

1 ***Enterocytozoon hepatopenaei* Proliferate in *Procambarus***
2 ***clarkii*: A Warning for Crayfish and Shrimp Aquaculture**

3 Bingxin Ling^{a1}, Yujiao Wu^{a1}, Qing Yu^a, Chunxia Wang^a, Mengjiao Hu^a, Xianzhi
4 Meng^a, Mengxian Long^a, Guoqing Pan^a, Zhonghuai Xiang^a, Zeyang Zhou^{a,b*}, Jie
5 Chen^{a*}.

6 ^a State Key Laboratory of Resource Insects; Chongqing Key Laboratory of
7 Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road,
8 Chongqing 400715, PR China

9 ^b Key Laboratory of Conservation and Utilization of Pollinator Insect of the
10 Upper Reaches of the Yangtze River (Co-construction by Ministry and Province),
11 Ministry of Agriculture and Rural Affairs, Chongqing Normal University, No. 37
12 University City Road, Chongqing 400047, PR China.

13

14 ¹ These authors contributed equally to this work.

15 ^{*} Corresponding author: jchen@swu.edu.cn (J. Chen); zyzhou@swu.edu.cn (Z.
16 Zhou)

Abbreviation: Pc, *Procambarus clarkii*; Lv, *Litopenaeus vannamei*; EHP, *Enterocytozoon hepatopenaei*; AHPND, acute hepatopancreatic necrosis disease; WSD, White spot syndrome; HP, hepatopancreas; WF, white faces; IT: intestine; PM, peritrophic membrane; EL, epithelial layer; CT, connective tissue layer; ML, muscle layer; S, EHP mature spores; MP, merogonic plasmodia; Ex, exospore; En, endospore; Pm, plasm membrane or sporoplasma membrane; P, polaroplast; PF, polar filament; PT, polar tube; N, nucleus; AD, anchoring disc; EDD, electron-dense disk; *EHPptp2*, EHP polar tube protein 2; *cox*□, mitochondrial cytochrome c subunit I; D-loop, mitochondrial control region (Displacement loop region); gDNA, genomic DNA; IFA, indirect-immunofluorescence assay; TEM, transmission electron microscopy; HPM, hepatopancreas microsporidiosis; SPF, specific pathogen free; PC, positive control; NC, negative control; NTC, no template control.

18 **Abstract**

19 The pacific whiteleg shrimp (*Litopenaeus vannamei*) and the crayfish
20 (*Procambarus clarkii*) are the most productive aquatic animals in the world. The
21 prevalence of the microsporidium *Enterocytozoon hepatopenaei* (EHP), an
22 intracellular spore-forming unicellular parasite which leading retarded growth of *L.*
23 *vannamei*, has caused severe economic losses in most shrimp farming country. In this
24 study, we found that the wild *P. clarkii*, living in shrimp ponds with EHP outbreak,
25 excreted white faeces after temporary laboratory culture. The hepatopancreas (HP) of
26 symptomatic crayfish exhibited a lighter color and severely atrophied. H&E-stain
27 showed tissue lesions in both hepatopancreas and intestine, and clustered
28 microsporidian spores were filled in the cytoplasm of the cells. PCR using *EHPptp2*
29 and two microsporidian-universal primers sets demonstrated the existence of EHP in
30 the hepatopancreas, intestine and the white feces of *P. clarkii*. The EHP loads of
31 10^3 - 10^4 copies of *EHPptp2*/50 ng HPgDNA were detected by qPCR. Developing
32 stages and mature spores of EHP were observed in hepatopancreas of *P. clarkii*
33 through indirect-immunofluorescence assay (IFA) and transmission electron
34 microscopy (TEM). Considering the large-scale cultivation of *L. vannamei* and *P.*
35 *clarkii*, overlap farming areas between these two species as well as the ability of
36 crayfish to crawl on land and water, our finding indicates the potential role of *P.*
37 *clarkii* in the transmission of EHP, and it is an early warning for crayfish and shrimp
38 farming.

39 **Keywords:** *Procambarus clarkii*, *Litopenaeus vannamei*, *Enterocytozoon*

40 *hepatopenaei*, Hepatopancreatic microsporidiosis, Transmission

41 **1. Introduction**

42 Pacific whiteleg shrimp (*Litopenaeus vannamei*) is one of the most productive

43 aquatic animal in the world, reaching 5.8 million tons in 2020 (FAO, 2022). With the

44 rapid expansion, disease problems plague the healthy development of shrimp farming.

45 *Enterocytozoon hepatopenaei*, the pathogen of hepatopancreas microsporidiosis

46 (HPM), is the microsporidium that can infect shrimp, resulting growth retardation and

47 susceptibility to multiple infections with bacteria and viruses (Chayaburakul et al.,

48 2004; Flegel, 2012). Since the first report of EHP in black tiger shrimp (*Penaeus*

49 *monodon*) with stunted growth in Thailand (Tourtip et al., 2009), the pathogen has

50 had a wider impact on *L. vannamei*, leading huge economic losses in most shrimp

51 farming country and region (Ha et al., 2010; Wang et al., 2013; Tang et al., 2015; Tang

52 et al., 2016; Biju et al., 2016; Shen et al., 2017; Tang et al., 2017; Kim et al., 2021).

53 Aquaculture farmer lost their investment of manpower, resources, financial and time

54 due to the chronic infection caused by EHP. For instance, Thailand's national

55 economy lost has rose to US\$180 million from 2010 to 2016, and to US\$232 million

56 in 2018 (Shinn et al., 2018; Patil et al., 2021). India lost US\$567.64 million due to

57 EHP in 2018-2019 (Patil et al., 2021). Moreover, lost is even immeasurable in China

58 (Wang et al., 2013).

59 The spores of EHP are oval profile, and $0.7 \times 1.1 \mu\text{m}$ in size (Tourtip et al., 2009).

60 EHP has spore wall enveloping sporoplasm, in which it contains a nucleus, 5-6 coils

61 of the polar filament, a posterior vacuole, polaroplast, an anchoring disk attached to
62 the polar filament and organelles such as ribosome, endoplasmic reticulum, Golgi
63 apparatus, and mitochondrial remnants named mitosome (Tourtip et al., 2009; Weiss
64 and Becnel, 2014). The life cycle of EHP can be divide into proliferative stage,
65 sporogonic stage, and infective stage (mature spores) (Tourtip et al., 2009; Vavra and
66 Lukes, 2013; Chaijarasphong et al., 2021). At proliferative stage, cells divide firstly
67 by binary fission, followed by multiple nuclear divisions without cell division (Ning,
68 2020). At sporogonic stage (sporogonic plasmodium), the electron-dense disk (EDD)
69 forms the polar filament, and then dense secretions thickens the plasma membrane,
70 accompanying with the sporoblasts beginning to form. Spore wall of the sporoblasts
71 gradually thicken and spores develop into mature ones (Ning, 2020). EHP can be
72 transmitted horizontally though water (Salachan et al., 2017), feces (Singh and Singh,
73 2018) and carcasses (Tangprasittipap et al., 2013; Jang et al., 2022). Besides *L.*
74 *vannamei* and *P. monodon*, EHP was found proliferate in blue shrimp (*Penaeus*
75 *stylirostris*) (Tang et al., 2015), giant river prawn (*Macrobrachium rosenbergii*) (Wang
76 et al., 2022) and dragonfly (*Anax parthenope*, *Pantala flavescens*, and *Ischnura*
77 *senegalensis*) (Kumar Dewangan et al., 2023). EHP can also be transmitted between
78 live foods and other animals living in the same waters, such as polychaetes (Desrina
79 et al., 2020), brine shrimp (*Artemia salina*) (Karthikeyan and Sudhakaran, 2020), false
80 mussels (*Mytilopsis leucophaeata*) (Munkongwongsiri et al., 2022), marine crabs
81 (Mani et al., 2022) and some macrofauna (Wan Sajiri et al., 2023). Although a variety
82 of methods including specific pathogen free (SPF) shrimp larvae breeding has been

83 taken, the outbreak of EHP remained frequently happening, suggesting a complex
84 biological transmission pathway of EHP (Chayaburakul et al., 2004; Jang et al.,
85 2022).

