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Abstract:

State-dependent speciation and extinction (SSE) models provide a framework for
quantifying whether species traits have an impact on evolutionary rates and how this
shapes the variation in species richness among clades in a phylogeny. However, SSE
models are becoming increasingly complex, limiting the application of likelihood-based
inference methods. Approximate Bayesian computation (ABC), a likelihood-free
approach, is a potentially powerful alternative for estimating parameters. One of the
key challenges in using ABC is the selection of efficient summary statistics, which can
greatly affect the accuracy and precision of the parameter estimates. In state-
dependent diversification models, summary statistics need to capture the complex
relationships between rates of diversification and species traits. Here, we develop an
ABC framework to estimate state-dependent speciation, extinction and transition rates
in the BiSSE (binary state dependent speciation and extinction) model. Using different
sets of candidate summary statistics, we then compare the inference ability of ABC with
that of using likelihood-based maximum likelihood (ML) and Markov chain Monte
Carlo (MCMC) methods. Our results show the ABC algorithm can accurately estimate
state-dependent diversification rates for most of the model parameter sets we
explored. The inference error of the parameters associated with the species-poor state
is larger with ABC than in the likelihood estimations only when the speciation rate is
highly asymmetric between the two states (A1 / Ao = 5). Furthermore, we find that the
combination of normalized lineage-through-time (nLTT) statistics and phylogenetic
signal in binary traits (Fitz and Purvis’s D) constitute efficient summary statistics for
the ABC method. By providing insights into the selection of suitable summary statistics,
our work aims to contribute to the use of the ABC approach in the development of
complex state-dependent diversification models, for which a likelihood is not available.

Keywords: Approximate Bayesian Computation, summary statistics, state-dependent,
speciation, extinction, diversification
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Introduction

Detecting the factors that underlie variations in diversification rate is a major topic of
research in evolutionary biology, as it may reveal the causes of unevenness of species
richness among clades and geographical regions. Numerous studies highlight the
important role of traits in shaping speciation and extinction rates. For example, the
presence of the nectar spur in flowering plants (angiosperms), which facilitates
pollination and reproductive success, is associated with rapid diversification in the
clades of spurred species (Armbruster, 2014; Fernandez-Mazuecos et al., 2019). Traits
such as this are hypothesized to affect evolutionary processes by determining the
interactions between species, as well as how species respond to the environment
(Wiens, 2017; Li & Wiens, 2022).

Over the past years, phylogenetic comparative methods to test evolutionary hypotheses
have been developed rapidly (Miles & Dunham, 1993; Adams, 2013). A popular class of
phylogenetic tools are state-dependent speciation and extinction (SSE) models, which
aim to investigate how species traits shape variation in diversification and richness,
and to infer the rates of evolutionary processes (speciation, extinction and transitions
between character states) (Maddison et al., 2007). BiSSE (binary-state speciation and
extinction) is the original SSE model, and has been expanded to consider quantitative
(QuaSSE, Fitzjohn, 2010), geographic (GeoSSE, Goldberg et al,, 2011), and multiple
categorical states (MuSSE, Fitzjohn, 2012). However, these models have been shown to
suffer from a high risk of false positives, which are likely to attribute differential
diversification rate to trait-dependence. In order to reduce this type I error in the SSE
models, Beaulieu & O’Meara (2016) introduced the HiSSE (hidden-state-dependent
speciation and extinction) model incorporating the effect of hidden states, which
further promotes the subsequent development of state-dependent diversification
models. More recently, Herrera-Alsina et al., (2019) introduced the SecSSE (several
examined and concealed states-dependent speciation and extinction) framework
accounting for multiple traits (observed and hidden) and multiple trait states. These
models have been applied in numerous empirical studies to identify the correlation
between trait states and diversification rates (Onstein et al., 2017; Pyron & Burbrink,
2012; Rolland, Condamine, et al., 2014).

The most commonly used methods for estimating parameters in the current SSE
models are likelihood-based inference approaches, such as maximum likelihood or
Bayesian inference. In general, the likelihood calculation of these models relies on a set
of ordinary differential equations (ODE) for two core sets of probabilities: 1) the
probabilities of observing the phylogeny and associated character states at tips evolved
from a lineage in each possible trait state at a time in the past, and 2) the extinction
probabilities, i.e. the probabilities of a lineage in each state at a time in the past having
no extant descendants at present (Maddison et al., 2007; FitzJohn, 2012). In recent
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years, researchers have explored the power of parameter estimations of existing
models (Davis et al., 2013; Rabosky & Goldberg, 2015), and strived to improve the
accuracy of the likelihood computing approaches (Louca & Pennell, 2020; Laudanno et
al,, 2021; Vasconcelos et al.,, 2022). However, SSE models have become increasingly
complex, from considering a single trait with binary states (BiSSE) to multiple traits
with hidden states (SecSSE). The computational cost and intractability limit the
application of likelihood-based inference methods.

