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Abstract 

One of the two X chromosomes of females is silenced through X chromosome inactivation 

(XCI) to compensate for the difference in the dosage between sexes. Among the X-linked 

genes, several genes escape from XCI, which could contribute to the differential gene 

expression between the sexes. However, the differences in the escape across cell types and 

tissues are still poorly characterized because no methods could directly evaluate the escape 

under a physiological condition at the cell-cluster resolution with versatile technology. Here, 

we developed a method, single-cell Level inactivated X chromosome mapping (scLinaX), 

which directly quantifies relative gene expression from the inactivated X chromosome with 

droplet-based single-cell RNA-sequencing (scRNA-seq) data. The scLinaX and differentially 

expressed genes analyses with the scRNA-seq datasets of ~1,000,000 blood cells 

consistently identified the relatively strong degree of escape in lymphocytes compared to 

myeloid cells. An extension of scLinaX for multi-modal datasets, scLinaX-multi, suggested 

a stronger degree of escape in lymphocytes than myeloid cells at the chromatin-accessibility 

level with a 10X multiome dataset. The scLinaX analysis with the human multiple-organ 

scRNA-seq datasets also identified the relatively strong degree of escape from XCI in 

lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide 

association studies between sexes identified the larger effect sizes of the PRKX gene locus-

lymphocyte counts association in females than males. This could suggest evidence of the 

underlying impact of escape on the genotype3phenotype association in humans. Overall, 

scLinaX and the quantified catalog of escape identified the heterogeneity of escape across 

cell types and tissues and would contribute to expanding the current understanding of the 

XCI, escape, and sex differences in gene regulation. 
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Introduction 

One of the two X chromosomes of females is epigenetically silenced through X chromosome 

inactivation (XCI) to compensate for the difference in the dosage between sexes. XCI is 

established on the randomly determined X chromosome in each cell during early embryonic 

development1. Multiple biological processes are involved in the XCI such as the upregulation 

of the non-coding RNA XIST, changes in the histone modifications, and DNA methylation2. 

However, several X-linked genes (~23% of the X-linked genes3) escape from XCI, namely 

expressed from both active (Xa) and inactive (Xi) X chromosomes. 

 

Expression from Xi due to the escape can contribute to the sex differences of the gene 

expression and diseases, such as cancer4 and autoimmune diseases537. Furthermore, 

escape can introduce changes in the effective allele dosage of females in the context of 

genotype-phenotype association analyses8310 (e.g. genome-wide association study [GWAS] 

and expression quantitative trait locus [eQTL] mapping). This effect has contributed to the 

technical difficulties of the X chromosome analyses, resulting in the exclusion of the X 

chromosome from GWAS and eQTL analyses, which is one of the current limitations of 

genetic studies. Therefore, understanding XCI escape is important for elucidating the 

biological sex differences and solving the current limitation of the genetic analysis11. 

 

Whether an X-linked gene escapes XCI has historically been determined by evaluating the 

heterogeneity of metabolic capacity of female cell lines harboring loss of function mutation of 

X-linked metabolic enzymes on one allele12,13. Subsequently, the escape was evaluated for 

hundreds of genes by analyses of female-derived cell lines with skewed XCI14 (i.e. 

preferential inactivation of the specific X chromosome) and hybridomas from the human and 

mouse cells15. However, concerns remained regarding the generalizability of the findings to 

physiological conditions within the human body. Although several methods had utilized 

incomplete XCI skew of the tissue samples for evaluating escape16318, they were often not 

sensitive and only compatible with samples showing XCI skew. 

 

Differentially expressed gene (DEG) analysis between sexes was also utilized to investigate 

the escape. For example, DEG analysis of Genotype-Tissue Expression (GTEx) project 

datasets enabled a comprehensive exploration of the escape in a tissue/gene-wide manner3. 

Although DEG analysis could identify the escape in a physiological condition, it did not directly 

evaluate the escape and was difficult to separately evaluate the effects of the escape and 

other factors such as sex-hormonal influences. In addition, previous studies had utilized bulk 

RNA-seq datasets, thus heterogeneity of the escape across cell types had not been 

evaluated.  
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Recently, the single-cell RNA-seq (scRNA-seq) technology has been utilized to analyze the 

escape from XCI through inference of the Xi and in silico generation of the nearly completely 

skewed XCI condition3,19,20. Although scRNA-seq analyses enabled direct observation of the 

escape under physiological conditions, current computational methods require high per-cell 

read depth and are compatible only with plate-based scRNA-seq data (e.g. smart-seq). Due 

to the plate-based method's relatively limited throughput, analyses have often been 

performed with a restricted number of samples and cells, and the heterogeneity of the escape 

across different cell types has remained unexplored. Given that the droplet-based approach 

(e.g. 10X) is the high-throughput and currently most widely used method, the development 

of a new method compatible with the 10X dataset is necessary to fully utilize the growing 

number of publicly available datasets and expand the knowledge of the escape across 

multiple cell types. 

 

Here, we investigated the escape across immune cell types utilizing the ~1,000,000 cell-scale 

10X peripheral blood mononuclear cells (PBMC) scRNA-seq datasets. We performed 

pseudobulk and single-cell level DEG analysis to evaluate the escape across cell types. To 

directly and quantitatively evaluate the escape, we developed a new method single-cell Level 

inactivated X chromosome mapping (scLinaX), which identified a heterogeneity of the 

escape across cell types. We also developed an extension for the multiome (RNA + assay 

for transposase-accessible chromatin [ATAC]) dataset, scLinaX-multi, to evaluate the 

escape at the chromatin accessibility level. Our scLinaX analysis with a multi-organ dataset, 

Tabula Sapiens21, identified the heterogeneity of the escape across tissues and cell types. 

Finally, utilizing the quantitative estimates of the escape, we evaluated the effect sizes of sex-

stratified eQTL and GWAS analysis to understand how the escape would affect the results of 

the genotype3phenotype association analyses. scLinaX and scLinaX-multi are publicly 

available as an R package (https://github.com/ytomofuji/scLinaX). 

 

 

 

Results 

Pseudobulk and single-cell level DEG analysis from the scRNA-seq data 

of PBMC 

To investigate the escape in immune cells, we utilized scRNA-seq data of PBMC generated 

in the Asian Immune Diversity Atlas project (Figure 1a, Supplementary Table 1, N = 498, 

896,511 cells; AIDA) which are derived from healthy Asian subjects. We also utilized 

previously published PBMC scRNA-seq data (Supplementary Fig. 1a, Supplementary 

Table 1; N = 147, 865,238 cells) derived from COVID-19 patients and healthy subjects of 
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Japanese ancestry22,23. 

 

To evaluate the escape across immune cell types, we performed DEG analysis between 

sexes for each cell type (Fig. 1b). Cell types with a large number of cells tended to have a 

large number of significant DEGs (Supplementary Fig. 1b). X-linked genes were enriched 

among the significant DEGs (PFisher < 0.05 / 11 and PFisher < 0.05 / 8 across cell types, 

respectively for the two datasets; Supplementary Fig. 1c). The results of the DEG analyses 

were consistent across the two datasets (Supplementary Fig. 1d,e). We compared the effect 

sizes of the X-linked genes in the DEG analysis across the XCI statuses defined in the 

previous study3 and confirmed that known escapee genes tended to have larger effect sizes 

than other classes of X-linked genes (Fig. 1c, Supplementary Fig. 1f). Consistent with the 

previous study3, DEG profile of the X-linked genes is often shared across immune cells (Fig. 

1d). However, lymphocytes tended to show larger effect sizes than myeloid cells, suggesting 

the difference of the degree of escape among the immune cells (Fig. 1e,f, Supplementary 

Fig. 1g,h). 

 

To further elucidate the heterogeneity of the female-biased expression of escapee genes 

among immune cells, we performed single cell-level DEG analysis. We used batch-corrected 

PCs as proxies for continuous cell state and evaluated the interaction between the sex and 

cell state using a negative binomial model (Fig. 1b, Methods). Significant cell state-

interacting sex-biased expression was frequently observed for the escapee genes 

(Supplementary Fig. 2a). The negative binomial model was well-calibrated and the results 

were consistent across the two datasets (Supplementary Fig. 2b-d). The larger effect sizes 

were observed for the lymphocytes in comparison to the myeloid cells for the representative 

escapee genes (Fig. 1g). On the other hand, some of the escapee genes, such as the PRKX 

gene, showed different patterns of heterogeneity of the effect sizes (Fig. 1h). Overall, 

heterogeneity of the escape across immune cell types, namely the relatively strong degree 

of escape in lymphocytes, were suggested from the DEG analysis. 
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Figure 1. Pseudobulk and single-cell level differentially expressed gene analyses 

suggested the escape from XCI across immune cells 

a, Description of the scRNA-seq datasets used in this study. b, Description of the DEG 

analysis methods used in this study. In the pseudobulk DEG analysis, differences in the gene 

expression level between sexes are evaluated for each cell cluster indicated in the UMAP of 
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the AIDA dataset. In the single-cell level DEG analysis, the difference of the cell states across 

single cells are represented as continuous batch-corrected PCs and cell-state dependent 

sex-biased gene expression is evaluated as interactions between the batch-corrected PCs 

and sex. c, A box plot represents log2 fold-changes of the gene expression between sexes. 

