

1 **Inferring state-dependent diversification rates using**
2 **approximate Bayesian computation (ABC)**

3 Shu Xie^{1*}, Luis Valente^{1,2}, Rampal S. Etienne¹

4 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC,
5 Groningen, the Netherlands

6 2 Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands

7

8 CORRESPONDING AUTHOR

9 *Shu Xie*
10 *Email:*s.xie@rug.nl

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 **Abstract:**

2 State-dependent speciation and extinction (SSE) models provide a framework for
3 quantifying whether species traits have an impact on evolutionary rates and how this
4 shapes the variation in species richness among clades in a phylogeny. However, SSE
5 models are becoming increasingly complex, limiting the application of likelihood-based
6 inference methods. Approximate Bayesian computation (ABC), a likelihood-free
7 approach, is a potentially powerful alternative for estimating parameters. One of the
8 key challenges in using ABC is the selection of efficient summary statistics, which can
9 greatly affect the accuracy and precision of the parameter estimates. In state-
10 dependent diversification models, summary statistics need to capture the complex
11 relationships between rates of diversification and species traits. Here, we develop an
12 ABC framework to estimate state-dependent speciation, extinction and transition rates
13 in the BiSSE (binary state dependent speciation and extinction) model. Using different
14 sets of candidate summary statistics, we then compare the inference ability of ABC with
15 that of using likelihood-based maximum likelihood (ML) and Markov chain Monte
16 Carlo (MCMC) methods. Our results show the ABC algorithm can accurately estimate
17 state-dependent diversification rates for most of the model parameter sets we
18 explored. The inference error of the parameters associated with the species-poor state
19 is larger with ABC than in the likelihood estimations only when the speciation rate is
20 highly asymmetric between the two states ($\lambda_1 / \lambda_0 = 5$). Furthermore, we find that the
21 combination of normalized lineage-through-time (nLTT) statistics and phylogenetic
22 signal in binary traits (Fitz and Purvis's D) constitute efficient summary statistics for
23 the ABC method. By providing insights into the selection of suitable summary statistics,
24 our work aims to contribute to the use of the ABC approach in the development of
25 complex state-dependent diversification models, for which a likelihood is not available.
26

27 **Keywords:** Approximate Bayesian Computation, summary statistics, state-dependent,
28 speciation, extinction, diversification
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1 Introduction

2 Detecting the factors that underlie variations in diversification rate is a major topic of
3 research in evolutionary biology, as it may reveal the causes of unevenness of species
4 richness among clades and geographical regions. Numerous studies highlight the
5 important role of traits in shaping speciation and extinction rates. For example, the
6 presence of the nectar spur in flowering plants (angiosperms), which facilitates
7 pollination and reproductive success, is associated with rapid diversification in the
8 clades of spurred species (Armbruster, 2014; Fernández-Mazuecos et al., 2019). Traits
9 such as this are hypothesized to affect evolutionary processes by determining the
10 interactions between species, as well as how species respond to the environment
11 (Wiens, 2017; Li & Wiens, 2022).

12
13 Over the past years, phylogenetic comparative methods to test evolutionary hypotheses
14 have been developed rapidly (Miles & Dunham, 1993; Adams, 2013). A popular class of
15 phylogenetic tools are state-dependent speciation and extinction (SSE) models, which
16 aim to investigate how species traits shape variation in diversification and richness,
17 and to infer the rates of evolutionary processes (speciation, extinction and transitions
18 between character states) (Maddison et al., 2007). BiSSE (binary-state speciation and
19 extinction) is the original SSE model, and has been expanded to consider quantitative
20 (QuaSSE, Fitzjohn, 2010), geographic (GeoSSE, Goldberg et al., 2011), and multiple
21 categorical states (MuSSE, Fitzjohn, 2012). However, these models have been shown to
22 suffer from a high risk of false positives, which are likely to attribute differential
23 diversification rate to trait-dependence. In order to reduce this type I error in the SSE
24 models, Beaulieu & O'Meara (2016) introduced the HiSSE (hidden-state-dependent
25 speciation and extinction) model incorporating the effect of hidden states, which
26 further promotes the subsequent development of state-dependent diversification
27 models. More recently, Herrera-Alsina et al., (2019) introduced the SecSSE (several
28 examined and concealed states-dependent speciation and extinction) framework
29 accounting for multiple traits (observed and hidden) and multiple trait states. These
30 models have been applied in numerous empirical studies to identify the correlation
31 between trait states and diversification rates (Onstein et al., 2017; Pyron & Burbrink,
32 2012; Rolland, Condamine, et al., 2014).

33
34 The most commonly used methods for estimating parameters in the current SSE
35 models are likelihood-based inference approaches, such as maximum likelihood or
36 Bayesian inference. In general, the likelihood calculation of these models relies on a set
37 of ordinary differential equations (ODE) for two core sets of probabilities: 1) the
38 probabilities of observing the phylogeny and associated character states at tips evolved
39 from a lineage in each possible trait state at a time in the past, and 2) the extinction
40 probabilities, i.e. the probabilities of a lineage in each state at a time in the past having
41 no extant descendants at present (Maddison et al., 2007; FitzJohn, 2012). In recent

1 years, researchers have explored the power of parameter estimations of existing
2 models (Davis et al., 2013; Rabosky & Goldberg, 2015), and strived to improve the
3 accuracy of the likelihood computing approaches (Louca & Pennell, 2020; Laudanno et
4 al., 2021; Vasconcelos et al., 2022). However, SSE models have become increasingly
5 complex, from considering a single trait with binary states (BiSSE) to multiple traits
6 with hidden states (SecSSE). The computational cost and intractability limit the
7 application of likelihood-based inference methods.
8

9 Approximate Bayesian computation (ABC) is a powerful alternative for estimating
10 parameters when the likelihood is difficult to compute (Csilléry et al., 2010; Beaumont,
11 2019). ABC is a simulation-based Bayesian approach to find the parameters that can
12 generate data close to the target (observed data) by evaluating the similarity of a set of
13 summary statistics between simulated and observed data (Tavare et al., 1997).
14 Numerous methods have been developed to address the challenges of improving the
15 efficiency of the ABC estimation. A series of efficient ABC algorithms have been
16 expanded based on the simple rejection algorithm, such as incorporating Markov chain
17 Monte Carlo (MCMC) (Marjoram et al., 2003), population Monte Carlo (PMC)
18 (Beaumont et al., 2009) and sequential Monte Carlo (SMC) (Toni et al., 2009). The ABC-
19 MCMC algorithm takes advantage of the Markov chain Monte Carlo techniques to
20 explore the parameter space by sampling from Markov Chains, where the proposal
21 distribution remains static throughout the sampling processes. ABC-PMC uses a
22 population of particles that are iteratively updated to approximate posterior
23 distribution. However, it may be challenging in ABC-MCMC and ABC-PMC to achieve
24 convergence and explore high-dimensional parameter space. ABC-SMC combines the
25 strengths of these two methods and performs better in such cases. The algorithm
26 systematically improves the approximation of the posterior distribution through a
27 series of intermediate distributions, which allows to converge to the posterior faster
28 reducing the usage of computational resources and offering improved parameter
29 estimation in complex models.
30

31 The developments of ABC methods have facilitated the application of ABC approaches
32 in a broad field of studies. However, while these methods have been widely used in
33 different fields, including ecological and evolutionary studies (Beaumont, 2010), the
34 applications in trait evolution or diversification analysis are still very limited. Existing
35 trait-related studies using ABC methods focus on detecting the impact of environment
36 or species interactions on trait evolution or mapping trait evolution on given
37 phylogenies (Janzen et al., 2016; Bartoszek & Liò, 2019; Xu et al., 2021), but no study
38 has yet tried to apply ABC approaches to study the effect of trait dynamics on
39 diversification rates.
40

41 ABC methods are sensitive to the selection of the summary statistics, therefore, it is
42 necessary to find powerful summary statistics that cover the maximum amount of the

1 information in the data (Sirén & Kaski, 2020). Efficient summary statistics for SSE
2 models should ideally capture information on two aspects: the shape of the
3 phylogenetic tree and the distribution of traits. Currently, few statistics have been
4 synthesized to describe the dynamics of binary or multi-state categorical traits along
5 phylogenies. Pagel's λ (1999) and Blomberg's K (2003) are the classic measures of
6 phylogenetic signal, which evaluates how phylogenetic distance shapes the distribution
7 of traits among species, as well as the frequency of trait changes along a phylogeny.
8 However, these two statistics are designed for continuous trait data, and cannot be
9 calculated for discrete trait data because it is not possible to calculate variances and co-
10 variances from the trait distribution (Borges et al., 2019). More recently, two statistics
11 (D and δ) were derived to measure phylogenetic signal particularly for binary or
12 categorical traits (Fritz & Purvis, 2010; Borges et al., 2019). In addition, some efficient
13 statistics (e.g., normalized Lineage Through Time (nLTT)) employed in phylogenetic
14 ABC analyses of diversification (Janzen et al., 2015), as well as statistics applied to
15 measure the phylogenetic diversity (mean pairwise distance (MPD), mean nearest
16 taxon distance (MNTD)), can also be extended to measure the distribution of a trait
17 along phylogenies by separately analyzing species with the same trait state. However,
18 there is yet to be an evaluation of the performance of those summary statistics in trait
19 state-dependent models.

20

21 Due to the high efficiency and accuracy in estimation, here, we use the ABC-SMC
22 framework to estimate parameters in the simplest state-dependent model BiSSE, and
23 test the inference performance by comparing the inference error of the parameters
24 using the ABC-SMC algorithm and two likelihood-based approaches: maximum
25 likelihood estimation (MLE) and Markov chain Monte Carlo (MCMC). Finally, we
26 investigate the performance of a set of phylogenetic and trait related summary
27 statistics to select the most efficient combination for estimating evolutionary rates of
28 state-dependent models.

29

30 Methods

31 Trait-dependent simulation

32 The BiSSE (binary state speciation and extinction) model simulates diversification
33 dynamics according to a birth-death model where traits shape diversification rates. The
34 model considers an evolving binary trait with two states, 0 and 1 (e.g., presence or
35 absence of a specific trait). It assumes that the per lineage rates of speciation (λ_0, λ_1)
36 and per lineage extinction (μ_0, μ_1) depends on the trait state of a species. It also allows
37 transitions between states (q_{01}, q_{10}). Based on this model, we simulated "observed"
38 phylogenetic trees and trait states at tips, under a series of parameter scenarios
39 considering symmetric (equal rates between trait states) or asymmetric (rates differ
40 between trait states), speciation, extinction and transition rates (Table 1). To simplify
41 the analysis, we set only one of the three pairs of rates to be asymmetric in each

1 scenario. For each scenario we simulated 50 replicates, and in total we produced 350
2 phylogenetic trees with trait data as observed data for parameter inference. To avoid
3 extremely large trees, we set a constraint with a maximum of 500 species in total, and
4 for trait dependence to make sense (i.e., we would not expect to do an SSE-analysis
5 when only one state is observed), we imposed the constraint that at least one species
6 is present for each state at the end of the simulation.

7

8 Table1. Parameter sets used to generate the observed data via simulations of the BiSSE model. In total,
9 seven parameter combinations were used (seven scenarios), including a symmetric scenario as control
10 (scenario 1), and two asymmetric scenarios for each pair of rates.