Approximate Bayesian computation (ABC) is a powerful alternative for estimating
parameters when the likelihood is difficult to compute (Csilléry et al., 2010; Beaumont,
2019). ABC is a simulation-based Bayesian approach to find the parameters that can
generate data close to the target (observed data) by evaluating the similarity of a set of
summary statistics between simulated and observed data (Tavare et al., 1997).
Numerous methods have been developed to address the challenges of improving the
efficiency of the ABC estimation. A series of efficient ABC algorithms have been
expanded based on the simple rejection algorithm, such as incorporating Markov chain
Monte Carlo (MCMC) (Marjoram et al, 2003), population Monte Carlo (PMC)
(Beaumont et al., 2009) and sequential Monte Carlo (SMC) (Toni et al., 2009). The ABC-
MCMC algorithm takes advantage of the Markov chain Monte Carlo techniques to
explore the parameter space by sampling from Markov Chains, where the proposal
distribution remains static throughout the sampling processes. ABC-PMC uses a
population of particles that are iteratively updated to approximate posterior
distribution. However, it may be challenging in ABC-MCMC and ABC-PMC to achieve
convergence and explore high-dimensional parameter space. ABC-SMC combines the
strengths of these two methods and performs better in such cases. The algorithm
systematically improves the approximation of the posterior distribution through a
series of intermediate distributions, which allows to converge to the posterior faster
reducing the usage of computational resources and offering improved parameter
estimation in complex models.

The developments of ABC methods have facilitated the application of ABC approaches
in a broad field of studies. However, while these methods have been widely used in
different fields, including ecological and evolutionary studies (Beaumont, 2010), the
applications in trait evolution or diversification analysis are still very limited. Existing
trait-related studies using ABC methods focus on detecting the impact of environment
or species interactions on trait evolution or mapping trait evolution on given
phylogenies (Janzen et al., 2016; Bartoszek & Lio, 2019; Xu et al., 2021), but no study
has yet tried to apply ABC approaches to study the effect of trait dynamics on
diversification rates.

ABC methods are sensitive to the selection of the summary statistics, therefore, it is
necessary to find powerful summary statistics that cover the maximum amount of the
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information in the data (Sirén & Kaski, 2020). Efficient summary statistics for SSE
models should ideally capture information on two aspects: the shape of the
phylogenetic tree and the distribution of traits. Currently, few statistics have been
synthesized to describe the dynamics of binary or multi-state categorical traits along
phylogenies. Pagel’s A (1999) and Blomberg’s K (2003) are the classic measures of
phylogenetic signal, which evaluates how phylogenetic distance shapes the distribution
of traits among species, as well as the frequency of trait changes along a phylogeny.
However, these two statistics are designed for continuous trait data, and cannot be
calculated for discrete trait data because it is not possible to calculate variances and co-
variances from the trait distribution (Borges et al., 2019). More recently, two statistics
(D and &) were derived to measure phylogenetic signal particularly for binary or
categorical traits (Fritz & Purvis, 2010; Borges et al,, 2019). In addition, some efficient
statistics (e.g., normalized Lineage Through Time (nLTT)) employed in phylogenetic
ABC analyses of diversification (Janzen et al., 2015), as well as statistics applied to
measure the phylogenetic diversity (mean pairwise distance (MPD), mean nearest
taxon distance (MNTD)), can also be extended to measure the distribution of a trait
along phylogenies by separately analyzing species with the same trait state. However,
there is yet to be an evaluation of the performance of those summary statistics in trait
state-dependent models.

Due to the high efficiency and accuracy in estimation, here, we use the ABC-SMC
framework to estimate parameters in the simplest state-dependent model BiSSE, and
test the inference performance by comparing the inference error of the parameters
using the ABC-SMC algorithm and two likelihood-based approaches: maximum
likelihood estimation (MLE) and Markov chain Monte Carlo (MCMC). Finally, we
investigate the performance of a set of phylogenetic and trait related summary
statistics to select the most efficient combination for estimating evolutionary rates of
state-dependent models.

Methods

Trait-dependent simulation

The BiSSE (binary state speciation and extinction) model simulates diversification
dynamics according to a birth-death model where traits shape diversification rates. The
model considers an evolving binary trait with two states, 0 and 1 (e.g., presence or
absence of a specific trait). It assumes that the per lineage rates of speciation (Ao, A1)
and per lineage extinction (uo, u1) depends on the trait state of a species. It also allows
transitions between states (qoi1, q10). Based on this model, we simulated “observed”
phylogenetic trees and trait states at tips, under a series of parameter scenarios
considering symmetric (equal rates between trait states) or asymmetric (rates differ
between trait states), speciation, extinction and transition rates (Table 1). To simplify
the analysis, we set only one of the three pairs of rates to be asymmetric in each
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scenario. For each scenario we simulated 50 replicates, and in total we produced 350
phylogenetic trees with trait data as observed data for parameter inference. To avoid
extremely large trees, we set a constraint with a maximum of 500 species in total, and
for trait dependence to make sense (i.e.,, we would not expect to do an SSE-analysis
when only one state is observed), we imposed the constraint that at least one species
is present for each state at the end of the simulation.

Tablel. Parameter sets used to generate the observed data via simulations of the BiSSE model. In total,
seven parameter combinations were used (seven scenarios), including a symmetric scenario as control

(scenario 1), and two asymmetric scenarios for each pair of rates.