86 The crayfish (*Procambarus clarkii*), native to North America, is farmed all over the
87 world and forms large wild populations now. It was introduced into China in the
88 1930s, then its production has soared yearly and reached 2.6 million tons in 2021
89 (Westman, 2002; Guo et al., 2017; Fisheries administration of the Ministry of
90 Agriculture and Rural Affairs of the People's Republic of China, 2022). Its main
91 domestic breeding areas in China are concentrated in the middle and lower reaches of
92 the Yangtze River at present (Guo et al., 2017; Fisheries administration of the
93 Ministry of Agriculture and Rural Affairs of the People's Republic of China,
94 2022). The crayfish and shrimp farming areas are usually overlapped in China, even
95 plenty of shrimp ponds are converted from crayfish ponds. The crayfish is capable of
96 crawling, digging and breeding, and can survive cold winters in burrows. They have
97 the habit of climbing ashore, cross dikes and enter other bodies of water (Xie et al.,
98 2008). These characteristics allow crayfish to transmit pathogens easily between
99 different water bodies.

100 In this study, we found the wild crayfish *P. clarkii* which inhabited in the farming
101 ponds of *L. vannamei* with slow growth syndrome were infected with EHP. The *P.*
102 *clarkii* shed white faeces during temporary laboratory culture. Molecular detection,
103 histopathological observation and ultrastructure analysis were used to demonstrate the

104 present and proliferation of EHP in the hepatopancreas of *P. clarkii*.

105 **2. Material and methods**

106 **2.1 Sample collection**

107 The wild crayfish ranging from 9.5 to 10.5 cm were collected from a *L.*

108 *vannamei* shrimp pond which suffered an outbreak of EHP in Chongqing, China.

109 These crayfish were temporary reared in a 100 L ton within 40 L water at 26°C. The

110 excrement and food residue were cleaned up, and half of the water was replaced by

111 fresh ones every day. White feces were collected after one day of laboratory culture.

112 Segments of white feces were fixed in 4% paraformaldehyde, while the remained

113 were stored at -20°C. The hepatopancreas and intestines of healthy and diseased

114 crayfish were sampled for EHP detection and histological analysis.

115 **2.2 DNA extraction**

116 Sampled hepatopancreas, intestine and white feces of the infected crayfish were

117 grounded thoroughly. Genomic DNA was extracted by 2% CTAB (1.40 M NaCl, 0.55

118 M CTAB, 125 mM EDTA, 40 mM Tri-HCl, and 0.2%-1% β-Mercaptoethanol,

119 pH=8.0) and 1 mg/ml protease K, and incubated at 65 °C for 2 h. After incubation, the

120 equivalent value of phenol/chloroform/isoamylalcohol extraction was added to the

121 digests. The extracted DNA in aqueous phase was successively precipitated by

122 isopropanol and washed by gradient ethanol (90% and 70%). The purified DNA was

123 dissolved in sterilized ddH₂O, diluted to 50 ng/μL, and stored at -20°C.

124 **2.3 EHP detection and the crayfish identification**

125 The primer sets targeting universal for microsporidia and EHP polar tube protein

126 2 (*EHPptp2*) were used to identify the infection of EHP (Zhu et al., 1993; Baker et al.,
127 1995; Wang et al., 2021; Wu et al., 2022). Two pairs of primers amplifying
128 mitochondrial genes were employed to identify the crayfish (Folmer et al., 1994; Li et
129 al., 2015). The details of primers used in this study were listed in Table 1. The PCR
130 products were cloned into pESI-Blunt vector and sequenced (Sangon, China).
131 Sequences of *SSU rRNA* (GenBank: MNPJ01000021.1), *EHPptp2* (GenBank:
132 MT249228.1), mitochondrial cytochrome oxidase c subunit I (*coxI*) (GenBank:
133 JN000903.1) and mitochondrial control region (Displacement loop region) (D-loop)
134 (GeneBank: KC556829.1) were download from NCBI. Sequence analysis was carried
135 out using MEGA (11.0.13) (Tamura et al., 2021) and GeneDoc (Nicholas and
136 Nicholas, 1997). qPCR was performed using Hieff qPCR SYBR® Green Master Mix
137 (Yeasen, China) in LightCycler® 96 real-time PCR instrument (Roche, China),
138 followed the instructions.
139

140 **2.4 Fluorescence microscopy and load assay of EHP**

141 Tissue samples were homogenized and appropriate amount were used to detect
142 the EHP spores through fluorescence microscopy. Samples were incubated with
143 Fluorescent Brightener 28 (Sigma Aldrich, USA) and Propidium iodide (Thermo
144 Fisher Scientific, USA) for 5 min, and then observed by fluorescence microscope
145 (Olympus, Japan) using differential interference contrast and ultra violet filter (Zhao
146 et al., 2020; Chen et al., 2021).

147 **2.5 Histological analysis by H&E-staining**

148 An appropriate tissue block was immediately cut from the live crayfish and fixed
149 in Davidson's AFA fixative. The tissues were embedded in paraffin and sliced to 5 μ m
150 thick. The paraffin sections were stained by the hematoxylin eosin staining kit
151 (Beyotime, China), then stained with Fluorescent Brightener 28 (Sigma Aldrich, USA)
152 for 10 minutes, and observed with microscope (Olympus, Japan) using differential
153 interference contrast and ultra violet filter.

154 **2.6 Indirect-immunofluorescence assay (IFA)**

155 IFA was performed to specifically recognize different phases of EHP in paraffin
156 sections prepared previously. Dewaxed paraffin sections were dealt with Citrate
157 antigen repair solution (Beyotime, China) for 30 minutes at 98 $^{\circ}$ C. After blocking,
158 sections were incubated with anti-EHP antisera or unimmunized antiserum (negative
159 serum) (diluent in 1:200), which is prepared by total proteins of EHP mature spores,
160 at room temperature for 2 hours. Then the sections were incubated with Alexa Flour®
161 488 conjugate goat anti-mouse IgG (Thermo Fisher Scientific, USA) following

162 washing steps. Fluorescent Brightener 28 (FB 28) and Propidium iodide (PI) were
163 used to stain chitin layer of spores and nuclei of cells respectively for 15 min. All
164 samples were sealed with ProLong® Gold antifade reagents (Thermo Fisher Scientific,
165 USA). Imagines were carried out by Olympus FV1200 laser scanning confocal
166 microscope (Olympus, Japan).

167 **2.7 Transmission Electron Microscopy (TEM)**

168 TEM was performed as described by Meng at el. (Meng et al., 2018) with slight
169 modifications. Hepatopancreas and feces were cut into small pieces ($\leq 1 \text{ mm}^3$) and
170 fixed in 5% glutaraldehyde over 24 hours. After washed with 0.1 M PBS buffer
171 (pH=7.4) three times (10 minutes each), samples were postfixed in 1% osmium
172 tetroxide for 2 h. The fixed tissues were embedded in epoxy resin Epon-812 and
173 polymerized at 37°C for 24 h and at 60°C for 48 h. Ultrathin sections (60-90 nm) were
174 collected on copper grids and stained with uranyl acetate and lead citrate.
175 Micrographs were taken using the transmission electron microscope (HITACHI,
176 Japan).

177 **3. Results**

178 **3.1 *P. clarkii* in *L. vannamei* farming ponds suffered EHP outbreak was positive
179 for EHP and exhibited white feces**

180 The wild crayfish, collected from a *L. vannamei* farming ponds suffered an EHP
181 outbreak, excreted white feces in the first five days under laboratory culture. Species
182 identification, using primers set LCO1490 and HCO2198 (Folmer et al., 1994), CRF
183 and CRR (Li et al., 2015) indicated the crayfish is *Procambarus clarkii* (Fig. S1 & Fig.

184 S2). The hepatopancreas of the symptomatic crayfish was discolored and atrophied.
185 Besides lightened color, part of the intestine exhibited empty (Fig. 1 A-C).
186 Fluorescence microscopy of the tissues smear showed numerous microsporidian
187 spores and germinated spore coats presented in hepatopancreas, intestine and white
188 feces (Fig. 2). Genomic DNA isolated from these samples was subjected to PCR
189 amplification using primers targeting *SSU rRNA* of microsporidia and *EHPptp2* (Fig.
190 3 A). These sequenced fragments were matched with the *SSU rRNA* and the
191 conference *EHPptp2* respectively (Wiredu Boakye et al., 2017) (Fig. 3 C & D),
192 demonstrating that the microsporidium found in wild *P. clarkii* is coincident with the
193 conference EHP strain TH1. *EHPptp2* qPCR results showed 1.62×10^3 , 1.93×10^3 and
194 5.61×10^4 copies/50 ng gDNA loads in intestine, hepatopancreas and white feces of
195 EHP infected *P. clarkii* respectively (Fig. 3 B).

