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Abstract 13	

Enrichment analysis contextualizes biological features in pathways to facilitate a 14	

systematic understanding of high-dimensional data and is widely used in biomedical 15	

research. The emerging method known as the reporter score-based analysis (RSA) shows 16	

more promising sensitivity, as it relies on p-values instead of raw values of features. 17	

However, RSA can only be applied to two-group comparisons and is often misused due to 18	

the lack of a convenient tool. We propose the Generalized Reporter Score-based 19	

Enrichment Analysis (GRSA) method for enrichment analysis of multi-group and 20	

longitudinal omics data. The GRSA is implemented in an R package, ReporterScore, 21	

integrating a powerful visualization module and updatable pathway databases. A 22	

comparison with other common pathway enrichment analysis methods, such as Fisher9s 23	

exact test and GSEA, reveals that GRSA exhibits increased sensitivity across multiple 24	

benchmark datasets. We applied GRSA to the microbiome, transcriptome, and metabolome 25	

data to show its versatility in discovering new biological insights in omics studies. Finally, 26	

we showcased the applicability of the GRSA method beyond functional enrichment using 27	

a custom taxonomy database. We believe the ReporterScore package will be an invaluable 28	

tool for broad biomedical research fields. The ReporterScore and a complete description 29	

of the usages are publicly available on GitHub 30	

(https://github.com/Asa12138/ReporterScore). 31	

  32	
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Introduction 33	

Functional enrichment analysis is an essential bioinformatic method that helps understand 34	

the biological significance of large omics datasets, such as transcriptomic, metagenomic, 35	

and metabolic datasets, and formulate hypotheses for downstream experimental 36	

investigations1. By identifying enriched functional categories, such as gene ontology terms 37	

or biological pathways, we can gain insights into the underlying biological processes and 38	

functions. 39	

Methods for functional enrichment analysis can be roughly divided into three categories 40	

based on underlying statistical methods: (i) overrepresentation analysis (ORA), (ii) 41	

functional class scoring (FCS), and (iii) pathway topology-based (PT)2. Common 42	

enrichment analysis methods in omics research are shown in Table 1. The algorithm of 43	

reporter score-based analysis (RSA) was originally developed by Patil and Nielsen in 2005 44	

to identify metabolites associated with the metabolic network9s regulatory hotspots3. The 45	

RSA has regained popularity in recent years due to its extended application in functional 46	

enrichment analysis in microbiome research, which can help identify microbial functional 47	

pathways that undergo significant changes in different conditions4. RSA is an FCS method 48	

based on parsing the p-values of the differential abundance or correlation analyses. The 49	

rationale is that the p-value can be considered as a standardized statistic that reflects the 50	

differences between different genes, regardless of the mean expression values. The 51	

pathways with significantly lower p-values than the background p-value distribution will 52	

be enriched3. 53	

However, RSA is often misused due to the lack of specific tools and systematic 54	

understanding of the algorithm5. In addition, the sign (plus or minus) of the reporter score 55	

of each pathway in classic RSA does not represent the increasing or decreasing trend of 56	

the pathway expression; rather, any reporter scores (including negative scores) less than a 57	

specified threshold simply indicates that the corresponding pathway is not significantly 58	

enriched. This often leads to misinterpretations of the results. 59	

Inspired by the classic RSA, we developed the improved Generalized Reporter Score-based 60	

Enrichment Analysis (GRSA) method, implemented in the R package ReporterScore, 61	

along with comprehensive visualization methods and pathway databases. GRSA is a 62	

threshold-free method that works well with all types of biological features, such as genes 63	

in the transcriptome, compounds in the metabolome, and species in the metagenome. 64	

GRSA works in two modes: classic RSA (the mixed mode) and enhanced RSA (the 65	

directed mode). The enhanced RSA uses signs of the reporter score to distinguish up-66	

regulated or down-regulated pathways, which is more intuitive. Importantly, the GRSA 67	

supports multi-group and longitudinal experimental designs, as we have included multi-68	

group compatible statistical methods for calculating p-values (for a full list of supported 69	

methods, please see Table S1). Additionally, the ReporterScore package also supports 70	

custom hierarchical and relational databases, providing extra flexibility for advanced users. 71	

In this study, we described the general utility of GRSA, benchmarked GRSA against other 72	

most commonly used enrichment methods on six omics datasets, and demonstrated the 73	

applications of GRSA on diverse omics datasets in four case studies. 74	
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Table 1: Methods of common enrichment analysis. 75	

Category Method Tools Notes Reference 

ORA Hypergeometric 

test / Fisher9s 

exact test 

DAVID 

(website), 

clusterProfiler 

(R package) 

The most common 

methods used in 

enrichment analysis. 

6,7 

FCS Gene set 

enrichment 

analysis 

(GSEA) 

GSEA 

(website), 

clusterProfiler 

(R package) 

A computational method 

that determines whether a 

set of genes shows 

statistically significant and 

concordant differences 

between two biological 

states. 

8,9 

FCS Generalized 

Reporter Score-

based analysis 

(GRSA/RSA) 

ReporterScore 

(R package 

developed in 

this study) 

Find significant 

metabolites (first report), 

pathways, and taxonomy 

based on the p-values for 

multi-omics data. 

3,5 

PT Reporter feature 

analysis 

/ Integrates bio-molecular 

network topology with 

transcriptome data to 

identify the key biological 

features. 

10 

PT Topology-based 

pathway 

enrichment 

analysis (TPEA) 

TPEA (R 

package) 

Integrates topological 

properties and global 

upstream/downstream 

positions of genes in 

pathways. 

