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Abstract:  1 

State-dependent speciation and extinction (SSE) models provide a framework for 2 

quantifying whether species traits have an impact on evolutionary rates and how this 3 

shapes the variation in species richness among clades in a phylogeny. However, SSE 4 

models are becoming increasingly complex, limiting the application of likelihood-based 5 

inference methods. Approximate Bayesian computation (ABC), a likelihood-free 6 

approach, is a potentially powerful alternative for estimating parameters. One of the 7 

key challenges in using ABC is the selection of efficient summary statistics, which can 8 

greatly affect the accuracy and precision of the parameter estimates. In state-9 

dependent diversification models, summary statistics need to capture the complex 10 

relationships between rates of diversification and species traits. Here, we develop an 11 

ABC framework to estimate state-dependent speciation, extinction and transition rates 12 

in the BiSSE (binary state dependent speciation and extinction) model. Using different 13 

sets of candidate summary statistics, we then compare the inference ability of ABC with 14 

that of using likelihood-based maximum likelihood (ML) and Markov chain Monte 15 

Carlo (MCMC) methods. Our results show the ABC algorithm can accurately estimate 16 

state-dependent diversification rates for most of the model parameter sets we 17 

explored. The inference error of the parameters associated with the species-poor state 18 

is larger with ABC than in the likelihood estimations only when the speciation rate is 19 

highly asymmetric between the two states (λ1 / λ0 = 5). Furthermore, we find that the 20 

combination of normalized lineage-through-time (nLTT) statistics and phylogenetic 21 

signal in binary traits (Fitz and Purvis’s D) constitute efficient summary statistics for 22 

the ABC method. By providing insights into the selection of suitable summary statistics, 23 

our work aims to contribute to the use of the ABC approach in the development of 24 

complex state-dependent diversification models, for which a likelihood is not available. 25 

 26 
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Introduction 1 

Detecting the factors that underlie variations in diversification rate is a major topic of 2 

research in evolutionary biology, as it may reveal the causes of unevenness of species 3 

richness among clades and geographical regions. Numerous studies highlight the 4 

important role of traits in shaping speciation and extinction rates. For example, the 5 

presence of the nectar spur in flowering plants (angiosperms), which facilitates 6 

pollination and reproductive success, is associated with rapid diversification in the 7 

clades of spurred species (Armbruster, 2014; Ferna ndez-Mazuecos et al., 2019). Traits 8 

such as this are hypothesized to affect evolutionary processes by determining the 9 

interactions between species, as well as how species respond to the environment 10 

(Wiens, 2017; Li & Wiens, 2022).  11 

 12 

Over the past years, phylogenetic comparative methods to test evolutionary hypotheses 13 

have been developed rapidly (Miles & Dunham, 1993; Adams, 2013). A popular class of 14 

phylogenetic tools are state-dependent speciation and extinction (SSE) models, which 15 

aim to investigate how species traits shape variation in diversification and richness, 16 

and to infer the rates of evolutionary processes (speciation, extinction and transitions 17 

between character states) (Maddison et al., 2007). BiSSE (binary-state speciation and 18 

extinction) is the original SSE model, and has been expanded to consider quantitative 19 

(QuaSSE, Fitzjohn, 2010), geographic (GeoSSE, Goldberg et al., 2011), and multiple 20 

categorical states (MuSSE, Fitzjohn, 2012). However, these models have been shown to 21 

suffer from a high risk of false positives, which are likely to attribute differential 22 

diversification rate to trait-dependence. In order to reduce this type I error in the SSE 23 

models, Beaulieu & O’Meara (2016) introduced the HiSSE (hidden-state-dependent 24 

speciation and extinction) model incorporating the effect of hidden states, which 25 

further promotes the subsequent development of state-dependent diversification 26 

models. More recently, Herrera-Alsina et al., (2019) introduced the SecSSE (several 27 

examined and concealed states-dependent speciation and extinction) framework 28 

accounting for multiple traits (observed and hidden) and multiple trait states. These 29 

models have been applied in numerous empirical studies to identify the correlation 30 

between trait states and diversification rates (Onstein et al., 2017; Pyron & Burbrink, 31 

2012; Rolland, Condamine, et al., 2014). 32 

 33 

The most commonly used methods for estimating parameters in the current SSE 34 

models are likelihood-based inference approaches, such as maximum likelihood or 35 

Bayesian inference. In general, the likelihood calculation of these models relies on a set 36 

of ordinary differential equations (ODE) for two core sets of probabilities: 1) the 37 

probabilities of observing the phylogeny and associated character states at tips evolved 38 

from a lineage in each possible trait state at a time in the past, and 2) the extinction 39 

probabilities, i.e. the probabilities of a lineage in each state at a time in the past having 40 

no extant descendants at present (Maddison et al., 2007; FitzJohn, 2012). In recent 41 
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years, researchers have explored the power of parameter estimations of existing 1 

models (Davis et al., 2013; Rabosky & Goldberg, 2015), and strived to improve the 2 

accuracy of the likelihood computing approaches (Louca & Pennell, 2020; Laudanno et 3 

al., 2021; Vasconcelos et al., 2022). However, SSE models have become increasingly 4 

complex, from considering a single trait with binary states (BiSSE) to multiple traits 5 

with hidden states (SecSSE). The computational cost and intractability limit the 6 

application of likelihood-based inference methods. 7 

 8 

Approximate Bayesian computation (ABC) is a powerful alternative for estimating 9 

parameters when the likelihood is difficult to compute (Csille ry et al., 2010; Beaumont, 10 

