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13 Abstract

14  Enrichment analysis contextualizes biological features in pathways to facilitate a
15  systematic understanding of high-dimensional data and is widely used in biomedical
16  research. The emerging method known as the reporter score-based analysis (RSA) shows
17  more promising sensitivity, as it relies on p-values instead of raw values of features.
18 However, RSA can only be applied to two-group comparisons and is often misused due to
19  the lack of a convenient tool. We propose the Generalized Reporter Score-based
20  Enrichment Analysis (GRSA) method for enrichment analysis of multi-group and
21  longitudinal omics data. The GRSA is implemented in an R package, ReporterScore,
22 integrating a powerful visualization module and updatable pathway databases. A
23 comparison with other common pathway enrichment analysis methods, such as Fisher’s
24  exact test and GSEA, reveals that GRSA exhibits increased sensitivity across multiple
25  benchmark datasets. We applied GRSA to the microbiome, transcriptome, and metabolome
26  data to show its versatility in discovering new biological insights in omics studies. Finally,
27  we showcased the applicability of the GRSA method beyond functional enrichment using
28  acustom taxonomy database. We believe the ReporterScore package will be an invaluable
29  tool for broad biomedical research fields. The ReporterScore and a complete description
30 of the usages are publicly available on GitHub
31  (https://github.com/Asal2138/ReporterScore).
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33 Introduction

34  Functional enrichment analysis is an essential bioinformatic method that helps understand
35 the biological significance of large omics datasets, such as transcriptomic, metagenomic,
36 and metabolic datasets, and formulate hypotheses for downstream experimental
37  investigations'. By identifying enriched functional categories, such as gene ontology terms
38  or biological pathways, we can gain insights into the underlying biological processes and
39 functions.

40  Methods for functional enrichment analysis can be roughly divided into three categories
41 based on underlying statistical methods: (i) overrepresentation analysis (ORA), (ii)
42  functional class scoring (FCS), and (iii) pathway topology-based (PT)>. Common
43  enrichment analysis methods in omics research are shown in Table 1. The algorithm of
44  reporter score-based analysis (RSA) was originally developed by Patil and Nielsen in 2005
45  to identify metabolites associated with the metabolic network’s regulatory hotspots’. The
46  RSA has regained popularity in recent years due to its extended application in functional
47  enrichment analysis in microbiome research, which can help identify microbial functional
48  pathways that undergo significant changes in different conditions*. RSA is an FCS method
49  based on parsing the p-values of the differential abundance or correlation analyses. The
50 rationale is that the p-value can be considered as a standardized statistic that reflects the
51 differences between different genes, regardless of the mean expression values. The
52  pathways with significantly lower p-values than the background p-value distribution will
53  be enriched’.

54  However, RSA is often misused due to the lack of specific tools and systematic
55  understanding of the algorithm’. In addition, the sign (plus or minus) of the reporter score
56  of each pathway in classic RSA does not represent the increasing or decreasing trend of
57  the pathway expression; rather, any reporter scores (including negative scores) less than a
58  specified threshold simply indicates that the corresponding pathway is not significantly
59  enriched. This often leads to misinterpretations of the results.

60 Inspired by the classic RSA, we developed the improved Generalized Reporter Score-based
61  Enrichment Analysis (GRSA) method, implemented in the R package ReporterScore,
62 along with comprehensive visualization methods and pathway databases. GRSA is a
63  threshold-free method that works well with all types of biological features, such as genes
64 in the transcriptome, compounds in the metabolome, and species in the metagenome.
65 GRSA works in two modes: classic RSA (the mixed mode) and enhanced RSA (the
66  directed mode). The enhanced RSA uses signs of the reporter score to distinguish up-
67  regulated or down-regulated pathways, which is more intuitive. Importantly, the GRSA
68  supports multi-group and longitudinal experimental designs, as we have included multi-
69  group compatible statistical methods for calculating p-values (for a full list of supported
70  methods, please see Table S1). Additionally, the ReporterScore package also supports
71  custom hierarchical and relational databases, providing extra flexibility for advanced users.
72 In this study, we described the general utility of GRSA, benchmarked GRSA against other
73  most commonly used enrichment methods on six omics datasets, and demonstrated the
74  applications of GRSA on diverse omics datasets in four case studies.
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75  Table 1: Methods of common enrichment analysis.

Category Method Tools Notes Reference
ORA Hypergeometric DAVID The most common 07

test / Fisher’s (website), methods used in

exact test clusterProfiler  enrichment analysis.

(R package)

FCS Gene set GSEA A computational method ~ *’

enrichment (website), that determines whether a

analysis clusterProfiler  set of genes shows

(GSEA) (R package) statistically significant and

concordant differences
between two biological

states.
FCS Generalized ReporterScore Find significant i
Reporter Score- (R package metabolites (first report),
based analysis  developed in  pathways, and taxonomy
(GRSA/RSA) this study) based on the p-values for
multi-omics data.
PT Reporter feature / Integrates bio-molecular 10
analysis network topology with

transcriptome data to
identify the key biological

features.

PT Topology-based TPEA (R Integrates topological t
pathway package) properties and global
enrichment upstream/downstream
analysis (TPEA) positions of genes in

pathways.

76 Result

77 Workflow overview

78  The ReporterScore package has built-in KEGG pathway, module, gene, compound, and
79 GO databases and provides a function for customizing databases, so it is compatible with
80  feature abundance tables from diverse omics data. Importantly, the input data should not
81  be filtered to preserve the background p-value distribution.