Genes are grouped according to the XCI status annotated in the previous study. The boxplot 

indicates the median values (center lines) and IQRs (box edges), with the whiskers extending 

to the most extreme points within the range between (lower quantile)2)[1.5) × )IQR]) and 

(upper quantile )+ )[1.5) ×) IQR]). d, A heatmap represents differential gene expression 

between sexes. The colors of the tiles represent log2 fold-changes of the gene expression 

between sexes. Only genes that satisfied Bonferroni-corrected significance thresholds at 

least in a cell type are shown. * P < 0.05. ** per-cell type FDR < 0.05. *** Bonferroni-corrected 

P < 0.05. e, A box plot represents log2 fold-changes of the escapee gene expression between 

sexes across cell types. The boxplot indicates the median values (center lines) and IQRs 

(box edges), with the whiskers extending to the most extreme points within the range between 

(lower quantile)2)[1.5) × )IQR]) and (upper quantile )+ )[1.5) ×) IQR]). f, Scatter plots represent 

pairwise comparisons of the log2 fold-changes of the escapee gene expression between 

sexes. The y-axes represent the log2 fold-changes in monocytes and the x-axes represent 

the log2 fold-changes in lymphocytes. The dashed lines represent x = 0, x = y, and y = 0. g,h, 

UMAPs represent the per-cell effect sizes of the sex in the single cell-level DEG analysis 

calculated as a sum of the effect sizes of sex and sex × batch-corrected PCs (Methods, top) 

and gene expression (bottom). Genes that show a relatively stronger degree of escape in 

lymphocytes than monocytes (g) and other patterns of heterogeneity of effect sizes (h) are 

indicated. P-values for the interaction between sex and batch-corrected PCs were < 1 × 10-

200 (g) and 1.5 × 10-12 (h). DEG, differentially expressed genes; FDR, false discovery ratio; 

IQR, interquartile range; PC, principal component; PAR, pseudoautosomal region; PBMC, 

peripheral blood mononuclear cells; scRNA-seq, single-cell RNA-seq; UMAP, Uniform 

manifold approximation and projection; XCI, X chromosome inactivation. 
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scLinaX can directly evaluate the escape from the 10X scRNA-seq data 

To directly validate the evidence of the heterogeneity of the escape which was indirectly 

suggested by the DEG analysis, it was effective to directly quantify the escape from XCI, 

namely gene expression from Xi. 10X scRNA-seq information could be useful for the analysis 

of escape because single cell-level information enabled us to treat cells with different 

inactivated X chromosomes separately, while such a method had not been implemented due 

to the sparse nature of 10X scRNA-seq data. Therefore, we developed a new method, single-

cell Level inactivated X chromosome mapping (scLinaX), which is compatible with the 10X 

scRNA-seq data (Fig. 2a). First, pseudobulk allele-specific expression profiles are generated 

for cells expressing each candidate reference single nucleotide polymorphism (SNP). Then, 

alleles of the reference SNPs on the same X chromosome are listed by correlation analysis 

of the pseudobulk ASE profiles. Finally, scLinaX assigns which X chromosome is inactivated 

to each cell based on the allelic expression of the reference SNPs and generates a nearly 

complete XCI skewed condition in silico and the estimates for the ratio of the expression from 

Xi.  

 

We applied scLinaX to the PBMC single-cell RNA-seq data and SNP array data, and found 

that previously identified escapee genes tended to show a higher ratio of the expression from 

Xi than other classes of genes, suggesting that scLinaX had successfully worked (Fig. 2b, 

Supplementary Fig. 3a-f, Supplementary Table 2,3). We also performed the analysis 

based on the SNP data called from scRNA-seq data and the results were almost consistent 

with the results based on the SNP array data (Supplementary Fig. 3a-i), suggesting that 

scLinaX would be also useful when germline genotype data was not available. The scLinaX 

estimates were consistent between the two datasets, suggesting the robustness of the 

scLinaX analysis (Fig. 2c). Among the genes annotated as subjected to complete XCI, 

SEPTIN6 showed a relatively high ratio of the expression from Xi consistently in both of the 

datasets (Fig. 2c, the ratio of the expression from Xi = 0.183 and 0.165 [SD = 0.067 and 

0.078], respectively in the AIDA and Japanese datasets). Given that SEPTIN6 showed 

female-biased expression in the DEG analysis (log2 FC = 0.36 and 0.34 [SE = 0.017 and 

0.042], respectively in the AIDA and Japanese datasets) and recently reported to be 

escapee18,24, SEPTIN6 was thought to actually be an escapee gene. 

 

The relationship between the effect sizes of the DEG analysis and the ratio of the expression 

from Xi estimated by the scLinaX was compatible with the assumption that differential gene 

expression between sexes was due to the expression from Xi (Fig. 2d, Supplementary Fig. 

3j; the ratio of the expression from Xi [y-axis] = 1 - 1/2log2 fold change [x-axis]). However, there 

existed genes that showed female-biased expression in the DEG analysis, but with a low 

ratio of the expression from Xi. For example, the CD40LG gene was female-biased DEG in 
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the PBMC analysis but its ratio of the expression from Xi was low compared to other escapee 

genes (Fig. 2e,f). The CD40LG was highly expressed in CD4 T cells, but it was not a DEG 

in the pseudobulk analysis on CD4 T cells, suggesting that it was detected as a DEG due to 

confounding of the relative composition of CD4 T cells, not escape (Fig. 2f, Supplementary 

Fig. 3k). The ITM2A gene was also detected as a significant female-biased DEG in the PBMC 

analysis while the ratio of the expression from Xi was low (Fig. 2g, Supplementary Fig. 3k). 

Since ITM2A showed significant female-biased expression in the per-cell type DEG analysis, 

it might be a case that female-biased expression of ITM2A was due to the other factors such 

as sex-hormonal effects. Considering these examples, scLinaX would be useful to directly 

evaluate the escape and complement the limitation of the DEG analysis. 
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Figure 2. scLinaX, a method to quantify escape from XCI using droplet-based scRNA-

seq data 

a, A schematic illustration of scLinaX. In step1, cells expressing each reference SNP is 

grouped, and pseudobulk ASE profile are generated. The definitions of alleles 1 and 2 are 

different across cells depending on which allele of the reference SNP is expressed by each 

cell. In step2, the correlation between pseudobulk ASE profiles, which are tied to single 

reference SNPs, is evaluated. Positive and Negative correlation means that the reference 
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alleles of the reference SNPs are on the same strand and different strands, respectively. 

Based on the results of the correlation analysis, alleles of the reference SNPs are grouped 

based on which X chromosome are these alleles on. In step3, cells are grouped based on 

which groups of the reference SNPs are expressed. In step4, pseudobulk ASE profiles from 

cells expressing any of the reference SNPs are generated. The definition of alleles 1 and 2 

are different across cells dependent on which group of the reference SNP allele is expressed 

by each cell. The ratio of the expression from Xi is defined as a ratio of allele counts from the 

alleles with a lower allele count. b, A box plot represents the estimated ratio of the expression 

from Xi. Genes are grouped according to the XCI status annotated in the previous study. The 

boxplot indicates the median values (center lines) and IQRs (box edges), with the whiskers 

extending to the most extreme points within the range between (lower quantile)2)[1.5) × )IQR]) 

and (upper quantile )+ )[1.5) ×) IQR]). c, A plot represents the concordance of the ratio of the 

expression from Xi between the AIDA dataset (x-axis) and Japanese dataset (y-axis). Genes 

that are annotated as escapee genes and the SEPTIN6 gene are indicated. The black line 

indicates x = y. d, A plot represents the relationship between the log2 fold-changes in the 

DEG analysis (x-axis) and the ratio of the expression from Xi (y-axis). Genes that are 

annotated as escapee genes and the SEPTIN6 gene are indicated. The curved line indicates 

the theoretical relationship under the assumption that differential gene expression between 

sexes is solely due to the expression from Xi and total gene expression in males and Xa-

derived gene expression in females are at the same level. e, A plot represents the ratio of the 

expression from Xa and Xi at an individual level for the DDX3X gene. The dashed horizontal 

line represents the mean ratio of the expression from Xi across samples. f,g, Forest plots 

represent the log2 fold changes in the DEG analysis for each cell type (left) and plots 

represent the ratio of the expression from Xa and Xi at an individual level (right). The error 

bars indicate 95% CI. The colors of the dots represent the log-scaled mean normalized count 

calculated by DEseq2 (baseMean). * P < 0.05. ** per-cell type FDR < 0.05. The dashed 

horizontal line represents the mean ratio of the expression from Xi across samples. AIDA, 

Asian Immune Diversity Atlas; ALT, alternative allele; ASE, allele-specific expression; CI, 

confidence interval; DEG, differentially expressed genes; FDR, false discovery ratio; IQR, 

interquartile range; PAR, pseudoautosomal region; REF, reference allele; SNP, single 

nucleotide polymorphism; Xa, active X chromosome; XCI, X chromosome inactivation; Xi, 

inactive X chromosome. 
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Quantification of the escape across cell types by scLinaX 

 

Next, we evaluated the escape as a ratio of the expression from Xi for each cell type by 

scLinaX. Consistent with the results of the DEG analysis, lymphocytes tended to have a 

higher ratio of expression from Xi than monocytes for the escapee genes (Fig. 3a,b, 

Supplementary Fig. 4a,b, Supplementary Table 2,3). When per-cell type estimates from 

scLinaX were projected onto the UMAP, the gradients of the ratio of the expression from Xi 

showed the same pattern as those from the single-cell level DEG analysis (Fig. 1g,3c, 

Supplementary Fig. 4c). In addition, the PRKX gene, which showed an atypical pattern of 

the heterogeneity of the effect sizes in the DEG analysis, also showed the gradients of the 

ratio of the expression from Xi with the same pattern as those from the single-cell level DEG 

analysis (Fig. 1h,3d, Supplementary Fig. 4c). Considering the clear relationship between 

the results of DEG and scLinaX analyses in the bulk PBMC analysis (Fig. 2d), these findings 

suggested that the inter-cell type heterogeneity of the escape quantified by scLinaX 

contributed to the heterogeneity of sex-difference of the gene expression across cell types. 
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Figure 3. The scLinaX-based quantification of the escape from XCI across immune cell 

types 

a, A box plot represents the estimated ratio of the expression from Xi for escapee genes 

across cell types. The boxplot indicates the median values (center lines) and IQRs (box 

edges), with the whiskers extending to the most extreme points within the range between 