Scenario	Speciation rate state 0 (λ_0)	Speciation rate state 1 (λ_1)	Extinction rate state 0 (μ_0)	Extinction rate state 1 (μ_1)	Transition state 0 to 1 (q_{01})	Transition state 1 to 0 (q_{10})
S1	0.3	0.3	0.05	0.05	0.1	0.1
S2	0.2	0.4	0.05	0.05	0.1	0.1
S3	0.1	0.5	0.05	0.05	0.1	0.1
S4	0.3	0.3	0.05	0.01	0.1	0.1
S5	0.3	0.3	0.05	0.1	0.1	0.1
S6	0.3	0.3	0.05	0.05	0.1	0.2
S7	0.3	0.3	0.05	0.05	0.1	0.02

11

12 Likelihood-based estimation through likelihood maximization and Bayesian 13 MCMC

14 The BiSSE model allows likelihood calculation (Maddison et al., 2007), where the
15 likelihood indicates the probability of observing the binary trait data on the
16 phylogenetic tree with given parameters. The likelihood is calculated based on a set of
17 ordinary differential equations (Maddison et al., 2007):

$$18 \quad \frac{dD_i(t)}{dt} = (2\lambda_i E_i(t) - \lambda_i - \mu_i - q_{ij})D_i(t) + q_{ij}D_j(t)$$

$$19 \quad \frac{dE_i(t)}{dt} = \mu_i - (\lambda_i + \mu_i + q_{ij})E_i(t) + \lambda_i E_i(t)^2 + q_{ij}E_j(t)$$

20 where $D_i(t)$ describes the probability of observing the phylogeny and associated
21 character states at present evolved from a lineage in a particular trait state i at time t ,
22 and $E_i(t)$ describes the probability of a lineage that has no descendants at present, and
23 λ_i, μ_i, q_{ij} represent state-dependent speciation, extinction and character transition rates
24 respectively (Maddison et al., 2007; FitzJohn, 2012).

25

26 Parameters can then be estimated using maximum likelihood estimation (MLE), which
27 yields only a point estimate. To compare the ABC results with the likelihood-based
28 approach, we developed a full (i.e., using the likelihood) Bayesian analysis using
29 Markov chain Monte Carlo (MCMC), under the same assumptions of prior distributions
30 as the ABC (see below). To obtain a stable and convergent MCMC chain, we ran

1 1,000,000 iterations after 100,000 iterations of burn-in. For each data set, we estimated
2 all six parameters regardless of the symmetry of the generating rates. The simulations
3 and likelihood calculations were performed using the R package *secsse* (Herrera-Alsina
4 et al., 2023). The reason for using the *secsse* package is that the SecSSE model reduces
5 exactly to BiSSE when there are no hidden states and the examined states are binary,
6 but the range of application is much broader than BiSSE. As the combination of HiSSE
7 and MuSSE, the SecSSE model takes into account hidden states, which improves the
8 accuracy of detecting trait dependencies in diversification rates, as well as breaking the
9 constraints on the number of traits and trait states in preceding SSE models. Therefore,
10 it can accurately generate BiSSE simulations and estimates, and facilitates further
11 testing in the more complex conditions.

12

13 **ABC-SMC estimation**

14 We performed a sequential Monte Carlo algorithm (ABC-SMC) to estimate parameters
15 for each observed data. The algorithm we used was derived from the original ABC-SMC
16 algorithm introduced by Toni et al. (2009) (Box 1). For the ABC algorithm, we used
17 uniform prior distributions $U(0,1)$. The algorithm starts by sampling a series of
18 parameter sets (particles) from the prior distribution, and then simulates datasets with
19 these parameters and computes the difference in summary statistic between the
20 observed data and the simulated data. This was repeated until this difference was
21 smaller than a threshold ϵ . We used an iteratively adaptive method choosing ever-
22 decreasing thresholds for each iteration, by specifying the median values of the
23 summary statistic distance from the previous iteration, which means the decreasing
24 thresholds depend on the position of the accepted particles in the previous iteration.
25 This is more efficient than using a given linearly or exponentially decreasing pattern.
26 We used 500 particles per iteration and the algorithm was assumed to generate a
27 converged posterior at an acceptance rate of 1 in 500. The ABC and MCMC algorithms
28 used in this study were implemented in the R package DivABC, which is available on
29 Github (github.com/xieshu95/DivABC).

30

31

32

Box 1. The ABC SMC algorithm

S1: Initialize thresholds ϵ_1

S2: Set iteration $t = 1$

For particle $i = 1, \dots, N$

Repeat

 Sample θ_1^i from the prior $\pi(\theta)$.

 Simulate phylogeny $P_1^i \sim \theta_1^i$.

 Calculate distance $D_1^i (SS) = |SS(P_1^i) - SS(P_0)|$.

 until $D_1^i (SS) < \epsilon_1$

 Calculate weight: $w_1^i = 1/N$

Calculate threshold for next iteration: $\epsilon_2 = \text{median } \{D_1^1 (SS), D_1^2 (SS) \dots D_1^N (SS)\}$

S3: $t = 2, \dots, T$

For particle $i = 1, \dots, N$

Repeat

 Sample θ_t^i from population $\{\theta_{t-1}^j\}$ with weight w_{t-1}^j , and perturb $\theta_t^i \sim N(0, 0.01)$.

 Simulate phylogeny $P_t^i \sim \theta_t^i$.

 Calculate distance $D_t^i (SS) = |SS(P_t^i) - SS(P_0)|$.

 until $D_t^i (SS) < \epsilon_t$

 Add θ_t^i to the population $\{\theta_t^j\}$

 Calculate weight: $w_t^i = \frac{\pi(\theta_t^i)}{\sum_{j=1}^N w_{t-1}^j N(\theta_{t-1}^j, \theta_t^i)}$

Normalize the weights.

Calculate threshold for next iteration: $\epsilon_{t+1} = \text{median } \{D_t^1 (SS), D_t^2 (SS) \dots D_t^N (SS)\}$

where N is the total number of the particles needed for generation t , and T is the total number of iterations before the algorithm stop. $\epsilon_1 \dots \epsilon_T$ means the sequence of decreasing tolerance threshold from iteration 1 to T . θ_t^i means the particle i of iteration t , and w_t^i is the weight of this particle. P_t^i is the simulated data with the particle θ_t^i , and $SS(P_t^i)$ is the calculated summary statistic of the simulation.

1

2

3 Summary statistics

4 We tested the usefulness and efficiency of a set of summary statistics for improving ABC
5 performance. In total, we used six summary statistics to describe the phylogenetic
6 dynamics and trait evolution along the phylogeny, which are: 1) NLTT (normalized
7 lineage-through-time), 2) MPD (mean pairwise distance), 3) MNTD (mean nearest
8 taxon distance), 4) Colless index, 5) tip ratio, 6) phylogenetic signal D . NLTT is a
9 summary statistic known to be efficient in phylogenetic analyses of diversification,
10 which has been shown a better performance than classic statistics (e.g., phylogenetic
11 diversity (PD)) in different types of birth-death models (Janzen et al., 2015). The
12 original NLTT statistic does not capture trait information, so we developed a method to

1 calculate the nLTT statistic of each trait state by trimming branches from the
2 phylogenetic tree with the other trait state at the tip. We note that the combination of
3 the two resulting trimmed trees may not be exactly equivalent to the original tree (Fig.
4 1). We calculated the nLTT statistics for the entire tree ($nLTT_{total}$), for the trimmed tree
5 with only state 0 ($nLTT_0$), and the trimmed tree with only state 1 ($nLTT_1$). As illustrated
6 in Fig 1, for the same phylogenetic tree, different trait distributions at the tips can lead
7 to differences in $nLTT_0$ or $nLTT_1$. MPD and MNTD are metrics that have been commonly
8 used to measure phylogenetic diversity (Webb, 2000), and Colless index is a widely
9 used statistic to measure the balance of phylogenetic trees (Colless, 1995).
10 Furthermore, we calculated the state-specific MPD, MNTD and Colless index in the
11 same way as calculating $nLTT_0$ or $nLTT_1$ based on the trimmed tree with a single state.
12 The tip ratio between binary states was calculated as the number of species with
13 species-rich state divided by the number of species with species-poor state:

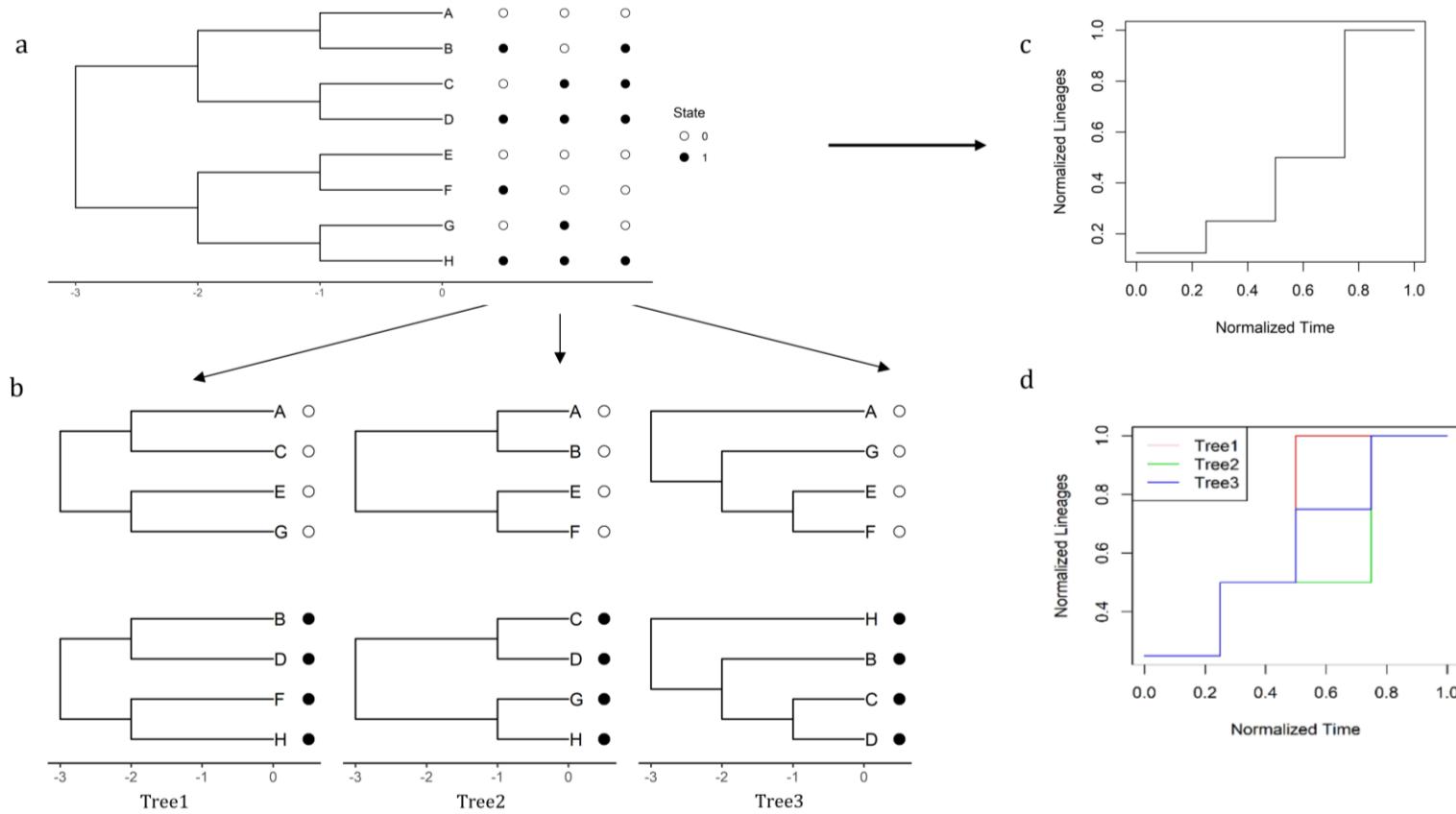
14
$$\text{Tip ratio} = \frac{\max(N_{state\ 0},\ N_{state\ 1})}{\min(N_{state\ 0},\ N_{state\ 1})}$$

15
16 Another summary statistic we examined is D (Fritz & Purvis, 2010), which measures
17 the phylogenetic signal of a given phylogeny with binary trait states. To calculate D , the
18 total state difference between each sister clade along the phylogeny ($\sum d_{obs}$) (Fig 2) is
19 computed, and is then scaled by the sum of state differences based on two permutations
20 of the trait values. One is a random permutation that shuffles the tip state values (0 or
21 1) along the tree, generating a series of sums of state differences $\sum d_r$, and the other
22 simulates continuous trait evolution under the Brownian motion model, and
23 discretizes the tip states into a binary trait, generating a series of sums of state
24 difference $\sum d_b$. Permutations are performed 1000 times for each tree. The statistic D is
25 calculated as:

26
$$D = \frac{(\sum d_{obs} - \text{mean}(\sum d_b))}{(\text{mean}(\sum d_r) - \text{mean}(\sum d_b))}$$

27
28 The $\sum d_{obs}$ is sensitive to the pattern of how traits evolve through the phylogeny
29 (phylogenetically clumped or dispersed), and the D statistic can distinguish trait
30 dynamics even under the same phylogeny (Fig 2).