2019). ABC is a simulation-based Bayesian approach to find the parameters that can 11 

generate data close to the target (observed data) by evaluating the similarity of a set of 12 

summary statistics between simulated and observed data (Tavare et al., 1997). 13 

Numerous methods have been developed to address the challenges of improving the 14 

efficiency of the ABC estimation. A series of efficient ABC algorithms have been 15 

expanded based on the simple rejection algorithm, such as incorporating Markov chain 16 

Monte Carlo (MCMC) (Marjoram et al., 2003), population Monte Carlo (PMC) 17 

(Beaumont et al., 2009) and sequential Monte Carlo (SMC) (Toni et al., 2009). The ABC-18 

MCMC algorithm takes advantage of the Markov chain Monte Carlo techniques to 19 

explore the parameter space by sampling from Markov Chains, where the proposal 20 

distribution remains static throughout the sampling processes. ABC-PMC uses a 21 

population of particles that are iteratively updated to approximate posterior 22 

distribution. However, it may be challenging in ABC-MCMC and ABC-PMC to achieve 23 

convergence and explore high-dimensional parameter space. ABC-SMC combines the 24 

strengths of these two methods and performs better in such cases. The algorithm 25 

systematically improves the approximation of the posterior distribution through a 26 

series of intermediate distributions, which allows to converge to the posterior faster 27 

reducing the usage of computational resources and offering improved parameter 28 

estimation in complex models.  29 

 30 

The developments of ABC methods have facilitated the application of ABC approaches 31 

in a broad field of studies. However, while these methods have been widely used in 32 

different fields, including ecological and evolutionary studies (Beaumont, 2010), the 33 

applications in trait evolution or diversification analysis are still very limited. Existing 34 

trait-related studies using ABC methods focus on detecting the impact of environment 35 

or species interactions on trait evolution or mapping trait evolution on given 36 

phylogenies (Janzen et al., 2016; Bartoszek & Lio , 2019; Xu et al., 2021), but no study 37 

has yet tried to apply ABC approaches to study the effect of trait dynamics on 38 

diversification rates.  39 

 40 

ABC methods are sensitive to the selection of the summary statistics, therefore, it is 41 

necessary to find powerful summary statistics that cover the maximum amount of the 42 
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information in the data (Sire n & Kaski, 2020). Efficient summary statistics for SSE 1 

models should ideally capture information on two aspects: the shape of the 2 

phylogenetic tree and the distribution of traits. Currently, few statistics have been 3 

synthesized to describe the dynamics of binary or multi-state categorical traits along 4 

phylogenies. Pagel’s λ (1999) and Blomberg’s K (2003) are the classic measures of 5 

phylogenetic signal, which evaluates how phylogenetic distance shapes the distribution 6 

of traits among species, as well as the frequency of trait changes along a phylogeny. 7 

However, these two statistics are designed for continuous trait data, and cannot be 8 

calculated for discrete trait data because it is not possible to calculate variances and co-9 

variances from the trait distribution (Borges et al., 2019). More recently, two statistics 10 

(D and δ) were derived to measure phylogenetic signal particularly for binary or 11 

categorical traits (Fritz & Purvis, 2010; Borges et al., 2019). In addition, some efficient 12 

statistics (e.g., normalized Lineage Through Time (nLTT)) employed in phylogenetic 13 

ABC analyses of diversification (Janzen et al., 2015), as well as statistics applied to 14 

measure the phylogenetic diversity (mean pairwise distance (MPD), mean nearest 15 

taxon distance (MNTD)), can also be extended to measure the distribution of a trait 16 

along phylogenies by separately analyzing species with the same trait state. However, 17 

there is yet to be an evaluation of the performance of those summary statistics in trait 18 

state-dependent models.  19 

 20 

Due to the high efficiency and accuracy in estimation, here, we use the ABC-SMC 21 

framework to estimate parameters in the simplest state-dependent model BiSSE, and 22 

test the inference performance by comparing the inference error of the parameters 23 

using the ABC-SMC algorithm and two likelihood-based approaches: maximum 24 

likelihood estimation (MLE) and Markov chain Monte Carlo (MCMC). Finally, we 25 

investigate the performance of a set of phylogenetic and trait related summary 26 

statistics to select the most efficient combination for estimating evolutionary rates of 27 

state-dependent models.  28 

 29 

Methods 30 

Trait-dependent simulation 31 

The BiSSE (binary state speciation and extinction) model simulates diversification 32 

dynamics according to a birth-death model where traits shape diversification rates. The 33 

model considers an evolving binary trait with two states, 0 and 1 (e.g., presence or 34 

absence of a specific trait). It assumes that the per lineage rates of speciation (λ0, λ1) 35 

and per lineage extinction (μ0, μ1) depends on the trait state of a species. It also allows 36 

transitions between states (q01, q10). Based on this model, we simulated “observed” 37 

phylogenetic trees and trait states at tips, under a series of parameter scenarios 38 

considering symmetric (equal rates between trait states) or asymmetric (rates differ 39 

between trait states), speciation, extinction and transition rates (Table 1). To simplify 40 

the analysis, we set only one of the three pairs of rates to be asymmetric in each 41 
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scenario. For each scenario we simulated 50 replicates, and in total we produced 350 1 

phylogenetic trees with trait data as observed data for parameter inference. To avoid 2 

extremely large trees, we set a constraint with a maximum of 500 species in total, and 3 

for trait dependence to make sense (i.e., we would not expect to do an SSE-analysis 4 

when only one state is observed), we imposed the constraint that at least one species 5 

is present for each state at the end of the simulation. 6 

 7 

Table1. Parameter sets used to generate the observed data via simulations of the BiSSE model. In total, 8 

seven parameter combinations were used (seven scenarios), including a symmetric scenario as control 9 