(lower quantile)2)[1.5) × )IQR]) and (upper quantile )+ )[1.5) ×) IQR]). b, Scatter plots represent 
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pairwise comparisons of the ratio of the expression from Xi for escapee genes. The y-axes 

represent the ratio of the expression from Xi in monocytes and the x-axes represent the ratio 

of the expression from Xi in lymphocytes. The dashed lines represent x = 0, x = y, and y = 0. 

c, UMAPs colored according to the ratio of the expression from Xi estimated for each cell 

type. Representative genes that showed a higher ratio of expression from Xi in lymphocytes 

than monocytes, the DDX3X and EIF2S3 genes, are indicated. Cell types whose ratio of the 

expression from Xi could not be estimated are colored grey. d, Plot represents the ratio of 

the expression from Xa and Xi at an individual level for each cell type. Representative genes 

that show a higher ratio of expression from Xi in lymphocytes than monocytes, the DDX3X 

and EIF2S3 genes, are indicated. The dashed horizontal line represents the mean ratio of 

the expression from Xi across samples for each cell type. e, A UMAP colored according to 

the ratio of the expression from Xi estimated for each cell type. The PRKX gene, which shows 

a unique pattern of heterogeneity of the escape across cell types, is indicated. Cell types 

whose ratio of the expression from Xi could not be estimated are colored grey. f, Plot 

represents the ratio of the expression from Xa and Xi at an individual level for each cell. The 

PRKX gene, which shows a unique pattern of heterogeneity of the escape across cell types, 

is indicated. The dashed horizontal line represents the mean ratio of the expression from Xi 

across samples for each cell type. IQR, interquartile range; UMAP, Uniform manifold 

approximation and projection; Xa, active X chromosome; XCI, X chromosome inactivation; 

Xi, inactive X chromosome. 
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scLinaX-multi can evaluate the escape at the chromatin accessibility level 

XCI escape, which we had observed at the transcription level, was closely linked to the gene 

regulation at the chromatin level. XCI induces chromatin-level transcriptional repression on 

Xi, while the transcriptionally active chromatin state on Xi can be observed under the escape 

from XCI. Although previous studies had demonstrated the escape at the chromatin level 

through the comparative analyses between sexes25 and allele-specific epigenetic 

investigations using cell lines26, the chromatin-level escape had not been directly quantified 

under the physiological condition. To directly quantify the chromatin level escape, we 

developed an extension of scLinaX for the multi-modal single-cell data (RNA + ATAC), 

scLinaX for multi-modal data (scLinaX-multi; Fig. 4a). In multi-modal single-cell data, each 

cell has both the RNA and ATAC information. scLinaX-multi utilizes allelic RNA expression 

information to estimate which X chromosome is inactivated for each cell as done in the 

scLinaX analysis. For the cells successfully estimated for the inactivated X chromosome 

based on the RNA information, allelic ATAC information is utilized to calculate the ratio of the 

accessible chromatin derived from Xi, namely the escape at the chromatin accessibility level. 

 

We applied scLinaX-multi to the publicly available PBMC multiome datasets from a female 

and found that peaks whose nearest genes were escapee genes tended to show a higher 

ratio of the accessible chromatin derived from Xi than other classes of peaks, suggesting that 

scLinaX-multi had successfully worked (Fig. 4b, Supplementary Fig. 5a-e, Supplementary 

Table 4). The ratio of the accessible chromatin derived from Xi (ATAC) and the ratio of the 

expression from Xi (RNA) for peak3nearest gene pairs were nominally correlated for the 

escapee genes in PBMC (Fig. 4c, Supplementary Fig. 5f; Pearson's correlation = 0.57 and 

P = 0.066). The ratio of the accessible chromatin derived from Xi was nominally higher in 

lymphocytes than in monocytes (Fig. 4d, PWilcoxon-signed < 0.05 in CD4+ T cells vs. monocytes 

and CD8+ T cells vs. monocytes). For example, peaks at the transcription start sites (TSS) 

of the escapee genes (DDX3X, USP9X, and ZRSR2) showed a relatively higher ratio of the 

accessible chromatin derived from Xi in lymphocytes than in monocytes (Fig. 4e-g). In 

addition, we found the chromatin-level escape at the myeloid cell-specific enhancer in the 

ZRSR2 gene locus which were also defined as a cis-regulatory elements (cCRE) in the 

ENCODE project (EH38E3926410)27. In summary, scLinaX-multi could be useful in 

identifying chromatin-level escape and its heterogeneity across cell types. 
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Figure 4. scLinaX-multi, a method to estimate the chromatin accessibility of Xi from 

multi-modal single-cell omics data 

a, A schematic illustration of the scLinaX-multi. The input of the scLinaX-multi is single-cell 

multiome ATAC + Gene Expression data. In step1, cells are grouped based on which X 

chromosome is inactivated by applying scLinaX to the gene expression information of the 

10X multiome data. In step2, pseudobulk allele-specific chromatin accessibility profiles are 
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generated by summing up the allele-specific chromatin accessibility data of each single cell. 

The definition of alleles 1 and 2 are different across cells dependent on which X chromosome 

is inactivated in each cell. The ratio of the Xi-derived accessible chromatin is defined as a 

ratio of allele counts from the alleles with a lower allele count. b, Box plots represent the 

estimated ratio of the accessible chromatin derived from Xi for peaks within 2kbp of TSS (left) 

and g2kbp distant from TSS (right). Peaks are grouped according to the XCI status of the 

nearest gene. The boxplot indicates the median values (center lines) and IQRs (box edges), 

with the whiskers extending to the most extreme points within the range between (lower 

quantile)2)[1.5) × )IQR]) and (upper quantile )+ )[1.5) ×) IQR]). c, A plot represents the 

relationship between the ratio of the expression from Xi (RNA-level, x-axis) and the ratio of 

the accessible chromatin derived from Xi (y-axis) for each peak3nearest gene pair. Genes 

that are annotated as escape genes or showed evidence of escape in the scLinaX analysis 

(ratio of the expression from Xi > 0.15) are indicated. The black line indicates x = y. When a 

single gene has multiple peaks, the average across the peaks for the ratio of the Xi-derived 

accessible chromatin is used for the calculation of Pearson's correlation. d, Scatter plots 

represent pairwise comparisons of the accessible chromatin derived from Xi for peaks whose 

nearest genes are escapee genes. The y-axes represent the ratio of the expression from Xi 

in monocytes and the x-axes represent the ratio of the expression from Xi in lymphocytes. 

The dashed lines represent x = 0, x = y, and y = 0. P-values are calculated by the Wilcoxon 

signed-rank test. e,f,g, The results of the scLinaX-multi for the representative peaks around 

escapee genes, namely DDX3X (e), USP9X (f), and ZRSR2 (g). Normalized tag counts 

across cell types are indicated with peak information (top). The ratio of the accessible 

chromatin derived from Xa and Xi across cell types is indicated as bar plots (bottom) with 

information on which SNPs are used for the analysis. AIDA, Asian Immune Diversity Atlas; 

ALT, alternative allele; ATAC, Assay for Transposase-Accessible Chromatin; PAR, 

pseudoautosomal region; SNP, single nucleotide polymorphism; REF, reference allele; TSS, 

transcription start site; Xa, active X chromosome; XCI, X chromosome inactivation; Xi, 

inactive X chromosome. 
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Direct quantification of the escape across multi-organs with scLinaX 

To evaluate the heterogeneity of the escape beyond blood cells, we applied scLinaX to the 

Tabula Sapiens21, the current largest publicly available human multi-organ scRNA-seq 

dataset in terms of number of cells and organs21 (https://tabula-sapiens-

portal.ds.czbiohub.org). Although the Tabula Sapiens dataset did not contain genotype data, 

scLinaX was applicable to datasets without genotype data (Supplementary Fig. 3a-i). Data 

from 6 females were included in the analysis, and escapee genes were shared across the 

organs (Fig. 5a, Supplementary Fig. 6a-g, Supplementary Table 5), consistently with the 

previous study3. To evaluate the heterogeneity of the escape across organs, we performed 

pairwise comparisons of the ratio of the expression from Xi and found that lymphoid tissues, 

such as lymph node, thymus, and spleen, had a relatively high ratio of the expression from 

Xi (Fig. 5b,c). 

 

In the analyses of PBMC, it had been suggested that lymphocytes showed relatively strong 

escape. Therefore, we hypothesized that the relatively high ratio of the expression from Xi 

observed in the lymphoid tissues was due to the high cell composition of the lymphocytes. 