196 **3.2 Histological examination showed tissue damage in hepatopancreas and
197 intestine of EHP infected *P. clarkii***

198 H&E stained paraffin section showed a various degree of tissue lesion in the
199 EHP-positive *P. clarkii* (Fig. 4). The hepatopancreas showed severely necrotic
200 pathologic-changes that the structure of hepatopancreatic tubules was damaged and
201 infiltrated by a large amount of hemolymph accompanied by a severe hemocyte
202 aggregation (Fig. 4 A1). The basal layers of hepatopancreatic tubules were ruptured
203 along with epithelial cells disruption and shed, and EHP spores distributed among the
204 cytoplasm of necrotic epithelial cells and lumen of necrotic tubules (Fig. 4 A1-A3 &
205 C1-C3). While in healthy tissues, the hepatopancreatic tubules maintain intact

206 morphological structure with epithelial cells tightly bound to the basal membrane, and
207 the hemocyte was blocked from hepatopancreatic tubule epithelial cells (Fig. 4 B &
208 D).

209 The intestine exhibited abnormal characteristics that epithelial cells necrosis,
210 cytoplasmic staining was not obvious, the interstices in the tissue increased, the edges
211 of the pleated ridge were sharper, and the muscle layer atrophied slightly (Fig. 4
212 E1-E3, G1-G3). In EHP-free crayfish, the peritrophic membrane, epithelial layer,
213 connective tissue layer and muscle layer were tightly ordered (Fig. 4 F & H). There
214 were some inclusions in the lumen (Fig. 4 F).

215 **3.3 Developing stages of EHP were found in the hepatopancreatic cells of *P.***
216 ***clarkii***

217 In order to specifically indicate different stages of EHP, the polyclonal antiserum
218 against EHP proteins extracts was prepared. Anti-EHP serum can recognize
219 developing stages and mature spores of EHP. Combined with specific anti-EHP serum
220 and Fluorescent brightener 28 labeling chitin layer of spores, proliferative stage,
221 sporogonic stage and mature spores can be distinguished (Chen et al., 2017;
222 Senderskiy et al., 2021). Early merogonic plasmodia, characterized by what anti-EHP
223 serum can recognize without obvious chitin layer signal, were found in the
224 hepatopancreas of EHP infected *P. clarkii* (Fig. 5 A1-C5). Sporogonic stages and
225 mature spores were abundant in the hepatopancreas and intestine (Fig. 5 & Fig. S3).
226 No hybridization signal was observed in EHP infected *P. clarkii* slices with
227 unimmunized antiserum (Fig. S3) and in EHP-free *P. clarkii* slices with anti-EHP

228 serum (Fig. S4).

229 TEM further demonstrated the proliferation of EHP in crayfish hepatopancreatic
230 cells. Numerous mature spores and sporogonic stages of EHP clustered in the
231 cytoplasm (Fig. 6 A & B). Some sporogonic spores distributed near the host lipid
232 droplet, and the membrane of lipid droplet contacted closely by the spores was
233 deformed (Fig. 6 A & C). The mature spores were clearly characterized by exospore,
234 endospore, plasm membrane, polaroplast, anchoring disc, single nucleus and 5-6 coils
235 of polar filament (Fig. 6 E & F). EHP in sporogonial phase (during the sporogonic
236 stage) was distinguished by thinner chitin layer and more unordered polar filaments
237 (Fig. 6 E). Some spores were surrounded by a membranous structure individually or
238 in pairs (Fig. 6 B & D). The germination behavior in hepatopancreas was verified by a
239 germinated polar tube connected with EHP spore (Fig. 6 F).

240 **4. Discussion**

241 *L. vannamei* of and *P. clarkii* cultivation are the two most productive aquatic
242 animals. The world production of their exceeds 8 million tons, accounting for more
243 than 70% of the farmed crustaceans (FAO, 2022). With the rapid expansion of
244 breeding scale, bacteria, viruses, parasites and other diseases have brought great
245 trouble for aquaculture. It is noteworthy that the effects of pathogens vary from
246 periods and species. For instance, the impact of White spot syndrome virus (WSSV)
247 on crayfish was not obvious at first (Chou et al., 1995), but now it becomes one of the
248 most threatening disease agents (Baumgartner et al., 2009; Dragicevic et al., 2021).
249 EHP was initially neglected due to the prevalence of acute hepatopancreatic necrosis

250 disease (AHPND) and White spot syndrome (WSD), while it is one of the most
251 influential pathogen in shrimp farming now (Tang et al., 2015). In 2022, EHP is
252 classified as a pathogen of Class II animal diseases in China. The pathogen found to
253 proliferate in *P. clarkii* is noteworthy and alarming.

254 Microsporidia are important ecological regulators in nature. When the population
255 of a species is massive increase, microsporidia will then proliferate and play a role in
256 population size regulation. Compared with viral and bacterial diseases, EHP is
257 characterized by relatively low mortality and huge economic loss (Patil et al., 2021).
258 Therefore, it is particularly important to prevent intra- and interspecies infection of
259 EHP to reduce the risk at the source.

260 The color of hepatopancreas and intestine turned white, which is a signal of EHP
261 infection. This phenomenon may be related to lipid reduction in the crab and shrimp
262 (Ding, 2021; Wu et al., 2022), and the presence of a large number of spores in the *P.*
263 *clarkii* (Fig. 1 B & C; Fig. 2). EHP may supply its own development by absorbing and
264 converting lipids from host. It is clear that EHP in the proliferative stage are closely
265 bound to the lipid droplet of the host (Fig. 6 A & C). But there's no way to see white
266 hepatopancreas and intestine visually in *P. clarkii*. Because of the opaque exoskeleton,
267 and EHP infected *P. clarkii* have no lesions on their appearance, it is hard to find
268 crayfish infected. Flexible crawling ability also allows *P. clarkii* infected with EHP
269 spread pathogens between different water bodies.

270 It is interesting that the crayfish in the same batch of samples (n=10) were
271 negative to EHP by real-time qPCR after 2 weeks. However, the intestines of the same

272 batch of crayfish were similar to that after starvation, with atrophy of the intestinal
273 villi and enlargement of the intestinal lumen (Fig. 4 G). We suspect that probably due
274 to regeneration of hepatopancreas epithelial cells in crayfish. The *P. clarkii* infected
275 with EHP in the beginning, with daily water change, may somehow drained EHP out
276 and recovered finally, since the regeneration of the complete hepatopancreas
277 epithelium of crayfish seems to last less than 2 weeks (Davis and Burnett, 1964; Strus
278 et al., 2019; Vogt, 2019). The short-term expulsion of large number of active EHP
279 spores is beneficial for the transmission of EHP, but harmful to the farmed animals it
280 parasitizes. However, this strategy in crayfish has implications for treatment of EHP
281 infected shrimps.

282 In general, this article is a warning to the shrimp and crayfish aquaculture. Our
283 results provide evidence that EHP can infect and proliferate in the hepatopancreas of
284 crayfish *P. clarkii*. The crayfish prefer to swim upstream, resting in lakes, rivers,
285 reservoirs, swampy ponds and ditches, and sometimes in the fields. Combining these
286 features, *P. clarkii* was able to approach shrimp ponds and spread EHP they carried, or
287 healthy crayfish entered EHP infected shrimp ponds, become infected accidentally
288 and carry EHP to other healthy ponds or their habitats. All these remind farmers to
289 take certain measures to avoid direct contact between *L. vannamei* and *P. clarkii* in
290 culture processes. For example, it is forbidden to exchange ponds between the two
291 species, to prevent wild *P. clarkii* from entering shrimp ponds.

292 **5. Conclusion**

293 The study showed EHP can proliferate in the hepatopancreatic cells of *P. clarkii*,

294 and cause damage of hepatopancreas and intestine. Considering the large-scale
295 cultivation of *L. vannamei* and *P. clarkii*, overlap farming areas between these two
296 species as well as the ability of crayfish to crawl on land and water, our finding
297 indicates the potential role of *P. clarkii* in the transmission of EHP, and this alerts us
298 to the potentially greater risk of EHP in crayfish and shrimp aquaculture.

299 **Funding**

300 This research was funded by the Natural Science Foundation of Chongqing:
301 2022YSZX-JCX0010CSTB and cstc2021jcyj-cxttX0005.

302 **Authors' contribution**

303 Bingxin Ling: Writing - original draft, Methodology, Investigation. Yujiao Wu:
304 Writing - original draft, Methodology, and Validation. Qing Yu, Chunxia Wang and
305 Mengjiao Hu: Investigation. Xianzhi Meng: Resources and Investigation. Mengxian
306 Long: Conceptualization and Visualization. Guoqing Pan: Conceptualization, Writing
307 - review & editing and Funding acquisition. Zhonghuai Xiang: Conceptualization,
308 Funding acquisition. Zeyang Zhou: Supervision and Writing - review & editing. Jie
309 Chen: Supervision, Writing - review & editing and Funding acquisition.