(scenario 1), and two asymmetric scenarios for each pair of rates. 10 

Scenario Speciation 

rate state 0 

(λ0) 

Speciation 

rate state 1 

(λ1) 

Extinction 

rate state 0 

(μ0) 

Extinction 

rate state 1 

(μ1) 

Transition 

state 0 to 1 

(q01) 

Transition 

state 1 to 0 

(q10) 

S1 0.3 0.3 0.05 0.05 0.1 0.1 

S2 0.2 0.4 0.05 0.05 0.1 0.1 

S3 0.1 0.5 0.05 0.05 0.1 0.1 

S4 0.3 0.3 0.05 0.01 0.1 0.1 

S5 0.3 0.3 0.05 0.1 0.1 0.1 

S6 0.3 0.3 0.05 0.05 0.1 0.2 

S7 0.3 0.3 0.05 0.05 0.1 0.02 

 11 

Likelihood-based estimation through likelihood maximization and Bayesian 12 

MCMC 13 

The BiSSE model allows likelihood calculation (Maddison et al., 2007), where the 14 

likelihood indicates the probability of observing the binary trait data on the 15 

phylogenetic tree with given parameters. The likelihood is calculated based on a set of 16 

ordinary differential equations (Maddison et al., 2007): 17 

𝑑𝐷𝑖(𝑡)

𝑑𝑡
= (2𝜆𝑖𝐸𝑖(𝑡) − 𝜆𝑖 −  𝜇𝑖 − 𝑞𝑖𝑗)𝐷𝑖(𝑡) + 𝑞𝑖𝑗𝐷𝑗(𝑡) 18 

𝑑𝐸𝑖(𝑡)

𝑑𝑡
= 𝜇𝑖 − ( 𝜆𝑖 +   𝜇𝑖 + 𝑞𝑖𝑗)𝐸𝑖(𝑡) + 𝜆𝑖𝐸𝑖(𝑡)2 + 𝑞𝑖𝑗𝐸𝑗(𝑡) 19 

where Di(t) describes the probability of observing the phylogeny and associated 20 

character states at present evolved from a lineage in a particular trait state i at time t, 21 

and Ei(t) describes the probability of a lineage that has no descendants at present, and 22 

λi, μi, qij represent state-dependent speciation, extinction and character transition rates 23 

respectively (Maddison et al., 2007; FitzJohn, 2012).  24 

 25 

Parameters can then be estimated using maximum likelihood estimation (MLE), which 26 

yields only a point estimate. To compare the ABC results with the likelihood-based 27 

approach, we developed a full (i.e., using the likelihood) Bayesian analysis using 28 

Markov chain Monte Carlo (MCMC), under the same assumptions of prior distributions 29 

as the ABC (see below). To obtain a stable and convergent MCMC chain, we ran 30 
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1,000,000 iterations after 100,000 iterations of burn-in. For each data set, we estimated 1 

all six parameters regardless of the symmetry of the generating rates. The simulations 2 

and likelihood calculations were performed using the R package secsse (Herrera-Alsina 3 

et al., 2023). The reason for using the secsse package is that the SecSSE model reduces 4 

exactly to BiSSE when there are no hidden states and the examined states are binary, 5 

but the range of application is much broader than BiSSE. As the combination of HiSSE 6 

and MuSSE, the SecSSE model takes into account hidden states, which improves the 7 

accuracy of detecting trait dependencies in diversification rates, as well as breaking the 8 

constraints on the number of traits and trait states in preceding SSE models. Therefore, 9 

it can accurately generate BiSSE simulations and estimates, and facilitates further 10 

testing in the more complex conditions.   11 

 12 

ABC-SMC estimation  13 

We performed a sequential Monte Carlo algorithm (ABC-SMC) to estimate parameters 14 

for each observed data. The algorithm we used was derived from the original ABC-SMC 15 

algorithm introduced by Toni et al. (2009) (Box 1). For the ABC algorithm, we used 16 

uniform prior distributions U (0,1). The algorithm starts by sampling a series of 17 

parameter sets (particles) from the prior distribution, and then simulates datasets with 18 

these parameters and computes the difference in summary statistic between the 19 

observed data and the simulated data. This was repeated until this difference was 20 

smaller than a threshold ϵ. We used an iteratively adaptive method choosing ever-21 

decreasing thresholds for each iteration, by specifying the median values of the 22 

summary statistic distance from the previous iteration, which means the decreasing 23 

thresholds depend on the position of the accepted particles in the previous iteration. 24 

This is more efficient than using a given linearly or exponentially decreasing pattern. 25 

We used 500 particles per iteration and the algorithm was assumed to generate a 26 

converged posterior at an acceptance rate of 1 in 500. The ABC and MCMC algorithms 27 

used in this study were implemented in the R package DivABC, which is available on 28 

Github (github.com/xieshu95/DivABC). 29 

 30 

 31 

 32 
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 1 

 2 

Summary statistics 3 

We tested the usefulness and efficiency of a set of summary statistics for improving ABC 4 

performance. In total, we used six summary statistics to describe the phylogenetic 5 

dynamics and trait evolution along the phylogeny, which are: 1) NLTT (normalized 6 

lineage-through-time), 2) MPD (mean pairwise distance), 3) MNTD (mean nearest 7 

taxon distance), 4) Colless index, 5) tip ratio, 6) phylogenetic signal D. NLTT is a 8 

summary statistic known to be efficient in phylogenetic analyses of diversification, 9 

which has been shown a better performance than classic statistics (e.g., phylogenetic 10 

diversity (PD)) in different types of birth-death models (Janzen et al., 2015). The 11 

original nLTT statistic does not capture trait information, so we developed a method to 12 

Box 1. The ABC SMC algorithm  

S1: Initialize thresholds ϵ1 

S2: Set iteration t = 1  

      For particle i = 1,…, N 

  Repeat 

           Sample θ1i from the prior π(θ). 