Consistent with the hypothesis, a relatively higher ratio of the expression from Xi was 

observed for the lymphocytes in the pairwise comparisons of the ratio of the expression from 

Xi across cell types in the Tabula Sapiens dataset (Fig. 5d,e, Supplementary Table 6). In 

summary, scLinaX analysis suggested a tissue-level escape heterogeneity linked to cell type-

level escape heterogeneity. 
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Figure 5. Quantitative evaluation of the escape from XCI with a human multi-organ 
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atlas of single-cell transcriptome 

a, A dot plot represents the ratio of the expression from Xi across organs from the Tabula 

Sapiens dataset (y-axis) for escapee genes (x-axis). The color and size of the dots represent 

the ratio of the expression from Xi and the total allele count. Heatmaps placed above the dot 

plot represent the log2 fold-change of gene expression between sexes (orange) and the ratio 

of the expression from Xi (green) calculated from the AIDA dataset. A heatmap placed on the 

right of the dot plot represents the number of cells used for the scLinaX analysis across 

organs and samples. For the XIST gene, the color of the dots exceptionally represents the 

expression from Xa. b, A dot plot represents the results of the pairwise comparison of the 

ratio of the expression from Xi across organs. The color of the dots represents the ratio of 

the genes whose ratio of the expression from Xi is higher in organ 1 (y-axis) than in organ 2 

(x-axis). The size of the dots represents the number of genes that are used for each 

comparison. A bar plot placed on the right of the dot plot represents the numbers and types 

of the cells which are used for the scLinaX analysis. c, Scatter plots represent pairwise 

comparisons of the ratio of the expression from Xi for escapee genes. The y-axes represent 

the ratio of the expression from Xi in lymphoid tissues and the x-axes represent the ratio of 

the expression from Xi in organs with a relatively weak degree of escape. Since these organs 

are commonly evaluated in TSP2, data from TSP2 is presented. The dashed line represents 

x = y. The described numbers indicate the number of genes that are located in the x < y 

(lower right, blue) and x < y (upper left, red). d, A dot plot represents the results of the pairwise 

comparison of the ratio of the expression from Xi across cell types. The color of the dots 

represents the ratio of the genes whose ratio of the expression from Xi is higher in cell type 

1 (y-axis) than in cell type 2 (x-axis). The size of the dots represents the number of genes 

that are used for each pairwise comparison. e, Scatter plots represent pairwise comparisons 

of the ratio of the expression from Xi for each escapee gene and individual. The y-axes 

represent the ratio of the expression from Xi in immune cell types and the x-axes represent 

the ratio of the expression from Xi in other cell types. The color of the points represents each 

sample. The dashed line represents x = y. The described numbers indicate the number of 

genes3sample pairs that are located in the x < y (lower right, blue) and x < y (upper left, red). 

AIDA, Asian Immune Diversity Atlas; PBMC, peripheral blood mononuclear cells; Xi, inactive 

X chromosome; XCI, X chromosome inactivation. 
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Evaluation of the differential escape in disease conditions 

It was reported that some of the autoimmune diseases (e.g. systemic lupus erythematosus 

[SLE])-associated genes were escapee and the escape of such genes could be enhanced in 

the patients with SLE537,28. Despite the potential association between the escape and 

diseases, X chromosome-wide evaluation of the escape in disease conditions had not been 

performed. We analyzed the changes in escape in two diseases, COVID-1922 and SLE29, 

based on the scLinaX estimates. After multiple-test correction, we could not detect a 

significant association possibly because of the lack of power, suggesting the need for future 

larger cohort analyses (Supplementary Fig. 7a,b, Supplementary Table 7). The top 

nominal association was the increase in the escape of the EIF2S3 gene in the monocytes of 

the COVID-19 patients (Supplementary Fig. 7c). In COVID-19 patients, EIF2S3 in 

monocytes tended to be down-regulated (Supplementary Fig. 7d). Therefore, the potential 

increase of the escape may compensate for the decrease in EIF2S3 caused by the disease 

(Supplementary Fig. 7d). We also evaluated the escape in a male sample which showed a 

karyotype of XXY, and the escape status was almost consistent with the healthy females 

(Supplementary Fig. 7e, Supplementary Table 8). 

 

 

Difference in the genetic effects on the complex traits was observed at the 

escapee gene loci 

Although genetic association studies such as GWAS and eQTL mapping have successfully 

identified the genetic backgrounds of human traits, the sex-associated difference is one of 

the remaining questions. Especially, the X chromosome has been often excluded from the 

analyses due to technical difficulties despite its apparent importance in the context of sex-

associated differences11. One of such difficulties is the potential need to adjust the dosage 

differences between males and females dependent on the degree of the escape for obtaining 

the per-allele estimate of the GWAS effect sizes. For example, previous literature suggested 

that the effective dosage of the alleles should be 0/2 for males and 0/1/2 for females under 

the complete XCI and 0/1 for males and 0/1/2 for females under the complete escape9. On 

the other hand, a previous study showed that the inter-sex differences in the eQTL effects of 

escape genes were consistent with the complete XCI rather than escape in most cases8. 

Therefore, we evaluated the effects of the escape on the sex differences of the genotype3

phenotype association analyses with the quantified catalog of the escape. 

 

First, to evaluate the effects of the escape on the eQTL analysis, we performed eQTL 

mapping with all samples from the AIDA dataset (allele dosages of the males and females 

were 0/2 and 0/1/2, respectively) and found 202 significant eQTL signals across 10 cell types 
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(Supplementary Table 9; P < 5 × 10-8). These eQTL signals were highly reproducible by the 

analysis with the Japanese dataset (Supplementary Fig. 8a, Supplementary Table 10). 

Then, we performed eQTL mapping separately for males and females and compared the 

effect sizes of the significant eQTLs on the X chromosome between sexes. We could not 

observe apparent female-biased effect sizes across all the XCI statuses including escapees 

(Fig. 6a, Supplementary Fig. 8b). In addition, there was no clear relationship between the 

sex-associated differences of effect sizes and the degree of escape quantified by the DEG 

and scLinaX analyses (Fig. 6b, Supplementary Fig. 8c). These results were consistent to 

the previous eQTL study8 while contradicting to the other studies utilizing ASE or DEG 

analyses3,14 and results of the DEG and scLinaX analyses in this study. We speculate that 

the sex differences in effective allele dosage caused by escape do not make sex differences 

in the eQTL effect because of the transformation of the expression data, such as log-

transformation which stabilizes variance and resolves heteroskedasticity (Supplementary 

Fig. 8d). 

 

Next, we evaluated the effects of the escape on the genotype3phenotype association using 

the two independent biobank datasets. To focus on the genotype3phenotype association 

signals mediated by the expression of the escapee genes, we evaluated the association 

between the eQTL variants and blood-related traits using the BioBank Japan (BBJ) dataset 

(N = 82,228-161,145; Supplementary Table 11,12)30,31. Nine associations satisfied the 

significance threshold of which only an association between the eQTL variant for PRKX 

(escapee gene) and lymphocyte counts was replicated by the analysis with the UK Biobank 

(UKB) dataset (Fig. 6c, Supplementary Fig. 9a,b, Supplementary Table 12; 

http://www.nealelab.is/uk-biobank/). Pseudobulk and single-cell level eQTL analyses 

revealed that two different eQTL signals existed in this region, namely the T/NK cell-specific 

one and myeloid cell-specific one, and only the T/NK cell-specific eQTL signal colocalized 

with the GWAS signal (Fig. 6d,e). Both of the eQTL signals did not show the difference in the 

effect sizes between sexes (Supplementary Fig. 9c). Interestingly, this locus was suggested 

to be associated with the white blood cell counts via PRKX expression in a female-biased 

manner in a previous report for the UKB analysis8. Given the results of the per-cell type and 

single-cell level eQTL analysis, this locus could affect the white blood cell counts via the 

effects on the lymphocytes. Then, we evaluated the effect sizes of the PRKX gene loci3

lymphocyte counts association in each sex, and found that effect sizes were significantly 

larger in females than in males (Fig. 6f,g, Supplementary Table 13). Although it was difficult 

to generalize the finding from a single locus, this result might be a piece of evidence for the 

effect of escape on the difference in the GWAS effect sizes between sexes.  
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Figure 6. Detection of differential effect sizes between sexes in the genotype3

phenotype association analysis 

a, Scatter plots represent the effect sizes of the significant eQTL signals (P < 5 × 10-8) in the 

female-only (x-axis) and male-only (y-axis) analyses, separately for each XCI status. The 

error bars indicate standard errors. The color of the plots indicates the cell type in which the 

eQTL signals are identified. The oblique lines correspond to the female/male effect size ratios 

described in the plots. The attached bar plots indicate the number of eQTL signals that have 

larger effect sizes in females (left) and males (right). b, The scatter plots for escapee genes 

(a, upper left) are colored according to the estimated female/male effect size ratio based on 
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the DEG analysis (top) and scLinaX analysis (bottom). Genes that are not evaluated in the 

scLinaX analyses are colored grey. c, Locus plots for the association between PRKX gene 

loci and lymphocyte counts in BBJ analysis, UKB analysis, and BBJ + UKB meta-analysis. 

The x-axis indicates position on the X chromosome (GRCh37) and the y-axis indicates -

log10(P). The rs6641874 (top variant in the BBJ + UKB meta-analysis and T cells eQTL 

analysis) and rs6641601 (top variant in the monocytes eQTL analysis) are colored purple and 

green, respectively. Genes located around the PRKX gene region are indicated at the bottom 

of the plots. d, Locus plots for the eQTL analysis of the PRKX gene across cell types. The 

rs6641874 (top variant in the BBJ + UKB meta-analysis and T cells eQTL analysis) and 

rs6641601 (top variant in the monocytes eQTL analysis) are colored purple and green, 

respectively. R2, a measure for LD to the rs6641874, is indicated as a color of the dots. 