11 

Result 76	

Workflow overview 77	

The ReporterScore package has built-in KEGG pathway, module, gene, compound, and 78	

GO databases and provides a function for customizing databases, so it is compatible with 79	

feature abundance tables from diverse omics data. Importantly, the input data should not 80	

be filtered to preserve the background p-value distribution. 81	

For the transcriptomic, scRNA-seq, and related gene-based omics data, a gene abundance 82	

table can be used. For the metagenomic and metatranscriptomic data, which involve many 83	

different species, a KO abundance table can be used, which is generated using Blast, 84	

Diamond, or KEGG official mapper software12 to align the reads or contigs to the KEGG 85	

database13 or the EggNOG database14. For the metabolomic data, an annotated compound 86	
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abundance table can be used, but compound ID conversion according to the database (e.g., 87	

convert compound names to C numbers in the KEGG database) is required. 88	

The workflow of GRSA in the ReporterScore package is shown in Figure 1, using 89	

metagenomic data as an example. The KO abundance table (rows are KOs and columns 90	

are samples) and metadata table (rows are samples and columns are experimental design 91	

groups) were used as the input for GRSA. First, the p-values for all KOs were calculated 92	

by a selected statistical method (Figure 1A). Then, in the classic mode, the p-values were 93	

directly converted to Z-scores (Figure 1B [1]). In the directed mode, the p-values were 94	

divided by 2, converted to Z-scores, and assigned plus or minus signs, denoting up- and 95	

down-regulated KOs (Figure 1B [2-4]). Next, the Z-score of the pathway � (�()*+!) was 96	

calculated by summing the Z scores of KOs within the pathway �, and divided by the square 97	

root of the number of KOs (�,) in the pathway � (Figure 1C [1]). The �()*+!  is further 98	

standardized by the background pathway Z-score distribution, generated by randomly 99	

sampling �, KOs from the total KO pool (Figure 1C [2]). The standardized pathway Z-100	

score is henceforth referred to as the reporter score of a pathway (�������������,). The 101	

details of the GRSA algorithm are described in the Method section. 102	

We designed the ReporterScore package to be user-friendly. The function reporter_score 103	

calculates the reporter scores for a matching feature abundance table and metadata in one 104	

step. The included assorted visualization methods can be used to explore the entire 105	

pathways and features within pathways (Figure 1D). An example code tailored for a KO 106	

abundance table is as follows. 107	

library(ReporterScore)	108	

# Load the KO abundance table	109	

KO_abundance <-read.table("ko_abundance.tsv", header = TRUE, sep = "\t110	

")	111	

# Get the sample metadata	112	

metadata <-read.table("sample_metadata.tsv", header = TRUE, sep = "\t")	113	

# Run RSA analysis	114	

reporter_score_res = reporter_score(KO_abundance, "Group", metadata,	115	

                                  mode="directed", type = "pathway")	116	

# Visualization	117	

plot_report(reporter_score_res, rs_threshold = c(-3,3)) 118	

plot_report_circle_packing(reporter_score_res, rs_threshold = c(-3,3))	119	

plot_KOs_in_pathway(reporter_score_res, map_id = "map00780")	120	

plot_KOs_heatmap(reporter_score_res, map_id = "map00780")	121	

plot_KOs_network(reporter_score_res, map_id = c("map05230","map04922"))	122	

Next, we collected several benchmark datasets (Table S2) to investigate the performance 123	

of GRSA and compare the GRSA with other commonly used enrichment analysis methods. 124	
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 125	

Figure 1: The overall workflow of GRSA in the ReporterScore package. GRSA 126	

mainly consists of four parts: (A) Calculation of the p-value for each KO between two or 127	

multiple groups by various statistical methods. (B) Conversion of the p-value of a KO to 128	

Z-score by inverse normal distribution and assignment of a plus or minus sign to each Z-129	

score in the directed mode. (C) Mapping KOs to annotated pathways and calculating the 130	

reporter score for each pathway. ��- represents a certain KO; �./" is the p-value of ��-; 131	

�./" is the Z-score transformed from �./"; ���- is the abundance difference of between 132	

groups. A total of �, KOs were annotated to the corresponding pathway. �0! and �0! are 133	

the mean and the standard deviation of the background Z-score distribution �()*+_2344, 134	

respectively. (D) The ReporterScore package provides various visualization methods for 135	

the GRSA result: (a) The bar chart shows reporter scores of pathways in the mixed mode. 136	

The red color indicates significantly enriched pathways, with reporter scores greater than 137	

1.64, corresponding to a p-value of 0.05. (b) The bar chart shows reporter scores of 138	

pathways in the directed mode. The orange and green colors indicate up-regulated and 139	
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down-regulated pathways with absolute reporter scores greater than 1.64. (c) The box 140	

chart shows the pattern of a selected pathway in the directed mode with a multi-group 141	

design, each line represents the trend of the average abundance of one KO. Line colors 142	

indicate whether the KO is significantly enriched (orange), depleted (green), or neither 143	

(grey). (d) The network plot shows the KOs present in selected pathways; some KOs can 144	

be shared by several pathways. Big dots represent pathways, and small dots represent 145	

KOs. The colors of small dots represent the trend of KOs. The colors of the shades 146	

encircling pathways denote whether the pathway is overall up-regulated (orange) or 147	

down-regulated (green). (e) The heatmap displays the abundance of each KO in a 148	

pathway for different samples (columns). (f) The circular packing plot shows the 149	

hierarchical relationship of selected pathways; the size of the circle indicates the absolute 150	

value of the reporter score, and the color of the circle indicates that the pathway is overall 151	

up-regulated (orange) and down-regulated (green). 152	

Applying GRSA to multi-group and longitudinal omics data 153	

An important feature of GRSA is the newly developed directed mode. The key difference 154	

between the directed mode and the mixed mode (classic RSA) is that in the directed mode, 155	

the plus or minus sign of the reporter score indicates the increasing or decreasing trend of 156	

the pathway (Figure 1B). However, in the mixed mode, the signs of the reporter score do 157	

not indicate the trends of the pathways. 158	

We performed GRSA on the public ex_KO_profile dataset (Table S2) in two modes 159	