           Simulate phylogeny P1i ~ θ1i. 

           Calculate distance D1i (SS) = |SS(P1i) – SS(P0)|. 

until D1i (SS) < ϵ1 

           Calculate weight: 𝑤1
𝑖

 = 1/N 

   Calculate threshold for next iteration: ϵ2 = median {D1
1 (SS), D1

2 (SS)… D1
N (SS)}  

S3: t = 2,…,T 

      For particle i = 1,…, N 

Repeat 

Sample θti from population {θt-1} with weight 𝑤𝑡−1
𝑖 , and perturb θti ~N(0, 0.01). 

           Simulate phylogeny Pti ~ θti. 

           Calculate distance Dti (SS) = |SS(Pti) – SS(P0)|. 

until Dti (SS) < ϵt 

Add θti to the population {θt} 

           Calculate weight: 𝑤𝑡
𝑖 =

π(𝜃𝑡
i)

∑ 𝑤𝑡−1
𝑗

𝑁(𝜃𝑡−1
j

,𝜃𝑡
i)𝑁

𝑗=1

 

Normalize the weights. 

Calculate threshold for next iteration: ϵt + 1 = median {Dt1 (SS), Dt2 (SS)… DtN (SS)} 

 

where N is the total number of the particles needed for generation t, and T is the total number 

of iterations before the algorithm stop. ϵ1 …ϵT means the sequence of decreasing tolerance 

threshold from iteration 1 to T. θt
i means the particle i of iteration t, and 𝑤𝑡

𝑖
 is the weight of 

this particle. Pti is the simulated data with the particle θti, and SS(Pti) is the calculated 

summary statistic of the simulation. 
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calculate the nLTT statistic of each trait state by trimming branches from the 1 

phylogenetic tree with the other trait state at the tip. We note that the combination of 2 

the two resulting trimmed trees may not be exactly equivalent to the original tree (Fig. 3 

1). We calculated the nLTT statistics for the entire tree (nLTTtotal), for the trimmed tree 4 

with only state 0 (nLTT0), and the trimmed tree with only state 1 (nLTT1). As illustrated 5 

in Fig 1, for the same phylogenetic tree, different trait distributions at the tips can lead 6 

to differences in nLTT0 or nLTT1. MPD and MNTD are metrics that have been commonly 7 

used to measure phylogenetic diversity (Webb, 2000), and Colless index is a widely 8 

used statistic to measure the balance of phylogenetic trees (Colless, 1995). 9 

Furthermore, we calculated the state-specific MPD, MNTD and Colless index in the 10 

same way as calculating nLTT0 or nLTT1 based on the trimmed tree with a single state. 11 

The tip ratio between binary states was calculated as the number of species with 12 

species-rich state divided by the number of species with species-poor state: 13 

Tip ratio =
𝑚𝑎𝑥(𝑁𝑠𝑡𝑎𝑡𝑒 0,  𝑁𝑠𝑡𝑎𝑡𝑒 1)

𝑚𝑖𝑛(𝑁𝑠𝑡𝑎𝑡𝑒 0,  𝑁𝑠𝑡𝑎𝑡𝑒 1)
 14 

 15 

Another summary statistic we examined is D (Fritz & Purvis, 2010), which measures 16 

the phylogenetic signal of a given phylogeny with binary trait states. To calculate D, the 17 

total state difference between each sister clade along the phylogeny (∑dobs) (Fig 2) is 18 

computed, and is then scaled by the sum of state differences based on two permutations 19 

of the trait values. One is a random permutation that shuffles the tip state values (0 or 20 

1) along the tree, generating a series of sums of state differences ∑dr, and the other 21 

simulates continuous trait evolution under the Brownian motion model, and 22 

discretizes the tip states into a binary trait, generating a series of sums of state 23 

difference ∑db. Permutations are performed 1000 times for each tree. The statistic D is 24 

calculated as: 25 

𝐷 =
(∑ 𝑑𝑜𝑏𝑠 − 𝑚𝑒𝑎𝑛(∑ 𝑑𝑏))

(𝑚𝑒𝑎𝑛(∑ 𝑑𝑟) − 𝑚𝑒𝑎𝑛(∑ 𝑑𝑏))
 26 

  27 

The ∑dobs is sensitive to the pattern of how traits evolve through the phylogeny 28 

(phylogenetically clumped or dispersed), and the D statistic can distinguish trait 29 

dynamics even under the same phylogeny (Fig 2).  30 

 31 

To simplify the analysis, we did not test all the permutations among these six metrics, 32 

but manually selected the combinations of most interest (Table 2). We used the nLTTtotal 33 

as the main measurement of the phylogenetic dynamics, however, this metric is 34 

insufficient for inferring diversification variance between states because of the lack of 35 

trait information. Therefore, we added other trait-related statistics respectively based 36 

on nLTTtotal, and compared the performance among the combinations to filter the most 37 

powerful statistics. The calculations of nLTT, MPD, MNTD and Colless index are 38 

implemented in the R package treestats, which is available on Github 39 

(github.com/thijsjanzen/treestats). 40 
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 1 