82  For the transcriptomic, scRNA-seq, and related gene-based omics data, a gene abundance
83  table can be used. For the metagenomic and metatranscriptomic data, which involve many
84  different species, a KO abundance table can be used, which is generated using Blast,
85  Diamond, or KEGG official mapper software'” to align the reads or contigs to the KEGG
86  database'’ or the EggNOG database'“. For the metabolomic data, an annotated compound
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87  abundance table can be used, but compound ID conversion according to the database (e.g.,
88  convert compound names to C numbers in the KEGG database) is required.

89  The workflow of GRSA in the ReporterScore package is shown in Figure 1, using
90 metagenomic data as an example. The KO abundance table (rows are KOs and columns
91  are samples) and metadata table (rows are samples and columns are experimental design
92  groups) were used as the input for GRSA. First, the p-values for all KOs were calculated
93 by a selected statistical method (Figure 1A). Then, in the classic mode, the p-values were
94  directly converted to Z-scores (Figure 1B [1]). In the directed mode, the p-values were
95  divided by 2, converted to Z-scores, and assigned plus or minus signs, denoting up- and
96  down-regulated KOs (Figure 1B [2-4]). Next, the Z-score of the pathway j (Zpathj) was

97  calculated by summing the Z scores of KOs within the pathway j, and divided by the square
98  root of the number of KOs (k;) in the pathway j (Figure 1C [1]). The Zpathj is further

99  standardized by the background pathway Z-score distribution, generated by randomly
100  sampling k; KOs from the total KO pool (Figure 1C [2]). The standardized pathway Z-
101 score is henceforth referred to as the reporter score of a pathway (ReporterScore;). The
102  details of the GRSA algorithm are described in the Method section.

103  We designed the ReporterScore package to be user-friendly. The function reporter score
104  calculates the reporter scores for a matching feature abundance table and metadata in one
105  step. The included assorted visualization methods can be used to explore the entire
106  pathways and features within pathways (Figure 1D). An example code tailored for a KO
107  abundance table is as follows.

108 1library(ReporterScore)
109 # Load the KO abundance table

110 KO_abundance <-read.table("ko abundance.tsv", TRUE, "\t
111 ")

112 # Get the sample metadata

113 metadata <-read.table("sample metadata.tsv", TRUE, "\t")

114  # Run RSA analysis
115 reporter_score_res = reporter_score(KO abundance, "Group", metadata,

116 "directed"”, "pathway")
117  # Visualization

118 plot_report(reporter_score_res, c(-3,3))

119 plot_report circle_packing(reporter score_res, c(-3,3))
120 plot_KOs_in_ pathway(reporter_score_res, "mapo0780")

121 plot_KOs_heatmap(reporter _score_res, "mapo0780")

122  plot_KOs_network(reporter score_res, c("map05230", "map04922"))

123 Next, we collected several benchmark datasets (Table S2) to investigate the performance
124 of GRSA and compare the GRSA with other commonly used enrichment analysis methods.
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126  Figure 1: The overall workflow of GRSA in the ReporterScore package. GRSA

127  mainly consists of four parts: (A) Calculation of the p-value for each KO between two or
128  multiple groups by various statistical methods. (B) Conversion of the p-value of a KO to
129  Z-score by inverse normal distribution and assignment of a plus or minus sign to each Z-
130  score in the directed mode. (C) Mapping KOs to annotated pathways and calculating the
131 reporter score for each pathway. KO; represents a certain KO; pyo, is the p-value of KO;;
132 Zgo, is the Z-score transformed from pg,, ; AKO; is the abundance difference of between

133 groups. A total of k; KOs were annotated to the corresponding pathway. Hi; and Oy are

134 the mean and the standard deviation of the background Z-score distribution Z4¢p nyu
135  respectively. (D) The ReporterScore package provides various visualization methods for
136  the GRSA result: (a) The bar chart shows reporter scores of pathways in the mixed mode.
137  The red color indicates significantly enriched pathways, with reporter scores greater than
138  1.64, corresponding to a p-value of 0.05. (b) The bar chart shows reporter scores of

139  pathways in the directed mode. The orange and green colors indicate up-regulated and
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140  down-regulated pathways with absolute reporter scores greater than 1.64. (c) The box
141  chart shows the pattern of a selected pathway in the directed mode with a multi-group
142 design, each line represents the trend of the average abundance of one KO. Line colors
143  indicate whether the KO is significantly enriched (orange), depleted (green), or neither
144  (grey). (d) The network plot shows the KOs present in selected pathways; some KOs can
145  Dbe shared by several pathways. Big dots represent pathways, and small dots represent
146  KOs. The colors of small dots represent the trend of KOs. The colors of the shades

147  encircling pathways denote whether the pathway is overall up-regulated (orange) or

148  down-regulated (green). (¢) The heatmap displays the abundance of each KO in a

149  pathway for different samples (columns). (f) The circular packing plot shows the

150  hierarchical relationship of selected pathways; the size of the circle indicates the absolute
151  value of the reporter score, and the color of the circle indicates that the pathway is overall
152 up-regulated (orange) and down-regulated (green).

153  Applying GRSA to multi-group and longitudinal omics data

154  An important feature of GRSA is the newly developed directed mode. The key difference
155  between the directed mode and the mixed mode (classic RSA) is that in the directed mode,
156  the plus or minus sign of the reporter score indicates the increasing or decreasing trend of
157  the pathway (Figure 1B). However, in the mixed mode, the signs of the reporter score do
158 not indicate the trends of the pathways.