(Figure S1A). For each pathway enriched in the directed mode, most KOs within the 160	

pathway share the same trend (Figure S1B, blue and red boxes). If KOs within a pathway 161	

had opposing trends, the signed Z-scores of these KOs would cancel either other, leading 162	

to an insignificantly enriched pathway in the directed mode (Figure S1B, orange box). In 163	

comparison, in the mixed mode, the trend of the enriched pathway cannot be determined 164	

(Figure S1C). Therefore, the directed mode helps find pathways with consistently changing 165	

KOs. For simplicity, we use GRSA in the directed mode henceforth. 166	

Another major advantage of GRSA is the full support of multi-group and longitudinal 167	

omics data. The ReporterScore package calculates the p-value for each feature between 168	

groups using differential abundance analysis (<T-test=, <Wilcoxon rank-sum test=, 169	

<Kruskal-Wallis test=, <ANOVA=) and correlation analysis (<Pearson=, <Spearman=, 170	

<Kendall=). The Kruskal-Wallis test or ANOVA assesses if the feature abundance varies 171	

significantly across multiple groups. The default correlation analysis treats group 172	

assignments as ordinal (e.g., groups <G1=, <G2=, and <G3= will be converted to 1, 2, 3), so 173	

the correlation analysis would test if the feature abundance linearly increases or decreases 174	

over a series of time points. Moreover, the ReporterScore package also supports the 175	

definition of any specified patterns (e.g., groups <G1=, <G2=, and <G3= can be set as 1, 10, 176	

100 when an exponentially increasing trend is expected). 177	

We applied GRSA with different statistical methods on multiple datasets. For the classic 178	

two-group design, the difference in results mainly stems from the parametric methods 179	

versus the non-parametric methods (Figure S2A). The Jaccard similarity exceeded 0.84 for 180	

parametric methods and 0.78 for non-parametric methods (Figure S2A). For the multi-181	

group data, differential abundance analyses and correlation analyses performed differently. 182	
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Specifically, we compared pathways enriched with ANOVA and Pearson correlation 183	

methods (parametric methods) by identifying clusters of KOs within the significantly 184	

enriched pathways using fuzzy c-means. In the ANOVA-based results, four patterns were 185	

present. In the Pearson correlation-based results, only two patterns were observed: 186	

increasing and decreasing (Figure S2B), presumably because correlation analysis detects 187	

linear patterns by default. The comparison of non-parametric differential abundance and 188	

correlation analyses showed highly similar results (Figure S2C). As a general rule, the users 189	

need to make sure the statistical methods are reasonable for the datasets and experimental 190	

designs15. 191	

Lastly, GRSA also supports other statistical tests, such as <DESeq2=, <Edger=, <Limma=, 192	

<ALDEX=, <ANCOM=16, to calculate the reporter scores as follows. 193	

#1. Use specific statistical test method to get the p-value	194	

ko_pvalue=your_method(KO_abundance)	195	

#2. Transfers the p-value of KOs to the Z-score (select mode: mixed, di196	

rected)	197	

ko_stat=pvalue2zs(ko_pvalue, mode=choice_of_mode)	198	

#3. Calculate the reporter score of each pathway.	199	

reporter_s=get_reporter_score(ko_stat)	200	

GRSA shows higher sensitivity than other most commonly used 201	

enrichment analysis methods 202	

We next compared GRSA against other most commonly used enrichment analysis methods. 203	

Fisher9s exact test is one of the most common functional enrichment analyses, which relies 204	

on an arbitrary cutoff of fold change and/or significance. GSEA is a classic functional class 205	

scoring method and analyzes all features based on their differential expression rank without 206	

prior feature filtering.  207	

GSEA calculates an Enrichment Score (ES) by moving through the ranked features list, 208	

increasing the ES if a feature is in the pathway, and decreasing the ES if not. These running 209	

sum values are weighted so that enrichment in the top- and bottom- ranking features is 210	

amplified, while enrichment in the moderate ranks are not amplified. The ES is normalized 211	

to pathway size, yielding a Normalized Enrichment Score (NES). Positive and negative 212	

NES indicate enrichment at the top and bottom of the feature list, respectively. Lastly, a 213	

permutation-based p-value is computed, and multi-test correction is applied, yielding a 214	

False Discovery Rate (FDR) or Q value from 0 (significant) to 1 (not significant)8. 215	

However, the GSEA cannot be directly applied to multi-group or longitudinal datasets. 216	

PT-based methods may be better at identifying biologically meaningful pathways than non-217	

PT-based methods in some scenarios17. However, PT-based methods require pathways 218	

with comprehensive topological structure, while most pathways don9t apply, limiting the 219	

versatility of PT-based methods18. So, here we only compared GRSA against most 220	

commonly used non-PT enrichment analysis methods: fisher.test, enricher and GSEA, using 221	

the identical pathway database. 222	

We compared the performance of GRSA with fisher.test (Fisher) provided by the R base 223	

package, enricher provided by the clusterProfiler package (CP; an improved fisher.test), and 224	
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gene set enrichment analysis (GSEA) on the same six datasets. In each pair-wise 225	

comparison, we characterized the proportions of pathways identified by the GRSA, the 226	

competing tool, and both, using all significant pathways as the denominator (Figure 2A). 227	

GRSA consistently identified a larger proportion of pathways than Fisher and CP, and 228	

largely overlapped with GSEA, indicating the higher sensitivity of threshold-free methods. 229	

In five out of six cases, GRSA identified more enriched pathways than GSEA, GRSA-230	

specific pathways are shown in Table S3. For example, in the colorectal cancer datasets 231	