Scenario Speciation Speciation Extinction Extinction Transition Transition
rate state 0 rate state 1 rate state 0 rate state 1 state O to 1 state 1to 0
(A0) (A1) (uo) (u1) (qo1) (q10)
S1 0.3 0.3 0.05 0.05 0.1 0.1
S2 0.2 0.4 0.05 0.05 0.1 0.1
S3 0.1 0.5 0.05 0.05 0.1 0.1
S4 0.3 0.3 0.05 0.01 0.1 0.1
S5 0.3 0.3 0.05 0.1 0.1 0.1
N 0.3 0.3 0.05 0.05 0.1 0.2
S7 0.3 0.3 0.05 0.05 0.1 0.02

Likelihood-based estimation through likelihood maximization and Bayesian
MCMC
The BiSSE model allows likelihood calculation (Maddison et al, 2007), where the
likelihood indicates the probability of observing the binary trait data on the
phylogenetic tree with given parameters. The likelihood is calculated based on a set of
ordinary differential equations (Maddison et al., 2007):
aD;(¢t)
S dt
dE;(t)
e
where Di(t) describes the probability of observing the phylogeny and associated

= (20E()) — 4 — pi— qi;)Di(8) + q4;D;(0)

wi— (A4 i+ qi)Ei(©) + LE(D? + g4, E; (0)

character states at present evolved from a lineage in a particular trait state i at time ¢,
and Ei(t) describes the probability of a lineage that has no descendants at present, and
Ai, 4i, qij represent state-dependent speciation, extinction and character transition rates
respectively (Maddison et al., 2007; FitzJohn, 2012).

Parameters can then be estimated using maximum likelihood estimation (MLE), which
yields only a point estimate. To compare the ABC results with the likelihood-based
approach, we developed a full (i.e., using the likelihood) Bayesian analysis using
Markov chain Monte Carlo (MCMC), under the same assumptions of prior distributions
as the ABC (see below). To obtain a stable and convergent MCMC chain, we ran
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1,000,000 iterations after 100,000 iterations of burn-in. For each data set, we estimated
all six parameters regardless of the symmetry of the generating rates. The simulations
and likelihood calculations were performed using the R package secsse (Herrera-Alsina
et al.,, 2023). The reason for using the secsse package is that the SecSSE model reduces
exactly to BiSSE when there are no hidden states and the examined states are binary,
but the range of application is much broader than BiSSE. As the combination of HiSSE
and MuSSE, the SecSSE model takes into account hidden states, which improves the
accuracy of detecting trait dependencies in diversification rates, as well as breaking the
constraints on the number of traits and trait states in preceding SSE models. Therefore,
it can accurately generate BiSSE simulations and estimates, and facilitates further
testing in the more complex conditions.

ABC-SMC estimation

We performed a sequential Monte Carlo algorithm (ABC-SMC) to estimate parameters
for each observed data. The algorithm we used was derived from the original ABC-SMC
algorithm introduced by Toni et al. (2009) (Box 1). For the ABC algorithm, we used
uniform prior distributions U (0,1). The algorithm starts by sampling a series of
parameter sets (particles) from the prior distribution, and then simulates datasets with
these parameters and computes the difference in summary statistic between the
observed data and the simulated data. This was repeated until this difference was
smaller than a threshold €. We used an iteratively adaptive method choosing ever-
decreasing thresholds for each iteration, by specifying the median values of the
summary statistic distance from the previous iteration, which means the decreasing
thresholds depend on the position of the accepted particles in the previous iteration.
This is more efficient than using a given linearly or exponentially decreasing pattern.
We used 500 particles per iteration and the algorithm was assumed to generate a
converged posterior at an acceptance rate of 1 in 500. The ABC and MCMC algorithms
used in this study were implemented in the R package DivABC, which is available on
Github (github.com/xieshu95/DivABC).
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Box 1. The ABC SMC algorithm
S1: Initialize thresholds €;
S2: Setiterationt=1
For particlei=1,.., N
Repeat
Sample 6;! from the prior 7(9).
Simulate phylogeny P;i ~ 6.
Calculate distance D;i (SS) = |SS(P1i) - SS(Po)|.
until D;* (5S) < €1
Calculate weight: w! =1/N

Calculate threshold for next iteration: €; = median {D;! (SS), D2 (SS)... D:¥ (5S)}
S3:t=2,..,T
For particlei=1,.., N
Repeat
Sample 6 from population {61} with weight w/_,, and perturb 8, ~N(0, 0.01).
Simulate phylogeny P¢ ~ 6.
Calculate distance D¢ (SS) = [SS(P¢) - SS(Po)|-
until D¢ (SS) < &
Add 6/ to the population {6:}
. i (6}
Calculate weight: w} = m
Normalize the weights.
Calculate threshold for next iteration: €;+1 = median {D¢ (SS), D¢ (SS)... D& (SS)}

where N is the total number of the particles needed for generation ¢, and T'is the total number
of iterations before the algorithm stop. €; ...er means the sequence of decreasing tolerance
threshold from iteration 1 to T. 8¢ means the particle i of iteration t, and w;/ is the weight of
this particle. P¢ is the simulated data with the particle 64, and SS(P¢) is the calculated

summary statistic of the simulation.