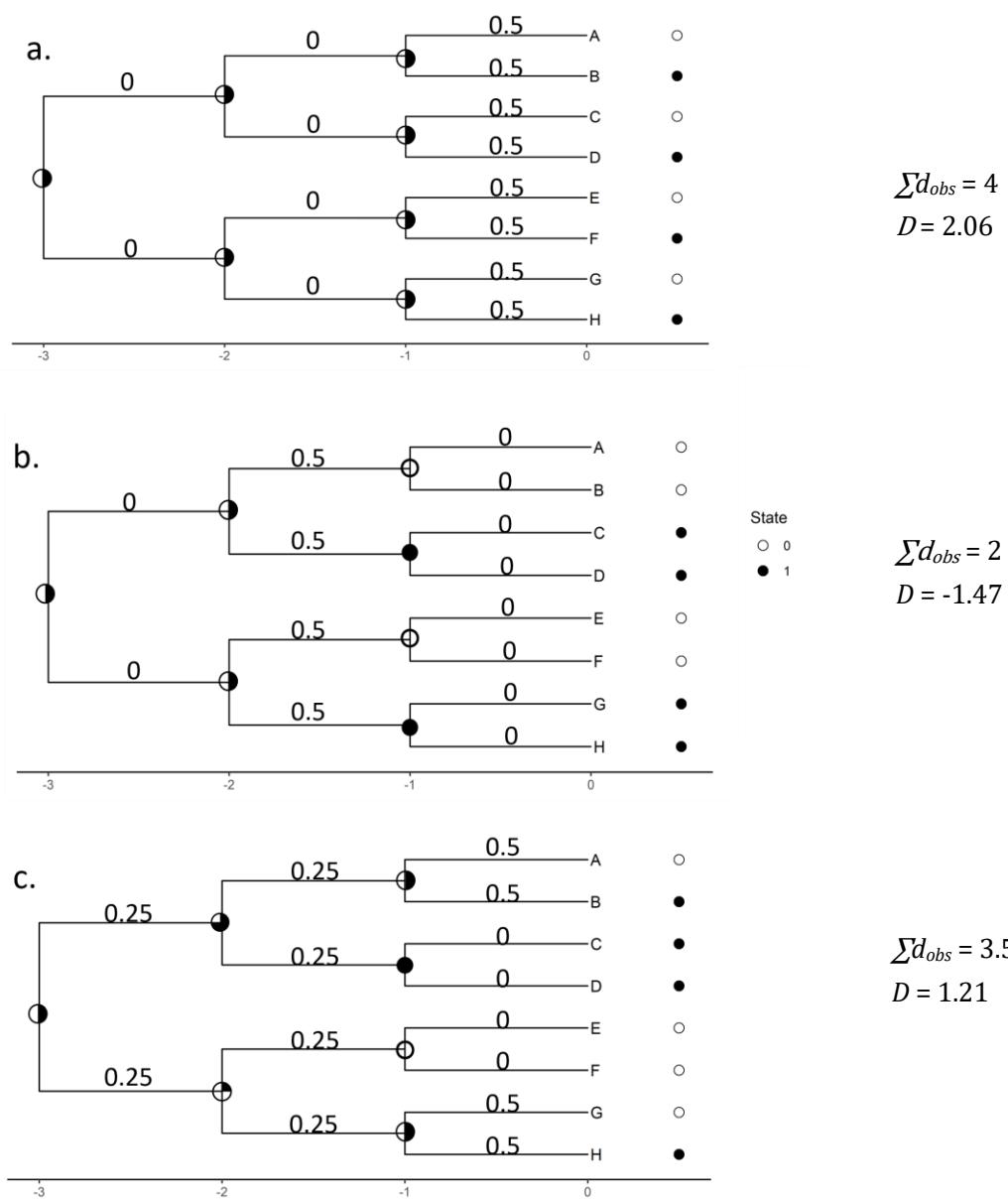
31
32 To simplify the analysis, we did not test all the permutations among these six metrics,
33 but manually selected the combinations of most interest (Table 2). We used the $nLTT_{total}$
34 as the main measurement of the phylogenetic dynamics, however, this metric is
35 insufficient for inferring diversification variance between states because of the lack of
36 trait information. Therefore, we added other trait-related statistics respectively based
37 on $nLTT_{total}$, and compared the performance among the combinations to filter the most
38 powerful statistics. The calculations of nLTT, MPD, MNTD and Colless index are
39 implemented in the R package *treestats*, which is available on Github
40 (github.com/thijsjanzen/treestats).



1

2 Fig 1. Hypothetical example of transforming an entire phylogeny with binary tip states into two trimmed trees with a single state by clustering the tips with
 3 the same states. a) example of a (balanced) tree with eight extant species at the present time, and three potential trait distribution at tips (other trait
 4 distributions are possible, but we show only three for the example). Blank circles represent state 0, and filled black circles represent state 1. b) shows the
 5 two reduced trees for each state depending on the trait distribution at the tips a). c) the plot of the nLTT for the entire phylogenetic tree in a). d) the plot of
 6 the nLTT for the trimmed trees with a single state in b), and here we show only the nLTT plot for one of the states, because the plot for the other state is
 7 equivalent in the example.

1
2



3
4

5 Fig 2. Illustration of calculating $\sum d_{obs}$ and D under different phylogenetic patterns. A) is a
6 phylogenetically overdispersed tree with binary states evenly distributed at tips. B) and c) are two
7 phylogenetic clumped trees. The circles at the tips indicate the observed trait states, and the circles
8 at nodes indicate the probability of each ancestral state. To calculate D , the mean ($\sum d_r$) and mean
9 ($\sum d_b$) are determined from 1000 permutations for each tree.

10
11
12
13
14
15

1

Table 2. Selected summary statistic combinations and their abbreviations.

Combination	Summary statistic	Abbreviation
1	$nLTT_{total}$	$nLTT$
2	D	D
3	$nLTT_{total} + D$	$nLTT-D$
4	$nLTT_{total} + nLTT_1 + nLTT_2$	$nLTTs$
5	$nLTT_{total} + nLTT_1 + nLTT_2 + D$	$nLTTs-D$
6	$nLTT_{total} + MPD_1 + MPD_2$	$nLTT-MPD$
7	$nLTT_{total} + MNTD_1 + MNTD_2$	$nLTT-MNTD$
8	$nLTT_{total} + colless_1 + colless_2$	$nLTT-colless$
9	$nLTT_{total} + tip ratio$	$nLTT-ratio$

2 Results

3 We compared the inference error of the different inference methods by calculating the
4 relative distance between the true (generating) values and the estimations using the
5 ABC, MCMC and MLE approaches. In the main text, we use the median of the posterior
6 distributions representing the estimations from the ABC and MCMC algorithms to
7 compare with the point estimation of MLE. The comparisons of the full posterior
8 distributions are given in the Supplementary Material (Fig S3). To analyze the effect of
9 different levels of trait dependence on parameter estimation, we divided the seven
10 scenarios into three groups according to the asymmetry of different rates, which are 1)
11 asymmetry in speciation (scenarios S1, S2 and S3); 2) asymmetry in extinction
12 (scenarios S1, S4 and S5); 3) asymmetry in transition (scenarios S1, S6 and S7).

13

14 Our general conclusion is that using only the $nLTT$ statistics in the ABC approach can
15 lead to accurate estimates of state-dependent speciation and extinction rates, but
16 produces a large inference error in estimating transition rates between states. However,
17 the inference accuracy can be significantly increased by adding the summary statistic
18 D . In this case, the ABC algorithm performs well in estimating all six parameters of the
19 BiSSE model for most of the scenarios we investigated, and is comparable with the
20 likelihood-based approaches with minor differences. The ABC methods only lead to
21 relatively larger inference errors when the speciation rates are highly asymmetric
22 between states ($\lambda_1 / \lambda_0 = 5$), but in this case the error occurs only in the rates associated
23 with the state with fewer species. We will now discuss our results in detail.

24

25 Statistics of the observed data

26 We calculated the tree size (as measured by the total number of species on the observed
27 phylogenetic tree), tip ratio (the ratio of the diversity between the species-rich state
28 and the species-poor state), and the number of tips with each state across all the
29 observed datasets (350 trees). The observed phylogenetic trees generated under the
30 seven scenarios show different patterns. Overall, the mean and the standard deviation
31 of the size of the full tree are similar among the scenarios (Table 2), because of the

1 constraint of the maximum number (500) of the species when generating observed
2 data. However, the tip ratio becomes larger with an increasing level of asymmetry in
3 speciation and transition rates. In addition, as the asymmetry level in speciation
4 increasing, more observed trees with ancestral state 0 (with lower speciation rate) has
5 been selected (Table 2).

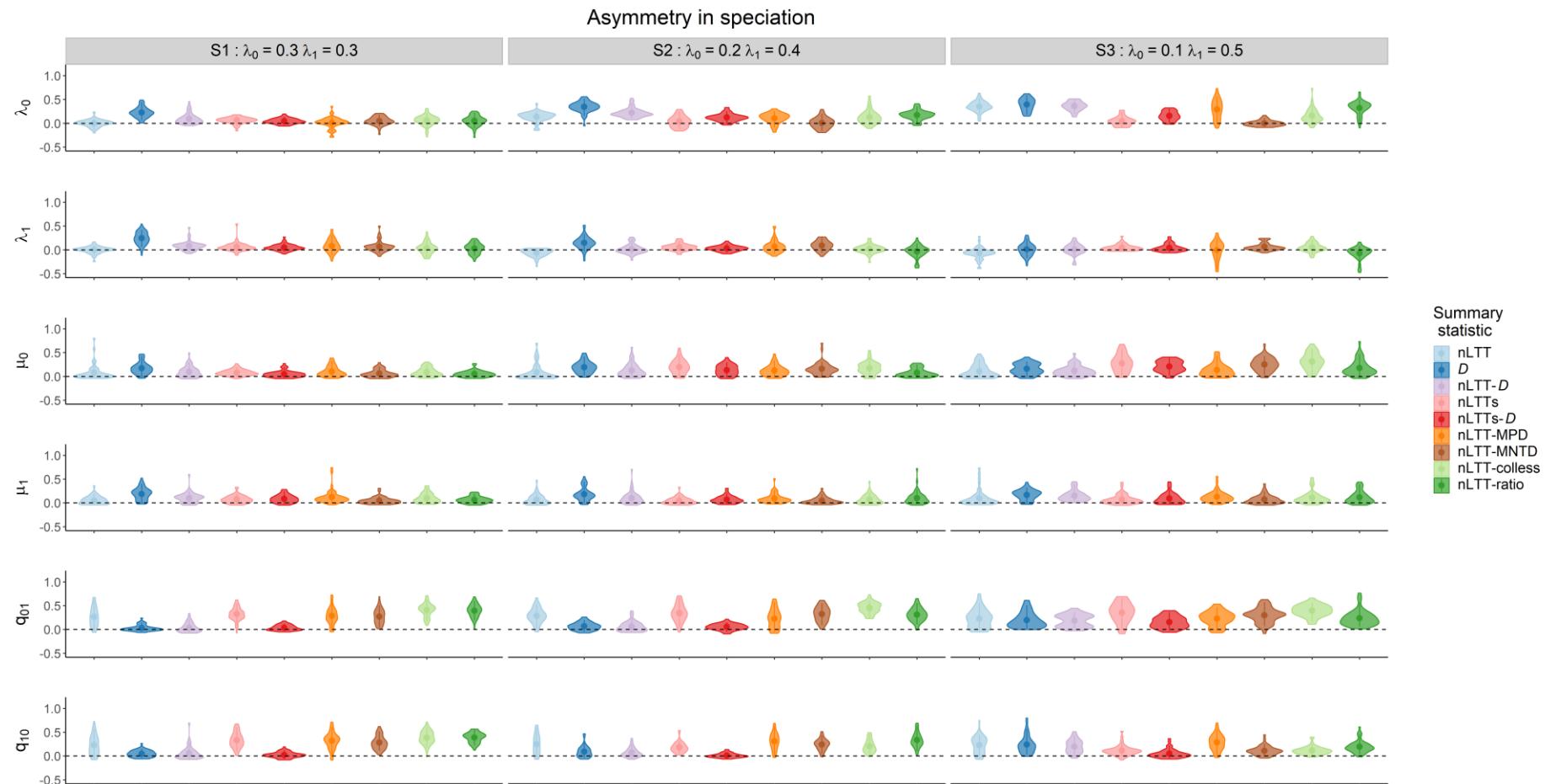
6
7 Table 2. Main properties of the observed datasets. For tree size, tip ratio, number of tips with state 0 and
8 state 1, we show the mean (standard deviation) across the 50 observed datasets for each scenario
9 (obtained via simulations using the parameters of each scenario). The last two columns show the
10 number of replicates with each ancestral state respectively.