159  We performed GRSA on the public ex KO profile dataset (Table S2) in two modes
160  (Figure S1A). For each pathway enriched in the directed mode, most KOs within the
161  pathway share the same trend (Figure S1B, blue and red boxes). If KOs within a pathway
162  had opposing trends, the signed Z-scores of these KOs would cancel either other, leading
163  to an insignificantly enriched pathway in the directed mode (Figure S1B, orange box). In
164  comparison, in the mixed mode, the trend of the enriched pathway cannot be determined
165  (Figure S1C). Therefore, the directed mode helps find pathways with consistently changing
166  KOs. For simplicity, we use GRSA in the directed mode henceforth.

167  Another major advantage of GRSA is the full support of multi-group and longitudinal
168  omics data. The ReporterScore package calculates the p-value for each feature between
169  groups using differential abundance analysis (“T-test”, “Wilcoxon rank-sum test”,
170  “Kruskal-Wallis test”, “ANOVA”) and correlation analysis (‘“Pearson”, “Spearman”,
171  “Kendall”). The Kruskal-Wallis test or ANOVA assesses if the feature abundance varies
172 significantly across multiple groups. The default correlation analysis treats group
173  assignments as ordinal (e.g., groups “G1”, “G2”, and “G3” will be converted to 1, 2, 3), so
174  the correlation analysis would test if the feature abundance linearly increases or decreases
175 over a series of time points. Moreover, the ReporterScore package also supports the
176  definition of any specified patterns (e.g., groups “G1”, “G2”, and “G3” can be set as 1, 10,
177 100 when an exponentially increasing trend is expected).

178  We applied GRSA with different statistical methods on multiple datasets. For the classic
179  two-group design, the difference in results mainly stems from the parametric methods
180  versus the non-parametric methods (Figure S2A). The Jaccard similarity exceeded 0.84 for
181  parametric methods and 0.78 for non-parametric methods (Figure S2A). For the multi-
182  group data, differential abundance analyses and correlation analyses performed differently.
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183  Specifically, we compared pathways enriched with ANOVA and Pearson correlation
184  methods (parametric methods) by identifying clusters of KOs within the significantly
185  enriched pathways using fuzzy c-means. In the ANOVA-based results, four patterns were
186  present. In the Pearson correlation-based results, only two patterns were observed:
187  increasing and decreasing (Figure S2B), presumably because correlation analysis detects
188  linear patterns by default. The comparison of non-parametric differential abundance and
189  correlation analyses showed highly similar results (Figure S2C). As a general rule, the users
190 need to make sure the statistical methods are reasonable for the datasets and experimental
191  designs'.

192  Lastly, GRSA also supports other statistical tests, such as “DESeq2”, “Edger”, “Limma”,
193  “ALDEX”, “ANCOM”'%, to calculate the reporter scores as follows.

194  #1. Use specific statistical test method to get the p-value

195  ko_pvalue=your_method (KO abundance)

196 #2. Transfers the p-value of KOs to the Z-score (select mode: mixed, di
197 rected)

198 ko_stat=pvalue2zs(ko pvalue, choice of mode)

199  #3. Calculate the reporter score of each pathway.

200 reporter_s=get reporter_score(ko stat)

201  GRSA shows higher sensitivity than other most commonly used
202  enrichment analysis methods

203  We next compared GRSA against other most commonly used enrichment analysis methods.
204  Fisher’s exact test is one of the most common functional enrichment analyses, which relies
205  onan arbitrary cutoff of fold change and/or significance. GSEA is a classic functional class
206  scoring method and analyzes all features based on their differential expression rank without
207  prior feature filtering.

208  GSEA calculates an Enrichment Score (ES) by moving through the ranked features list,
209  increasing the ES if a feature is in the pathway, and decreasing the ES if not. These running
210  sum values are weighted so that enrichment in the top- and bottom- ranking features is
211  amplified, while enrichment in the moderate ranks are not amplified. The ES is normalized
212 to pathway size, yielding a Normalized Enrichment Score (NES). Positive and negative
213  NES indicate enrichment at the top and bottom of the feature list, respectively. Lastly, a
214  permutation-based p-value is computed, and multi-test correction is applied, yielding a
215  False Discovery Rate (FDR) or Q value from 0 (significant) to 1 (not significant)®.
216  However, the GSEA cannot be directly applied to multi-group or longitudinal datasets.

217  PT-based methods may be better at identifying biologically meaningful pathways than non-
218  PT-based methods in some scenarios'’. However, PT-based methods require pathways
219  with comprehensive topological structure, while most pathways don’t apply, limiting the
220  versatility of PT-based methods'®. So, here we only compared GRSA against most
221  commonly used non-PT enrichment analysis methods: fisher.test, enricher and GSEA, using
222 the identical pathway database.

223  We compared the performance of GRSA with fisher.test (Fisher) provided by the R base
224  package, enricher provided by the clusterProfiler package (CP; an improved fisher.test), and
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225  gene set enrichment analysis (GSEA) on the same six datasets. In each pair-wise
226  comparison, we characterized the proportions of pathways identified by the GRSA, the
227  competing tool, and both, using all significant pathways as the denominator (Figure 2A).
228  GRSA consistently identified a larger proportion of pathways than Fisher and CP, and
229  largely overlapped with GSEA, indicating the higher sensitivity of threshold-free methods.

230 In five out of six cases, GRSA identified more enriched pathways than GSEA, GRSA-
231  specific pathways are shown in Table S3. For example, in the colorectal cancer datasets
232 (GSE41011 and GSE33126 datasets), pathways related to fat digestion'’, carbohydrate
233  metabolism”’, and chemical carcinogenesis were only enriched by GRSA (Figure S3A). In
234  the myocardial infarction dataset (GSE141512), GRSA identified the NF-kappa B
235  signaling pathway and apoptosis pathways, which were shown to be involved in the
236  pathological characteristics of myocardial infarction’! (Figure S3B). Therefore, GRSA can
237  identify additional pathways biologically relevant to the studied diseases, which may be
238  neglected by other tools.