Results of the colocalization analyses (PP.H4) with lymphocyte counts GWAS in BBJ are 

indicated in the upper right of the plots. Genes located around the PRKX gene region are 

indicated at the bottom of the plots. e, UMAPs represent the per-cell eQTL effect sizes of the 

variants in the single cell-level eQTL analysis calculated as a sum of the effect sizes of 

variants and variants × batch-corrected PCs (Methods). Associations for PRKX genes3

rs6641874 (top) and 3rs6641601 (bottom) are indicated. P-values for the interaction between 

genotypes and batch-corrected PCs were 2.7 × 10-91 (top) and 2.4 × 10-51 (bottom). f, Scatter 

plots represent the effect sizes of the rs6641874 in the female-only (x-axis) and male-only (y-

axis) lymphocyte counts GWAS analyses with each cohort. The error bars indicate standard 

errors. The oblique lines correspond to the female/male effect size ratios described the panel 

(a). g, A forest plot represents the female/male effect size ratios of the rs6641874 in the 

lymphocyte counts GWAS analyses with each cohort. The error bars indicate 95% CI. BBJ, 

BioBank Japan; CI, confidence interval; DEG, differentially expressed genes; eQTL, 

expression quantitative trait locus; GWAS, genome-wide association study; LD, linkage 

disequilibrium; UKB, UK Biobank; UMAP, Uniform manifold approximation and projection; 

XCI, X chromosome inactivation. 
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Discussion 

In this study, we quantitatively evaluated the escape from XCI across multiple cell types with 

large-scale immune-cell and multi-organ scRNA-seq datasets. The newly implemented 

method, scLinaX, enabled us to directly evaluate the escape across cell types and both the 

DEG and scLinaX analyses revealed a stronger degree of escape in lymphocytes than 

myeloid cells. We also implemented an extension of scLinaX for the multi-modal dataset, 

scLinaX-multi, and revealed a stronger degree of escape in lymphocytes at the chromatin 

accessibility level. We applied scLinaX to the multi-organ dataset, Tabula Sapiens, and 

revealed that lymphatic tissues and lymphocytes showed a stronger degree of escape in 

comparison to other tissues and cell types. Finally, we presented an example of how the 

escape might have affected sex differences in genotype-phenotype association through the 

single-cell eQTL analysis and GWAS with two biobank datasets.  

 

scLinaX is a method that enables direct observation of the escape at the cell-cluster level, 

and its applicability to 10X data makes it highly versatile. Since 10X scRNA-seq data is 

sparser than plate-based scRNA-seq methods such as smart-seq, single-cell level ASE 

profiles generated from 10X data are difficult to handle in the same way as plate-based 

scRNA-seq data. scLinaX resolves the technical difficulty associated with the sparsity of the 

data by generating pseudobulk ASE profiles for each SNP on the X chromosome and 

aggregating alleles on the same X chromosome based on the correlation of the pseudobulk 

ASE profiles of the SNPs. Since the raw output from scLinaX is single-cell level data, it is 

possible to evaluate the escape in any user-defined cluster including cell types. This unique 

feature of scLinaX is useful for evaluating the heterogeneity of the escape across various 

kinds of cells. 

 

scLinaX can map which X chromosome is inactivated for each cell based on the single cell-

level transcriptome data, and this information is also useful for evaluating the escape at levels 

other than the transcriptome level, as demonstrated by the scLinaX-multi analysis with the 

10X multiome dataset (RNA + ATAC). The single cell-level multi-modal RNA + ATAC analysis 

is a relatively new technology and is still in the process of spreading. Therefore, a future 

generation of the large-scale dataset will enable us to analyze the escape from XCI at the 

chromatin-accessibility level for a larger number of genes with a million cell-scale dataset. In 

addition to RNA + ATAC, single-cell joint measurements of RNA + other modalities, such as 

histone modifications32, are currently being developed. Such technologies can enable us to 

directly observe the escape at the level of the various X chromosome regulations, which will 

be useful to elucidate the biological mechanisms of the escape. 

 

We identified a unique feature of the lymphocyte, a relatively strong degree of escape through 
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a series of analyses. In a previous analysis utilizing cell imaging, it was revealed that 

lymphocytes, especially naive ones, had abnormally dispersed distribution of the XIST RNA 

and reduced normal heterochromatin histone modifications6,7. These results suggested that 

there can be a unique mode of the regulation of XCI in lymphocyte at the chromosome scale. 

In addition, a relatively strong degree of escape in lymphocytes may also be related to the 

sex differences in immune phenotype, which could be linked to the higher prevalence of 

autoimmune diseases in females33 and Klinefelter syndrome patients34. 

 

How we should handle the allele dosage for males and females and whether allele dosage 

should be adjusted in the presence of escape is one of the technical difficulties associated 

with the X chromosome analysis9,10. Currently, many software for GWAS, such as PLINK235, 

BOLT-LMM36, and REGINIE37, handle the dosage of alleles assuming the complete XCI in a 

default setting, while previous literature argued that in the presence of escape, the effective 

dosage on the female should increase9,10. In our comparisons of the eQTL effect sizes 

between sexes, we found no inter-sex differences in eQTL effects regardless of the quantified 

estimates of the escape. Hence, it might be a case that the effective dosage between sexes 

could be explained by the sex term in a linear regression model, suggesting that there might 

not be a necessity to alter the scale of the genotype term in the eQTL analysis of females 

(Supplementary Fig. 8d).  

 

However, this holds true only for a limited trait, such as gene expression, and does not apply 

to more complex traits contributed by multiple genes. Indeed, in this study, the PRKX gene 

locus was associated with lymphocyte count likely via its eQTL effect in the lymphocytes, and 

the effect was larger in females than in males. This difference in the effect sizes between 

sexes might be linked to the increase in allele dosage and PRKX expression in females due 

to escape. Although the limited number of GWAS signal associated with the escapee gene 

and complexity of the mode of genotype-phenotype associations made it difficult to 

generalize how the escape affect the sex-difference of the GWAS signal, it would be 

important to perform GWAS with care for the inter-sex heterogeneity (e.g. sex-stratified 

analysis9). Although the X chromosome has often been excluded from the largest-scale 

GWAS meta-analyses due to technical difficulties38,39, there is a need to actively conduct 

GWAS of the X chromosome, share sumstats, and promote secondary use in order to 

overcome this technical difficulty. 

 

In summary, we developed scLinaX, a new method to directly evaluate the escape at the cell-

cluster level. We believe that scLinaX and the quantified catalog of escape identified the 

heterogeneity of escape across cell types and tissues and would contribute to expanding the 

current understanding of the XCI, escape, and sex differences in gene regulation. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.14.561800doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.14.561800
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Methods 

Generation and pre-processing of the AIDA PBMC scRNA-seq data 

The Asian Immune Diversity Atlas dataset (v1) was composed of 503 donors of East Asian 

(Chinese, N = 75; Japanese, N = 149; Korean, N = 165), Southeast Asian (Malay, N = 54), 

and South Asian (Indian, N = 60) self-reported ethnicities from Japan, Singapore, and South 

Korea, and five commercially available European ancestry control samples (LONZA 4W-270). 

A detailed description of the dataset was included in the flagship manuscript of the Asian 

Immune Diversity Atlas Network40. 

 The methods for generation and pre-processing of the AIDA PBMC scRNA-seq 

dataset (v1) are described in the flagship manuscript of the Asian Immune Diversity Atlas 

Network40. Briefly, single-cell RNA-seq for PBMC was performed with 10X Genomics 

Chromium Controller and 10X Genomics Single Cell 5' v2 chemistry. We used the DRAGEN 

Single-Cell RNA pipeline in the Illumina DRAGEN v3.8.4 software (version 07.021.602.3.8.4-

20-g74395e76) for pre-processing and genetic demultiplexing. We performed quality control 

of our dataset in two stages. 

 We first performed library-level quality control. We started by filtering out cells for 

which fewer than 300 genes were detected. We then identified the top 2,000 highly variable 

features using the variance-stabilizing transformation option in Seurat41, scaled the data 

using all genes, and then performed principal component analysis on these highly variable 

features. We performed nearest-neighbor analyses based on the resulting principal 

components, and ran Louvain clustering in Seurat at a resolution of 1.0. We annotated the 

resulting clusters based on a majority vote of the major cell type annotation labels assigned 

by RCAv2 software42 to cells within each cluster. We used the genetic doublet proportion for 

a library (proportions of mixed genetic identity + ambiguous identity droplets) to estimate the 

likely total doublet rate for that library43. We used this estimate of total doublets in a library, 

as well as the RCAv2 reference projection-based annotation of clusters (for estimation of 

homotypic doublet proportion) as part of our input into DoubletFinder44, which we used for 

identifying heterotypic doublets. We then removed cells that had more than 10 (HBA1 UMIs 

+ HBB UMIs), since these cells could be red blood cells, or cells contaminated with red blood 

cell RNA transcripts.  

 Then, we performed cell type-specific quality control on our dataset. We removed 

doublets detected by the DRAGEN genetic demultiplexing workflow and / or DoubletFinder. 

We then combined single cells from multiple libraries across countries, performed reference 

projection of such combinations of cells to a reference panel of immune cell transcriptomes 

using the RCAv2 software42, and performed nearest-neighbor analyses based on the 

principal components of the reference projection coefficients. We performed Louvain 

clustering and cluster annotation as done in the per-library quality control step. We performed 

cell type-specific quality control on all single cells across all libraries by applying number of 
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detected genes (including < 300 for platelets, < 500 for myeloid cells, and < 1,000 for other 

cell types) and percentage mitochondrial reads (> 12.5% for plasma cells and platelets and 

> 8% for other cell types) filters. 

 In this study, we removed samples with (i) mismatches between the scRNA-seq 

inferred sex and reported sex, (ii) < 500 cells per donor, (iii) European genetic ancestry, or 

(iv) missing/low-quality genotype data. We also removed platelets from the analysis. Finally, 

we used 896,511 cells from 489 individuals. 

 

 

Generation and pre-processing of the PBMC scRNA-seq data of the Japanese healthy 

and COVID-19 subjects. 

The PBMC scRNA-seq data of the Japanese was derived from the previously published 

study22. Briefly, peripheral blood samples were obtained from patients with COVID-19 (N = 

73) and healthy controls (N = 75) at Osaka University Hospital. Almost all cases were patients 

who were transferred from nearby general hospitals because of severe or potentially severe 

illness during treatment and already initiated with systemic corticosteroid therapy at other 

hospitals. Single-cell suspensions were processed through the 10X Genomics Chromium 

Controller following the protocol outlined in the Chromium Single Cell V(D)J Reagent Kits 

(v1.1 Chemistry) User Guide. Chromium Next GEM Single Cell 52 Library & Gel Bead Kit v1.1 

(PN-1000167), Chromium Next GEM Chip G Single Cell Kit (PN-1000127), and Single Index 

Kit T Set A (PN-1000213) were applied during the process. Samples were then sequenced 

on an Illumina NovaSeq 6000 in a paired-end mode. 