310 **Declaration of Competing Interest**

311 The authors declare that they have no conflict of interest.

312 **Acknowledgments**

313 The authors are very grateful to Qing Lv for the help of staining the TEM
314 samples, and thank to Yuan Wang for revision of the manuscript.

315 **Reference**

316 Baker, M.D., Vossbrinck, C.R., Didier, E.S., Maddox, J.V., Shadduck, J.A., 1995.

317 Small-Subunit Ribosomal DNA Phylogeny of Various Microsporidia with Emphasis
318 on Aids-Related Forms. *Journal of Eukaryotic Microbiology* 42(5), 564-570.
319 <https://doi.org/10.1111/j.1550-7408.1995.tb05906.x>

320 Baumgartner, W.A., Hawke, J.P., Bowles, K., Varner, P.W., Hasson, K.W., 2009.
321 Primary diagnosis and surveillance of white spot syndrome virus in wild and farmed
322 crawfish (*Procambarus clarkii*, *P. zonangulus*) in Louisiana, USA. *Diseases of*
323 *Aquatic Organisms* 85(1), 15-22. <https://doi.org/10.3354/dao02051>

324 Biju, N., Sathiyaraj, G., Raj, M., Shanmugam, V., Baskaran, B., Govindan, U.,
325 Kumaresan, G., Kasthuriraju, K.K., Chellamma, T.S.R.Y., 2016. High prevalence of
326 *Enterocytozoon hepatopenaei* in shrimps *Penaeus monodon* and *Litopenaeus*
327 *vannamei* sampled from slow growth ponds in India. *Diseases of Aquatic Organisms*
328 120(3), 225-230. <https://doi.org/10.3354/dao03036>

329 Chaijaraspong, T., Munkongwongsiri, N., Stentiford, G.D., Aldama-Cano, D.J.,
330 Thansa, K., Flegel, T.W., Sritunyalucksana, K., Itsathitphaisarn, O., 2021. The shrimp
331 microsporidian *Enterocytozoon hepatopenaei* (EHP): Biology, pathology, diagnostics
332 and control. *Journal of Invertebrate Pathology* 186. 107458.
333 <https://doi.org/10.1016/j.jip.2020.107458>

334 Chayaburakul, K., Nash, G., Pratanpipat, P., Sriurairatana, S., Withyachumnarnkul, B.,
335 2004. Multiple pathogens found in growth-retarded black tiger shrimp *Penaeus*
336 *monodon* cultivated in Thailand. *Diseases of Aquatic Organisms* 60(2), 89-96.
337 <https://doi.org/10.3354/dao060089>

338 Chen, J., Guo, W., Dang, X., Huang, Y., Liu, F., Meng, X., An, Y., Long, M., Bao, J.,
339 Zhou, Z., Xiang, Z., Pan, G., 2017. Easy labeling of proliferative phase and
340 sporogonic phase of microsporidia *Nosema bombycis* in host cells. *PLoS One* 12(6),
341 12. e0179618. <https://doi.org/10.1371/journal.pone.0179618>

342 Chen, J., Liao, G., Wu, Y., Zhang, Q., Yang, X., Fan, X., Long, M., Pan, G., Zhou, Z.,
343 2021. Three Methods for Light Microscopic Detection of *Enterocytozoon*
344 *hepatopenaei*. *Journal of Southwest University (Natural Science Edition)* 43(3), 17-23.
345 <https://doi.org/10.13718/j.cnki.xdzk.2021.03.003>

346 Chou, H.Y., Huang, C.Y., Wang, C.H., Chiang, H.C., Lo, C.F., 1995. Pathogenicity of
347 a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in
348 Taiwan. *Diseases of Aquatic Organisms* 23(3), 165-173.
349 <https://doi.org/10.3354/dao023165>

350 Davis, L.E., Burnett, A.L., 1964. A study of growth and cell differentiation in the
351 hepatopancreas of the crayfish. *Developmental Biology* 10(1), 122-153.
352 [https://doi.org/https://doi.org/10.1016/0012-1606\(64\)90008-9](https://doi.org/https://doi.org/10.1016/0012-1606(64)90008-9)

353 Desrina, D., Prayitno, S.B., Haditomo, A.H.C., Latritiani, R., Sarjito, S., 2020.
354 Detection of *Enterocytozoon hepatopenaei* (EHP) DNA in the polychaetes from
355 shrimp ponds suffering white feces syndrome outbreaks. *Biodiversitas Journal of*
356 *Biological Diversity* 21(1), 369-374. <https://doi.org/10.13057/BIODIV/D210144>

357 Ding, Z., 2021. Lipid metabolism disorders contribute to the pathogenesis of
358 *Hepatospora eriocheir* in the crab *Eriocheir sinensis*. *Journal of Fish Diseases* 44(3),
359 305-313. <https://doi.org/10.1111/jfd.13284>

360 Dragicevic, P., Bielen, A., Petric, I., Hudina, S., 2021. Microbial pathogens of

361 freshwater crayfish: A critical review and systematization of the existing data with
362 directions for future research. *Journal of Fish Diseases* 44(3), 221-247.
363 <https://doi.org/10.1111/jfd.13314>

364 FAO, 2022. *The State of World Fisheries and Aquaculture 2022. Towards Blue*
365 [Transformation](https://doi.org/https://doi.org/10.4060/cc0461en). Rome, FAO. <https://doi.org/https://doi.org/10.4060/cc0461en>

366 Fisheries administration of the Ministry of Agriculture and Rural Affairs of the
367 People's Republic of China, N.F.T.E.C.C.S.o.F., 2022. *Fisheries Statistical Yearbook*
368 2022. Beijing, China Agriculture Press.

369 Flegel, T.W., 2012. Historic emergence, impact and current status of shrimp pathogens
370 in Asia. *Journal of Invertebrate Pathology* 110(2), 166-173.
371 <https://doi.org/10.1016/j.jip.2012.03.004>

372 Folmer, O., Black, M., Hoeh, W., Lutz, R.A., Vrijenhoek, R.C., 1994. DNA primers
373 for amplification of mitochondrial cytochrome c oxidase subunit I from diverse
374 metazoan invertebrates. *Molecular marine biology and biotechnology* 3(5), 294-299.
375 <https://doi.org/10.4028/www.scientific.net/DDF.7.460>

376 Guo, Y., Zhu, Z., Ma, D., Tang, J., 2017. Report on the development of crayfish
377 *Procambarus clarkii* industry in China (2017). *Fisheries Advance Magazine* 10(7),
378 85-91.

379 Ha, N.T., Dong, H.T., Thuy, N.T., Lien, V.T.K., 2010. *Enterocytozoon hepatopenaei*
380 has been detected parasitizing tiger shrimp (*Penaeus monodon*) cultured in Vietnam
381 and showing white feces syndrome (In Vietnamese with English abstract). *Agric.*
382 *Rural Dev.: Sci. Technol.* 12, 45-50.

383 Jang, G.I., Kim, S.M., Oh, Y.K., Lee, S.J., Hong, S.Y., Lee, H.E., Kwon, M.G., Kim,
384 B.S., 2022. First Report of *Enterocytozoon hepatopenaei* Infection in Giant
385 Freshwater Prawn (*Macrobrachium rosenbergii* de Man) Cultured in the Republic of
386 Korea. *Animals* 12(22). 3149. <https://doi.org/10.3390/ani12223149>

387 Karthikeyan, K., Sudhakaran, R., 2020. Exploring the potentiality of *Artemia salina* to
388 act as a reservoir for microsporidian *Enterocytozoon hepatopenaei* of penaeid shrimp.
389 *Biocatalysis and Agricultural Biotechnology* 25. 101607.
390 <https://doi.org/10.1016/j.bcab.2020.101607>

391 Kim, B.S., Jang, G.I., Kim, S.M., Kim, Y.S., Jeon, Y.G., Oh, Y.K., Hwang, J.Y., Kwon,
392 M.G., 2021. First Report of *Enterocytozoon hepatopenaei* Infection in Pacific
393 Whiteleg Shrimp (*Litopenaeus vannamei*) Cultured in Korea. *Animals* 11(11). 3150.
394 <https://doi.org/10.3390/ani11113150>