239  In addition to enrichment analyses, some studies directly added the abundance of features
240  within a pathway as the pathway abundance and performed differential abundance analyses
241  at the pathway level (DAP)?’. In DAP, increased and decreased features cancel each other.
242 We compared DAP to GRSA with various tests (“T-test”, “ANOVA”, “Wilcoxon rank-
243  sum test”, “Kruskal-Wallis test”) and found that the DAP method could identify more
244  differential pathways than GRSA (Figure 2B). However, many DAP-specific pathways,
245  such as “map00627” in KEGG database included only one significant feature, and high-
246  abundance features will always mask the dynamic changes of low-abundance features in
247  DAP (Figure 2C, Figure S4). In contrast, GRSA-enriched pathways showed many KOs
248  with consistent small changes, such as “map03430” (Figure 2D). For the overlapping
249  pathways of the two methods, most of the KOs shared the same significant trend, such as
250  “map00785” (Figure 2E).

251  Next, we showcased the versatile utility of GRSA in multiple types of omics data.
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253  Figure 2: Comparisons of GRSA and other methods of enrichment and differential
254  abundance analyses. (A) Proportion of enriched pathways in GRSA and other
255  enrichment analysis methods based on 6 benchmark datasets. Orange pathways were only
256  identified by GRSA, blue pathways were only identified by the competing tool and green
257  pathways were identified by GRSA and the comparing methods. Fisher: fisher.test; CP:
258  improved fisher.test used by clusterProfiler; GSEA: gene set enrichment analysis by
259  clusterProfiler. (B) Comparison between GRSA (directed mode) and DAP using 4
260  statistical test methods. (C-E) Box charts of DAP-specific (C), GRSA-specific (D), and
261  shared pathways (E) using 3 KEGG pathways in Wilcox.test as examples.
262  Case study 1: The functional analysis and age-related dynamics of the
263  skin microbiota
264  For microbiome data, we collected the KO profile of the IHSMGC (integrated Human Skin
265  Microbial Gene Catalog) dataset published by Wang et al.”* and re-analyzed the data using
266  the GRSA method. In the previous study, they used DAP approach instead of enrichment
267  analysis to identify the most significantly differential abundant functional modules related
268  with cutotypes. We applied the GRSA to the datasets to find the functional differences
269  between the two cutotypes. The results were consistent with the previous study. As an
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270  example, the vitamin biosynthesis-related function showed a difference, as modules related
271  to the biosynthesis of thiamine, phylloquinone, and cobalamin were enriched in the M-
272  cutotype; while functions related to tetrahydrofolate, menaquinone, pantothenate, and
273  ubiquinone were enriched in the C-cutotype (Figure 3A). In addition, the M-cutotype was
274  enriched with a large number of modules related to the metabolism of sulfur, phenylacetate
275  (aromatic compound), and amino acids, while the C-cutotype was enriched with modules
276  related to carbohydrate metabolism (Figure S5). Importantly, GRSA also identified
277  pathways not found in the previous study. The M-cutotype was enriched with modules
278  related to nucleotide metabolism, such as the degradation and de novo biosynthesis of
279  purine (Figure S5), indicating that the M-cufotype microbiota has a higher nucleotide
280  turnover rate and stronger proliferation’.

281  The previous study divided all samples into 5 age groups and found the prevalence of the
282 M-cutotype significantly increased with age. However, they did not perform age-related
283  functional analysis. We re-analyzed the multi-group data using GRSA based on Pearson
284  correlation analysis to explore the functional dynamics related to aging. The larger positive
285  reporter scores indicate that the module has an overall increasing trend with respect to age,
286  such as “M00866”, related to lipid A biosynthesis (Figure 3B), while modules with
287  negative reporter scores show an overall decreasing trend with respect to age, such as
288  “MO00061”, related to D-Glucuronate degradation (Figure 3C). We next analyzed the
289  chronological trend of the functional modules at the KEGG level B (Figure 3D), which
290  better reflects the overall metabolic activities of the microbiome. We found that the
291  carbohydrate metabolism activity of the skin microbiota decreases with aging, while the
292  lipid, amino acid, and nucleotide metabolism activity increases with aging. These results
293  suggest that the energy sources of the skin microbiota significantly change with aging.

294  The vitamin biosynthesis-related functional modules also showed differences with respect
295  to aging (Figure 3D). For the glycan metabolism-related functional modules, biosynthesis
296  of KDO2-lipid A and CMP-KDO increased with aging. KDO2-lipid A is an essential
297  component of lipopolysaccharide (LPS) in most gram-negative bacteria, which has
298  endotoxin activity and stimulates host immune responses through Toll-like receptor 4
299 (TLR4)*. CMP-KDO is an important intermediate in the synthesis of KDO2-lipid A, and
300 CMP-KDO synthesis is the key rate-limiting step for introducing KDO into LPS?°. These
301  results suggest that microbiota of aging skins likely accumulate endotoxins and stimulate
302  host inflammation. In addition, we found degradation pathways of several sulfated
303 glycosaminoglycans (chondroitin sulfate, dermatan sulfate, and keratan sulfate) decreased
304 in aging skin. Sulfated glycosaminoglycans play a key role in regulating skin physiology,
305  and there is ample evidence that their properties and functions change over time and with
306  extrinsic skin aging’’ **. Total sulfated glycosaminoglycan abundance was reduced in
307  aging skin”’, which may lead to the decreased degrading ability of the skin microbiota for
308 the sulfated glycosaminoglycans.
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310 Figure 3: Application of GRSA to the skin microbiome of the IHSMGC dataset. (A)
311  The network of KO-Module enriched in the M-cutotype (green) and C-cutotype (blue).
312  Only modules related to vitamin biosynthesis were shown. Big dots represent modules;
313  small dots represent KOs. The colors of small dots represent cutotypes. Shades indicate
314  modules involved in the biosynthesis of the same vitamin. The colors of shades denote
315  modules enriched in the M-cutotype (green) or enriched in the C-cutotype (blue). (B-C)
316  The Box charts of modules “M00866 and “M00061” across ages. The colors of the lines
317  represent the trend of KOs relative abundance in the module. “M00866” had the biggest
318  positive reporter score (increasing), while “M00061” had the biggest absolute value of
319  negative score (decreasing). (D) The Bar chart shows significantly enriched modules over