Scenario	Tree size	Tip ratio	N _{State0}	N _{State1}	Ancestral state 0	Ancestral state 1
S1	222 (98)	1.29 (0.28)	113 (52)	110 (51)	25	25
S2	230 (111)	2.39 (0.83)	70 (33)	161 (82)	34	16
S3	232 (127)	4.55 (2.48)	46 (27)	186 (102)	42	8
S4	241 (120)	1.40 (0.35)	109 (57)	131 (68)	28	22
S5	195 (92)	1.39 (0.27)	110 (56)	86 (40)	28	22
S6	233 (114)	2.19 (0.65)	158 (78)	76 (38)	25	25
S7	246 (106)	5.72 (3.78)	46 (30)	200 (91)	22	28

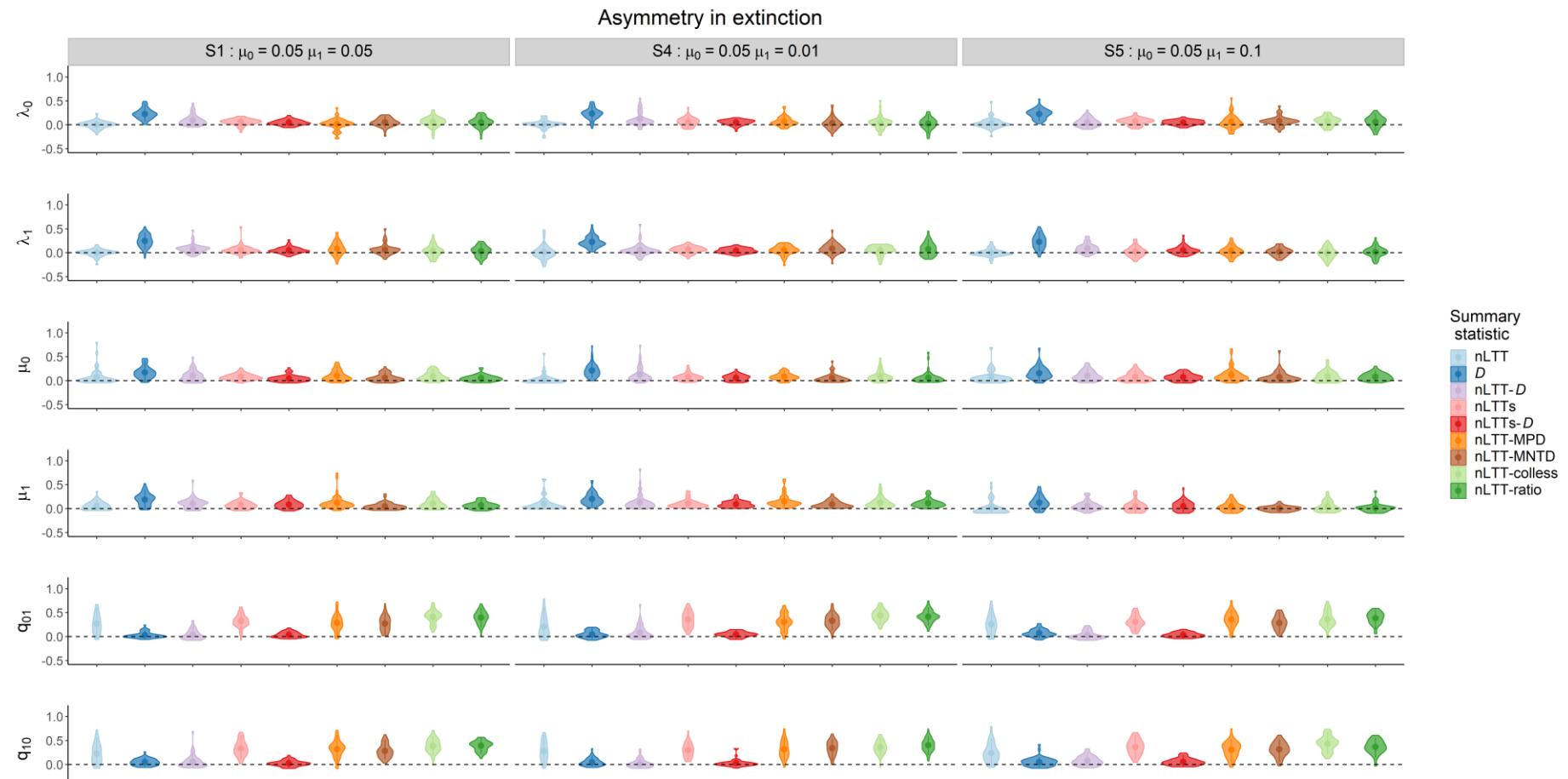
11
12 **ABC with different summary statistics**

13 Using different groups of summary statistics shows a large difference in the
14 performance of parameter estimation of ABC. The nLTT statistic alone can accurately
15 estimate speciation and extinction rates (Figs 3, 4, and 5) except when the generating
16 rates of speciation greatly vary between binary states (i.e., scenario S3) (Figs 3, 4, and
17 5), and leads to large bias in net diversification rate estimates in this case (Fig S1).
18 However, the inference errors and the variance in transition rates and net
19 diversification rates among replicates are always large (Figs 3, 4, and 5), due to the lack
20 of trait dynamic information along phylogenetic trees. The combination of nLTTs and
21 nLTT-MNTD improves the inference accuracy in estimating speciation rates when there
22 is high asymmetry in speciation (Fig 3), while the other combinations including nLTT
23 (i.e., nLTT-MPD, nLTT-colless, and nLTT-ratio) show no significant improvement in
24 estimations over using nLTT alone (Figs 3, 4, 5 and S1).

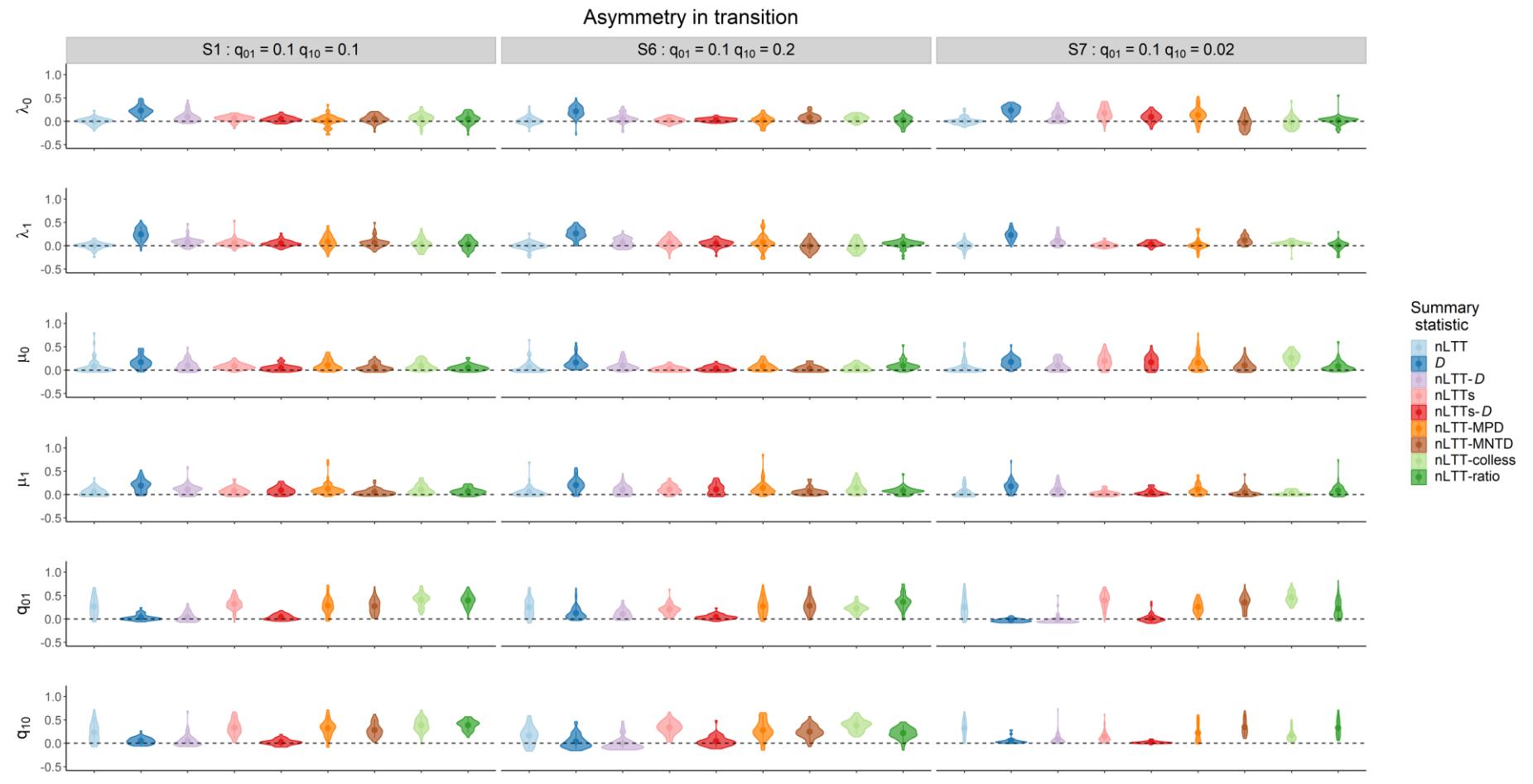
25
26 In contrast, the statistic D is efficient in estimating transition rates in different
27 scenarios, but leads to large bias and variation in estimating speciation and extinction
28 rates when used on its own (Figs 3 and 4). Combining the statistic D with the nLTT
29 statistics (i.e., nLTT- D and nLTTs- D) visibly improves the estimation accuracy in
30 transition rates in all the scenarios, as well as the diversification rates in extreme cases
31 (tip ratio > 5) (Fig 3 and S1). Overall, the best summary statistic combination is nLTTs-
32 D , which includes both trait dynamic information from phylogenetic signal (as
33 measured by D) and temporal trait information coming from the nLTT statistics.