Summary statistics

We tested the usefulness and efficiency of a set of summary statistics for improving ABC
performance. In total, we used six summary statistics to describe the phylogenetic
dynamics and trait evolution along the phylogeny, which are: 1) NLTT (normalized
lineage-through-time), 2) MPD (mean pairwise distance), 3) MNTD (mean nearest
taxon distance), 4) Colless index, 5) tip ratio, 6) phylogenetic signal D. NLTT is a
summary statistic known to be efficient in phylogenetic analyses of diversification,
which has been shown a better performance than classic statistics (e.g., phylogenetic
diversity (PD)) in different types of birth-death models (Janzen et al., 2015). The
original nLTT statistic does not capture trait information, so we developed a method to


https://doi.org/10.1101/2023.10.14.562317
http://creativecommons.org/licenses/by-nc/4.0/

O© 00 N O Ol W N -

el el
w N P O

H
o

N DN DNDNDNREPE PR PP P
O B W NPFP O OO0 ~N O O

N
[ep]

B W W wwwwwwww NN
O © 00 NO O WNPFP O O 0o N

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.14.562317; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

calculate the nLTT statistic of each trait state by trimming branches from the
phylogenetic tree with the other trait state at the tip. We note that the combination of
the two resulting trimmed trees may not be exactly equivalent to the original tree (Fig.
1). We calculated the nLTT statistics for the entire tree (nLTTtotal), for the trimmed tree
with only state 0 (nLTTo), and the trimmed tree with only state 1 (nLTT1). As illustrated
in Fig 1, for the same phylogenetic tree, different trait distributions at the tips can lead
to differences in nLTTo or nLTT1. MPD and MNTD are metrics that have been commonly
used to measure phylogenetic diversity (Webb, 2000), and Colless index is a widely
used statistic to measure the balance of phylogenetic trees (Colless, 1995).
Furthermore, we calculated the state-specific MPD, MNTD and Colless index in the
same way as calculating nLTTo or nLTT1 based on the trimmed tree with a single state.
The tip ratio between binary states was calculated as the number of species with
species-rich state divided by the number of species with species-poor state:
max(Nstate 0/ Nstate 1)

min(Nstate 0o Nstate 1)

Tip ratio =

Another summary statistic we examined is D (Fritz & Purvis, 2010), which measures
the phylogenetic signal of a given phylogeny with binary trait states. To calculate D, the
total state difference between each sister clade along the phylogeny (3.doss) (Fig 2) is
computed, and is then scaled by the sum of state differences based on two permutations
of the trait values. One is a random permutation that shuffles the tip state values (0 or
1) along the tree, generating a series of sums of state differences ) dr, and the other
simulates continuous trait evolution under the Brownian motion model, and
discretizes the tip states into a binary trait, generating a series of sums of state
difference )d». Permutations are performed 1000 times for each tree. The statistic D is
calculated as:

(B dops — mean(T dy))
~ (mean(3 d,) — mean(x dy))

The Y.dobs is sensitive to the pattern of how traits evolve through the phylogeny
(phylogenetically clumped or dispersed), and the D statistic can distinguish trait
dynamics even under the same phylogeny (Fig 2).

To simplify the analysis, we did not test all the permutations among these six metrics,
but manually selected the combinations of most interest (Table 2). We used the nLT Ttotal
as the main measurement of the phylogenetic dynamics, however, this metric is
insufficient for inferring diversification variance between states because of the lack of
trait information. Therefore, we added other trait-related statistics respectively based
on nLT Ttota, and compared the performance among the combinations to filter the most
powerful statistics. The calculations of nLTT, MPD, MNTD and Colless index are
implemented in the R package treestats, which is available on Github
(github.com/thijsjanzen/treestats).
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Fig 1. Hypothetical example of transforming an entire phylogeny with binary tip states into two trimmed trees with a single state by clustering the tips with
the same states. a) example of a (balanced) tree with eight extant species at the present time, and three potential trait distribution at tips (other trait
distributions are possible, but we show only three for the example). Blank circles represent state 0, and filled black circles represent state 1. b) shows the
two reduced trees for each state depending on the trait distribution at the tips a). c) the plot of the nLTT for the entire phylogenetic tree in a). d) the plot of
the nLTT for the trimmed trees with a single state in b), and here we show only the nLTT plot for one of the states, because the plot for the other state is

equivalent in the example.
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Fig 2. Illustration of calculating Y d,,s and D under different phylogenetic patterns. A) is a
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at nodes indicate the probability of each ancestral state. To calculate D, the mean (}d;) and mean
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Table 2. Selected summary statistic combinations and their abbreviations.