https://doi.org/10.1101/2023.10.13.562235
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.13.562235; this version posted October 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

320  ages; the reporter score threshold of 2.5 corresponds to a confidence of about 0.995, and
321  these modules are grouped based on the KEGG level B. Colors denote the modules that
322  were up-regulated (red) or down-regulated (green) with aging.

323 Case study 2: The functional transcriptional dynamics during
324 cardiomyocyte differentiation

325  Weapplied GRSA to the transcriptomic dataset published by Liu et al. in 2017°". The study
326  used the WGCNA method to analyze the temporal transcriptomic changes during the
327  differentiation of cardiomyocytes from 2 hiPSC lines and 2 hESC lines at 4 timepoints
328  (pluripotent stem cells at day 0, mesoderm at day 2, cardiac mesoderm at day 4, and
329  differentiated cardiomyocytes at day 30). Significant changes were observed in the four
330 stages of differentiation among all cell lines. For example, genes in module 1 were highly
331 expressed only in differentiated cardiomyocytes (stage CM), and their enriched Gene
332 Ontology (GO) terms of Biological Process (BP) were related to heart functions, such as
333  regulation of cardiac contraction and muscular system processes. However, WGCNA did
334 not assume the patterns to be linear so that genes can be only highly expressed at day 2
335  during mesoderm development, for example.

336  Inaddition to linearly increasing or decreasing patterns, GRSA allows users to specify any
337  expected patterns for enrichment analysis. To start, we used the fuzzy C-means clustering
338 method to identify the main gene expression patterns (Figure 4A), and then used these
339  patterns for GRSA to obtain significantly enriched pathways in each pattern (using the
340 RSA by cm function in the ReporterScore package). For example, “Heart process
341  (GO:0003015)” was a significantly enriched GO term for Cluster 6, which was highly
342  expressed only in stage CM (day 30). We identified many genes consistent with the
343  expression pattern of Cluster 6 (Figure 4B).

344  GRSA results for all clusters were shown in the Figure 4C. Cluster 2 was highly expressed
345  only at day 0 and its enriched GO terms was mainly related to the mitotic cell cycle, which
346  was expected for stem cell self-renewal processes. Cluster 5 had the highest expression
347  level on day 2 and was mainly enriched in various transcription and translation processes.
348  Many known transcription factors such as EOMES, MIXL1, and WNT3A were assigned
349  to this cluster and play important roles in mesoderm development. Cluster 4 was highly
350 expressed at day 0 and day 2 and showed a gradually decreasing trend, its function
351  overlapped with Clusters 2 and 5. Cluster 1, highly expressed at day 4, was related to
352  mesoderm formation such as morphogenesis and organ development. Clusters 3 and 6 were
353  primarily up-regulated in differentiated cardiomyocytes (CM stage), and they were related
354  to heart functions, such as regulation of heart contraction and muscle system processes,
355  similar to module 1 in the previous study. Interestingly, the biological processes of
356  hiPSCs/hESCs at day 2 (Cluster 5) focused on various RNA-related metabolisms, which
357  was not found in the previous study, indicating that complex transcriptional regulations are
358 involved for further mesoderm formation. Therefore, using the identified expression
359  patterns across groups, we successfully identified pathways and modules essential to
360 different stages of the cardiomyocyte differentiation processes.
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362  Figure 4: Application of GRSA to the transcriptomic dataset on the cardiomyocyte
363 differentiation processes. (A) C-means clustering result of gene abundance profiles
364  across four differentiation stages. The genes with membership scores greater than 0.8
365  were displayed. The alpha (transparency) of each line was related to the value of its
366  membership score, and the abundance was standardized. (B) The box chart of

367  “G0O:0003015 (heart process) across four time points, the colors of the lines represent
368 the correlative significance of each gene with Cluster 6 within the GO term.

369  “G0O:0003015” is a representative term of Cluster 6. (C) The bar chart shows
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370  significantly enriched GO terms for each clustering pattern corresponding to the

371  differentiation stages. The colors of the bars represent the cluster information, and the
372  representative GO terms with the highest reporter scores in each cluster were shown. The
373  text labels on the left were colored according to the stages with the highest expression. In
374  general, Cluster 2 corresponds to day 0, Clusters 4 and 5 correspond to day 2, Cluster 1
375  corresponds to day 4, and Clusters 3 and 6 correspond to CM. Note that only pathways
376  with significant positive scores are shown. The negative score of specified patterns would
377  indicate anti-correlative patterns, which should have already been identified by c-means
378  analysis, such as cluster 3 vs. 4.