1
2 Fig 3. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different **summary statistics** for
3 scenarios with varying degrees of **asymmetry in speciation** (scenarios S1, S2, S3 in Table 1) in the generating rates. Plots show the residual inference
4 error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using
5 different summary statistic combinations.
6



1
2 Fig 4. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different **summary statistics** for
3 scenarios with varying degrees of **asymmetry in extinction** (scenarios **S1, S4, S5** in Table 1) in the generating rates. Plots show the residual inference
4 error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using
5 different summary statistic combinations.



1
 2 Fig 5. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different **summary statistics** for
 3 scenarios with varying degrees of **asymmetry in transition** (scenarios **S1**, **S6**, **S7** in Table 1) in the generating rates. Plots show the residual inference
 4 error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using
 5 different summary statistic combinations.
 6

1 When evaluating the correlations between the summary statistics, we found that nLTT
2 statistics have relatively strong positive or negative correlations with most of other
3 summary statistics except D , especially a strong negative correlation with MNTD (Fig
4 S4). This indicates that there is overlap of information among these summary statistics.
5 Conversely, D is independent of most of the statistics, as it shows weak correlations (Fig
6 S4).

7

8 **Inference with different methods (ABC, MCMC and MLE)**

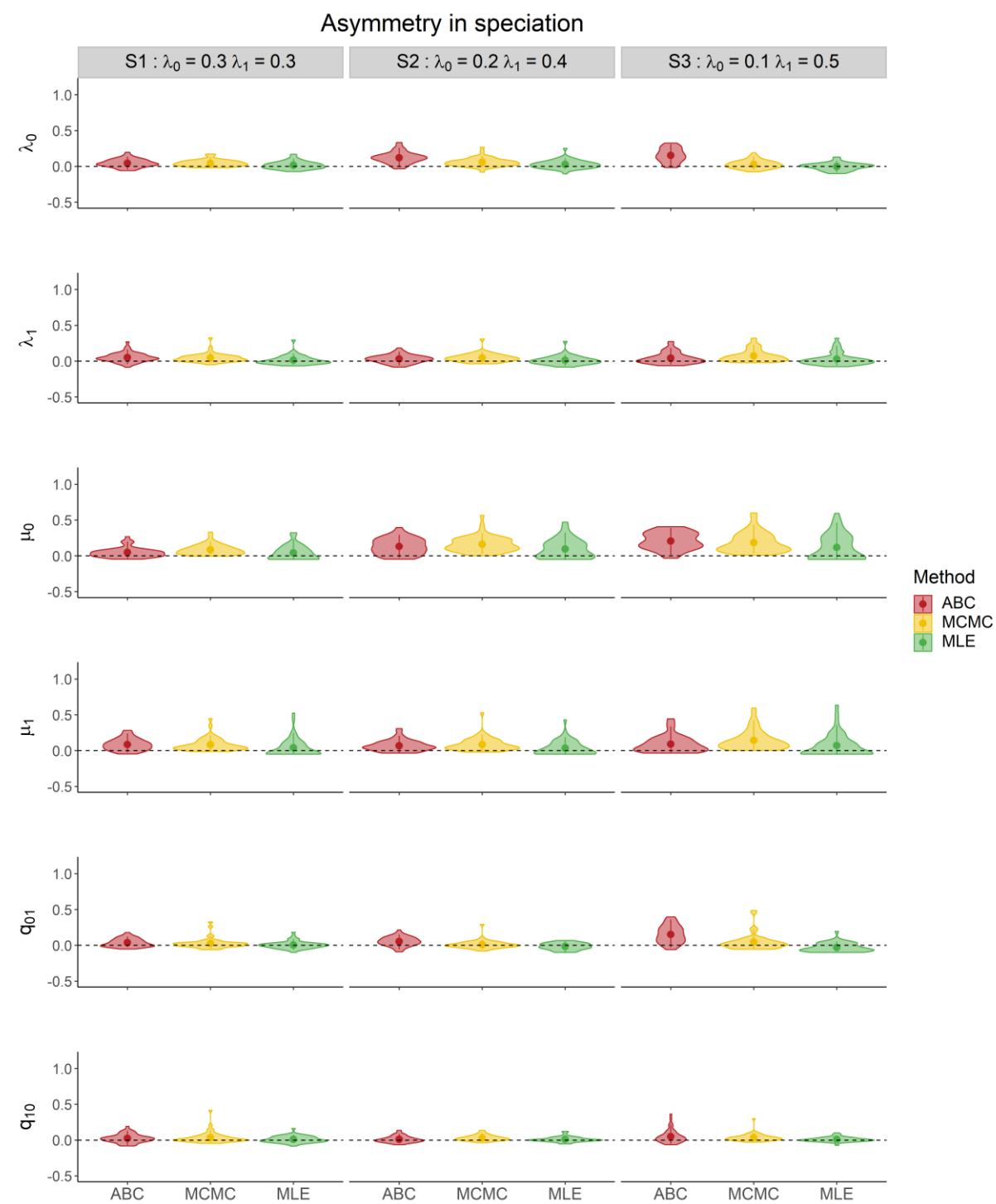
9 Of the nine summary statistic combinations we considered, the combination of the
10 phylogenetic signal summary statistic D and the nLTT statistics (i.e., nLTTs- D) was
11 found to give the most accurate state-dependent rate estimations (Figs 3, 4, 5 and S1).
12 Therefore, here we focus on comparing the ABC estimations of nLTTs- D with the
13 estimations of MCMC and MLE. Overall, the ABC method with efficient summary
14 statistics performs well in estimating state-dependent rates, similar to the likelihood-
15 based estimations in most scenarios. Zooming into the groups of scenarios with
16 different levels of asymmetry in speciation, extinction and transition (Figs 6, 7 and 8),
17 we found that asymmetry in speciation rates had a greater influence on inference
18 accuracy than asymmetry in extinction or transition rates. In the scenarios with
19 asymmetric speciation rates, the inference error increases with a higher level of
20 asymmetry (Fig 6). But the bias only occurs when estimating the rates of the species-
21 poor state (e.g., λ_0 , μ_0 , q_{01} in scenario S3) (Fig 6). Similarly, when transition rates are
22 highly asymmetric between states, the bias occurs in estimating extinction rate of the
23 species-poor state (μ_0 in scenario S7) (Fig 8). The ABC method can always accurately
24 estimate net diversification rates of each state in all the scenarios, with low bias and
25 variance, even more so than the MCMC and MLE estimations in some scenarios (Fig S2).

26

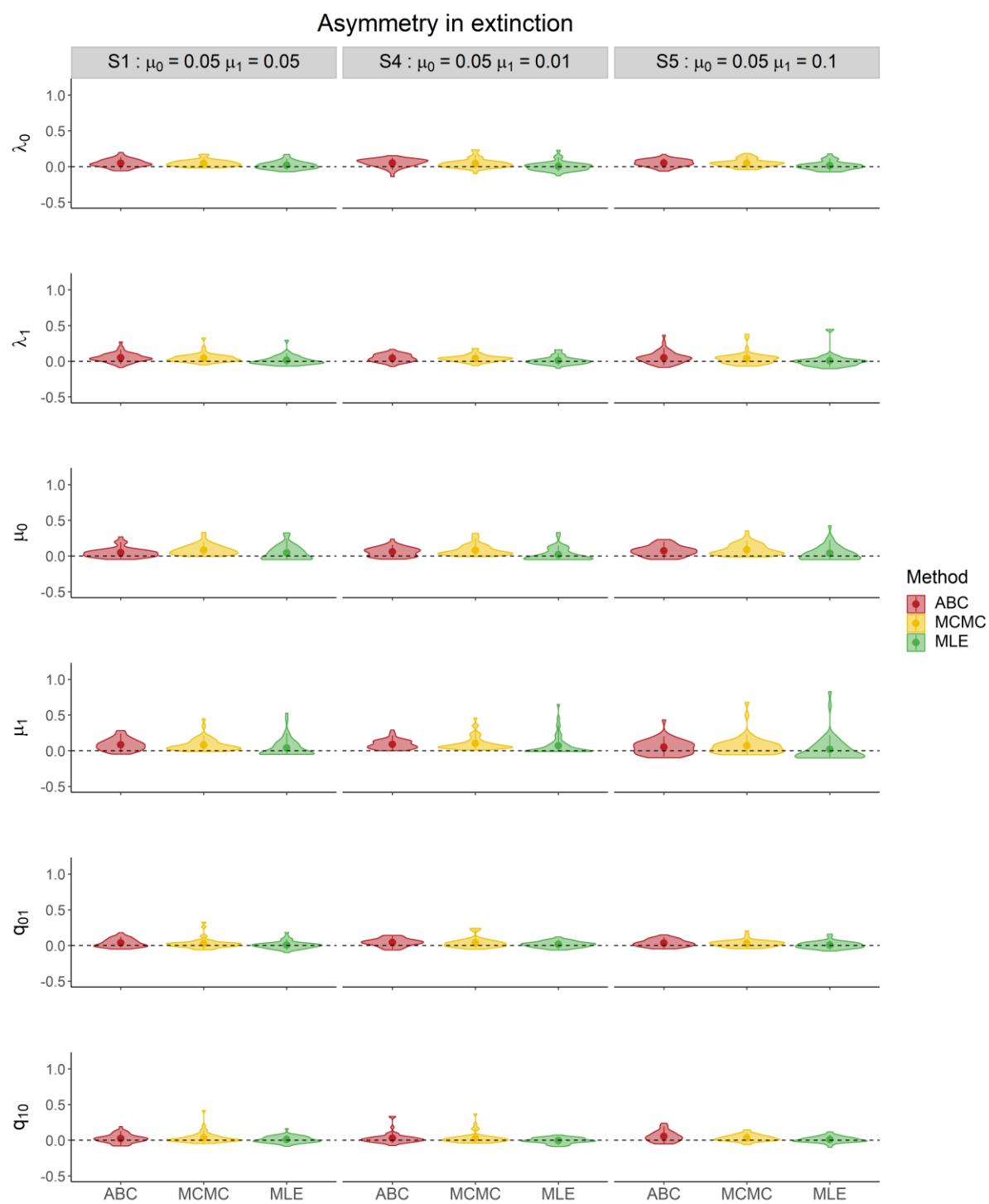
27 **Effect of statistic of observed data (tree size and tip ratio) on inference**

28 We evaluated the relationships between tree size and tip ratio (Table 2) with inference
29 error across all the observed datasets. As expected, small trees (< 100 tips) or trees
30 with large diversity difference between states tend to cause larger inference error,
31 especially in extinction rates, which in turn affect the estimation accuracy of the net
32 diversification rates (Figs 9,10 and S5).

33



1
2 Fig 6. Parameter estimations of state-dependent speciation, extinction and transition rates using
3 the **ABC**, **MCMC** and **MLE** methods for scenarios with varying degrees of **asymmetry in speciation**
4 (scenarios S1, S2, S3 in Table 1) in the generation rates. Plots show the residual inference error
5 between estimated and (true) generated values. Dashed horizontal lines represent zero error to
6 guide the eye. Colors indicate different inference methods. The ABC results are estimated using the
7 summary statistic combination nLTTs-*D* (nLTT_{total}, nLTT₀, nLTT₁ and *D*).