(GSE41011 and GSE33126 datasets), pathways related to fat digestion19, carbohydrate 232	

metabolism20, and chemical carcinogenesis were only enriched by GRSA (Figure S3A). In 233	

the myocardial infarction dataset (GSE141512), GRSA identified the NF-kappa B 234	

signaling pathway and apoptosis pathways, which were shown to be involved in the 235	

pathological characteristics of myocardial infarction21 (Figure S3B). Therefore, GRSA can 236	

identify additional pathways biologically relevant to the studied diseases, which may be 237	

neglected by other tools. 238	

In addition to enrichment analyses, some studies directly added the abundance of features 239	

within a pathway as the pathway abundance and performed differential abundance analyses 240	

at the pathway level (DAP)22. In DAP, increased and decreased features cancel each other. 241	

We compared DAP to GRSA with various tests (<T-test=, <ANOVA=, <Wilcoxon rank-242	

sum test=, <Kruskal-Wallis test=) and found that the DAP method could identify more 243	

differential pathways than GRSA (Figure 2B). However, many DAP-specific pathways, 244	

such as <map00627= in KEGG database included only one significant feature, and high-245	

abundance features will always mask the dynamic changes of low-abundance features in 246	

DAP (Figure 2C, Figure S4). In contrast, GRSA-enriched pathways showed many KOs 247	

with consistent small changes, such as <map03430= (Figure 2D). For the overlapping 248	

pathways of the two methods, most of the KOs shared the same significant trend, such as 249	

<map00785= (Figure 2E). 250	

Next, we showcased the versatile utility of GRSA in multiple types of omics data.  251	
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 252	

Figure 2: Comparisons of GRSA and other methods of enrichment and differential 253	

abundance analyses. (A) Proportion of enriched pathways in GRSA and other 254	

enrichment analysis methods based on 6 benchmark datasets. Orange pathways were only 255	

identified by GRSA, blue pathways were only identified by the competing tool and green 256	

pathways were identified by GRSA and the comparing methods. Fisher: fisher.test; CP: 257	

improved fisher.test used by clusterProfiler; GSEA: gene set enrichment analysis by 258	

clusterProfiler. (B) Comparison between GRSA (directed mode) and DAP using 4 259	

statistical test methods. (C-E) Box charts of DAP-specific (C), GRSA-specific (D), and 260	

shared pathways (E) using 3 KEGG pathways in Wilcox.test as examples. 261	

Case study 1: The functional analysis and age-related dynamics of the 262	

skin microbiota 263	

For microbiome data, we collected the KO profile of the IHSMGC (integrated Human Skin 264	

Microbial Gene Catalog) dataset published by Wang et al.23 and re-analyzed the data using 265	

the GRSA method. In the previous study, they used DAP approach instead of enrichment 266	

analysis to identify the most significantly differential abundant functional modules related 267	

with cutotypes. We applied the GRSA to the datasets to find the functional differences 268	

between the two cutotypes. The results were consistent with the previous study. As an 269	
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example, the vitamin biosynthesis-related function showed a difference, as modules related 270	

to the biosynthesis of thiamine, phylloquinone, and cobalamin were enriched in the M-271	

cutotype; while functions related to tetrahydrofolate, menaquinone, pantothenate, and 272	

ubiquinone were enriched in the C-cutotype (Figure 3A). In addition, the M-cutotype was 273	

enriched with a large number of modules related to the metabolism of sulfur, phenylacetate 274	

(aromatic compound), and amino acids, while the C-cutotype was enriched with modules 275	

related to carbohydrate metabolism (Figure S5). Importantly, GRSA also identified 276	

pathways not found in the previous study. The M-cutotype was enriched with modules 277	

related to nucleotide metabolism, such as the degradation and de novo biosynthesis of 278	

purine (Figure S5), indicating that the M-cutotype microbiota has a higher nucleotide 279	

turnover rate and stronger proliferation24. 280	

The previous study divided all samples into 5 age groups and found the prevalence of the 281	

M-cutotype significantly increased with age. However, they did not perform age-related 282	

functional analysis. We re-analyzed the multi-group data using GRSA based on Pearson 283	

correlation analysis to explore the functional dynamics related to aging. The larger positive 284	

reporter scores indicate that the module has an overall increasing trend with respect to age, 285	

such as <M00866=, related to lipid A biosynthesis (Figure 3B), while modules with 286	

negative reporter scores show an overall decreasing trend with respect to age, such as 287	

<M00061=, related to D-Glucuronate degradation (Figure 3C). We next analyzed the 288	

chronological trend of the functional modules at the KEGG level B (Figure 3D), which 289	

better reflects the overall metabolic activities of the microbiome. We found that the 290	

carbohydrate metabolism activity of the skin microbiota decreases with aging, while the 291	

lipid, amino acid, and nucleotide metabolism activity increases with aging. These results 292	

suggest that the energy sources of the skin microbiota significantly change with aging. 293	

The vitamin biosynthesis-related functional modules also showed differences with respect 294	

to aging (Figure 3D). For the glycan metabolism-related functional modules, biosynthesis 295	

of KDO2-lipid A and CMP-KDO increased with aging. KDO2-lipid A is an essential 296	

component of lipopolysaccharide (LPS) in most gram-negative bacteria, which has 297	

endotoxin activity and stimulates host immune responses through Toll-like receptor 4 298	

(TLR4)25. CMP-KDO is an important intermediate in the synthesis of KDO2-lipid A, and 299	

CMP-KDO synthesis is the key rate-limiting step for introducing KDO into LPS26. These 300	

results suggest that microbiota of aging skins likely accumulate endotoxins and stimulate 301	

host inflammation. In addition, we found degradation pathways of several sulfated 302	

glycosaminoglycans (chondroitin sulfate, dermatan sulfate, and keratan sulfate) decreased 303	

in aging skin. Sulfated glycosaminoglycans play a key role in regulating skin physiology, 304	

and there is ample evidence that their properties and functions change over time and with 305	

extrinsic skin aging27 28. Total sulfated glycosaminoglycan abundance was reduced in 306	

aging skin29, which may lead to the decreased degrading ability of the skin microbiota for 307	

the sulfated glycosaminoglycans. 308	
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 309	