379 Case study 3: The systematic maternal metabolomic changes correlate
380 with gestational age

381  We next applied GRSA to metabolomic data from a Danish pregnancy cohort in which
382  female participants had blood drawn weekly from pregnancy to the postpartum period for
383  untargeted metabolomics analysis’!. Using gestational age as the study variable, they
384 modeled a metabolic clock and found that several marker metabolites increased linearly
385  with gestational age.

386  We performed GRSA using gestational age (a numeric variable) and enriched for pathways
387  that were significantly up- or down-regulated with respet to gestational age in weeks. We
388  found several important pathways upregulated with gestational age: steroid hormone
389  biosynthesis, cortisol synthesis and secretion, and Oocyte meiosis (Figure 5A). Multiple
390 steroid hormones were up-regulated with increasing gestational age (Figure 5B), including
391  progesterone that interacts with the hypothalamic-pituitary-adrenal axis (HPA axis)’” and
392  estriol-16-glucuronide produced by the placenta’”. At the same time, two steroid hormones
393 related to androgen were down-regulated: dehydroepiandrosterone sulfate and
394  androsterone 3-glucuronide, as the concentration of androgens plays important
395  physiological functions during pregnancy’*. We also found that pathways related to the
396 metabolism of aromatic amino acids were down-regulated with increasing gestational age
397  (Figure 5A), which has been reported™.

398  Importantly, we identified several up-regulated pathways related to human diseases that
399  were not mentioned in the previous study. Cushing syndrome happens when the body has
400 too much of the hormone cortisol for a long time, which could be induced by healthy
401  pregnancy’®. The up-regulation of pathways related to breast cancer were also noticeable
402  as Pregnancy-Associated Breast Cancer (PABC) accounts for 7% of all breast cancer in
403  young women’’. Importantly, more potential discoveries can be made if the metabolite-

404  pathway database can be improved.

405 Case study 4: The application of customized hierarchical relational
406 databases for GSRA

407  The algorithm of GRSA suggests that any features organized in a hierarchical relationship
408 can be used as an enrichment database. For example, if we wish to identify phylogenetic
409  groups of microbes with a specific abundance pattern among different groups of samples,
410  we can use the phylogenetic relationships of microbes, such as genus-species phylogenetic
411  data, for taxonomic enrichment analysis. To demonstrate, with the custom modulelist
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412  function, we used the species abundance table from the IHSMGC dataset and looked for
413  genera enriched in the two cutotypes. We found that Psychrobacter, Paracoccus,
414  Chryseobacterium, Elizabethkingia, Deinococcus, and Microbacterium were enriched in
415  the M-cutotype, while Acidipropionibacterium, Staphylococcus, Corynebacterium, and
416  Cutibacterium were enriched in the C-cutotype (Figure 5C), some of which were highly
417  consistent with the differential species modules found by co-occurrence network in the
418  previous study. However, we additionally found some genera such as Brevundimonas and
419  Rhodobacter were enriched in the M-cutotype, while Pahexavirus (phages of
420  Propionibacterium and Cutibacterium) was enriched in the C-cutotype (Figure 5C),
421  probably due to the higher sensitivity of GRSA.

422  Two species, Moraxella osloensis and Cutibacterium acnes, were used to define the
423  cutotype in the previous study. Interestingly, while the Cutibacterium genus was a good
424  biomarker between cutotypes, the Moraxella genus was not as the included species did not
425  share the same trend (Figure 5D). Therefore, in additional to functional enrichment analysis,
426  given a custom hierarchical relational database, the GRSA can be extended to any type of
427  enrichment analyses.
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429  Figure 5: Application of GRSA in the metabolic data of the Danish pregnancy
430  cohort and in the taxonomic enrichment analysis of the IHSMGC dataset. (A) The
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431  circle packing chart shows the hierarchical relationships of significantly enriched

432  pathways identified by GRSA in the metabolomic study. The size of the circle indicates
433  the absolute value of the reporter score, and the color of the circle indicates the sign of
434  reporter score. The positive reporter score indicates the pathway was increased (orange)
435  while the negative reporter score indicates the pathway was decreased (purple). (B) The
436  heatmap shows the abundance of metabolites present in the pathway “steroid hormone
437  biosynthesis”. The columns are samples ordered by the increasing gestational age. (C)
438  The bar chart shows significantly enriched genera in the C-cutotype and M-cutotype. (D)
439  The network plot shows the species in g Moraxella and g_Cutibacterium, which are
440  enriched in the M-cutotype (green) or C-cutotype (blue).

441 Discussion

4472  We developed the ReporterScore package to democratize the GRSA method for
443  enrichment analyses in the broad sense. We have improved upon the classic RSA method
444 by introducing the directed mode for easy interpretation of the plus and minus signs of the
445  results. More importantly, we introduced all the common statistical methods for differential
446  abundance and correlation analyses, expanding the scope of GRSA from two-group
447  comparison to multi-group comparison. With the support of numerical grouping variables
448  and user-defined feature abundance patterns, we can apply GRSA to longitudinal data and
449  perform enrichment analysis of features of specific patterns. We demonstrated these new
450  applications with metagenomic, transcriptomic, and metabolomic data (Figures 4~6).
451  Lastly, we show that the GRSA is not limited to functional enrichment analysis and can be
452  easily applied for taxonomic enrichment analysis in microbiome studies. We also provided
453  arich repertoire of visualization methods (Figure 1D), facilitating quick communications
454  between researchers. All the figures were generated using the visualization module in the
455  ReporterScore package.