Combination Summary statistic Abbreviation

1 nLT Trotal nLTT

2 D D

3 nLT Tt + D nLTT-D

4 NLTTeotal + NLTT1 + nLTT, nLTTs

5 NLTTiota + nLTT1 + nLTT2+ D nLTTs-D

6 nLT Tt + MPD1 + MPD; nLTT-MPD

7 NLTTeota + MNTD1 + MNTD, nLTT-MNTD

8 NLT Tiora + collessy + colless: nLTT-colless

9 NLT Toar + tip ratio nLTT-ratio
Results

We compared the inference error of the different inference methods by calculating the
relative distance between the true (generating) values and the estimations using the
ABC, MCMC and MLE approaches. In the main text, we use the median of the posterior
distributions representing the estimations from the ABC and MCMC algorithms to
compare with the point estimation of MLE. The comparisons of the full posterior
distributions are given in the Supplementary Material (Fig S3). To analyze the effect of
different levels of trait dependence on parameter estimation, we divided the seven
scenarios into three groups according to the asymmetry of different rates, which are 1)
asymmetry in speciation (scenarios S1, S2 and S3); 2) asymmetry in extinction
(scenarios S1, S4 and S5); 3) asymmetry in transition (scenarios S1, S6 and S7).

Our general conclusion is that using only the nLTT statistics in the ABC approach can
lead to accurate estimates of state-dependent speciation and extinction rates, but
produces a large inference error in estimating transition rates between states. However,
the inference accuracy can be significantly increased by adding the summary statistic
D. In this case, the ABC algorithm performs well in estimating all six parameters of the
BiSSE model for most of the scenarios we investigated, and is comparable with the
likelihood-based approaches with minor differences. The ABC methods only lead to
relatively larger inference errors when the speciation rates are highly asymmetric
between states (A1 / Ao=5), but in this case the error occurs only in the rates associated
with the state with fewer species. We will now discuss our results in detail.

Statistics of the observed data

We calculated the tree size (as measured by the total number of species on the observed
phylogenetic tree), tip ratio (the ratio of the diversity between the species-rich state
and the species-poor state), and the number of tips with each state across all the
observed datasets (350 trees). The observed phylogenetic trees generated under the
seven scenarios show different patterns. Overall, the mean and the standard deviation
of the size of the full tree are similar among the scenarios (Table 2), because of the
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constraint of the maximum number (500) of the species when generating observed
data. However, the tip ratio becomes larger with an increasing level of asymmetry in
speciation and transition rates. In addition, as the asymmetry level in speciation
increasing, more observed trees with ancestral state 0 (with lower speciation rate) has
been selected (Table 2).

Table 2. Main properties of the observed datasets. For tree size, tip ratio, number of tips with state 0 and
state 1, we show the mean (standard deviation) across the 50 observed datasets for each scenario
(obtained via simulations using the parameters of each scenario). The last two columns show the

number of replicates with each ancestral state respectively.

Ancestral Ancestral
Scenario Tree size Tip ratio Nstateo Nstate1
state 0 state 1
s1 222 (98) 1.29 (0.28) 113 (52) 110 (51) 25 25
S2 230 (111) 2.39 (0.83) 70 (33) 161 (82) 34 16
S3 232 (127) 4.55 (2.48) 46 (27) 186 (102) 42 8
S4 241 (120) 1.40 (0.35) 109 (57) 131 (68) 28 22
S5 195 (92) 1.39 (0.27) 110 (56) 86 (40) 28 22
S6 233 (114) 2.19 (0.65) 158 (78) 76 (38) 25 25
S7 246 (106) 5.72 (3.78) 46 (30) 200 (91) 22 28

ABC with different summary statistics

Using different groups of summary statistics shows a large difference in the
performance of parameter estimation of ABC. The nLTT statistic alone can accurately
estimate speciation and extinction rates (Figs 3, 4, and 5) except when the generating
rates of speciation greatly vary between binary states (i.e., scenario S3) (Figs 3, 4, and
5), and leads to large bias in net diversification rate estimates in this case (Fig S1).
However, the inference errors and the variance in transition rates and net
diversification rates among replicates are always large (Figs 3, 4, and 5), due to the lack
of trait dynamic information along phylogenetic trees. The combination of nLTTs and
nLTT-MNTD improves the inference accuracy in estimating speciation rates when there
is high asymmetry in speciation (Fig 3), while the other combinations including nLTT
(i.e, nLTT-MPD, nLTT-colless, and nLTT-ratio) show no significant improvement in
estimations over using nLTT alone (Figs 3, 4, 5 and S1).

In contrast, the statistic D is efficient in estimating transition rates in different
scenarios, but leads to large bias and variation in estimating speciation and extinction
rates when used on its own (Figs 3 and 4). Combining the statistic D with the nLTT
statistics (i.e., nLTT-D and nLTTs-D) visibly improves the estimation accuracy in
transition rates in all the scenarios, as well as the diversification rates in extreme cases
(tip ratio > 5) (Fig 3 and S1). Overall, the best summary statistic combination is nLTTs-
D, which includes both trait dynamic information from phylogenetic signal (as
measured by D) and temporal trait information coming from the nLTT statistics.
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Fig 3. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different summary statistics for
scenarios with varying degrees of asymmetry in speciation (scenarios S1, S2, S3 in Table 1) in the generating rates. Plots show the residual inference
error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using
different summary statistic combinations.
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Fig 4. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different summary statistics for
scenarios with varying degrees of asymmetry in extinction (scenarios S1, S4, S5 in Table 1) in the generating rates. Plots show the residual inference
error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using
different summary statistic combinations.
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When evaluating the correlations between the summary statistics, we found that nLTT
statistics have relatively strong positive or negative correlations with most of other
summary statistics except D, especially a strong negative correlation with MNTD (Fig
S4). This indicates that there is overlap of information among these summary statistics.
Conversely, D is independent of most of the statistics, as it shows weak correlations (Fig
S4).