1 Fig 7. Parameter estimations of state-dependent speciation, extinction and transition rates using
2 the **ABC**, **MCMC** and **MLE** methods for scenarios with varying degrees of **asymmetry in extinction**
3 (scenarios S1, S4, S5 in Table 1) in the generating rates. Plots show the residual inference error
4 between estimated and (true) generated values. Dashed horizontal lines represent zero error to
5 guide the eye. Colors indicate different inference methods. The ABC results are estimated using the
6 summary statistic combination nLTTs-*D* (nLTT_{total}, nLTT₀, nLTT₁ and *D*).
7
8

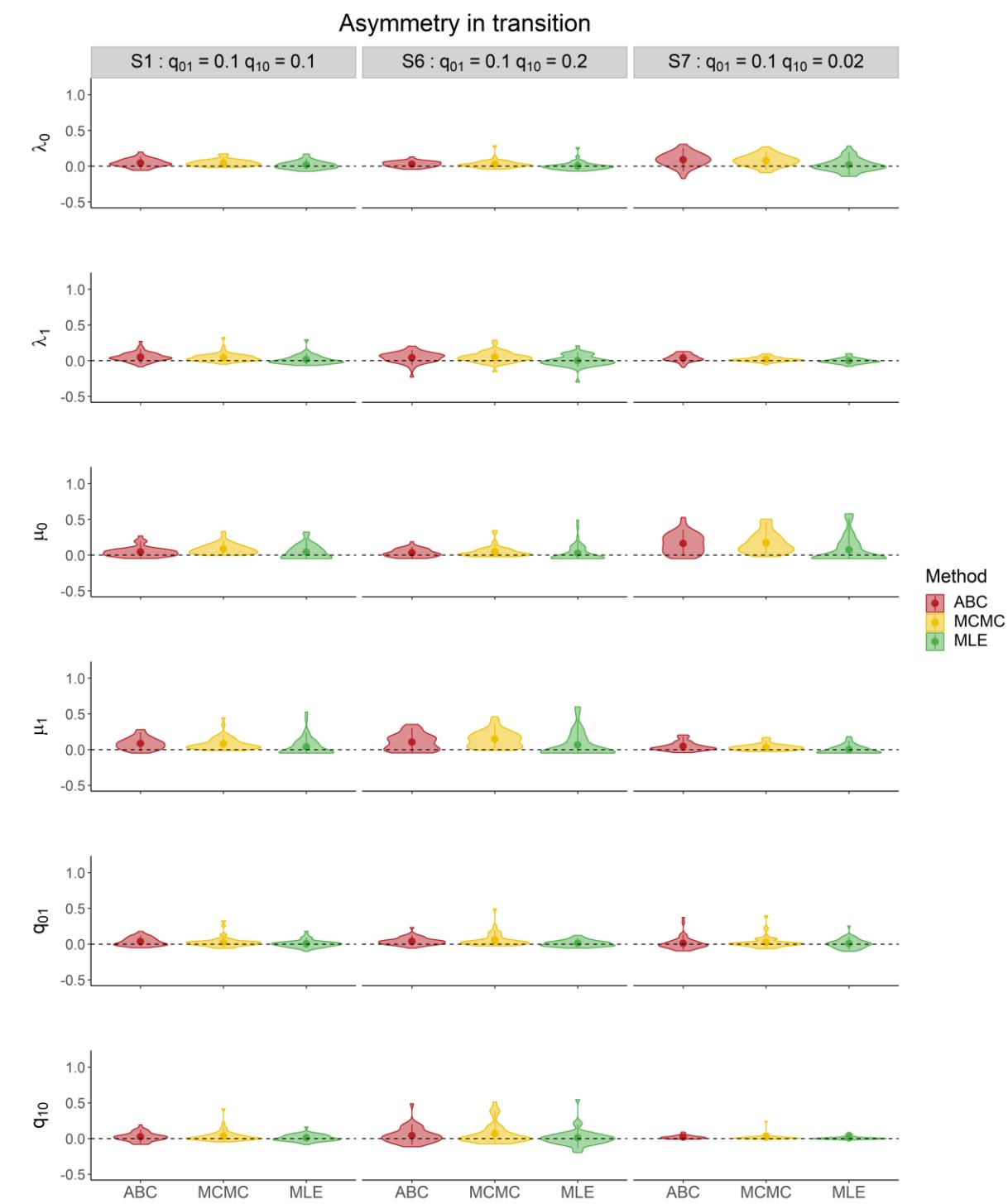
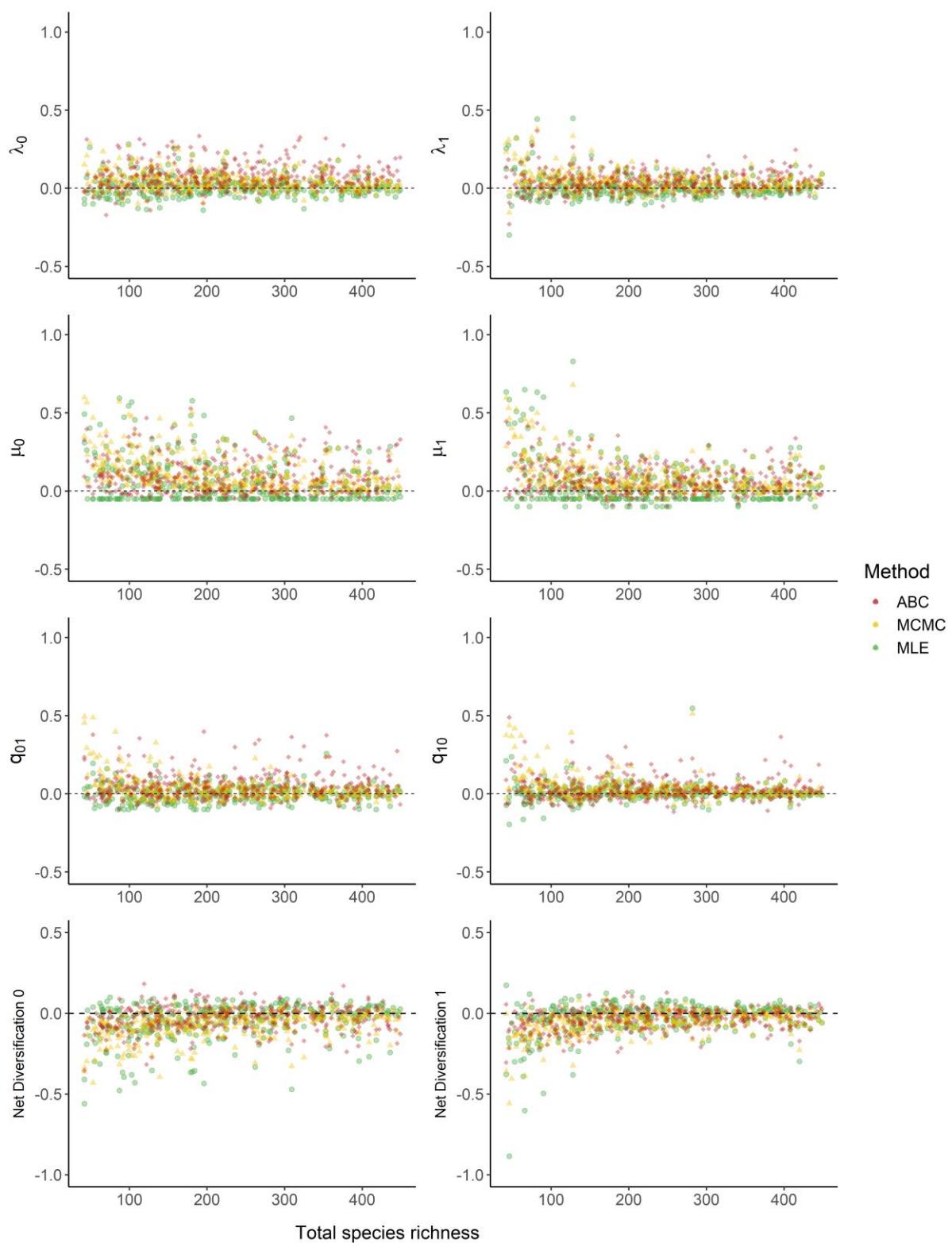
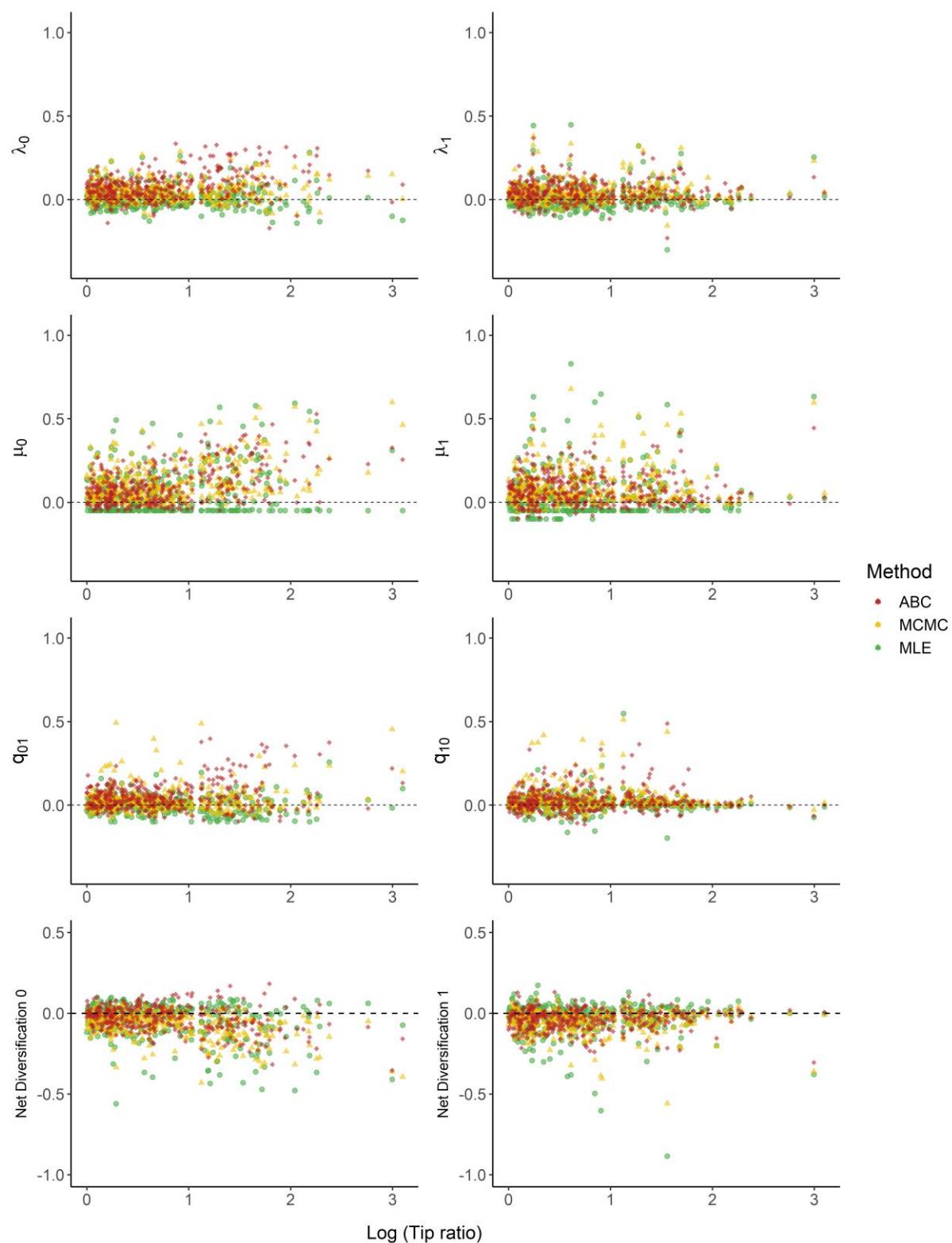


Fig 8. Parameter estimations of state-dependent speciation, extinction and transition rates using the **ABC**, **MCMC** and **MLE** methods for scenarios with varying degrees of **asymmetry in transition** (scenarios S1, S6, S7 in Table 1) in the generating rates. Plots show the residual inference error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. Colors indicate different inference methods. The ABC results are estimated using the summary statistic combination nLTTs- D (nLTT_{total}, nLTT₀, nLTT₁ and D).

1





1 Discussion

2 The development of SSE models has recently accelerated, especially with advances in
3 mathematical modelling techniques and the availability of empirical data (Holland et
4 al., 2020). The main aim of this study was not to evaluate the power of existing
5 likelihood methods of SSE models, which has already been done in previous studies
6 (Davis et al., 2013; Holland et al., 2020). Instead, we used the likelihood-based
7 estimations as a baseline to evaluate the performance of a new likelihood-free ABC
8 approach, and to search for efficient summary statistics that cover the most
9 comprehensive phylogenetic and trait information. Across all the scenarios we tested,
10 the combination of the nLTT statistics and phylogenetic signal D is sufficient to produce
11 accurate estimations in ABC, which is on par with the likelihood estimations.