456  GRSA is a more sensitive enrichment method because it considers all KOs involved in the
457  pathway compared to hypergeometric tests that only consider a pre-defined list
458  (e.g. KO/gene with p-value < 0.05). Thus, GRSA can comprehensively assess the
459  abundance differences in the pathway and not be affected by a priori cut-off of gene
460  significance and the average abundance of a feature (Figure 2A). Compared with GSEA,
461  which considers the magnitude of gene changes for ranking, GRSA uses p-values for
462  ranking and permutation. However, more positive results are not always good, and we still
463  need further experimental verification to illustrate the reliability of the enrichment results.
464 In addition, we do not think DAP is an enrichment method because it does not consider the
465  equal contribution of each gene in the pathway and completely ignores the functional
466  background.

467 The GRSA applies to all omics datasets as long as a reference relational database is
468 available. More importantly, we have acquired new biological insights in each of the case
469  studies. Application of GRSA on the ITHSMGC dataset suggested that aging skin
470  microbiota may have different functional profiles than young skin microbiota. For example,
471  biosynthesis of KDO2-lipid A and CMP-KDO increased in while degradation pathways of
472  several sulfated glycosaminoglycans decreased in older skin microbiota, which may be
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473  linked to changes in the skin’s physiological properties. Further studies are needed to
474  investigate the underlying mechanisms of these changes and their implications for skin
475  health. Application of GRSA on the transcriptomic data of cardiomyocyte differentiations
476  revealed that hiPSCs/hESCs at day 2 are specialized in various RNA-related metabolisms,
477  suggesting the involvement of complex transcriptional regulation in further mesoderm
478  formation. In addition, Application of GRSA on the metabolomic data from the Danish
479  pregnancy cohort showed that several pathways related to human diseases were up-
480  regulated with gestational age, including Cushing syndrome and PABC. It reminded us of
481  some disease risks for normal pregnant women.

482  The GRSA offers the option for user-specified pattern for enrichment analysis, allowing
483  for rapid testing of educated hypotheses in complex multi-group studies. This is
484  demonstrated in our analysis of the transcriptomic data of cardiomyocyte differentiations.

485  Finally, the extended application of GRSA in the taxonomic enrichment analysis of the
486  IHSMGC dataset allowed us to identify key genera that significantly differed between the
487  two cutotypes. The results were highly consistent with the microbial co-occurrence
488  network analysis in the previous study, but performing GRSA by ReporterScore package
489  was much faster and easier than the WGCNA network analysis.

490 In summary, we believe the GRSA method and the ReporterScore package can greatly
491 facilitate the functional enrichment analyses of diverse omics data across fields of science,
492  with higher sensitivity, compatibility with multi-group and longitudinal designs, and
493  flexibility with customized databases for creative applications even beyond functional
494  enrichment analyses.

495 Method

496  Algorithm
497  The algorithm of GRSA is described as follows, using metagenomic data as an example.
498 (1) Calculating the p-values

499 A specified method (the full list of supported statistical methods can be found in Table S1)
500  was used to obtain the p-value of the abundance comparison of each feature between the
501  experimental groups (i.e., Pxo,, KO; represents a certain KO; Figure 1A). We used KO to
502  represent different features in the formulas for simplicity.

503 (2) Converting the p-values into Z-scores

504  For the classic mixed RSA, we used an inverse normal cumulative distribution function
505 (871)to convert the p-value of each KO into Z-score (Z ko,)- Thus, in the case of uniformly

506  distributed p-values (random data assumption), the resulting Z-scores will follow a
507  standard normal distribution (Figure 1B), the formula is:

508 Zxo, = 07*(1 — pko,)
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509  For the new directed RSA, we first divided the p-values by 2, transforming the range of p-
510  values from (0,1] to (0,0.5]:

511 pKOi :pKOi/z

512  Secondly, we used an inverse normal cumulative distribution function to convert the p-
513  value of each KO into Z score (Z,). When the p-value is 0.5, the converted Z-score equals

514  to 0. Since the above p-values are no greater than 0.5, all converted Z-scores will be greater
515  than O (Figure 1B). The formula is:

516 Zxo, = 07 (1 = pro,)
517  We then determined if a KO is up-regulated or down-regulated and calculated the AKO;.

518 In a differential abundance analysis (two-group design):

519 AKO, =K0; —KO

ig1 ig2

520 K Oi, is the average abundance of KO; in groupl, and K 0i,, is the average abundance of
521 KO; in group?2.

522  Ina correlation analysis (two-group, multi-group, and longitudinal design):

523 AKO; = pgo,
524 pgo, is the correlation coefficient between K O; and the numeric variable to be examined.

525  Finally, assign a plus or minus sign to each Z-score:

coe ;o ~Zxo, (AKO; <0)
K0i ™ \+Zgo, (4KO; =0)

527  Therefore, a KO; with a Z, greater than 0 is up-regulated, a KO; with a Zy, less than 0
528 is down-regulated.

529  (3) Scoring the pathway

530 We next used the Z-score of KOs to score the pathway. First, choose a pathway database
531 asthereference. It is of particular interest to note any hierarchy relational table (e.g., KEGG,
532 taxonomy database) can be used as a reference as long as the relationship between the
533  upstream and downstream features (e.g., pathways and KOs) can be represented by a
534  bipartite network (Figure 1C). For each pathway in the selected database, calculate the Z-
535  score of pathway j (Zpath].) as follows:

1
536 Zpathj :\/_k_-ZZKOi

537  where Zy, is the Z-score of KO; within the path;, and k; denotes the total number of KOs
538 inthe path;;
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539  Next, we corrected Zpatn, using the background distribution of the Z-scores of all KOs
540  (Zko,, = {Zkoy Zkoy -+ Z KO]-}) to evaluate the significance of enrichment. Specifically,
541  for a given pathway path; including k; KOs, we randomly sampled the same number of
542 KOs from the background Zg,_,, and calculated the Zpq:pn nwi L for N times (N = 10,000 in
543  this study'’). We then standardized Zpatn; by subtracting the mean (i) and dividing by
544  the standard deviation (akj) of the Zp,atn nui L distribution. The standardized Zpathj is the