Inference with different methods (ABC, MCMC and MLE)

Of the nine summary statistic combinations we considered, the combination of the
phylogenetic signal summary statistic D and the nLTT statistics (i.e.,, nLTTs-D) was
found to give the most accurate state-dependent rate estimations (Figs 3, 4, 5 and S1).
Therefore, here we focus on comparing the ABC estimations of nLTTs-D with the
estimations of MCMC and MLE. Overall, the ABC method with efficient summary
statistics performs well in estimating state-dependent rates, similar to the likelihood-
based estimations in most scenarios. Zooming into the groups of scenarios with
different levels of asymmetry in speciation, extinction and transition (Figs 6, 7 and 8),
we found that asymmetry in speciation rates had a greater influence on inference
accuracy than asymmetry in extinction or transition rates. In the scenarios with
asymmetric speciation rates, the inference error increases with a higher level of
asymmetry (Fig 6). But the bias only occurs when estimating the rates of the species-
poor state (e.g., Ao, 4o, qo1 in scenario S3) (Fig 6). Similarly, when transition rates are
highly asymmetric between states, the bias occurs in estimating extinction rate of the
species-poor state (uo in scenario S7) (Fig 8). The ABC method can always accurately
estimate net diversification rates of each state in all the scenarios, with low bias and
variance, even more so than the MCMC and MLE estimations in some scenarios (Fig S2).

Effect of statistic of observed data (tree size and tip ratio) on inference

We evaluated the relationships between tree size and tip ratio (Table 2) with inference
error across all the observed datasets. As expected, small trees (< 100 tips) or trees
with large diversity difference between states tend to cause larger inference error,
especially in extinction rates, which in turn affect the estimation accuracy of the net
diversification rates (Figs 9,10 and S5).


https://doi.org/10.1101/2023.10.14.562317
http://creativecommons.org/licenses/by-nc/4.0/

~N o oA W N

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.14.562317; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Asymmetry in speciation
S1:2=0.3%1=0.3 S2:2=02% =04 S3:29=01%,=05

Ho
|

i e b @B PR ¥ N 5

-0.5

Method

[# ABC
MCMC
4l MLE

0.5 ]

:
>
%
>
g

001

-0.5

o1

10

ABC MCMC MLE ABC MCMC MLE ABC MCMC MLE

Fig 6. Parameter estimations of state-dependent speciation, extinction and transition rates using
the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in speciation
(scenarios S1, S2, S3 in Table 1) in the generation rates. Plots show the residual inference error
between estimated and (true) generated values. Dashed horizontal lines represent zero error to
guide the eye. Colors indicate different inference methods. The ABC results are estimated using the
summary statistic combination nLTTs-D (nLT Ttota, nNLTTo, nLTT1 and D).
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Fig 7. Parameter estimations of state-dependent speciation, extinction and transition rates using
the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in extinction
(scenarios S1, S4, S5 in Table 1) in the generating rates. Plots show the residual inference error
between estimated and (true) generated values. Dashed horizontal lines represent zero error to
guide the eye. Colors indicate different inference methods. The ABC results are estimated using the
summary statistic combination nLTTs-D (nLT Ttota, nNLTTo, nLTT1 and D).
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Fig 8. Parameter estimations of state-dependent speciation, extinction and transition rates using
the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in transition
(scenarios S1, S6, S7 in Table 1) in the generating rates. Plots show the residual inference error
between estimated and (true) generated values. Dashed horizontal lines represent zero error to
guide the eye. Colors indicate different inference methods. The ABC results are estimated using the
summary statistic combination nLTTs-D (nLT Ttota, nNLTTo, nLTT1 and D).


https://doi.org/10.1101/2023.10.14.562317
http://creativecommons.org/licenses/by-nc/4.0/

~N O OB W

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.14.562317; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1.01 1.01
0.51 0.51
o -
(< ®, .' ’. . 3 (< . .. .
B AFL e U BT AR ki) 'Tu&;&‘ SRR e
0.01- ¥R % »f"f" ST, ares - 0.071 G Ar e e e L mE -
-0.51 -0.5
100 200 300 400 100 200 300 400
1.01 1.01
0.51
g 5_ "..“:: P .o
."“.:A*;f:‘:;,,:g“’a"i o ol‘i:“o:/( < ':"0.
001 5t HEIRESEF RIS Wi e -
051 051 Method
100 200 300 400 100 200 300 400 « ABC
101 1.0 MCMC
’ ’ * MLE
0.51 0.51
s 2
S . & o g -
;:"’":‘. VIR F R ?-.‘7-. %4 A ite 2 "’.’. 2 b Lo atc . 8 "R
ool SERDIRIFIESI WA 001 UTRGWRIR NI A
-0.51 -0.5
100 200 300 400 100 200 300 400
0.51 0.51
2 ® o é‘ 8. 8% og _gq &‘ [ "i ‘; ° ' 2 9e g
8 001-EEareda s SEG- SR - 6 001 - aneein §t: TS ESAE AL -
§ o] RIS - § oor il NIRRT
5‘5 '; L34 Y e, ] " tg Bk e y
[ [
2 . 2
o o
5 05 5 05
z =z
-1.01 -1.01
100 200 300 400 100 200 300 400