Figure 3: Application of GRSA to the skin microbiome of the IHSMGC dataset. (A) 310	

The network of KO-Module enriched in the M-cutotype (green) and C-cutotype (blue). 311	

Only modules related to vitamin biosynthesis were shown. Big dots represent modules; 312	

small dots represent KOs. The colors of small dots represent cutotypes. Shades indicate 313	

modules involved in the biosynthesis of the same vitamin. The colors of shades denote 314	

modules enriched in the M-cutotype (green) or enriched in the C-cutotype (blue). (B-C) 315	

The Box charts of modules <M00866= and <M00061= across ages. The colors of the lines 316	

represent the trend of KOs relative abundance in the module. <M00866= had the biggest 317	

positive reporter score (increasing), while <M00061= had the biggest absolute value of 318	

negative score (decreasing). (D) The Bar chart shows significantly enriched modules over 319	
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ages; the reporter score threshold of 2.5 corresponds to a confidence of about 0.995, and 320	

these modules are grouped based on the KEGG level B. Colors denote the modules that 321	

were up-regulated (red) or down-regulated (green) with aging. 322	

Case study 2: The functional transcriptional dynamics during 323	

cardiomyocyte differentiation 324	

We applied GRSA to the transcriptomic dataset published by Liu et al. in 201730. The study 325	

used the WGCNA method to analyze the temporal transcriptomic changes during the 326	

differentiation of cardiomyocytes from 2 hiPSC lines and 2 hESC lines at 4 timepoints 327	

(pluripotent stem cells at day 0, mesoderm at day 2, cardiac mesoderm at day 4, and 328	

differentiated cardiomyocytes at day 30). Significant changes were observed in the four 329	

stages of differentiation among all cell lines. For example, genes in module 1 were highly 330	

expressed only in differentiated cardiomyocytes (stage CM), and their enriched Gene 331	

Ontology (GO) terms of Biological Process (BP) were related to heart functions, such as 332	

regulation of cardiac contraction and muscular system processes. However, WGCNA did 333	

not assume the patterns to be linear so that genes can be only highly expressed at day 2 334	

during mesoderm development, for example. 335	

In addition to linearly increasing or decreasing patterns, GRSA allows users to specify any 336	

expected patterns for enrichment analysis. To start, we used the fuzzy C-means clustering 337	

method to identify the main gene expression patterns (Figure 4A), and then used these 338	

patterns for GRSA to obtain significantly enriched pathways in each pattern (using the 339	

RSA_by_cm function in the ReporterScore package). For example, <Heart process 340	

(GO:0003015)= was a significantly enriched GO term for Cluster 6, which was highly 341	

expressed only in stage CM (day 30). We identified many genes consistent with the 342	

expression pattern of Cluster 6 (Figure 4B). 343	

GRSA results for all clusters were shown in the Figure 4C. Cluster 2 was highly expressed 344	

only at day 0 and its enriched GO terms was mainly related to the mitotic cell cycle, which 345	

was expected for stem cell self-renewal processes. Cluster 5 had the highest expression 346	

level on day 2 and was mainly enriched in various transcription and translation processes. 347	

Many known transcription factors such as EOMES, MIXL1, and WNT3A were assigned 348	

to this cluster and play important roles in mesoderm development. Cluster 4 was highly 349	

expressed at day 0 and day 2 and showed a gradually decreasing trend, its function 350	

overlapped with Clusters 2 and 5. Cluster 1, highly expressed at day 4, was related to 351	

mesoderm formation such as morphogenesis and organ development. Clusters 3 and 6 were 352	

primarily up-regulated in differentiated cardiomyocytes (CM stage), and they were related 353	

to heart functions, such as regulation of heart contraction and muscle system processes, 354	

similar to module 1 in the previous study. Interestingly, the biological processes of 355	

hiPSCs/hESCs at day 2 (Cluster 5) focused on various RNA-related metabolisms, which 356	

was not found in the previous study, indicating that complex transcriptional regulations are 357	

involved for further mesoderm formation. Therefore, using the identified expression 358	

patterns across groups, we successfully identified pathways and modules essential to 359	

different stages of the cardiomyocyte differentiation processes. 360	
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 361	

Figure 4: Application of GRSA to the transcriptomic dataset on the cardiomyocyte 362	

differentiation processes. (A) C-means clustering result of gene abundance profiles 363	

across four differentiation stages. The genes with membership scores greater than 0.8 364	

were displayed. The alpha (transparency) of each line was related to the value of its 365	

membership score, and the abundance was standardized. (B) The box chart of 366	

<GO:0003015= (heart process) across four time points, the colors of the lines represent 367	

the correlative significance of each gene with Cluster 6 within the GO term. 368	

<GO:0003015= is a representative term of Cluster 6. (C) The bar chart shows 369	
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significantly enriched GO terms for each clustering pattern corresponding to the 370	

differentiation stages. The colors of the bars represent the cluster information, and the 371	

representative GO terms with the highest reporter scores in each cluster were shown. The 372	

text labels on the left were colored according to the stages with the highest expression. In 373	

general, Cluster 2 corresponds to day 0, Clusters 4 and 5 correspond to day 2, Cluster 1 374	

corresponds to day 4, and Clusters 3 and 6 correspond to CM. Note that only pathways 375	

with significant positive scores are shown. The negative score of specified patterns would 376	

indicate anti-correlative patterns, which should have already been identified by c-means 377	