 Droplet libraries were processed using Cell Ranger 5.0.0 (10X Genomics). Filtered 

expression matrices generated using Cell Ranger count were used to perform the analysis. 

Cells that had fewer than the first percentile of UMIs or greater than the 99th percentile of 

UMIs in each sample were excluded. Cells with <200 genes expressed or >10% of reads 

from mitochondrial genes or hemoglobin genes were also excluded. Additionally, putative 

doublets were removed using Scrublet (v0.2.1)45 and scds (v1.10.0)46 for each sample. 

 The R package Seurat (v4.1.0)41 was used for data scaling, transformation, clustering, 

and dimensionality reduction. Data were scaled and transformed using the SCTransform() 

function, and linear regression was performed to remove unwanted variation due to cell 

quality (% mitochondrial reads). For integration, 3,000 shared highly variable genes (HVGs) 

were identified using SelectIntegrationFeatures() function. Principal component analysis 

(PCA) was run on gene expression, followed by batch correction using harmony (v0.1)47. 

UMAP dimension reduction was generated based on the first 30 harmony-adjusted principal 

components. A nearest-neighbor graph using the first 30 harmony-adjusted principal 

components was calculated using FindNeighbors() function, followed by clustering using 

FindClusters() function. 
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 Cellular identity was determined by finding DEGs for each cluster using the 

FindMarkers() function with parameter 8test.use=wilcox9, and comparing those markers to 

known cell type-specific genes. Two rounds of clustering were performed (1st, all cells; 2nd, 

separately for monocytes/DC, T/NK cells, and B cells) and cell type annotation was assigned 

at the three layers of the granularity based on the marker gene expression. In this study, we 

mainly used the coarsest annotation (L1) to maintain the number of cells per cluster. In this 

study, a male subject with COVID-19 was removed because of the aneuploidy of the X 

chromosome as done in the original study. 

 

 

Generation and pre-processing of the AIDA genotype data 

 A genotyping of AIDA samples was performed using Infinium Global Screening Array 

(Illumina). SNPs on the nonPAR X chromosome were treated as diploid in males and 

heterozygous genotypes of such SNPs were converted into 'missing' with PLINK 

(v1.90b4.4)48. Then, we performed quality control of the genotype data with PLINK2 (v2.00a3 

9 Apr 2020)48. We filtered out samples with a call rate of < 0.98. Note that no samples 

deviated from the Asian sample clusters in a PCA analysis with the 1,000 Genomes (1KG) 

Project Phase3v5 samples (N = 2,504). We removed variants with a variant call rate of < 0.99, 

deviation from Hardy3Weinberg equilibrium with P < 1.0 × 1026 in each population, or 

significant allele frequency differences between sexes (P < 5.0 × 1028). We also removed the 

variants whose MAF deviated from the reference panels (|MAF in the AIDA 

Japanese/Korean/Chinese - MAF in the 1KG EAS | > 0.15, |MAF in the AIDA Indian - MAF in 

the 1KG SAS | > 0.175, or |MAF in the AIDA Japanese - MAF in the 1KG Japanese | > 0.15). 

The genotype data after the QC was subjected to the genotype imputation in the Michigan 

Imputation Server49. EAGLE (v2.4)50 was used for the haplotype phasing of genotype data 

and Minimac4 was used for genome-wide genotype imputation. We used the reference 

panels generated from 1KG Project Phase3v5 samples (N = 2,504) with high coverage (30×) 

sequencing. We set an imputation quality (R2) of 0.3 and 0.7, respectively for the scLinaX 

analysis and eQTL analysis. We used a relaxed threshold in the scLinaX analysis because 

the genotype could be also confirmed by the allele information of the scRNA-seq reads. In 

the eQTL analysis, we removed related samples with PI_HAT > 0.17. 

 

 

Generation and pre-processing of the Japanese genotype data 

Imputed genotype data for the Japanese dataset was derived from the previously published 

study22. A genotyping of COVID-19 and healthy samples was performed using Infinium Asian 

Screening Array (Illumina) through collaboration with Japan COVID-19 Task Force 

(https://www.covid19-taskforce.jp/en/home/). SNPs on the nonPAR X chromosome were 
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treated as diploid in males and heterozygous genotypes of such SNPs were converted into 

'missing'. We applied stringent quality control filters to the samples (sample call rate < 0.98, 

related samples with PI_HAT > 0.175 or outlier samples from East Asian clusters in PCA with 

HapMap project samples), and variants (variant call rate < 0.99, deviation from Hardy3

Weinberg equilibrium with P < 1.0 × 1026, or minor allele count < 5). We also excluded SNPs 

with > 7.5% allele frequency difference with the representative reference datasets of 

Japanese ancestry, namely the used the population-specific imputation reference panel of 

Japanese (N = 1,037) combined with 1KG Project Phase3v5 samples (N = 2,504)51,52 and 

the allele frequency panel of Tohoku Medical Megabank Project53. We used SHAPEIT4 

software (v4.2.1)54 for the haplotype phasing of genotype data. After phasing, we used 

Minimac4 software for genome-wide genotype imputation. We used the aforementioned 

population-specific imputation reference panel of Japanese (N = 1,037) combined with 1KG 

Project Phase3v5 samples (N = 2,504). We set an imputation quality (R2) of 0.3 and 0.7, 

respectively for the scLinaX analysis and eQTL analysis. We used a relaxed threshold in the 

scLinaX analysis because the genotype can be also confirmed by the allele information of 

the scRNA-seq reads. Since scRNA-seq data was generated in the genome build of GRCh38, 

we performed a liftover with Picard software. 

 

 

Pre-processing of the PBMC 10X multiome data 

 PBMC 10X multiome data was downloaded from the web repository of the 10X 

Genomics (https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-

granulocytes-removed-through-cell-sorting-10-k-1-standard-2-0-0). The count matrix for the 

RNA data and fragment data for the ATAC data were jointly processed with the Signac 

software (v1.9.0)55. First, cells satisfying all of the following criteria were kept for the analysis; 

ATAC tag count < 100,000, ATAC tag count > 25,000, RNA count <25,000, RNA count > 1,000, 

nucleosome signal < 2, TSS enrichment > 1, percent mitochondrial genes ["^MT-"] < 25, 

percent hemoglobin genes ["^HB[^(P)]"] < 0.1, and percent platelet genes (PECAM1 and 

PF4) < 0.25. Then, ATAC peaks were called with macs2 through the CallPeaks() function of 

the Signac and converted into a count matrix. Putative doublets were removed using 

DoubletFinder (v2.3.0) and scds (v1.14.0) based on the RNA information. RNA data were 

scaled and transformed using the SCTransform() function and subjected to a PCA analysis 

with the top 2,000 highly variable genes. ATAC data was subjected to normalization and 

dimension reduction based on the latent semantic indexing as implemented in the Signac. 

Cell type annotation was assigned to each cell by multimodal reference mapping with a 

Multimodal PBMC reference dataset 

(https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat) using the 

FindTransferAnchors() and TransferData() functions. Cells predicted as platelets or 
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erythrocytes were removed from the analysis. Finally, joint UMAP visualization from RNA (top 

50 PCs) and ATAC (top 2-40 LSI components) data was generated by the 

FindMultimodalNeighbors() function followed by the RunUMAP() function. Peak information 

was visualized with the CoveragePlot() function in Signac. 

 

 

Pre-processing of the scRNA-seq data for a sample with a karyotype of XXY 

 We used a male sample with a karyotype of XXY who was also in the remission 

phase of multiple sclerosis. The sample was collected at Osaka University Hospital in the 

same manner as the Japanese dataset. Library preparation, sequencing, and generation of 

the count matrix were performed as done for the Japanese dataset. Then a count matrix 

generated by Cell Ranger 6.0.0 was subjected to a QC with the Seurat R package (v4.3.0). 

First, cells satisfying all of the following criteria were kept for the analysis; RNA count <25,000, 

RNA count > 1,000, RNA features > 200, nucleosome percent mitochondrial genes ["^MT-"] 

< 12, percent hemoglobin genes ["^HB[^(P)]"] < 0.1, and percent platelet genes (PECAM1 

and PF4) < 0.25. Putative doublets were removed using DoubletFinder (2.3.0) and scds 

(v1.14.0) based on the RNA information. RNA data were scaled and transformed using the 

SCTransform() function and subjected to a PCA analysis with the top 2,000 highly variable 

genes. Cell type annotation was assigned to each cell by multimodal reference mapping with 

the Multimodal PBMC reference dataset using the FindTransferAnchors() and TransferData() 

functions. Cells predicted as platelets or erythrocytes were removed from the analysis. 

 

 

Pseudobulk DEG analysis 

 First, pseudobulk raw UMI count data was generated by aggregating the raw UMI 

counts from all of the cells for each cell type. Samples with at least five cells were used for 

the analysis. Then, pseudobulk raw UMI count data was subjected to DESeq2 (v1.38.0)56 for 

the DEG analysis. The formulas for the DEG analysis were the following; gene expression ~ 

sex + age + cell count + library (+ cell proportion of the CD4+ T, CD8+ T, gdT, MAIT, NK, B, 

Plasma B, Monocyte, cDC, and pDC in the cell proportion adjusted analysis; AIDA dataset), 

gene expression ~ sex + disease (COVID-19 or healthy control) + age + cell count (Japanese 

dataset). DEGs were the genes satisfying FDR < 0.05 calculated by the DESeq2. Throughout 

this paper, annotation from a previous study3 was used for the comparative analysis across 

the XCI statuses. 