Fig 1. Hypothetical example of transforming an entire phylogeny with binary tip states into two trimmed trees with a single state by clustering the tips with 2 

the same states. a) example of a (balanced) tree with eight extant species at the present time, and three potential trait distribution at tips (other trait 3 

distributions are possible, but we show only three for the example). Blank circles represent state 0, and filled black circles represent state 1. b) shows the 4 

two reduced trees for each state depending on the trait distribution at the tips a). c) the plot of the nLTT for the entire phylogenetic tree in a). d) the plot of 5 

the nLTT for the trimmed trees with a single state in b), and here we show only the nLTT plot for one of the states, because the plot for the other state is 6 

equivalent in the example. 7 
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 1 

 2 

   3 
               4 

Fig 2. Illustration of calculating ∑dobs and D under different phylogenetic patterns. A) is a 5 

phylogenetically overdispersed tree with binary sates evenly distributed at tips. B) and c) are two 6 

phylogenetic clumped trees. The circles at the tips indicate the observed trait states, and the circles 7 

at nodes indicate the probability of each ancestral state. To calculate D, the mean (∑dr) and mean 8 

(∑db) are determined from 1000 permutations for each tree. 9 

 10 

 11 

 12 

 13 

 14 

 15 

∑dobs = 4                          

D = 2.06 

∑dobs = 2                          

D = -1.47 

∑dobs = 3.5                          

D = 1.21 
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Table 2. Selected summary statistic combinations and their abbreviations. 1 

Combination Summary statistic Abbreviation 

1 nLTTtotal nLTT 

2 D D 

3 nLTTtotal + D nLTT-D 

4 nLTTtotal + nLTT1 + nLTT2  nLTTs 

5 nLTTtotal + nLTT1 + nLTT2 + D nLTTs-D 

6 nLTTtotal + MPD1 + MPD2 nLTT-MPD 

7 nLTTtotal + MNTD1 + MNTD2 nLTT-MNTD 

8 nLTTtotal + colless1 + colless2 nLTT-colless 

9 nLTTtotal + tip ratio nLTT-ratio 

Results 2 

We compared the inference error of the different inference methods by calculating the 3 

relative distance between the true (generating) values and the estimations using the 4 

ABC, MCMC and MLE approaches. In the main text, we use the median of the posterior 5 

distributions representing the estimations from the ABC and MCMC algorithms to 6 

compare with the point estimation of MLE. The comparisons of the full posterior 7 

distributions are given in the Supplementary Material (Fig S3). To analyze the effect of 8 

different levels of trait dependence on parameter estimation, we divided the seven 9 

scenarios into three groups according to the asymmetry of different rates, which are 1) 10 

asymmetry in speciation (scenarios S1, S2 and S3); 2) asymmetry in extinction 11 

(scenarios S1, S4 and S5); 3) asymmetry in transition (scenarios S1, S6 and S7).  12 

 13 

Our general conclusion is that using only the nLTT statistics in the ABC approach can 14 

lead to accurate estimates of state-dependent speciation and extinction rates, but 15 

produces a large inference error in estimating transition rates between states. However, 16 

the inference accuracy can be significantly increased by adding the summary statistic 17 

D. In this case, the ABC algorithm performs well in estimating all six parameters of the 18 

BiSSE model for most of the scenarios we investigated, and is comparable with the 19 

likelihood-based approaches with minor differences. The ABC methods only lead to 20 

relatively larger inference errors when the speciation rates are highly asymmetric 21 

between states (λ1 / λ0 = 5), but in this case the error occurs only in the rates associated 22 

with the state with fewer species. We will now discuss our results in detail. 23 

 24 

Statistics of the observed data 25 

We calculated the tree size (as measured by the total number of species on the observed 26 

phylogenetic tree), tip ratio (the ratio of the diversity between the species-rich state 27 

and the species-poor state), and the number of tips with each state across all the 28 

observed datasets (350 trees). The observed phylogenetic trees generated under the 29 

seven scenarios show different patterns. Overall, the mean and the standard deviation 30 

of the size of the full tree are similar among the scenarios (Table 2), because of the 31 
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constraint of the maximum number (500) of the species when generating observed 1 

data. However, the tip ratio becomes larger with an increasing level of asymmetry in 2 

speciation and transition rates. In addition, as the asymmetry level in speciation 3 

increasing, more observed trees with ancestral state 0 (with lower speciation rate) has 4 

been selected (Table 2). 5 

 6 

Table 2. Main properties of the observed datasets. For tree size, tip ratio, number of tips with state 0 and 7 

state 1, we show the mean (standard deviation) across the 50 observed datasets for each scenario 8 

(obtained via simulations using the parameters of each scenario). The last two columns show the 9 

number of replicates with each ancestral state respectively. 10 

 11 

ABC with different summary statistics  12 

Using different groups of summary statistics shows a large difference in the 13 

performance of parameter estimation of ABC. The nLTT statistic alone can accurately 14 

estimate speciation and extinction rates (Figs 3, 4, and 5) except when the generating 15 

rates of speciation greatly vary between binary states (i.e., scenario S3) (Figs 3, 4, and 16 

5), and leads to large bias in net diversification rate estimates in this case (Fig S1). 17 