analysis, such as cluster 3 vs. 4. 378	

Case study 3: The systematic maternal metabolomic changes correlate 379	

with gestational age 380	

We next applied GRSA to metabolomic data from a Danish pregnancy cohort in which 381	

female participants had blood drawn weekly from pregnancy to the postpartum period for 382	

untargeted metabolomics analysis31. Using gestational age as the study variable, they 383	

modeled a metabolic clock and found that several marker metabolites increased linearly 384	

with gestational age. 385	

We performed GRSA using gestational age (a numeric variable) and enriched for pathways 386	

that were significantly up- or down-regulated with respet to gestational age in weeks. We 387	

found several important pathways upregulated with gestational age: steroid hormone 388	

biosynthesis, cortisol synthesis and secretion, and Oocyte meiosis (Figure 5A). Multiple 389	

steroid hormones were up-regulated with increasing gestational age (Figure 5B), including 390	

progesterone that interacts with the hypothalamic-pituitary-adrenal axis (HPA axis)32 and 391	

estriol-16-glucuronide produced by the placenta33. At the same time, two steroid hormones 392	

related to androgen were down-regulated: dehydroepiandrosterone sulfate and 393	

androsterone 3-glucuronide, as the concentration of androgens plays important 394	

physiological functions during pregnancy34. We also found that pathways related to the 395	

metabolism of aromatic amino acids were down-regulated with increasing gestational age 396	

(Figure 5A), which has been reported35. 397	

Importantly, we identified several up-regulated pathways related to human diseases that 398	

were not mentioned in the previous study. Cushing syndrome happens when the body has 399	

too much of the hormone cortisol for a long time, which could be induced by healthy 400	

pregnancy36. The up-regulation of pathways related to breast cancer were also noticeable 401	

as Pregnancy-Associated Breast Cancer (PABC) accounts for 7% of all breast cancer in 402	

young women37. Importantly, more potential discoveries can be made if the metabolite-403	

pathway database can be improved. 404	

Case study 4: The application of customized hierarchical relational 405	

databases for GSRA 406	

The algorithm of GRSA suggests that any features organized in a hierarchical relationship 407	

can be used as an enrichment database. For example, if we wish to identify phylogenetic 408	

groups of microbes with a specific abundance pattern among different groups of samples, 409	

we can use the phylogenetic relationships of microbes, such as genus-species phylogenetic 410	

data, for taxonomic enrichment analysis. To demonstrate, with the custom_modulelist 411	
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function, we used the species abundance table from the IHSMGC dataset and looked for 412	

genera enriched in the two cutotypes. We found that Psychrobacter, Paracoccus, 413	

Chryseobacterium, Elizabethkingia, Deinococcus, and Microbacterium were enriched in 414	

the M-cutotype, while Acidipropionibacterium, Staphylococcus, Corynebacterium, and 415	

Cutibacterium were enriched in the C-cutotype (Figure 5C), some of which were highly 416	

consistent with the differential species modules found by co-occurrence network in the 417	

previous study. However, we additionally found some genera such as Brevundimonas and 418	

Rhodobacter were enriched in the M-cutotype, while Pahexavirus (phages of 419	

Propionibacterium and Cutibacterium) was enriched in the C-cutotype (Figure 5C), 420	

probably due to the higher sensitivity of GRSA. 421	

Two species, Moraxella osloensis and Cutibacterium acnes, were used to define the 422	

cutotype in the previous study. Interestingly, while the Cutibacterium genus was a good 423	

biomarker between cutotypes, the Moraxella genus was not as the included species did not 424	

share the same trend (Figure 5D). Therefore, in additional to functional enrichment analysis, 425	

given a custom hierarchical relational database, the GRSA can be extended to any type of 426	

enrichment analyses. 427	

 428	

Figure 5: Application of GRSA in the metabolic data of the Danish pregnancy 429	

cohort and in the taxonomic enrichment analysis of the IHSMGC dataset. (A) The 430	
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circle packing chart shows the hierarchical relationships of significantly enriched 431	

pathways identified by GRSA in the metabolomic study. The size of the circle indicates 432	

the absolute value of the reporter score, and the color of the circle indicates the sign of 433	

reporter score. The positive reporter score indicates the pathway was increased (orange) 434	

while the negative reporter score indicates the pathway was decreased (purple). (B) The 435	

heatmap shows the abundance of metabolites present in the pathway <steroid hormone 436	

biosynthesis=. The columns are samples ordered by the increasing gestational age. (C) 437	

The bar chart shows significantly enriched genera in the C-cutotype and M-cutotype. (D) 438	

The network plot shows the species in g_Moraxella and g_Cutibacterium, which are 439	

enriched in the M-cutotype (green) or C-cutotype (blue). 440	

Discussion 441	

We developed the ReporterScore package to democratize the GRSA method for 442	

enrichment analyses in the broad sense. We have improved upon the classic RSA method 443	

by introducing the directed mode for easy interpretation of the plus and minus signs of the 444	

results. More importantly, we introduced all the common statistical methods for differential 445	

abundance and correlation analyses, expanding the scope of GRSA from two-group 446	

comparison to multi-group comparison. With the support of numerical grouping variables 447	

and user-defined feature abundance patterns, we can apply GRSA to longitudinal data and 448	

perform enrichment analysis of features of specific patterns. We demonstrated these new 449	

applications with metagenomic, transcriptomic, and metabolomic data (Figures 4~6). 450	

Lastly, we show that the GRSA is not limited to functional enrichment analysis and can be 451	

easily applied for taxonomic enrichment analysis in microbiome studies. We also provided 452	

a rich repertoire of visualization methods (Figure 1D), facilitating quick communications 453	

between researchers. All the figures were generated using the visualization module in the 454	

ReporterScore package. 455	

GRSA is a more sensitive enrichment method because it considers all KOs involved in the 456	

pathway compared to hypergeometric tests that only consider a pre-defined list 457	