545  ReporterScore;. The p-value of ReporterScore; is estimated by the above permutation.

546  The formula for the reporter score and associated p-value are:

Zpathj - Mkj
547 ReporterScore; = —
kj

Zﬁ:l 1 (Zpath]-r Zpath_nulljn)
N

548 p_valuej =

549 p_value; =

{ p_value;, (ReporterScorej <0)
J

1 —p_value;, (ReporterScorej = 0)

550  where Zpath_nu”j have the same k to Zpathj, Hi; is the mean of the randomly generated N
551 Zpath_nu”j, O; is the standard deviation of the randomly generated N Zpath_nu”j. The
552  I(a,b) equals to 1 when a > b, else the I(a, b) equals to 0.

553 Benchmark datasets

554  Benchmark datasets includes one example KO profile (ex KO profile downloaded from
555  https://github.com/wangpeng407/ReporterScore) and 6 gene expression profiles of
556  multiple human tissue types from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

557  We used these benchmark datasets with two-group or multi-group of experimental design
558 to investigate the performance of GRSA, including similarities and differences between
559  two working modes, between various statistical methods, and comparing GRSA with other
560 commonly used enrichment analysis methods. Details of the datasets can be found in Table
561  S2.

562 Case study datasets

563 Three case studies were re-analyzed using ReporterScore to demonstrate versatile
564  applications to diverse circumstances, including the microbiome, transcriptome, and
565 metabolome.

566  Skin microbiome data were generated by Wang et al. (2021)”°. They sequenced 822 skin
567  samples using the shotgun method and constructed the complete Human Skin Microbiome
568  Gene Catalog (IHSMGC). A full KO profile based on KEGG database was provided at the
569  website

570  (https:/ftp.cngb.org/pub/SciRAID/Microbiome/humanSkin 10.9M/AbundanceProfile/TH
571 SMGC.KO.normalization.ProfileTable.gz). Metadata with details about including body
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572  site, sex, age and cutotype was obtained  via https://static-
573  content.springer.com/esm/art%3A10.1186%2Fs40168-020-00995-
574  7/MediaObjects/40168 2020 995 MOESM2 ESM.xIsx.

575  Transcriptomic data were extracted from the study by Liu et al. (2017)*°. They investigated
576  time-course transcriptomic profiling of cardiomyocyte differentiation derived from human
577 hESCs and hiPSCs. The gene expression matrix 1is available at
578  https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85331.

579  Metabolomic data were generated by Liang et al. (2020)*'. They analyzed the untargeted
580  mass-spectrum data of 784 samples from 30 pregnant women, and built a metabolic clock
581  with five metabolites that time gestational age. The 264 identified level-1 and level-2
582  metabolites with HMDB IDs and their log2(intensity) can be found at https://ars.els-
583  cdn.com/content/image/1-s2.0-S009286742030564X-mmc2.xlsx, while the original MS
584 data is available at
585  https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&Proj
586  ectID=PRO00918.

587 Statistical analysis

588  All statistical analyses were done on the R 4.2.3 platform. The developed ReporterScore
589  package (https:/github.com/Asal2138/ReporterScore) was used for GRSA and
590 visualization. Venn diagram and Venn network diagram were drawn by the pcutils package
591  (https://github.com/Asal2138/pcutils/).

592 To compare the performance of different statistical methods in the two-group of
593  experimental design, we defined a Jaccard similarity index:

|method (i) N method(j)|

504 Similarity = |method (i) U method(j)|

595  where method(i) (method(j)) is the number of significant pathways based on benchmark
596  data sets enriched by different methods.

597  We used fuzzy c-means (FCM) clustering to explore the performance of different statistical
598  test methods in multi-group experimental design (Figure S2D) and gene expression
599  patterns in transcriptome (Figure 3A). FCM is an unsupervised machine-learning technique
600 that partitions a population into groups or clusters’®. Three methods (Elbow, Silhouette,
601 and Gap statistic) were used to determine the optimal number of clusters. In FCM, the
602  membership score is the probability that a feature belongs to a cluster. Each feature is
603  assigned to a cluster based on its highest membership score.

604 In the comparison of GRSA with other commonly used enrichment methods, we first
605 calculated the p-values of features by T-test and performed adjustment of the p-values
606  using the Benjamini & Hochberg (BH) method to control for False Discovery Rate (FDR).
607 A particular threshold of BH-adjusted p-value <0.05 and fold-change of feature
608 abundance >2 were set to define the DEGs list. fisher.test (Fisher) was performed by the R
609  base package. Improved fisher.test (CP) was performed by enricher function in the
610  clusterProfiler package with the DEGs list. Gene set enrichment analysis (GSEA) was
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611  performed by the GSEA function in clusterProfiler package, and the T-test statistic was used
612  as the metric for ranking®” of GSEA. GRSA was performed with the BH-adjusted p-values
613  of features by T-test. For convenience, the ReporterScore package provides interface to the
614  above mentioned enrichment methods: KO _fisher for fisher.test, KO enrich modified from
615  clusterProfiler based on fisher.test, and KO gsea modified from GSEA in clusterProfiler.
616  These enrichment methods also support custom databases and is compatible with the
617  format of the input data for the reporter score function in GRSA, making it easily to make
618  cross-comparisons.
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