However, the inference errors and the variance in transition rates and net 18 

diversification rates among replicates are always large (Figs 3, 4, and 5), due to the lack 19 

of trait dynamic information along phylogenetic trees. The combination of nLTTs and 20 

nLTT-MNTD improves the inference accuracy in estimating speciation rates when there 21 

is high asymmetry in speciation (Fig 3), while the other combinations including nLTT 22 

(i.e., nLTT-MPD, nLTT-colless, and nLTT-ratio) show no significant improvement in 23 

estimations over using nLTT alone (Figs 3, 4, 5 and S1). 24 

 25 

In contrast, the statistic D is efficient in estimating transition rates in different 26 

scenarios, but leads to large bias and variation in estimating speciation and extinction 27 

rates when used on its own (Figs 3 and 4). Combining the statistic D with the nLTT 28 

statistics (i.e., nLTT-D and nLTTs-D) visibly improves the estimation accuracy in 29 

transition rates in all the scenarios, as well as the diversification rates in extreme cases 30 

(tip ratio > 5) (Fig 3 and S1). Overall, the best summary statistic combination is nLTTs-31 

D, which includes both trait dynamic information from phylogenetic signal (as 32 

measured by D) and temporal trait information coming from the nLTT statistics. 33 

Scenario Tree size Tip ratio NState0 NState1 
Ancestral 

state 0 

Ancestral 

state 1 

S1 222 (98) 1.29 (0.28) 113 (52) 110 (51) 25 25 

S2 230 (111) 2.39 (0.83) 70 (33) 161 (82) 34 16 

S3 232 (127) 4.55 (2.48) 46 (27) 186 (102) 42 8 

S4 241 (120) 1.40 (0.35) 109 (57) 131 (68) 28 22 

S5 195 (92) 1.39 (0.27) 110 (56) 86 (40) 28 22 

S6 233 (114) 2.19 (0.65) 158 (78) 76 (38) 25 25 

S7 246 (106) 5.72 (3.78) 46 (30) 200 (91) 22 28 
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 1 

Fig 3. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different summary statistics for 2 

scenarios with varying degrees of asymmetry in speciation (scenarios S1, S2, S3 in Table 1) in the generating rates. Plots show the residual inference 3 

error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using 4 

different summary statistic combinations. 5 

 6 
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 1 

Fig 4. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different summary statistics for 2 

scenarios with varying degrees of asymmetry in extinction (scenarios S1, S4, S5 in Table 1) in the generating rates. Plots show the residual inference 3 

error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using 4 

different summary statistic combinations. 5 
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 1 

Fig 5. Parameter estimations of state-dependent speciation, extinction and transition rates using the ABC method with different summary statistics for 2 

scenarios with varying degrees of asymmetry in transition (scenarios S1, S6, S7 in Table 1) in the generating rates. Plots show the residual inference 3 

error between estimated and (true) generated values. Dashed horizontal lines represent zero error to guide the eye. The colors indicate ABC results using 4 

different summary statistic combinations. 5 

 6 
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When evaluating the correlations between the summary statistics, we found that nLTT 1 

statistics have relatively strong positive or negative correlations with most of other 2 

summary statistics except D, especially a strong negative correlation with MNTD (Fig 3 

S4). This indicates that there is overlap of information among these summary statistics. 4 

Conversely, D is independent of most of the statistics, as it shows weak correlations (Fig 5 

S4).  6 

 7 

Inference with different methods (ABC, MCMC and MLE) 8 

Of the nine summary statistic combinations we considered, the combination of the 9 

phylogenetic signal summary statistic D and the nLTT statistics (i.e., nLTTs-D) was 10 

found to give the most accurate state-dependent rate estimations (Figs 3, 4, 5 and S1). 11 

Therefore, here we focus on comparing the ABC estimations of nLTTs-D with the 12 

estimations of MCMC and MLE. Overall, the ABC method with efficient summary 13 

statistics performs well in estimating state-dependent rates, similar to the likelihood-14 

based estimations in most scenarios. Zooming into the groups of scenarios with 15 

different levels of asymmetry in speciation, extinction and transition (Figs 6, 7 and 8), 16 

we found that asymmetry in speciation rates had a greater influence on inference 17 

accuracy than asymmetry in extinction or transition rates. In the scenarios with 18 

asymmetric speciation rates, the inference error increases with a higher level of 19 

asymmetry (Fig 6). But the bias only occurs when estimating the rates of the species-20 

poor state (e.g., λ0, μ0, q01 in scenario S3) (Fig 6). Similarly, when transition rates are 21 

highly asymmetric between states, the bias occurs in estimating extinction rate of the 22 

species-poor state (μ0 in scenario S7) (Fig 8). The ABC method can always accurately 23 

estimate net diversification rates of each state in all the scenarios, with low bias and 24 

variance, even more so than the MCMC and MLE estimations in some scenarios (Fig S2).  25 

 26 

Effect of statistic of observed data (tree size and tip ratio) on inference 27 

We evaluated the relationships between tree size and tip ratio (Table 2) with inference 28 

error across all the observed datasets. As expected, small trees (< 100 tips) or trees 29 

with large diversity difference between states tend to cause larger inference error, 30 

especially in extinction rates, which in turn affect the estimation accuracy of the net 31 

diversification rates (Figs 9,10 and S5).  32 

 33 
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 1 

Fig 6. Parameter estimations of state-dependent speciation, extinction and transition rates using 2 

the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in speciation 3 

(scenarios S1, S2, S3 in Table 1) in the generation rates. Plots show the residual inference error 4 

between estimated and (true) generated values. Dashed horizontal lines represent zero error to 5 

guide the eye. Colors indicate different inference methods. The ABC results are estimated using the 6 

summary statistic combination nLTTs-D (nLTTtotal, nLTT0, nLTT1 and D).  7 
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 1 