395 Kumar Dewangan, N., Pang, J., Zhao, C., Cao, C., Yin, B., Weng, S., He, J., 2023.
396 Host and transmission route of *Enterocytozoon hepatopenaei* (EHP) between
397 dragonfly and shrimp. *Aquaculture* 574, 739642.
398 <https://doi.org/https://doi.org/10.1016/j.aquaculture.2023.739642>

399 Li, Y., Guo, X., Chen, L., Bai, X., Wei, X., Zhou, X., Huang, S., Wang, W., 2015.
400 Inferring Invasion History of Red Swamp Crayfish (*Procambarus clarkii*) in China
401 from Mitochondrial Control Region and Nuclear Intron Sequences. *International*
402 *Journal of Molecular Sciences* 16(7), 14623-14639.
403 <https://doi.org/10.3390/ijms160714623>

404 Mani, R., Raja, S., Kesavan, K., Vijay, P., Babu, V.S., Dhas, D.S., Velu, K., 2022.

405 Experimental infection of *Enterocytozoon hepatopancreaei* parasite (EHP) of penaeid
406 shrimp in Indian marine crabs. Archives of Microbiology 204(7). 416.
407 <https://doi.org/10.1007/s00203-022-03025-2>

408 Meng, X., Luo, B., Tang, X., He, Q., Xiong, T., Fang, Z., Pan, G., Li, T., Zhou, Z.,
409 2018. Pathological analysis of silkworm infected by two microsporidia *Nosema*
410 *bombycis* CQ1 and *Vairimorpha necatrix* BM. Journal of Invertebrate Pathology 153,
411 75-84. <https://doi.org/10.1016/j.jip.2017.12.005>

412 Munkongwongsiri, N., Thepmanee, O., Lertsiri, K., Vanichviriyakit, R.,
413 Itsathitphaisarn, O., Sritunyalucksana, K., 2022. False mussels (*Mytilopsis*
414 *leucophaeata*) can be mechanical carriers of the shrimp microsporidian
415 *Enterocytozoon hepatopenaei* (EHP). Journal of Invertebrate Pathology 187. 107690.
416 <https://doi.org/10.1016/j.jip.2021.107690>

417 Nicholas, K.B., Nicholas, H., 1997. GeneDoc: a tool for editing and annotating
418 multiple sequence alignments. Distributed by the authors at:
419 <http://www.psc.edu/biomed/> genedoc.

420 Ning, Z., 2020. The study for the life cycle and polyclonal antibody aimed to
421 EhSWP7 of *Enterocytozoon hepatopenaei*. Shenyang Agricultural University.

422 Patil, P.K., Geetha, R., Ravisankar, T., Avunje, S., Solanki, H.G., Abraham, T.J.,
423 Vinoth, S.P., Jithendran, K.P., Alavandi, S.V., Vijayan, K.K., 2021. Economic loss due
424 to diseases in Indian shrimp farming with special reference to *Enterocytozoon*
425 *hepatopenaei* (EHP) and white spot syndrome virus (WSSV). Aquaculture 533.
426 736231. <https://doi.org/10.1016/j.aquaculture.2020.736231>

427 Salachan, P.V., Jaroenlak, P., Thitamadee, S., Itsathitphaisarn, O., Sritunyalucksana,
428 K., 2017. Laboratory cohabitation challenge model for shrimp hepatopancreatic
429 microsporidiosis (HPM) caused by *Enterocytozoon hepatopenaei* (EHP). BMC
430 Veterinary Research 13(1). 9. <https://doi.org/10.1186/s12917-016-0923-1>

431 Senderskiy, I.V., Ignatjeva, A.N., Kireeva, D.S., Dolgikh, V.V., 2021. Production of
432 polyclonal anti-beta-tubulin antibodies and immunodetection of *Vairimorpha*
433 (*Nosema*) ceranae (Opisthosporidia: Microsporidia) proliferative stages in the midguts
434 of *Apis mellifera* and in the Sf9 cell culture. Protistology 15(1), 3-9.
435 <https://doi.org/10.21685/1680-0826-2021-15-1-1>

436 Shen, H., Jiang, G., Wan, X., Fan, X., Qiao, Y., Shi, W., Li, H., Wang, L., 2017.
437 Multiple Pathogens Prevalent in Shrimp *Penaeus vannamei* Cultured from
438 Greenhouse Ponds in Jiangsu Province of China. Journal of Aquaculture Research &
439 Development 8(10). <https://doi.org/10.4172/2155-9546.1000516>

440 Shinn, A.P., Pratoomyot, J., Griffiths, D., Trong, T.Q., Vu, T.N., Jiravanichpaisal, P.,
441 Briggs, M.R.P., 2018. Asian Shrimp Production and the Economic Costs of Disease.
442 Asian Fisheries Science 31, 29-58. <https://doi.org/10.33997/j.afs.2018.31.S1.003>

443 Singh, M., Singh, P., 2018. *Enterocytozoon hepatopenaei*: A microsporidian in the
444 midst of serious threat to shrimp aquaculture. JOURNAL OF ENTOMOLOGY AND
445 ZOOLOGY STUDIES 6(6), 936-939.

446 Strus, J., Znidarsic, N., Mrak, P., Bogataj, U., Vogt, G., 2019. Structure, function and
447 development of the digestive system in malacostracan crustaceans and adaptation to
448 different lifestyles. Cell and Tissue Research 377(3), 415-443.

449 <https://doi.org/10.1007/s00441-019-03056-0>

450 Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular Evolutionary
451 Genetics Analysis version 11. Molecular Biology and Evolution 38(7), 3022-3027.

452 <https://doi.org/10.1093/molbev/msab120>

453 Tang, K.F.J., Aranguren, L.F., Piamsomboon, P., Han, J.E., Maskaykina, I.Y., Schmidt,
454 M.M., 2017. Detection of the microsporidian *Enterocytozoon hepatopenaei* (EHP)
455 and Taura syndrome virus in *Penaeus vannamei* cultured in Venezuela. Aquaculture
456 480, 17-21. <https://doi.org/10.1016/j.aquaculture.2017.07.043>

457 Tang, K.F.J., Han, J.E., Aranguren, L.F., White-Noble, B., Schmidt, M.M.,
458 Piamsomboon, P., Risdiana, E., Hanggono, B., 2016. Dense populations of the
459 microsporidian *Enterocytozoon hepatopenaei* (EHP) in feces of *Penaeus vannamei*
460 exhibiting white feces syndrome and pathways of their transmission to healthy shrimp.
461 Journal of Invertebrate Pathology 140, 1-7. <https://doi.org/10.1016/j.jip.2016.08.004>

462 Tang, K.F.J., Pantoja, C.R., Redman, R.M., Han, J.E., Tran, L.H., Lightner, D.V., 2015.
463 Development of in situ hybridization and PCR assays for the detection of
464 *Enterocytozoon hepatopenaei* (EHP), a microsporidian parasite infecting penaeid
465 shrimp. Journal of Invertebrate Pathology 130, 37-41.
466 <https://doi.org/10.1016/j.jip.2015.06.009>

467 Tangprasittipap, A., Srisala, J., Chouwdee, S., Somboon, M., Chuchird, N., Limsuwan,
468 C., Srisuvan, T., Flegel, T.W., Sritunyalucksana, K., 2013. The microsporidian
469 *Enterocytozoon hepatopenaei* is not the cause of white feces syndrome in whiteleg
470 shrimp *Penaeus (Litopenaeus) vannamei*. BMC Veterinary Research 9(1), 139.
471 <https://doi.org/10.1186/1746-6148-9-139>

472 Tourtip, S., Wongtripop, S., Stentiford, G.D., Bateman, K.S., Sriurairatana, S.,
473 Chavadej, J., Sritunyalucksana, K., Withyachumnarnkul, B., 2009. *Enterocytozoon*
474 *hepatopenaei* sp. nov. (Microsporida: Enterocytozoonidae), a parasite of the black
475 tiger shrimp *Penaeus monodon* (Decapoda: Penaeidae): Fine structure and
476 phylogenetic relationships. Journal of Invertebrate Pathology 102(1), 21-29.
477 <https://doi.org/10.1016/j.jip.2009.06.004>

478 Vavra, J., Lukes, J., 2013. Microsporidia and 'The Art of Living Together'. Advances
479 in Parasitology 82, 253-319. <https://doi.org/10.1016/b978-0-12-407706-5.00004-6>

480 Vogt, G., 2019. Functional cytology of the hepatopancreas of decapod crustaceans.
481 Journal of Morphology 280(9), 1405-1444. <https://doi.org/10.1002/jmor.21040>

482 Wan Sajiri, W.M.H., Kua, B.C., Borkhanuddin, M.H., 2023. Detection of
483 *Enterocytozoon hepatopenaei* (EHP) (microsporidia) in several species of potential
484 macrofauna-carriers from shrimp (*Penaeus vannamei*) ponds in Malaysia. Journal of
485 Invertebrate Pathology 198. 107910. <https://doi.org/10.1016/j.jip.2023.107910>

486 Wang, L., Lv, Q., He, Y., Gu, R., Zhou, B., Chen, J., Fan, X., Pan, G., Long, M.,
487 Zhou, Z., 2020. Integrated qPCR and Staining Methods for Detection and
488 Quantification of *Enterocytozoon hepatopenaei* in Shrimp *Litopenaeus vannamei*.
489 Microorganisms 8(9). 1366. <https://doi.org/10.3390/microorganisms8091366>

490 Wang, L., Lv, Q., Meng, X., Chen, J., Wang, Y., Pan, G., Long, M., Zhou, Z., 2021.
491 Identification and characterization polar tube protein 2 (PTP2) from *Enterocytozoon*
492 *hepatopenaei* and its potential effect on shrimp microsporidian germination activity

493 evaluation. *Aquaculture* 544. 737062.