Total species richness
Fig 9. Relationship between phylogenetic tree size (total number of species) and the inference error in
estimating state-dependent rates (estimated minus observed). The points show the median value of the
posterior distribution in MCMC and ABC algorithms, and point estimates in MLE. Different color

indicates different methods.


https://doi.org/10.1101/2023.10.14.562317
http://creativecommons.org/licenses/by-nc/4.0/

~N O O AW N

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.14.562317; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1.01 1.01

0.51

Lo

0.01-&

1.01

0.51

0.01-%

Method

« ABC
MCMC
* MLE

1.0 1.01

0.51

o1

0.01-1

0.51 0.51

Net Diversification 0
Net Diversification 1

-1.0 -1.01
0 1 2 3 0 1

N
w4

Log (Tip ratio)
Fig 10. Relationship between the tip ratio and the inference error in estimating state-dependent
rates. The points show the median value of the posterior distribution in MCMC and ABC algorithms,
and point estimates in MLE. Different color indicates different methods.


https://doi.org/10.1101/2023.10.14.562317
http://creativecommons.org/licenses/by-nc/4.0/

O© 00 NOoO O W N -

A DB W W WWWWWWWWNDNDDNDNDDNMNDNNMDNNDNNNNNRFRPFRPRRERPERPRERERERERR
P O © 00 NO Ol D WNPFP OO0 NOOLP WNPFP O OOOWLwNO O WDNPEFE O

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.14.562317; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Discussion

The development of SSE models has recently accelerated, especially with advances in
mathematical modelling techniques and the availability of empirical data (Holland et
al, 2020). The main aim of this study was not to evaluate the power of existing
likelihood methods of SSE models, which has already been done in previous studies
(Davis et al, 2013; Holland et al, 2020). Instead, we used the likelihood-based
estimations as a baseline to evaluate the performance of a new likelihood-free ABC
approach, and to search for efficient summary statistics that cover the most
comprehensive phylogenetic and trait information. Across all the scenarios we tested,
the combination of the nLTT statistics and phylogenetic signal D is sufficient to produce
accurate estimations in ABC, which is on par with the likelihood estimations.

The nLTT statistic, which provides information of evolutionary dynamics over time, has
been shown to be efficient and informative in phylogenetic analysis and diversification
studies (Janzen et al., 2015; Saulnier et al., 2017; Richter & Wit, 2021), as well in island
biogeography (Xie et al.,, 2023). However, the power of the statistic is limited in trait-
related analysis when estimating transition rates, due to the challenge and uncertainty
of mapping trait evolution on phylogenies. nLTT for the whole tree can only capture the
average diversification rates independent of traits, while adding nLTT for each state
(nLTTo and nLTT1) can improve the ability in capturing trait dependency in speciation
and extinction rates (Figs 3), as well as net diversification rates (Fig S1), because of the
information of branching times in the reduced trees. It is similar to the original sister-
clade comparison method, which has been widely used in detecting the effect of traits
on diversification rates before the establish of the SSE models (Mitter et al., 1988;
Maddison et al., 2007). Therefore, likewise, nLTT has the same limitation on detecting
state shifts over time, leading to a poor estimation of transition rates between states
(Figs 3, 4 and 5). However, the phylogenetic signal statistic D contains efficient
information on trait evolution, by comparing the observed trait distribution with the
distributions simulated through continuous Brownian Motion patterns, compensating
for the lack of the information in nLTT statistics.

In this paper, we only tested the performance of nine combinations among six summary
statistics. However, there are a number of alternative statistics available in
phylogenetics (e.g., phylogenetic diversity (PD), Laplacian spectrum for tree shape).
Recently, a few of studies have proposed a number of summary statistics for detecting
trait dynamics. Lajaaiti et al. (2023) applied multiple neural network architectures to
estimate state-dependent diversification rates, and compared the performance of the
deep learning methods with the maximum likelihood estimation, which provided a
promising alternative for phylogenetic inference. However, the study focuses more on
summary statistics for describing the shape of phylogenetic trees (84 summary
statistics), but less so on trait dynamics (one summary statistic (tip ratio)). Thereafter,
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Schwery et al., (2023) used a Bayesian approach to test the adequacy of trait-dependent
diversification models with a number of summary statistics, selected to capture trait
distributions (e.g., FiSSE statistics etc.) and the features of the phylogenetic tree (e.g.,
gamma statistics, Colless index, branch length, etc.). A few of summary statistics that
have not been included in our study are worth testing, but that does not mean adding
more summary statistic is necessarily better or reccommended. A primary motivation
for using summary statistics is to reduce the dimensionality of the observed datasets,
whilst retaining the most information for parameter estimation. Selecting an excess
number of summary statistics, especially those that are highly correlated with one
another, may lead to overfitting and redundancy, which reduce the efficiency and
computability of the ABC algorithm (Jung & Marjoram, 2011; Blum et al,, 2013).
Therefore, apart from looking for alternative summary statistics, it is also important to
choose and construct efficient combinations by weighting or transforming the statistics.