12
13 The nLTT statistic, which provides information of evolutionary dynamics over time, has
14 been shown to be efficient and informative in phylogenetic analysis and diversification
15 studies (Janzen et al., 2015; Saulnier et al., 2017; Richter & Wit, 2021), as well in island
16 biogeography (Xie et al., 2023). However, the power of the statistic is limited in trait-
17 related analysis when estimating transition rates, due to the challenge and uncertainty
18 of mapping trait evolution on phylogenies. nLTT for the whole tree can only capture the
19 average diversification rates independent of traits, while adding nLTT for each state
20 ($nLTT_0$ and $nLTT_1$) can improve the ability in capturing trait dependency in speciation
21 and extinction rates (Figs 3), as well as net diversification rates (Fig S1), because of the
22 information of branching times in the reduced trees. It is similar to the original sister-
23 clade comparison method, which has been widely used in detecting the effect of traits
24 on diversification rates before the establish of the SSE models (Mitter et al., 1988;
25 Maddison et al., 2007). Therefore, likewise, nLTT has the same limitation on detecting
26 state shifts over time, leading to a poor estimation of transition rates between states
27 (Figs 3, 4 and 5). However, the phylogenetic signal statistic D contains efficient
28 information on trait evolution, by comparing the observed trait distribution with the
29 distributions simulated through continuous Brownian Motion patterns, compensating
30 for the lack of the information in nLTT statistics.

31
32 In this paper, we only tested the performance of nine combinations among six summary
33 statistics. However, there are a number of alternative statistics available in
34 phylogenetics (e.g., phylogenetic diversity (PD), *Laplacian spectrum* for tree shape).
35 Recently, a few of studies have proposed a number of summary statistics for detecting
36 trait dynamics. Lajaaiti et al. (2023) applied multiple neural network architectures to
37 estimate state-dependent diversification rates, and compared the performance of the
38 deep learning methods with the maximum likelihood estimation, which provided a
39 promising alternative for phylogenetic inference. However, the study focuses more on
40 summary statistics for describing the shape of phylogenetic trees (84 summary
41 statistics), but less so on trait dynamics (one summary statistic (tip ratio)). Thereafter,

1 Schwery et al., (2023) used a Bayesian approach to test the adequacy of trait-dependent
2 diversification models with a number of summary statistics, selected to capture trait
3 distributions (e.g., FiSSE statistics etc.) and the features of the phylogenetic tree (e.g.,
4 gamma statistics, Colless index, branch length, etc.). A few of summary statistics that
5 have not been included in our study are worth testing, but that does not mean adding
6 more summary statistic is necessarily better or recommended. A primary motivation
7 for using summary statistics is to reduce the dimensionality of the observed datasets,
8 whilst retaining the most information for parameter estimation. Selecting an excess
9 number of summary statistics, especially those that are highly correlated with one
10 another, may lead to overfitting and redundancy, which reduce the efficiency and
11 computability of the ABC algorithm (Jung & Marjoram, 2011; Blum et al., 2013).
12 Therefore, apart from looking for alternative summary statistics, it is also important to
13 choose and construct efficient combinations by weighting or transforming the statistics.
14

15 A number of methods have been developed to address the challenges of identifying
16 appropriate summary statistics (Wegmann et al., 2009; Nunes & Balding, 2010;
17 Fearnhead & Prangle, 2012). Joyce and Marjoram (2008) introduced a sequential
18 scheme to choose a sufficient subset of summary statistics by adding a randomly
19 chosen statistic in each iteration, and evaluating whether the inclusion of the additional
20 statistic improves the inference ability. However, the drawback is that the selected
21 subset depends on the order of the additional summary statistics, that is, when more
22 informative summary statistics are added late and less informative statistics have been
23 included, the final statistic combination may be found to be redundant. Jung and
24 Marjoram (2011) improved the method by assigning weights to each summary statistic.
25 The method keeps all the statistics rather than filtering from the statistic pool, and
26 allows higher weights to the statistics that are more informative. In addition, Wegmann
27 et al., (2009) introduced a statistical approach using a partial least squares (PLS)
28 regression, which is powerful to reduce the dimensionality of the variables. The
29 method extracts the orthogonal components as a subset of informative summary
30 statistics, which are highly correlated with the parameters but decorrelated with each
31 other. Later, a semi-automatic procedure was proposed in ABC algorithms to construct
32 summary statistics by reducing dimension with a regression-based approach, which
33 improves both the performance of parameter estimation and model selection
34 (Fearnhead & Prangle, 2012; Prangle et al., 2014; Harrison Id & Baker, 2020). These
35 methods are more effective in filtering efficient summary statistics than manual
36 selection, and may provide great insights for further improvements of ABC efficiency.
37

38 We found that small observed trees lead to high inference error in BiSSE estimation
39 using both MLE, MCMC and ABC methods, especially in estimating extinction rates (Figs
40 9 and S5), which reemphasizes the results of previous studies that explored the
41 accuracy of power of SSE models (Davis et al., 2013; Gamisch, 2016). Similarly, in ABC
42 estimations, large variance in speciation rates ($\lambda_1 / \lambda_0 = 5$) or transition rates (q_{01} / q_{10}

1 = 5) leads to a limited number of existing species in one state. Therefore, the summary
2 statistics using trimmed trees (with either state) for trait analysis cause inference error
3 in the specie-poor state, due to the lack of information of phylogenetic and trait
4 dynamics in this state. On the other hand, the inference error in the extreme scenario
5 may be due to the constraint of the total number of species (< 500 species in simulated
6 trees) in our study. To test the effects of the constraint, we run each scenario for 1000
7 replicates without constraints, and calculate the proportion of the replicates that
8 contain fewer than 500 species, the results of which are shown in Table 3. The extreme
9 case (scenario S3) that we are most interested in (strong asymmetry in speciation) is
10 the most affected by the constraint, which means our sample of observed data is biased.
11 The constraint results in more sampled observed phylogenies with ancestral species
12 under the lower-rate state. These phylogenetic trees have a slow diversification at early
13 stage until some branches transition to the higher-rate state, which may lead to a late
14 burst before present time. We note that currently the ABC method may fail to determine
15 whether the poor richness of a certain state is due to a low speciation rate or a high
16 transition rate to the other state in this case (Fig S5).

17

18 Table 3. Proportion of the replicates with fewer than 500 species in 1000 randomly sampled trees.

Scenario	Speciation	Speciation	Extinction	Extinction	Transition	Transition	Proportion
	rate 0 (λ_0)	rate 1 (λ_1)	rate 0 (μ_0)	rate 1 (μ_1)	0 to 1 (q_{01})	1 to 0 (q_{10})	
S1	0.3	0.3	0.05	0.05	0.1	0.1	0.94
S2	0.2	0.4	0.05	0.05	0.1	0.1	0.71
S3	0.1	0.5	0.05	0.05	0.1	0.1	0.46
S4	0.3	0.3	0.05	0.01	0.1	0.1	0.86
S5	0.3	0.3	0.05	0.1	0.1	0.1	0.99
S6	0.3	0.3	0.05	0.05	0.1	0.2	0.95
S7	0.3	0.3	0.05	0.05	0.1	0.02	0.94

19

20 Apart from the constraint of the size of datasets, another typical issue with the power
21 of the BiSSE model is high type I error (Rabosky & Goldberg, 2015). This problem has
22 been solved in a more complex model HiSSE and derived models. Currently we have
23 only developed the ABC estimation in the BiSSE model, but it can be easily extended to
24 more complex models, such as SecSSE, especially since our simulations have been
25 generated with the *secsse* package. Furthermore, machine learning, as a rapidly
26 developing methodology, has been incorporated into the ABC algorithms (Mondal et al.,
27 2019; Sanchez et al., 2020), and may have good potential for future studies. In any case,
28 both ABC and machine learning methods offer important opportunities for further
29 expansions of SSE models incorporating more factors that affect evolutionary patterns
30 (e.g., geographical and ecological factors), where the likelihood equations are too
31 complex to solve.

1 **Reference**

2 Adams, D. C. (2013). Comparing evolutionary rates for different phenotypic traits on a
3 phylogeny using likelihood. *Systematic Biology*, 62(2), 181–192.
4 <https://doi.org/10.1093/sysbio/sys083>

5 Armbruster, W. S. (2014). Floral specialization and angiosperm diversity: Phenotypic
6 divergence, fitness trade-offs and realized pollination accuracy. *AoB PLANTS*, 6,
7 1–24. <https://doi.org/10.1093/aobpla/plu003>

8 Bartoszek, K., & Liò, P. (2019). Modelling trait-dependent speciation with
9 approximate Bayesian computation. *Acta Physica Polonica B, Proceedings
Supplement*, 12(1), 25–47. <https://doi.org/10.5506/APhysPolBSupp.12.25>

11 Beaulieu, J. M., & O'Meara, B. C. (2016). Detecting hidden diversification shifts in
12 models of trait-dependent speciation and extinction. *Systematic Biology*, 65(4),
13 583–601. <https://doi.org/10.1093/sysbio/syw022>

14 Beaumont, M. A. (2010). Approximate Bayesian Computation in Evolution and
15 Ecology. *Annu. Rev. Ecol. Evol. Syst*, 41, 379–406.
16 <https://doi.org/10.1146/annurev-ecolsys-102209-144621>

17 Beaumont, M. A. (2019). Approximate Bayesian computation. *Annual Review of
18 Statistics and Its Application*, 6, 379–403. [https://doi.org/10.1146/annurev-statistics-030718-105212](https://doi.org/10.1146/annurev-
19 statistics-030718-105212)

20 Beaumont, M. A., Cornuet, J. M., Marin, J. M., & Robert, C. P. (2009). Adaptive
21 approximate Bayesian computation. *Biometrika*, 96(4), 983–990.
22 <https://doi.org/10.1093/biomet/asp052>

23 Blomberg, S. P., Garland, T., & Ives, A. R. (2003). TESTING FOR PHYLOGENETIC
24 SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE.
25 *Evolution*, 57(4), 717–745. [https://doi.org/10.1111/J.0014-3820.2003.TB00285.X](https://doi.org/10.1111/J.0014-
26 3820.2003.TB00285.X)

27 Blum, M. G. B., Nunes, M. A., Prangle, D., & Sisson, S. A. (2013). A comparative review
28 of dimension reduction methods in approximate bayesian computation.
29 *Statistical Science*, 28(2), 189–208. <https://doi.org/10.1214/12-STS406>

30 Borges, R., Machado, J. P., Gomes, C., Rocha, A. P., & Antunes, A. (2019a). Measuring
31 phylogenetic signal between categorical traits and phylogenies. *Bioinformatics*,
32 35(11), 1862–1869. <https://doi.org/10.1093/BIOINFORMATICS/BTY800>

33 Borges, R., Machado, J. P., Gomes, C., Rocha, A. P., & Antunes, A. (2019b). Measuring
34 phylogenetic signal between categorical traits and phylogenies. *Bioinformatics*,
35 35(11), 1862–1869. <https://doi.org/10.1093/BIOINFORMATICS/BTY800>

36 Colless, D. H. (1995). Relative Symmetry of Cladograms and Phenograms: An
37 Experimental Study. *Systematic Biology*, 44(1), 102–108.
38 <https://doi.org/10.1093/SYSBIO/44.1.102>

39 Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., & François, O. (2010). Approximate
40 Bayesian Computation (ABC) in practice. *Trends in Ecology and Evolution*, 25(7),
41 410–418. <https://doi.org/10.1016/j.tree.2010.04.001>

42 Davis, M. P., Midford, P. E., & Maddison, W. (2013). Exploring power and parameter

1 estimation of the BiSSE method for analyzing species diversification. *BMC*
2 *Evolutionary Biology*, 13(1). <https://doi.org/10.1186/1471-2148-13-38>

3 Fearnhead, P., & Prangle, D. (2012a). Constructing summary statistics for
4 approximate Bayesian computation: semi-automatic approximate Bayesian
5 computation. *J. R. Statist. Soc. B*, 74, 419–474.