494 <https://doi.org/10.1016/j.aquaculture.2021.737062>

495 Wang, Y., Fang, W., Zhou, J., Li, X., Liu, Q., 2013. Pathogenic and pathological
496 analysis of the muscular microsporidiasis of *Exopalaemon carinicauda*. *Journal of*
497 *Shanghai Ocean University* 22(5), 726-733.

498 <https://doi.org/CNKI:SUN:SSDB.0.2013-05-015>

499 Wang, Y., Zhou, J., Yin, M., Ying, N., Xiang, Y., Liu, W., Ye, J., Li, X., Fang, W., Tan,
500 H., 2022. A modification of nested PCR method for detection of *Enterocytozoon*
501 *hepatopenaei* (EHP) in giant freshwater prawn *Macrobrachium rosenbergii*. *Frontiers*
502 in Cellular and Infection Microbiology

503 <https://doi.org/10.3389/fcimb.2022.1013016>

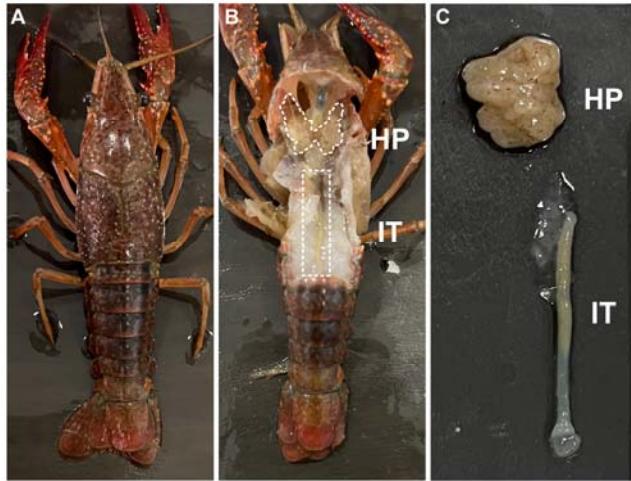
504 Weiss, L.M., Becnel, J.J., 2014. *Microsporidia: Pathogens of Opportunity.*
505 Microsporidia

506 Westman, K., 2002. *Alien Crayfish in Europe: Negative and Positive Impacts and*
507 *Interactions with Native Crayfish*, in: Leppäkoski, E., Gollasch, S., Olenin, S. (Eds.),
508 *Invasive Aquatic Species of Europe. Distribution, Impacts and Management*. Springer
509 Netherlands, Dordrecht, pp. 76-95.

510 Wiredu Boakye, D., Jaroenlak, P., Prachumwat, A., Williams, T.A., Bateman, K.S.,
511 Itsathitphaisarn, O., Sritunyalucksana, K., Paszkiewicz, K.H., Moore, K.A., Stentiford,
512 G.D., Williams, B.A.P., 2017. Decay of the glycolytic pathway and adaptation to
513 intranuclear parasitism within Enterocytozoonidae microsporidia. *Environmental*
514 *Microbiology* 19(5), 2077-2089. <https://doi.org/10.1111/1462-2920.13734>

515 Wu, Y., Chen, J., Liao, G., Hu, M., Zhang, Q., Meng, X., Li, T., Long, M., Fan, X., Yu,
516 Q., Zhang, L., Pan, G., Zhou, Z., 2022. Down-Regulation of Lipid Metabolism in the
517 Hepatopancreas of Shrimp *Litopenaeus vannamei* upon Light and Heavy Infection of
518 *Enterocytozoon hepatopenaei*: A Comparative Proteomic Study. *International Journal*
519 *of Molecular Sciences* 23(19). 11574. <https://doi.org/10.3390/ijms231911574>

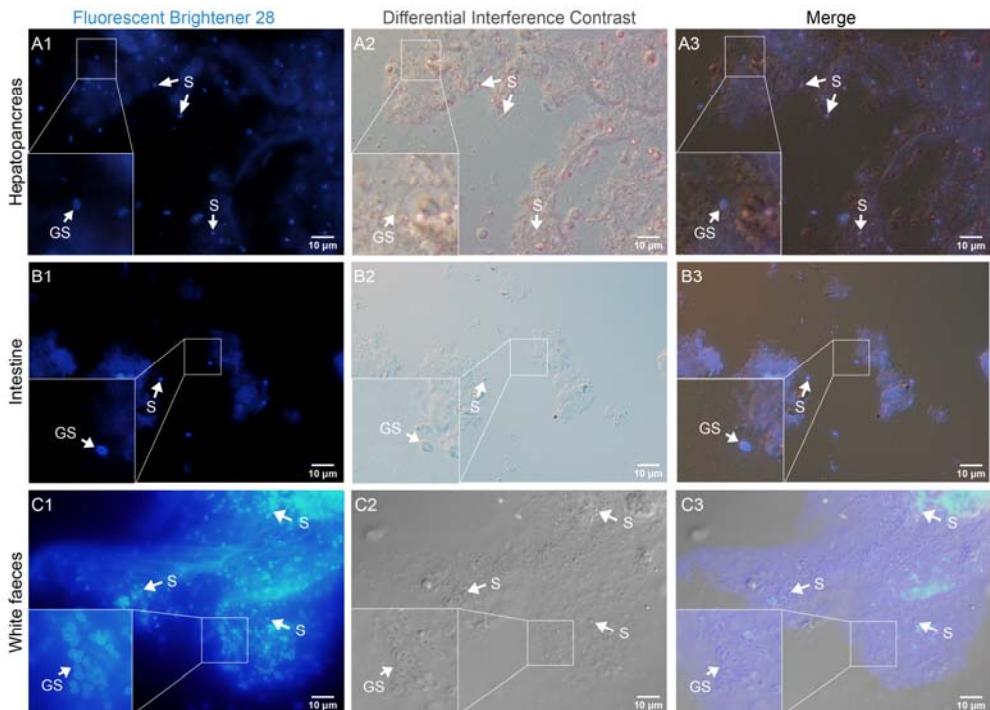
520 Xie, W., Dong, F., Xie, S., Huang, D., Liang, Y., Hu, C., 2008. Feeding, reproduction
521 and habitat of *Procambarus clarkii*. *Reservoir Fisheries* 28(4), 63-65.


522 <https://doi.org/10.3969/j.issn.1003-1278.2008.04.023>

523 Zhao, R., Gao, W., Qiu, L., Chen, X., Dong, X., Li, C., Huang, J., 2020. A staining
524 method for detection of *Enterocytozoon hepatopenaei* (EHP) spores with calcofluor
525 white. *Journal of Invertebrate Pathology* 172. 107347.