Fig 7. Parameter estimations of state-dependent speciation, extinction and transition rates using 2 

the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in extinction 3 

(scenarios S1, S4, S5 in Table 1) in the generating rates. Plots show the residual inference error 4 

between estimated and (true) generated values. Dashed horizontal lines represent zero error to 5 

guide the eye. Colors indicate different inference methods. The ABC results are estimated using the 6 

summary statistic combination nLTTs-D (nLTTtotal, nLTT0, nLTT1 and D).  7 

 8 
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 1 

Fig 8. Parameter estimations of state-dependent speciation, extinction and transition rates using 2 

the ABC, MCMC and MLE methods for scenarios with varying degrees of asymmetry in transition 3 

(scenarios S1, S6, S7 in Table 1) in the generating rates. Plots show the residual inference error 4 

between estimated and (true) generated values. Dashed horizontal lines represent zero error to 5 

guide the eye. Colors indicate different inference methods. The ABC results are estimated using the 6 

summary statistic combination nLTTs-D (nLTTtotal, nLTT0, nLTT1 and D).  7 

 8 

 9 
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 1 

 2 
Fig 9. Relationship between phylogenetic tree size (total number of species) and the inference error in 3 

estimating state-dependent rates (estimated minus observed). The points show the median value of the 4 

posterior distribution in MCMC and ABC algorithms, and point estimates in MLE. Different color 5 

indicates different methods.  6 

 7 
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 1 
Fig 10. Relationship between the tip ratio and the inference error in estimating state-dependent 2 

rates. The points show the median value of the posterior distribution in MCMC and ABC algorithms, 3 

and point estimates in MLE. Different color indicates different methods.  4 

 5 

 6 

 7 
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Discussion 1 

The development of SSE models has recently accelerated, especially with advances in 2 

mathematical modelling techniques and the availability of empirical data (Holland et 3 

al., 2020). The main aim of this study was not to evaluate the power of existing 4 

likelihood methods of SSE models, which has already been done in previous studies 5 

(Davis et al., 2013; Holland et al., 2020). Instead, we used the likelihood-based 6 

estimations as a baseline to evaluate the performance of a new likelihood-free ABC 7 

approach, and to search for efficient summary statistics that cover the most 8 

comprehensive phylogenetic and trait information. Across all the scenarios we tested, 9 

the combination of the nLTT statistics and phylogenetic signal D is sufficient to produce 10 

accurate estimations in ABC, which is on par with the likelihood estimations.  11 

 12 

The nLTT statistic, which provides information of evolutionary dynamics over time, has 13 

been shown to be efficient and informative in phylogenetic analysis and diversification 14 

studies (Janzen et al., 2015; Saulnier et al., 2017; Richter & Wit, 2021), as well in island 15 

biogeography (Xie et al., 2023). However, the power of the statistic is limited in trait-16 

related analysis when estimating transition rates, due to the challenge and uncertainty 17 

of mapping trait evolution on phylogenies. nLTT for the whole tree can only capture the 18 

average diversification rates independent of traits, while adding nLTT for each state 19 

(nLTT0 and nLTT1) can improve the ability in capturing trait dependency in speciation 20 

and extinction rates (Figs 3), as well as net diversification rates (Fig S1), because of the 21 

information of branching times in the reduced trees. It is similar to the original sister-22 

clade comparison method, which has been widely used in detecting the effect of traits 23 

on diversification rates before the establish of the SSE models (Mitter et al., 1988; 24 

Maddison et al., 2007). Therefore, likewise, nLTT has the same limitation on detecting 25 

state shifts over time, leading to a poor estimation of transition rates between states 26 

(Figs 3, 4 and 5). However, the phylogenetic signal statistic D contains efficient 27 

information on trait evolution, by comparing the observed trait distribution with the 28 

distributions simulated through continuous Brownian Motion patterns, compensating 29 

for the lack of the information in nLTT statistics. 30 

 31 

In this paper, we only tested the performance of nine combinations among six summary 32 

statistics. However, there are a number of alternative statistics available in 33 

phylogenetics (e.g., phylogenetic diversity (PD), Laplacian spectrum for tree shape). 34 

Recently, a few of studies have proposed a number of summary statistics for detecting 35 

trait dynamics. Lajaaiti et al. (2023) applied multiple neural network architectures to 36 

estimate state-dependent diversification rates, and compared the performance of the 37 

deep learning methods with the maximum likelihood estimation, which provided a 38 

promising alternative for phylogenetic inference. However, the study focuses more on 39 

summary statistics for describing the shape of phylogenetic trees (84 summary 40 

statistics), but less so on trait dynamics (one summary statistic (tip ratio)). Thereafter, 41 
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Schwery et al., (2023) used a Bayesian approach to test the adequacy of trait-dependent 1 

diversification models with a number of summary statistics, selected to capture trait 2 

distributions (e.g., FiSSE statistics etc.) and the features of the phylogenetic tree (e.g., 3 

gamma statistics, Colless index, branch length, etc.). A few of summary statistics that 4 

have not been included in our study are worth testing, but that does not mean adding 5 

more summary statistic is necessarily better or recommended. A primary motivation 6 

for using summary statistics is to reduce the dimensionality of the observed datasets, 7 

whilst retaining the most information for parameter estimation. Selecting an excess 8 

number of summary statistics, especially those that are highly correlated with one 9 

another, may lead to overfitting and redundancy, which reduce the efficiency and 10 

computability of the ABC algorithm (Jung & Marjoram, 2011; Blum et al., 2013). 11 