6 Fearnhead, P., & Prangle, D. (2012b). Constructing summary statistics for
7 approximate Bayesian computation: Semi-automatic approximate Bayesian
8 computation. *Journal of the Royal Statistical Society. Series B: Statistical*
9 *Methodology*, 74(3), 419–474. <https://doi.org/10.1111/j.1467-9868.2011.01010.x>

10 Fernández-Mazuecos, M., Blanco-Pastor, J. L., Juan, A., Carnicero, P., Forrest, A.,
11 Alarcón, M., Vargas, P., & Glover, B. J. (2019). Macroevolutionary dynamics of
12 nectar spurs, a key evolutionary innovation. *The New Phytologist*, 222(2), 1123–
13 1138. <https://doi.org/10.1111/NPH.15654>

14 Fitzjohn, R. G. (2010). Quantitative traits and diversification. *Systematic Biology*,
15 59(6), 619–633. <https://doi.org/10.1093/sysbio/syq053>

16 Fitzjohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of
17 diversification in R. *Methods in Ecology and Evolution*, 3(6), 1084–1092.
18 <https://doi.org/10.1111/j.2041-210X.2012.00234.x>

19 FitzJohn, R. G. (2012). Diversitree: comparative phylogenetic analyses of
20 diversification in R. *Methods in Ecology and Evolution*, 3(6), 1084–1092.
21 <https://doi.org/10.1111/j.2041-210X.2012.00234.X>

22 Fritz, S. A., & Purvis, A. (2010). Selectivity in mammalian extinction risk and threat
23 types: A new measure of phylogenetic signal strength in binary traits.
24 *Conservation Biology*, 24(4), 1042–1051. <https://doi.org/10.1111/j.1523-1739.2010.01455.x>

25 Gamisch, A. (2016). Notes on the Statistical Power of the Binary State Speciation and
26 Extinction (BiSSE) Model. *Evolutionary Bioinformatics Online*, 12, 165–174.
27 <https://doi.org/10.4137/EBO.S39732>

28 Goldberg, E. E., Lancaster, L. T., & Ree, R. H. (2011). Phylogenetic inference of
29 reciprocal effects between geographic range evolution and diversification.
30 *Systematic Biology*, 60(4), 451–465. <https://doi.org/10.1093/sysbio/syr046>

31 Harrison Id, J. U., & Baker, R. E. (2020). *An automatic adaptive method to combine*
32 *summary statistics in approximate Bayesian computation*.
33 <https://doi.org/10.1371/journal.pone.0236954>

34 Herrera-Alsina, L., Van Els, P., & Etienne, R. S. (2019). Detecting the Dependence of
35 Diversification on Multiple Traits from Phylogenetic Trees and Trait Data.
36 *Systematic Biology*, 68(2), 317–328. <https://doi.org/10.1093/sysbio/syy057>

37 Holland, B. R., Ketelaar-Jones, S., O'Mara, A. R., Woodhams, M. D., & Jordan, G. J.
38 (2020). Accuracy of ancestral state reconstruction for non-neutral traits.
39 *Scientific Reports*, 10(1), 1–10. <https://doi.org/10.1038/s41598-020-64647-4>

40 Janzen, T., Alzate, A., Muschick, M., Maan, M. E., van der Plas, F., & Etienne, R. S. (2017).

1 Community assembly in Lake Tanganyika cichlid fish: quantifying the
2 contributions of both niche-based and neutral processes. *Ecology and Evolution*,
3 7(4), 1057–1067. <https://doi.org/10.1002/ece3.2689>

4 Janzen, T., Höhna, S., & Etienne, R. S. (2015). Approximate Bayesian Computation of
5 diversification rates from molecular phylogenies: introducing a new efficient
6 summary statistic, the nLTT. *Methods in Ecology and Evolution*, 6(5), 566–575.
7 <https://doi.org/10.1111/2041-210X.12350>

8 Joyce, P., & Marjoram, P. (2008). Approximately sufficient statistics and bayesian
9 computation. *Statistical Applications in Genetics and Molecular Biology*, 7(1).
10 <https://doi.org/10.2202/1544-6115.1389>

11 Jung, H., & Marjoram, P. (2011). Choice of summary statistic weights in approximate
12 bayesian computation. *Statistical Applications in Genetics and Molecular Biology*,
13 10(1). <https://doi.org/10.2202/1544-6115.1586>

14 Laudanno, G., Haegeman, B., Rabosky, D. L., & Etienne, R. S. (2021). Detecting Lineage-
15 Specific Shifts in Diversification: A Proper Likelihood Approach. *Systematic
16 Biology*, 70(2), 389–407. <https://doi.org/10.1093/sysbio/syaa048>

17 Li, P., & Wiens, J. J. (2022). What drives diversification? Range expansion tops climate,
18 life history, habitat and size in lizards and snakes. *Journal of Biogeography*, 49(2),
19 237–247. <https://doi.org/10.1111/JBI.14304>

20 Louca, S., & Pennell, M. W. (2020). A General and Efficient Algorithm for the
21 Likelihood of Diversification and Discrete-Trait Evolutionary Models. *Systematic
22 Biology*, 69(3), 545–556. <https://doi.org/10.1093/sysbio/syz055>

23 Maddison, W. P., Midford, P. E., & Otto, S. P. (2007). Estimating a binary character's
24 effect on speciation and extinction. *Systematic Biology*, 56(5), 701–710.
25 <https://doi.org/10.1080/10635150701607033>

26 Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo
27 without likelihoods. *Proceedings of the National Academy of Sciences of the United
28 States of America*, 100(26), 15324–15328.
29 <https://doi.org/10.1073/pnas.0306899100>

30 Miles, D. B., & Dunham, A. E. (1993). Historical perspectives in ecology and
31 evolutionary biology: The use of phylogenetic comparative analyses. *Annual
32 Review of Ecology and Systematics*, 24(February 2016), 587–619.
33 <https://doi.org/10.1146/annurev.es.24.110193.003103>

34 Mitter, C., Farrell, B., & Wiegmann, B. (1988). The phylogenetic study of adaptive
35 zones: has phytophagy promoted insect diversification? *American Naturalist*,
36 132(1), 107–128. <https://doi.org/10.1086/284840>

37 Mondal, M., Bertranpetti, J., & Lao, O. (2019). *Approximate Bayesian computation with
38 deep learning supports a third archaic introgression in Asia and Oceania*.
39 <https://doi.org/10.1038/s41467-018-08089-7>

40 Nunes, M. A., & Balding, D. J. (2010). On optimal selection of summary statistics for
41 approximate bayesian computation. *Statistical Applications in Genetics and
42 Molecular Biology*, 9(1). <https://doi.org/10.2202/1544-6115.1576>

1 Onstein, R. E., Baker, W. J., Couvreur, T. L. P., Faurby, S., Svennning, J. C., & Kissling, W.
2 D. (2017). Frugivory-related traits promote speciation of tropical palms. *Nature Ecology & Evolution* 2017 1:12, 1(12), 1903–1911.
3 <https://doi.org/10.1038/s41559-017-0348-7>

4 Pagel, M. (1999). Inferring the historical patterns of biological evolution. *Nature*,
5 401(6756), 877–884. <https://doi.org/10.1038/44766>

6 Prangle, D., Fearnhead, P., Cox, M. P., Biggs, P. J., & French, N. P. (2014). Semi-
7 automatic selection of summary statistics for ABC model choice. *Statistical Applications in Genetics and Molecular Biology*, 13(1), 67–82.
8 <https://doi.org/10.1515/sagmb-2013-0012>

9 Pyron, R. A., & Burbrink, F. T. (2012). Trait-dependent diversification and the impact
10 of palaeontological data on evolutionary hypothesis testing in New World
11 ratsnakes (tribe Lampropeltini). *Journal of Evolutionary Biology*, 25(3), 497–508.
12 <https://doi.org/10.1111/j.1420-9101.2011.02440.x>

13 Rabosky, D. L., & Goldberg, E. E. (2015). Model inadequacy and mistaken inferences of
14 trait-dependent speciation. *Systematic Biology*, 64(2), 340–355.
15 <https://doi.org/10.1093/sysbio/syu131>

16 Richter, F., & Wit, E. C. (2021). *D ETECTING PHYLODIVERSITY - DEPENDENT
17 DIVERSIFICATION WITH A GENERAL PHYLOGENETIC INFERENCE FRAMEWORK*.
18 1–19.

19 Rolland, J., Condamine, F. L., Jiguet, F., & Morlon, H. (2014). Faster Speciation and
20 Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal
21 Diversity Gradient. *PLoS Biology*, 12(1).
22 <https://doi.org/10.1371/JOURNAL.PBIO.1001775>

23 Sanchez, T., Cury, J., Charpiat, G., & Jay, F. (2020). Deep learning for population size
24 history inference: Design, comparison and combination with approximate
25 Bayesian computation. *Molecular Ecology Resources*, January, 1–16.
26 <https://doi.org/10.1111/1755-0998.13224>

27 Saulnier, E., Gascuel, O., & Alizon, S. (2017). Inferring epidemiological parameters
28 from phylogenies using regression-ABC: A comparative study. In *PLoS Computational Biology* (Vol. 13, Issue 3).
29 <https://doi.org/10.1371/journal.pcbi.1005416>

30 Schwery, O., Freyman, W., & Goldberg, E. E. (2023). *adequaSSE: Model Adequacy
31 Testing for Trait-Dependent Diversification Models*.
32 <https://doi.org/10.1101/2023.03.06.531416>

33 Sirén, J., & Kaski, S. (2020). Local dimension reduction of summary statistics for
34 likelihood-free inference. *Statistics and Computing*, 30(3), 559–570.
35 <https://doi.org/10.1007/S11222-019-09905-W/FIGURES/4>

36 Tavare, S., Balding, D. J., Griffiths, J. R. C., & Donnely, P. (1997). From DNA. *Genetics*,
37 518(2), 505. <http://www.genetics.org/cgi/content/abstract/145/2/505>

38 Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate
39 Bayesian computation scheme for parameter inference and model selection in

1 dynamical systems. *Journal of the Royal Society Interface*, 6(31), 187.
2 <https://doi.org/10.1098/RSIF.2008.0172>

3 Vasconcelos, T., O'Meara, B. C., & Beaulieu, J. M. (2022). A flexible method for
4 estimating tip diversification rates across a range of speciation and extinction
5 scenarios. *Evolution*, 76(7), 1420–1433. <https://doi.org/10.1111/evo.14517>

6 Webb, C. O. (2000). Exploring the phylogenetic structure of ecological communities:
7 An example for rain forest trees. *American Naturalist*, 156(2), 145–155.
8 <https://doi.org/10.1086/303378>

9 Wegmann, D., Leuenberger, C., & Excoffier, L. (2009). Efficient approximate Bayesian
10 computation coupled with Markov chain Monte Carlo without likelihood.
11 *Genetics*, 182(4), 1207–1218. <https://doi.org/10.1534/genetics.109.102509>

12 Wiens, J. J. (2017). What explains patterns of biodiversity across the Tree of Life?:
13 New research is revealing the causes of the dramatic variation in species
14 numbers across branches of the Tree of Life. *BioEssays*, 39(3), 1–10.
15 <https://doi.org/10.1002/bies.201600128>

16 Xu, L., Van Doorn, S., Hildenbrandt, H., & Etienne, R. S. (2021). Inferring the Effect of
17 Species Interactions on Trait Evolution. *Syst. Biol.*, 70(3), 463–479.
18 <https://doi.org/10.1093/sysbio/syaa072>

19