526 <https://doi.org/10.1016/j.jip.2020.107347>

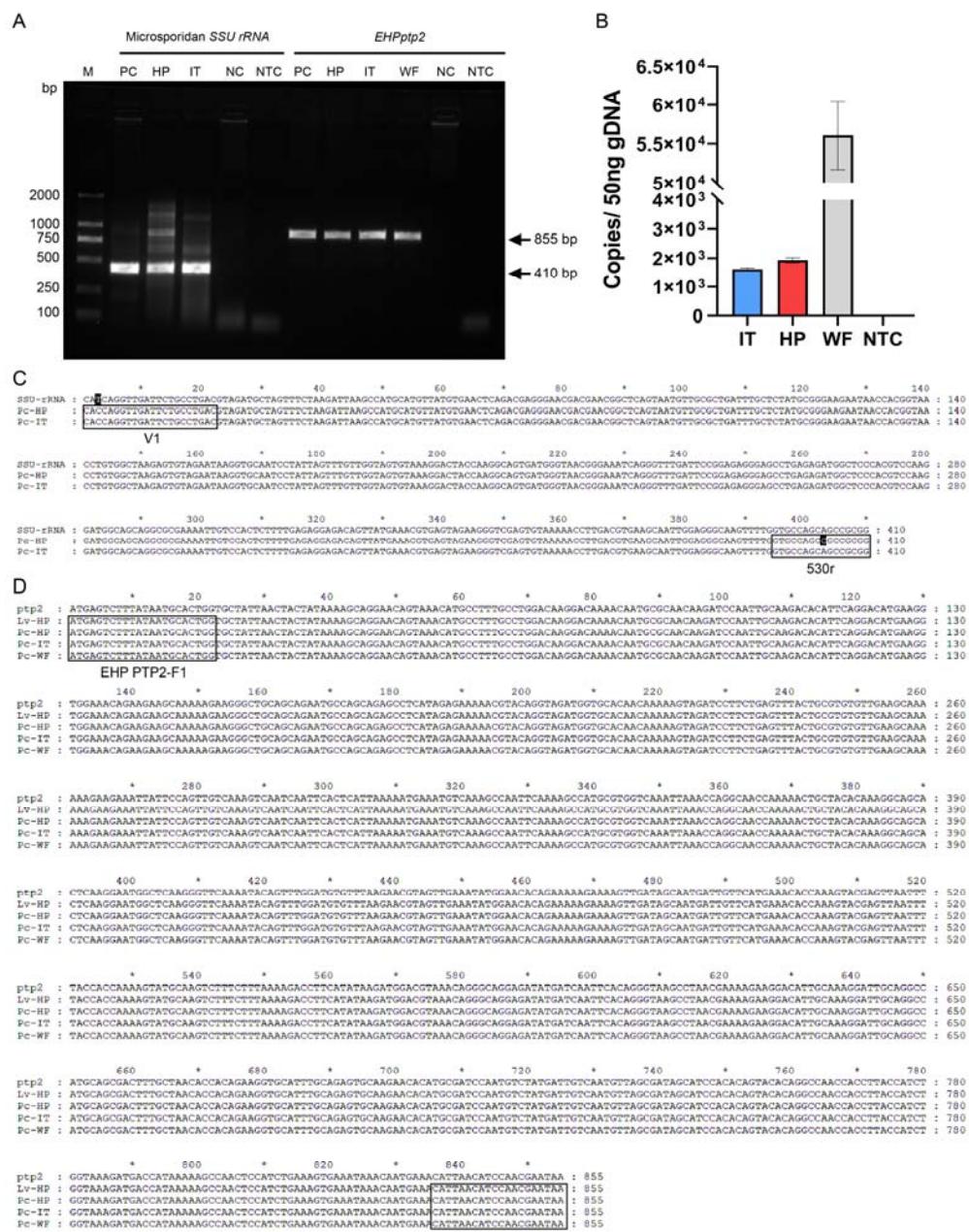
527 Zhu, X., Wittner, M., Tanowitz, H.B., Kotler, D., Ann, C., Weiss, L.M., 1993. Small
528 subunit rRNA sequence of *Enterocytozoon bieneusi* and its potential diagnostic role
529 with use of the polymerase chain reaction. *The Journal of Infectious Diseases* 168(6),
530 1570-1575. 8245549. <https://doi.org/10.1093/infdis/168.6.1570>


531

532

533 **Fig. 1 The anatomical morphology of digestive tract in infected *P. clarkii*.** The
534 external form of infected *P. clarkii* (A) had no difference with healthy ones, while the
535 anatomical digestive tract (B) was lighter in color. A large number of brown spots in
536 the hepatopancreas and white stuff in jejunum were observed (C). HP: hepatopancreas,
537

IT: intestine.

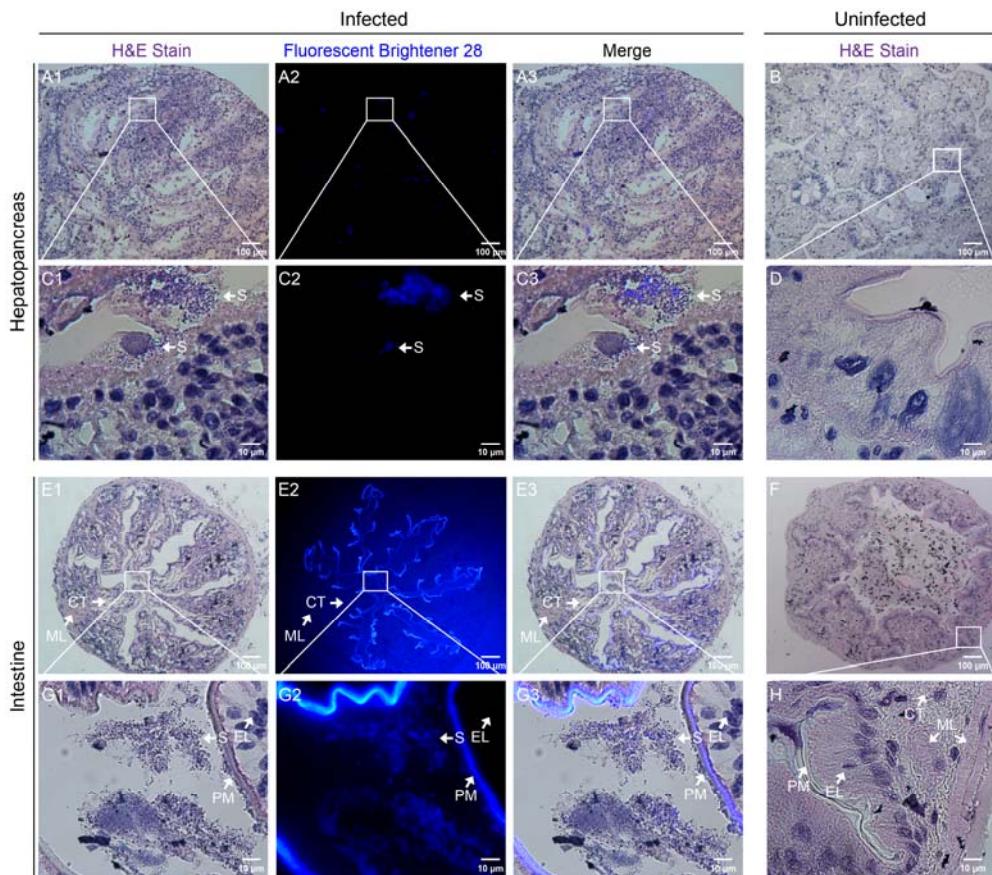

538

539 **Fig. 2 Fluorescence microscopic examination of hepatopancreas (A1-A3),**

540 **intestine (B1-B3) and white feces (C1-C3) homogenate.** Fluorescent Brightener 28

541 was used to stain with chitin layer of microsporidian spores. S: EHP mature spores;

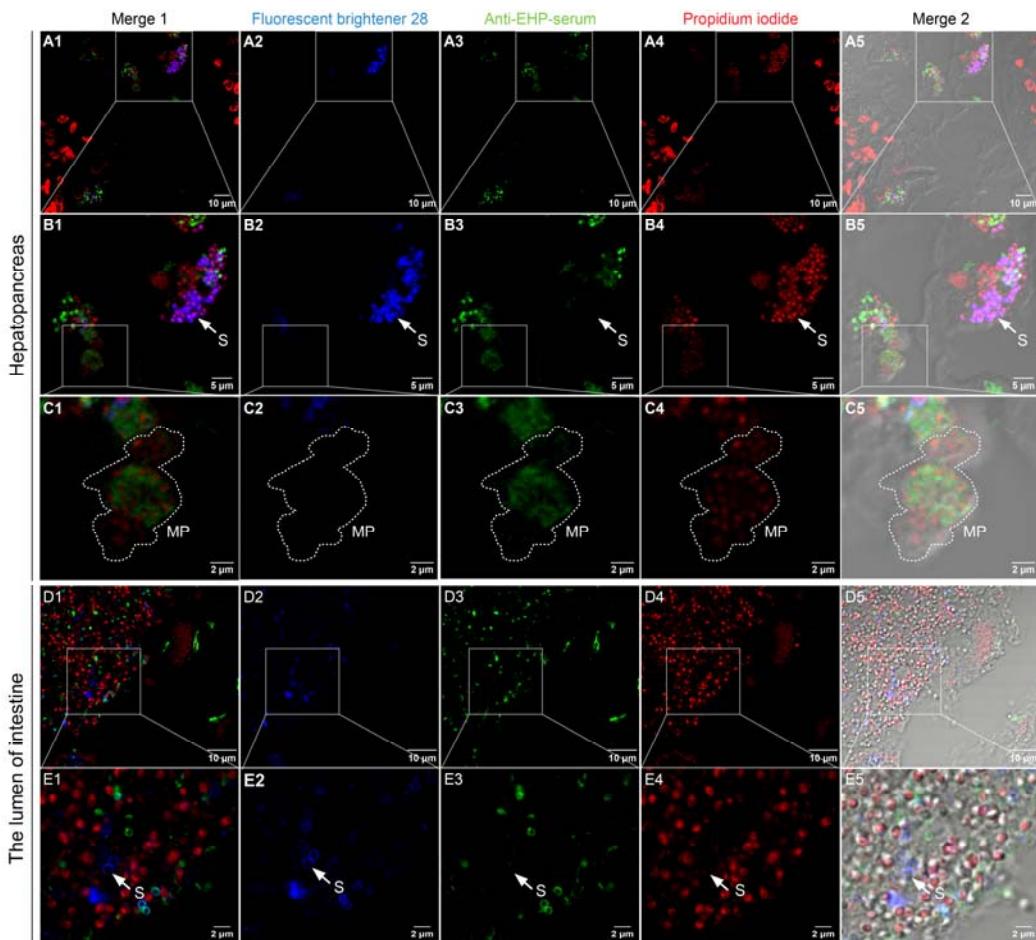
542 GS: germinated spore.