Therefore, apart from looking for alternative summary statistics, it is also important to 12 

choose and construct efficient combinations by weighting or transforming the statistics. 13 

 14 

A number of methods have been developed to address the challenges of identifying 15 

appropriate summary statistics (Wegmann et al., 2009; Nunes & Balding, 2010; 16 

Fearnhead & Prangle, 2012). Joyce and Marjoram (2008) introduced a sequential 17 

scheme to choose a sufficient subset of summary statistics by adding a randomly 18 

chosen statistic in each iteration, and evaluating whether the inclusion of the additional 19 

statistic improves the inference ability. However, the drawback is that the selected 20 

subset depends on the order of the additional summary statistics, that is, when more 21 

informative summary statistics are added late and less informative statistics have been 22 

included, the final statistic combination may be found to be redundant. Jung and 23 

Marjoram (2011) improved the method by assigning weights to each summary statistic. 24 

The method keeps all the statistics rather than filtering from the statistic pool, and 25 

allows higher weights to the statistics that are more informative. In addition, Wegmann 26 

et al., (2009) introduced a statistical approach using a partial least squares (PLS) 27 

regression, which is powerful to reduce the dimensionality of the variables. The 28 

method extracts the orthogonal components as a subset of informative summary 29 

statistics, which are highly corelated with the parameters but decorrelated with each 30 

other. Later, a semi-automatic procedure was proposed in ABC algorithms to construct 31 

summary statistics by reducing dimension with a regression-based approach, which 32 

improves both the performance of parameter estimation and model selection 33 

(Fearnhead & Prangle, 2012; Prangle et al., 2014; Harrison Id & Baker, 2020). These 34 

methods are more effective in filtering efficient summary statistics than manual 35 

selection, and may provide great insights for further improvements of ABC efficiency. 36 

 37 

We found that small observed trees lead to high inference error in BiSSE estimation 38 

using both MLE, MCMC and ABC methods, especially in estimating extinction rates (Figs 39 

9 and S5), which reemphasizes the results of previous studies that explored the 40 

accuracy of power of SSE models (Davis et al., 2013; Gamisch, 2016). Similarly, in ABC 41 

estimations, large variance in speciation rates (λ1 / λ0 = 5) or transition rates (q01 / q10 42 
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= 5) leads to a limited number of existing species in one state. Therefore, the summary 1 

statistics using trimmed trees (with either state) for trait analysis cause inference error 2 

in the specie-poor state, due to the lack of information of phylogenetic and trait 3 

dynamics in this state. On the other hand, the inference error in the extreme scenario 4 

may be due to the constraint of the total number of species (< 500 species in simulated 5 

trees) in our study. To test the effects of the constraint, we run each scenario for 1000 6 

replicates without constraints, and calculate the proportion of the replicates that 7 

contain fewer than 500 species, the results of which are shown in Table 3. The extreme 8 

case (scenario S3) that we are most interested in (strong asymmetry in speciation) is 9 

the most affected by the constraint, which means our sample of observed data is biased. 10 

The constraint results in more sampled observed phylogenies with ancestral species 11 

under the lower-rate state. These phylogenetic trees have a slow diversification at early 12 

stage until some branches transition to the higher-rate state, which may lead to a late 13 

burst before present time. We note that currently the ABC method may fail to determine 14 

whether the poor richness of a certain state is due to a low speciation rate or a high 15 

transition rate to the other state in this case (Fig S5).  16 

 17 

Table 3. Proportion of the replicates with fewer than 500 species in 1000 randomly sampled trees. 18 

Scenario Speciation 

rate 0 (λ0) 

Speciation 

rate 1 (λ1) 

Extinction 

rate 0 (μ0) 

Extinction 

rate 1 (μ1) 

Transition 

0 to 1 

(q01) 

Transition 

1 to 0 

(q10) 

Proportion 

replicates 

<500 

species 

S1 0.3 0.3 0.05 0.05 0.1 0.1 0.94 

S2 0.2 0.4 0.05 0.05 0.1 0.1 0.71 

S3 0.1 0.5 0.05 0.05 0.1 0.1 0.46 

S4 0.3 0.3 0.05 0.01 0.1 0.1 0.86 

S5 0.3 0.3 0.05 0.1 0.1 0.1 0.99 

S6 0.3 0.3 0.05 0.05 0.1 0.2 0.95 

S7 0.3 0.3 0.05 0.05 0.1 0.02 0.94 

 19 

Apart from the constraint of the size of datasets, another typical issue with the power 20 

of the BiSSE model is high type I error (Rabosky & Goldberg, 2015). This problem has 21 

been solved in a more complex model HiSSE and derived models. Currently we have 22 

only developed the ABC estimation in the BiSSE model, but it can be easily extended to 23 

more complex models, such as SecSSE, especially since our simulations have been 24 

generated with the secsse package. Furthermore, machine learning, as a rapidly 25 

developing methodology, has been incorporated into the ABC algorithms (Mondal et al., 26 

2019; Sanchez et al., 2020), and may have good potential for future studies. In any case, 27 

both ABC and machine learning methods offer important opportunities for further 28 

expansions of SSE models incorporating more factors that affect evolutionary patterns 29 

(e.g., geographical and ecological factors), where the likelihood equations are too 30 

complex to solve. 31 
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