 

 

Single-cell level DEG analysis 

 We performed single-cell level regression analysis based on the linear mixed model 
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by modifying the method implemented in a previous study57. To represent the continuous 

state of each cell, we used batch-corrected PCs calculated by harmony (v0.1 for the 

Japanese dataset) or harmonypy (v 0.0.6 for the AIDA dataset) from the top 30 original PCs. 

The negative binomial model was fitted with the following formula using glmer.nb() function 

in the lme4 R library (1.1_31); gene expression (raw UMI count) ~ sex + age + %mitochondrial 

gene + log10(total UMI count of the cell) + PC1-10 of the raw data + (1 | library) + (1 | 

individual) (for the evaluation of the main effect with the AIDA dataset), gene expression (raw 

UMI count) ~ sex + age + %mitochondrial gene + log10(total UMI count of the cell) + PC1-10 

of the raw data + batch corrected PC 1-10 + sex × batch corrected PC 1-10 + (1 | library) + 

(1 | individual) (for the evaluation of the interaction effect with the AIDA dataset), gene 

expression (raw UMI count) ~ sex + age + disease + %mitochondrial gene + log10(total UMI 

count of the cell) + PC1-10 of the raw data + (1 | individual) (for the evaluation of the main 

effect with the Japanese dataset), gene expression (raw UMI count) ~ sex + age + disease 

+ %mitochondrial gene + log10(total UMI count of the cell) + PC1-10 of the raw data + batch 

corrected PC 1-10 + sex × batch corrected PC 1-10 + (1 | individual) (for the evaluation of 

the interaction effect with the Japanese dataset). In the evaluation for the main effect, the 

contribution of the sex to the model was evaluated by the likelihood ratio test. In the evaluation 

of the interaction effect, the contribution of the sex × batch corrected PC 1-10 to the model 

was evaluated by the likelihood ratio test. For the calculation of the single-cell level effect 

sizes of the sex, we summed up the effect sizes of the sex and sex × batch corrected PC 1-

10 in the interaction effect analysis as done in the previous study.  

 

 

Implementation of scLinaX and scLinaX-multi 

Generation and QC of the single-cell level ASE profile 

 First, single-cell level ASE profiles were generated by cellsnp-lite software58 (v 1.2.3) 

for each sample. While cellsnp-lite takes genotype data as input, it can also call genotype 

data from scRNA-seq data. Therefore, we used imputed genotype data based on the SNP 

array when available, and used genotype data internally called from scRNA-seq data in other 

cases. Then, allele frequency and gene information were assigned to the SNPs included in 

the single-cell level ASE profiles by Annovar (Mon, 8 Jun 2020)59, and only the common SNPs 

(MAF > 0.01 in the matched population of the 1KG dataset; AIDA dataset, EAS and SAS; 

Japanese dataset, EAS; Tabula Sapiens dataset, ALL; 10X multiome dataset, ALL; Asian 

sample in the SLE dataset, EAS; European sample in the SLE dataset, EUR; XXY sample, 

EAS) on the gene (intronic, UTR5, UTR3, exonic, ncRNA_exonic, ncRNA_intronic, and 

splicing) was retained for the analysis. 

 

QC of the candidate reference genes used in scLinaX 
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 In scLinaX, we used SNPs on the genes previously annotated as completely 

subjected to XCI (nonPAR inactive) as candidates for the reference SNPs3. We also set QC 

criteria for these genes to exclude potentially escaping genes. First, SNPs on nonPAR 

inactive genes (candidate reference genes) expressed in more than 50 cells were extracted 

and designated as reference SNP candidates. For each SNP, pseudobulk ASE profiles 

across all the expressing SNPs were calculated separately for cells expressing the ref allele 

and alt allele, and these were added together after flipping the ref and alt allele counts for the 

cells expressing the alt allele. In other words, we made a completely slewed XCI in silico. For 

each sample-reference gene pair, the one with the highest number of cells was retained to 

remove the redundancy. For the pseudobulk ASE profiles, the SNPs with a total allele count 

of g10 were retained, and the minor allele count ratio was calculated as a ratio of the 

expression from Xi. The SNPs on the reference gene of each pseudobulk profile were 

excluded from the pseudobulk profiles to prevent the underestimation of the ratio of the 

expression from Xi. The following two metrics were then calculated for each candidate 

reference gene. (1) The average ratio of the expression from Xi for the gene when SNPs on 

the other candidate reference genes were used as references (2) The average of the ratio of 

the expression from Xi across the other candidate reference genes when the SNPs on the 

gene was used as reference. Note that when there were multiple SNPs on the same genes 

derived from the same sample and reference gene, only one with the highest total allele count 

was used for the calculation of the metrics. Since there could be a potential escape for genes 

with high metrics values, we used a threshold of 0.05, 0.075, and 0.1 respectively for the 

AIDA dataset, Japanese dataset, and SLE dataset, and filtered out the potential escapee 

genes from the candidate reference SNP list. For the Tabula Sapiens, 10X Multiome, and 

XXY karyotype data, we used the QC results from the AIDA dataset because there were a 

relatively small number of samples. 

 

Grouping cells based on which X chromosome is inactivated 

 After defining the candidate reference gene set, we performed the scLinaX analysis. 

First, SNPs on the candidate reference genes expressed in more than 50 (PBMC scRNA-

seq dataset), 30 (10X multiome dataset), or 100 (Tabula Sapiens dataset) cells were 

extracted for each sample. For each SNP, pseudobulk ASE profiles were calculated 

separately for cells expressing the ref alleles and alt alleles, and these were added together 

after flipping the ref and alt allele counts for the cells expressing alt alleles. Then, pseudobulk 

ASE profiles generated from the same samples were subjected to the pairwise Spearman 

correlation calculation. We set a threshold for the P-values (< 0.05 for all of the datasets) and 

correlation coefficients (absolute values > 0.5 for the PBMC datasets and > 0.3 for the Tabula 

Sapiens dataset) for defining the significant correlations. We generated a group of SNPs that 

had connected by at least one significant correlation. Then we defined a group of reference 
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SNP alleles on the same X chromosome based on the significant correlations within the group. 

When assuming the XCI, a significant positive correlation meant that the reference alleles of 

the two reference SNPs were on the same X chromosomes and a significant negative 

correlation meant that the reference alleles of the two reference SNPs were on the different 

X chromosomes. If the contradiction happened during the processing of the correlation 

information within a group of SNPs (e.g. alternative alleles of the three reference SNPs are 

predicted to be on the different X chromosomes), such a group of SNPs was removed from 

the analysis. After defining the group of alleles on the same X chromosome, we divided the 

cells into three groups; (i) cells expressing only alleles of a group, (ii) cells expressing only 

alleles of another group, (iii) cells expressing no reference alleles or both groups of the 

reference alleles. 

 

Calculation of the ratio of the expression from Xi 

 We calculated the pseudobulk ASE profiles across cell groups (i) and (ii) separately 

and combined them after flipping the ref and alt allele counts for the pseudobulk profiles from 

group (ii) cells. Then, we calculated the ratio of the expression from Xi as a ratio of the minor 

allele count under the assumption that the expression from Xi was lower than that from Xa2. 

Only the positions with g10 total allele counts were considered. When multiple coding SNPs 

were detected for a gene in a sample, one with the deepest allele counts was selected to 

evaluate the ratio of the expression from Xi for the gene. When calculating the ratio of the 

expression from Xi per cell cluster, pseudobulk ASE profiles were generated from cells within 

the cell cluster while the definition of the Xi/Xa alleles was based on the pseudobulk ASE 

profiles from all cells. 

 

Summarization of the scLinaX results for the AIDA and Japanese dataset 

 To obtain the ratio of the expression from Xi for each gene, we calculated the average 

across the samples that had the coding SNPs with g10 total allele counts on that gene. Only 

the genes for which g3 samples were used for calculating the average were considered. 

 

Implementation of scLinaX-multi and application to the PBMC 10X multiome data 

 scLinaX-multi is an extension of scLinaX to the multi-modal dataset. In this study, we 

estimated which X chromosome was inactivated from the RNA-level information and 

evaluated the escape at the chromatin accessibility level by using the 10X multiome dataset. 

First, cells were grouped into the following three groups; (i) cells expressing only alleles of a 

group, (ii) cells expressing only alleles of another group, (iii) cells expressing no reference 

SNPs or both groups of the alleles, same as the scLinaX procedure. Then, single-cell level 

allele-specific chromatin accessibility profiles were generated by cellsnp-lite software. In this 

study, we used genotype data called from the single-cell ATAC data, while it can also take 
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other types of genotype data. Allele frequency and gene information were assigned to the 

SNPs included in the single-cell level allele-specific chromatin accessibility profiles and only 

the common SNPs (MAF > 0.01 in the 1KG ALL dataset) on the ATAC peaks were retained 

for the analysis. We calculated the pseudobulk allele-specific chromatin accessibility profiles 

across cell groups (i) and (ii) separately and combined them after flipping the ref and alt allele 

counts for the pseudobulk profiles from group (ii) cells. Finally, we calculated the ratio of the 

Xi-derived accessible chromatin as a ratio of the minor allele count. Only the positions with 

g10 total allele counts were considered. When calculating the ratio of the Xi-derived 

accessible chromatin per cell cluster, pseudobulk allele-specific chromatin accessibility 

profiles were generated from cells within the cell cluster while the definition of the Xi/Xa allele 

was based on the pseudobulk allele-specific chromatin accessibility profiles from all cells. 

When multiple coding SNPs were detected for a peak, one with the deepest allele counts 

was selected to evaluate the ratio of the Xi-derived accessible chromatin. Exceptionally, when 

visualizing the escape at the chromatin accessibility level (Fig. 4f), we retained both of the 

SNPs on the peaks at the TSS of the USP9X gene. 