(e.g. KO/gene with p-value < 0.05). Thus, GRSA can comprehensively assess the 458	

abundance differences in the pathway and not be affected by a priori cut-off of gene 459	

significance and the average abundance of a feature (Figure 2A). Compared with GSEA, 460	

which considers the magnitude of gene changes for ranking, GRSA uses p-values for 461	

ranking and permutation. However, more positive results are not always good, and we still 462	

need further experimental verification to illustrate the reliability of the enrichment results. 463	

In addition, we do not think DAP is an enrichment method because it does not consider the 464	

equal contribution of each gene in the pathway and completely ignores the functional 465	

background. 466	

The GRSA applies to all omics datasets as long as a reference relational database is 467	

available. More importantly, we have acquired new biological insights in each of the case 468	

studies. Application of GRSA on the IHSMGC dataset suggested that aging skin 469	

microbiota may have different functional profiles than young skin microbiota. For example, 470	

biosynthesis of KDO2-lipid A and CMP-KDO increased in while degradation pathways of 471	

several sulfated glycosaminoglycans decreased in older skin microbiota, which may be 472	
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linked to changes in the skin9s physiological properties. Further studies are needed to 473	

investigate the underlying mechanisms of these changes and their implications for skin 474	

health. Application of GRSA on the transcriptomic data of cardiomyocyte differentiations 475	

revealed that hiPSCs/hESCs at day 2 are specialized in various RNA-related metabolisms, 476	

suggesting the involvement of complex transcriptional regulation in further mesoderm 477	

formation. In addition, Application of GRSA on the metabolomic data from the Danish 478	

pregnancy cohort showed that several pathways related to human diseases were up-479	

regulated with gestational age, including Cushing syndrome and PABC. It reminded us of 480	

some disease risks for normal pregnant women. 481	

The GRSA offers the option for user-specified pattern for enrichment analysis, allowing 482	

for rapid testing of educated hypotheses in complex multi-group studies. This is 483	

demonstrated in our analysis of the transcriptomic data of cardiomyocyte differentiations. 484	

Finally, the extended application of GRSA in the taxonomic enrichment analysis of the 485	

IHSMGC dataset allowed us to identify key genera that significantly differed between the 486	

two cutotypes. The results were highly consistent with the microbial co-occurrence 487	

network analysis in the previous study, but performing GRSA by ReporterScore package 488	

was much faster and easier than the WGCNA network analysis. 489	

In summary, we believe the GRSA method and the ReporterScore package can greatly 490	

facilitate the functional enrichment analyses of diverse omics data across fields of science, 491	

with higher sensitivity, compatibility with multi-group and longitudinal designs, and 492	

flexibility with customized databases for creative applications even beyond functional 493	

enrichment analyses. 494	

Method 495	

Algorithm 496	

The algorithm of GRSA is described as follows, using metagenomic data as an example. 497	

(1) Calculating the p-values 498	

A specified method (the full list of supported statistical methods can be found in Table S1) 499	

was used to obtain the p-value of the abundance comparison of each feature between the 500	

experimental groups (i.e., �./", ��- represents a certain KO; Figure 1A). We used KO to 501	

represent different features in the formulas for simplicity. 502	

(2) Converting the p-values into Z-scores 503	

For the classic mixed RSA, we used an inverse normal cumulative distribution function 504	

(�5!) to convert the p-value of each KO into Z-score (�./"). Thus, in the case of uniformly 505	

distributed p-values (random data assumption), the resulting Z-scores will follow a 506	

standard normal distribution (Figure 1B), the formula is: 507	

�./" = �5!31 2 �./"6 508	
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For the new directed RSA, we first divided the p-values by 2, transforming the range of p-509	

values from (0,1] to (0,0.5]: 510	

�./" = �./"/2 511	

Secondly, we used an inverse normal cumulative distribution function to convert the p-512	

value of each KO into Z score (�./"). When the p-value is 0.5, the converted Z-score equals 513	

to 0. Since the above p-values are no greater than 0.5, all converted Z-scores will be greater 514	

than 0 (Figure 1B). The formula is: 515	

�./" = �5!31 2 �./"6 516	

We then determined if a KO is up-regulated or down-regulated and calculated the ���-. 517	

In a differential abundance analysis (two-group design): 518	

���- = ��-#$
2 ��-#%

 519	

��-#$
 is the average abundance of ��- in group1, and ��-#%

 is the average abundance of 520	

��- in group2. 521	

In a correlation analysis (two-group, multi-group, and longitudinal design): 522	

���- = �./" 523	

�./" is the correlation coefficient between ��- and the numeric variable to be examined. 524	

Finally, assign a plus or minus sign to each Z-score: 525	

�./" = @2�./" , (���- < 0)
+�./" , (���- g 0)	 526	

Therefore, a ��- with a �./" greater than 0 is up-regulated, a ��- with a �./" less than 0 527	

is down-regulated. 528	

(3) Scoring the pathway 529	

We next used the Z-score of KOs to score the pathway. First, choose a pathway database 530	

as the reference. It is of particular interest to note any hierarchy relational table (e.g., KEGG, 531	

taxonomy database) can be used as a reference as long as the relationship between the 532	

upstream and downstream features (e.g., pathways and KOs) can be represented by a 533	

bipartite network (Figure 1C). For each pathway in the selected database, calculate the Z-534	

score of pathway j (�()*+!) as follows: 535	

�()*+! = 1
F�,G�./"

0!

-6!