A number of methods have been developed to address the challenges of identifying
appropriate summary statistics (Wegmann et al., 2009; Nunes & Balding, 2010;
Fearnhead & Prangle, 2012). Joyce and Marjoram (2008) introduced a sequential
scheme to choose a sufficient subset of summary statistics by adding a randomly
chosen statistic in each iteration, and evaluating whether the inclusion of the additional
statistic improves the inference ability. However, the drawback is that the selected
subset depends on the order of the additional summary statistics, that is, when more
informative summary statistics are added late and less informative statistics have been
included, the final statistic combination may be found to be redundant. Jung and
Marjoram (2011) improved the method by assigning weights to each summary statistic.
The method keeps all the statistics rather than filtering from the statistic pool, and
allows higher weights to the statistics that are more informative. In addition, Wegmann
et al,, (2009) introduced a statistical approach using a partial least squares (PLS)
regression, which is powerful to reduce the dimensionality of the variables. The
method extracts the orthogonal components as a subset of informative summary
statistics, which are highly corelated with the parameters but decorrelated with each
other. Later, a semi-automatic procedure was proposed in ABC algorithms to construct
summary statistics by reducing dimension with a regression-based approach, which
improves both the performance of parameter estimation and model selection
(Fearnhead & Prangle, 2012; Prangle et al.,, 2014; Harrison Id & Baker, 2020). These
methods are more effective in filtering efficient summary statistics than manual
selection, and may provide great insights for further improvements of ABC efficiency.

We found that small observed trees lead to high inference error in BiSSE estimation
using both MLE, MCMC and ABC methods, especially in estimating extinction rates (Figs
9 and S5), which reemphasizes the results of previous studies that explored the
accuracy of power of SSE models (Davis et al., 2013; Gamisch, 2016). Similarly, in ABC
estimations, large variance in speciation rates (A1 / Ao = 5) or transition rates (qo1/ q1o
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=5) leads to a limited number of existing species in one state. Therefore, the summary
statistics using trimmed trees (with either state) for trait analysis cause inference error
in the specie-poor state, due to the lack of information of phylogenetic and trait
dynamics in this state. On the other hand, the inference error in the extreme scenario
may be due to the constraint of the total number of species (< 500 species in simulated
trees) in our study. To test the effects of the constraint, we run each scenario for 1000
replicates without constraints, and calculate the proportion of the replicates that
contain fewer than 500 species, the results of which are shown in Table 3. The extreme
case (scenario S3) that we are most interested in (strong asymmetry in speciation) is
the most affected by the constraint, which means our sample of observed data is biased.
The constraint results in more sampled observed phylogenies with ancestral species
under the lower-rate state. These phylogenetic trees have a slow diversification at early
stage until some branches transition to the higher-rate state, which may lead to a late
burst before present time. We note that currently the ABC method may fail to determine
whether the poor richness of a certain state is due to a low speciation rate or a high
transition rate to the other state in this case (Fig S5).

Table 3. Proportion of the replicates with fewer than 500 species in 1000 randomly sampled trees.

Scenario Speciation Speciation Extinction Extinction Transition Transition Proportion
rate 0 (Ao) rate 1 (A1) rate 0 (o) rate 1 (p1) Oto1l 1to0 replicates
(q01) (qu0) <500
species
S1 0.3 0.3 0.05 0.05 0.1 0.1 0.94
S2 0.2 0.4 0.05 0.05 0.1 0.1 0.71
S3 0.1 0.5 0.05 0.05 0.1 0.1 0.46
S4 0.3 0.3 0.05 0.01 0.1 0.1 0.86
S5 0.3 0.3 0.05 0.1 0.1 0.1 0.99
S6 0.3 0.3 0.05 0.05 0.1 0.2 0.95
S7 0.3 0.3 0.05 0.05 0.1 0.02 0.94

Apart from the constraint of the size of datasets, another typical issue with the power
of the BiSSE model is high type I error (Rabosky & Goldberg, 2015). This problem has
been solved in a more complex model HiSSE and derived models. Currently we have
only developed the ABC estimation in the BiSSE model, but it can be easily extended to
more complex models, such as SecSSE, especially since our simulations have been
generated with the secsse package. Furthermore, machine learning, as a rapidly
developing methodology, has been incorporated into the ABC algorithms (Mondal et al.,
2019; Sanchez et al., 2020), and may have good potential for future studies. In any case,
both ABC and machine learning methods offer important opportunities for further
expansions of SSE models incorporating more factors that affect evolutionary patterns
(e.g., geographical and ecological factors), where the likelihood equations are too
complex to solve.
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