 

Summarization of the scLinaX results for the Tabula Sapiens dataset 

 We used the processed Tabula Sapiens dataset contributed by the Tabula Sapiens 

Consortium (https://tabula-sapiens-portal.ds.czbiohub.org)21. For the calculation of the ratio 

of the expression from Xi, we aggregated the allele counts from Xi and Xa across samples 

for summarization. The annotation of the organs and cell type was derived from the previous 

study, while the cell type of 'immune' was divided into the 'Lymphoid', 'Myeloid', and 'Other 

blood cell' considering the difference of the escape across immune cells identified in this 

study. In the pairwise comparisons of the escape across organs and cell types, genes 

detected in both organs/cell types 1 and 2 were extracted, and the ratio of the genes with a 

higher ratio of the expression from Xi in the organ/cell type 1 was used as an indicator of the 

difference of the escape between the organs/cell types. In addition, comparisons of the ratio 

of the expression from Xi were performed at the individual level. We used only the TSP2 

sample for the evaluation of the difference in the escape across organs because major 

lymphoid tissues were derived solely from the TSP2.  

 

Case-control comparisons of the ratio of the expression from Xi 

 For the generation of the scRNA-seq bam files of the SLE dataset29, we downloaded 

the fastq files and processed them with Cell Ranger 6.1.2. For the case3control comparisons 

of the escape from XCI with the COVID-19 and SLE datasets, we considered the coding 

SNPs with g5 total allele counts to increase the sample size. We evaluated the genes (i) 

considered in g5 case samples, (ii) considered in g5 control samples, and (iii) the ratio of the 

expression from Xi calculated from the aggregated allele count data across all samples was 
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g0.1. We used a negative binomial model (glm.nb() function in the MASS R library 

[v7.3_58.1]) to evaluate the case3control differences of the escape using the following 

formula; allele counts from Xi ~ disease status + log(total allele count) (offset term).  

 

scLinaX analysis with a male sample with a karyotype of XXY 

 As input genotype data for scLinaX, we used imputed genotype data of the X 

chromosome (non-PAR region) which were generated and processed in the same manner 

as the genotype data of the Japanese dataset. Since a single sample was available for this 

analysis, the ratio of the expression from Xi in the sample was presented as it was. 

 

 

Pseudobulk eQTL analysis with the AIDA and Japanese dataset 

 Raw pseudobulk gene expression data was TMM-normalized and log2-transformed 

with the edgeR R library (v3.40.0)60. The genes with (i) raw UMI count g 5 in more than 20% 

of the samples and (ii) count per million (CPM) g 0.2 in more than 20% of the samples were 

filtered out as done in a previous study61. Then cis-eQTL was identified by tensorQTL 

(v1.0.8)62 with the '--mode cis' option to obtain the list of the significant eQTL signals and with 

the '--mode cis_nomial' option to obtain the nominal P-values for all of the gene3cis-variant 

pairs. tensorQTL was applied for (i) all sample data, (ii) only female data, and (iii) only male 

data with the '--maf_threshold 0.05' option. Sex (only for all sample data analysis), age, cell 

count, library, genotype PCs 1-10, and gene expression PCs 1-10 were included as 

covariates for the AIDA dataset analysis. Sex (only for all sample data analysis), age, disease, 

cell count, genotype PCs 1-10, and gene expression PCs 1-10 were included as covariates 

for the Japanese dataset analysis. Genotype PCs were calculated from the SNP array data 

before imputation by using PLINK2. Gene expression PCs were calculated from the TMM-

normalized gene expression data using the prcomp() function in the R. Genotypes of the 

variants on the X chromosome were coded as 0/1/2 in females and 0/2 in males. We defined 

eQTL signals satisfying P < 5 × 10-8 in the AIDA all sample analysis as significant eQTL 

signals.  

 

 

Single-cell level dynamic eQTL analysis 

 We performed a single-cell level dynamic eQTL analysis based on the linear mixed 

model by modifying the method implemented in the previous study57 to evaluate the 

heterogeneity of the effects of the eQTL variants (rs6641874 and rs6641601) on the PRKX 

gene expression. As done in the single-cell level DEG analysis, we used batch-corrected PCs 

calculated by harmonypy from the top 30 original PCs to represent the continuous state of 

each cell. The negative binomial model was fitted with the following formula using glmer.nb() 
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function in the lme4 R library; gene expression (raw UMI count) ~ genotype + sex + age 

+ %mitochondrial gene + log10(total UMI count) + original PC1-10 of the scRNA-seq data + 

genotype PC 1-10 + batch corrected PC 1-10 of the scRNA-seq data + genotype × batch 

corrected PC 1-10 of the scRNA-seq data + (1 | library) + (1 | individual). Genotypes of the 

variants on the X chromosome were coded as 0/1/2 in females and 0/2 in males. In the 

evaluation of the interaction effect, the contribution of the genotype × batch corrected PC 1-

10 to the model was evaluated by the likelihood ratio test. For the calculation of the single-

cell level effect sizes of the eQTL effect, we summed up the effect sizes of the genotype and 

genotype × batch corrected PC 1-10 of the scRNA-seq data in the interaction effect analysis 

as done in the previous study. 

 

 

GWAS for the blood-related traits with the BBJ cohort 

 BBJ is a prospective biobank that collaboratively recruited approximately 200,000 

patients with g1 of 47 diseases and collected DNA, serum samples, and clinical information 

from 12 medical institutions in Japan between 2003 and 2007. The Japanese samples in BBJ 

were genotyped with the Illumina HumanOmniExpressExome BeadChip or a combination of 

the Illumina HumanOmniExpress and HumanExome BeadChips. Quality control of samples 

and genotypes was conducted as described elsewhere51. We analyzed subjects of Japanese 

ancestry identified by a PCA analysis. Genotype data were imputed with the aforementioned 

1KG Project phase3v5 genotype data and Japanese whole-genome sequencing data using 

Minimac3. As for the blood-related trait data (white blood cell number [WBC], lymphocyte 

number [LYM], monocyte number [Mono], eosinophils number [EOS], basophils number 

[BAS], neutrophils number [NEU], hemoglobin [Hb], hematocrit [Ht], mean corpuscular 

volume [MCV], red blood cell number [RBC], and platelet number [PLT]), we generally used 

the values measured at the participants9 first visit to the hospitals, and excluded values 

outside three times the interquartile range (IQR) of the upper or lower quartile across 

participants as previously described (Supplementary Table 11)31. Then, blood-related trait 

data were subjected to the rank-based inverse normal transformation separately for males 

and females. We conducted X chromosome GWAS for each blood-related trait using 

REGENIE (v3.2.7)37. We included age, sex, and the top 20 principal components as 

covariates. Genotypes of the variants on the X chromosome were coded as 0/1/2 in females 

and 0/2 in males.  

 

 

Comparisons of the GWAS effect sizes between sexes with the BBJ and UKB cohort 

 GWAS summary statistics for the UKB cohort were downloaded from the web 

repository (Nealelab/UK_Biobank_GWAS: v2; Zenodo, 
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https://doi.org/10.5281/zenodo.8011558). Fixed-effect meta-analysis across sexes or cohorts 

was performed with the metafor R package (v4.2_0). The standard error of the ratio between 

the female effect sizes (³female) and male effect sizes (³male) was calculated based on the law 

of error propagation as previously done8. 

SE! 	= 	%³'"#$%&#³'$%&#

(! )SE!*³'$%&#+
³'$%&#

!
	+ 	SE!*³' "#$%&#+

³' "#$%&#

!
- 

 The significance of the difference between the female effect sizes (³female) and male 

effect sizes (³male) was evaluated by calculating the following statistics which follow a Ç2-

distribution. 

*³' "#$%&# 2 ³'$%&#+!SE!*³'$%&#+ + SE!*³' "#$%&#+ 
 

 

Evaluation of the colocalization between the GWAS and eQTL signals 

 To evaluate the colocalization between the lymphocyte count GWAS signals and 

PRKX gene eQTL signals, we used the coloc R package (v5.2.2)63. Since the reference 

human genome was different between the GWAS (GRCh37) and eQTL (GRCh38) analysis, 

we performed a liftover with the bcftools (v.1.16). Variants within 1,000,000 bp from 

rs6641874 were used as inputs and PP.H4 > 0.80 was considered as a colocalization of the 

signals.  

 

 

Data availability 

The AIDA Data Freeze v1 gene-cell matrix (1,058,909 cells from 503 Japan, Singaporean 

Chinese, Singaporean Malay, Singaporean Indian, and South Korea Asian donors and 5 

distinct Lonza commercial controls), with BCR-seq and TCR-seq metadata, and donor age, 

sex, and self-reported ethnicity metadata, is available via the Chan Zuckerberg CELLxGENE 

data portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-47c1-a735-

513c7084d508. The open-access AIDA datasets are available via the Human Cell Atlas Data 

Coordination Platform at https://data.humancellatlas.org/explore/projects/f0f89c14-7460-

4bab-9d42-22228a91f185. Raw scRNA-seq sequencing data for the Japanese dataset are 

available at the Japanese Genotype-phenotype Archive (JGA) with accession codes 

JGAS000593/JGAD000722/JGAS000543/JGAD00066222,23. All the raw sequencing data of 

Japanese scRNA-seq dataset can also be accessed through application at the NBDC with 

the accession code hum0197 (https://humandbs.biosciencedbc.jp/en/hum0197-latest). 

Genotype data for the Japanese dataset are available at European Genome-Phenome 
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Archive (EGA) with the accession code EGAS00001006950 (https://ega-

archive.org/studies/EGAS00001006950). 

 

 

Code availability 

scLinaX and scLinaX-multi is available as an R package from 

https://github.com/ytomofuji/scLinaX. 
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