 536	

where �./" is the Z-score of ��- within the ���/,, and �, denotes the total number of KOs 537	

in the ���/,; 538	
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Next, we corrected �()*+! using the background distribution of the Z-scores of all KOs 539	

(�./&'' = {�./$ , �./% , . . . , �./!}) to evaluate the significance of enrichment. Specifically, 540	

for a given pathway ���/, including �, KOs, we randomly sampled the same number of 541	

KOs from the background �./&'' and calculated the �()*+_2344! for N times (N = 10,000 in 542	

this study10). We then standardized �()*+! by subtracting the mean (�0!) and dividing by 543	

the standard deviation (�0!) of the �()*+_2344! distribution. The standardized �()*+! is the 544	

�������������,. The p-value of �������������, is estimated by the above permutation. 545	

The formula for the reporter score and associated p-value are: 546	

�������������, = �()*+! 2 �0!�0!  547	

�_�����, = 3 �7
26! R�()*+! , �()*+_2344!(S

�  548	

�_�����, = @ �_�����, , 3�������������, < 06
1 2 �_�����, , 3�������������, g 06	 549	

where �()*+_2344! have the same � to �()*+!, �0! is the mean of the randomly generated N 550	

�()*+_2344! , �0!  is the standard deviation of the randomly generated N �()*+_2344! . The 551	

�(�, �) equals to 1 when � > �, else the �(�, �) equals to 0. 552	

Benchmark datasets 553	

Benchmark datasets includes one example KO profile (ex_KO_profile downloaded from 554	

https://github.com/wangpeng407/ReporterScore) and 6 gene expression profiles of 555	

multiple human tissue types from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 556	

We used these benchmark datasets with two-group or multi-group of experimental design 557	

to investigate the performance of GRSA, including similarities and differences between 558	

two working modes, between various statistical methods, and comparing GRSA with other 559	

commonly used enrichment analysis methods. Details of the datasets can be found in Table 560	

S2. 561	

Case study datasets 562	

Three case studies were re-analyzed using ReporterScore to demonstrate versatile 563	

applications to diverse circumstances, including the microbiome, transcriptome, and 564	

metabolome. 565	

Skin microbiome data were generated by Wang et al. (2021)23. They sequenced 822 skin 566	

samples using the shotgun method and constructed the complete Human Skin Microbiome 567	

Gene Catalog (iHSMGC). A full KO profile based on KEGG database was provided at the 568	

website 569	

(https://ftp.cngb.org/pub/SciRAID/Microbiome/humanSkin_10.9M/AbundanceProfile/IH570	

SMGC.KO.normalization.ProfileTable.gz). Metadata with details about including body 571	
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site, sex, age and cutotype was obtained via https://static-572	

content.springer.com/esm/art%3A10.1186%2Fs40168-020-00995-573	

7/MediaObjects/40168_2020_995_MOESM2_ESM.xlsx. 574	

Transcriptomic data were extracted from the study by Liu et al. (2017)30. They investigated 575	

time-course transcriptomic profiling of cardiomyocyte differentiation derived from human 576	

hESCs and hiPSCs. The gene expression matrix is available at 577	

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85331. 578	

Metabolomic data were generated by Liang et al. (2020)31. They analyzed the untargeted 579	

mass-spectrum data of 784 samples from 30 pregnant women, and built a metabolic clock 580	

with five metabolites that time gestational age. The 264 identified level-1 and level-2 581	

metabolites with HMDB IDs and their log2(intensity) can be found at https://ars.els-582	

cdn.com/content/image/1-s2.0-S009286742030564X-mmc2.xlsx, while the original MS 583	

data is available at 584	

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&Proj585	

ectID=PR000918. 586	

Statistical analysis 587	

All statistical analyses were done on the R 4.2.3 platform. The developed ReporterScore 588	

package (https://github.com/Asa12138/ReporterScore) was used for GRSA and 589	

visualization. Venn diagram and Venn network diagram were drawn by the pcutils package 590	

(https://github.com/Asa12138/pcutils/). 591	

To compare the performance of different statistical methods in the two-group of 592	

experimental design, we defined a Jaccard similarity index: 593	

���������� = |���/��(�) + ���/��(�)|
|���/��(�) , ���/��(�)| 594	

where method(i) (method(j)) is the number of significant pathways based on benchmark 595	

data sets enriched by different methods. 596	

We used fuzzy c-means (FCM) clustering to explore the performance of different statistical 597	

test methods in multi-group experimental design (Figure S2D) and gene expression 598	

patterns in transcriptome (Figure 3A). FCM is an unsupervised machine-learning technique 599	

that partitions a population into groups or clusters38. Three methods (Elbow, Silhouette, 600	

and Gap statistic) were used to determine the optimal number of clusters. In FCM, the 601	

membership score is the probability that a feature belongs to a cluster. Each feature is 602	

assigned to a cluster based on its highest membership score. 603	

In the comparison of GRSA with other commonly used enrichment methods, we first 604	

calculated the p-values of features by T-test and performed adjustment of the p-values 605	

using the Benjamini & Hochberg (BH) method to control for False Discovery Rate (FDR). 606	

A particular threshold of BH-adjusted p-value <0.05 and fold-change of feature 607	

abundance >2 were set to define the DEGs list. fisher.test (Fisher) was performed by the R 608	

base package. Improved fisher.test (CP) was performed by enricher function in the 609	

clusterProfiler package with the DEGs list. Gene set enrichment analysis (GSEA) was 610	
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performed by the GSEA function in clusterProfiler package, and the T-test statistic was used 611	

as the metric for ranking39 of GSEA. GRSA was performed with the BH-adjusted p-values 612	

of features by T-test. For convenience, the ReporterScore package provides interface to the 613	

above mentioned enrichment methods: KO_fisher for fisher.test, KO_enrich modified from 614	

clusterProfiler based on fisher.test, and KO_gsea modified from GSEA in clusterProfiler. 615	

These enrichment methods also support custom databases and is compatible with the 616	

format of the input data for the reporter_score function in GRSA, making it easily to make 617	

cross-comparisons. 618	
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