et al.*, Stepwise evolution of a butterfly supergene via duplication and inversion. *Philos. Trans. R. Soc. B Biol. Sci.* **377** (2022).

582 37. T. Ando, *et al.*, Repeated inversions within a pannier intron drive diversification of intraspecific
583 colour patterns of ladybird beetles. *Nat. Commun.* **9**, 3843 (2018).

584 38. X. Zhou, M. Stephens, Genome-wide efficient mixed-model analysis for association studies. *Nat. Genet.* **44**, 821–824 (2012).

586 39. B. C. Haller, P. W. Messer, SLiM 4: Multispecies Eco-Evolutionary Modeling. *Am. Nat.* **201**,
587 E127–E139 (2022).

588 40. H. A. Orr, Adaptation and the cost of complexity. *Evolution (N. Y.)* **54**, 13–20 (2000).

589 41. S. Pascoal, *et al.*, Increased socially mediated plasticity in gene expression accompanies rapid
590 adaptive evolution. *Ecol. Lett.* **21**, 546–556 (2018).

591 42. M. Zuk, N. W. Bailey, B. Gray, J. T. Rotenberry, Sexual signal loss: The link between
592 behaviour and rapid evolutionary dynamics in a field cricket. *J. Anim. Ecol.* **87**, 623–633
593 (2018).

594 43. J. Peig, A. J. Green, New perspectives for estimating body condition from mass/length data:
595 The scaled mass index as an alternative method. *Oikos* **118**, 1883–1891 (2009).

596 44. A. Eyre-Walker, P. D. Keightley, The distribution of fitness effects of new mutations. *Nat. Rev. Genet.* **8**, 610–618 (2007).

598 45. J. Cerca, Understanding natural selection and similarity: Convergent, parallel and repeated
599 evolution. *Mol. Ecol.* **32**, 5451–5462 (2023).

600 46. N. W. Bailey, B. Gray, M. Zuk, Acoustic Experience Shapes Alternative Mating Tactics and
601 Reproductive Investment in Male Field Crickets. *Curr. Biol.* **20**, 845–849 (2010).

602 47. S. L. Sturiale, N. W. Bailey, Within-generation and transgenerational social plasticity interact
603 during rapid adaptive evolution. *Evolution (N. Y.)* **77**, 409–421 (2023).

604 48. N. W. Bailey, S. Pascoal, F. Montealegre-Z, Testing the role of trait reversal in evolutionary
605 diversification using song loss in wild crickets. *Proc. Natl. Acad. Sci.* **116**, 8941–8949 (2019).

606 49. R. M. Tinghitella, E. D. Broder, G. A. Gurule-Small, C. J. Hallagan, J. D. Wilson, Purring
607 crickets: the evolution of a novel sexual signal. *Am. Nat.* **192**, 773–782 (2018).

608 50. J. G. Rayner, S. Pascoal, N. W. Bailey, Release from intralocus sexual conflict? Evolved loss
609 of a male sexual trait demasculinizes female gene expression. *Proc. R. Soc. B Biol. Sci.* **286**
610 (2019).

611 51. J. L. Heinen-Kay, E. M. Urquhart, M. Zuk, Obligately silent males sire more offspring than
612 singers in a rapidly evolving cricket population. *Biol. Lett.* **15** (2019).

613 52. J. L. Heinen-Kay, D. B. Strub, S. L. Balenger, M. Zuk, Direct and indirect effects of sexual
614 signal loss on female reproduction in the Pacific field cricket (*Teleogryllus oceanicus*). *J. Evol. Biol.* **32**, 1382–1390 (2019).

616 53. R. D. H. Barrett, D. Schlüter, Adaptation from standing genetic variation. *Trends Ecol. Evol.* **23**,
617 38–44 (2008).

618