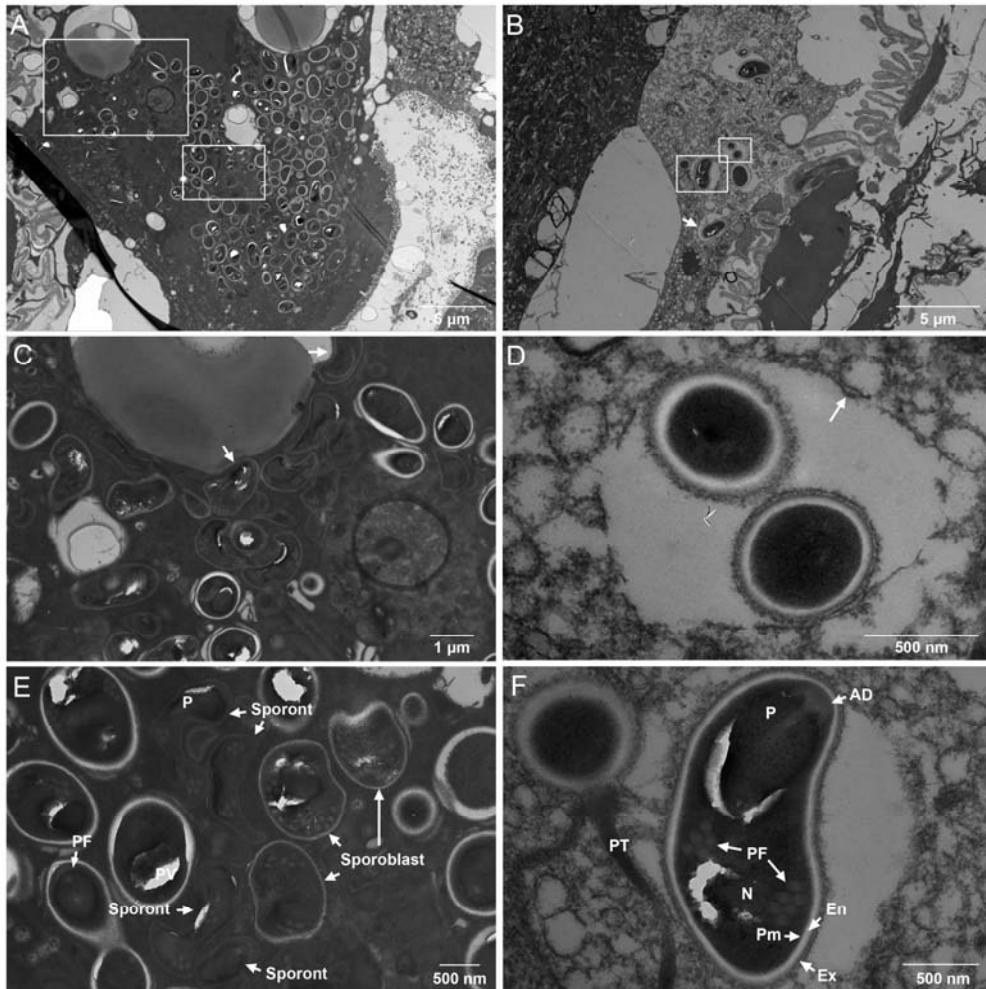
543

544 Fig. 3 Certification of EHP loaded in the crayfish *P. clarkii*. A. PCR products

545 amplified from tissues of infected *P. clarkii*. B. Quantification of EHP in tissues of *P. clarkii*


546 *clarkii* by *EHPptp2* qPCR. Sequence alignments of *SSU rRNA* (C) and *EHPptp2* (D)
547 amplicons and reference. PC: positive control, PCR products amplified from EHP
548 infected *L. vannamei*; NC: negative control, no products were amplified from
549 EHP-free *P. clarkii*; NTC: no template control, ddH₂O was used as template;
550 *SSU-rRNA*: small subunit ribosomal RNA (GenBank: MNPJ01000021.1); *ptp2*: polar
551 tube protein 2 of EHP (GenBank: No. MT249228.1); *Pc*: *Procambarus clarkii*; *Lv*:
552 *Litopenaeus vannamei*; HP: hepatopancreas; IT: intestine; WF: white faces.

553
554 **Fig. 4 H&E-stain showed the tissue damage in the EHP infected *P. clarkii*.**
555 Abundant necrotic areas were seen in the infected hepatopancreas tissue and the
556 morphology of hepatopancreatic tubules were difficult to distinguish (A1-A3).


557 Clustered basophilic EHP spores were distributed among the necrotic areas (C1-C3)
558 compared with those of EHP-free ones (B & D). The intestine of infected crayfish
559 exhibited distinct epitheliolysis, enlarged interstices and sharped pleated ridges
560 (E1-E3 & G1-G3) compared with those of EHP-free ones (F & H). S: EHP mature
561 spores; PM: peritrophic membrane; EL: epithelial layer; CT: connective tissue layer;
562

ML: muscle layer.

563
564 **Fig. 5 Developing stages of EHP in the hepatopancreas (A1-C5) and the lumen of**
565 **intestine (D1-E5) of crayfish illustrated by indirect-immunofluorescent assay.**
566 EHP was labeled with anti-EHP serum (green), chitin coats of spores were labeled
567 using Fluorescent brightener 28 (blue) and nuclei was stained by Propidium iodide

568 (red). The regions selected by the rectangular boxes were magnified to the image
569 below. Mature spores (B1-B5) and proliferative stage (C1-C5) of EHP can be seen in
570 the hepatopancreas of crayfish. Different stages of EHP mix in the lumen of infected
571 intestine (D1-E5). MP: merogonic plasmodia; S: EHP mature spores.

572
573 **Fig. 6 Ultrastructure of sporogonic stages and mature spores of EHP in**
574 **hepatopancreatic epithelia of crayfish.** Abundant sporogonic and mature stage of
575 EHP were distributed in the cytoplasm of hepatopancreatic epithelial cells.
576 Sporogonic spores were found contacted closely to the membrane of host lipid droplet,
577 and the membrane was deformed (A & C). Several spores were enveloped by a

578 membranous structure individually or in pairs (B & D). Mature spores were
579 characterized by microsporidia ultrastructure with 5-6 coils of polar filament (F),
580 while a thin spore wall was in the sporogonic phase of EHP (E). Image C and E, D
581 and F were the magnification of the regions selected by the rectangular boxes in
582 image A and B respectively. Ex: exospore; En: endospore; Pm: plasm membrane; P:
583 polaroplast; PF: polar filament; PT: polar tube; N: nucleus; AD: anchoring disc.

584 **TABLE 1 Primers used in this study.**

Primer Name	Sequence (5`-3`)	Target Gene	References
EHP PTP2-F1	ATGAGTCTTATAATGCACTG	<i>EHPptp2</i>	(Wang et al., 2020)
EHP PTP2-R1	TTATTCGTTGGATGTTAATG	<i>EHPptp2</i>	(Wu et al., (For real-time PCR)
<i>EHPptp2</i> -192F	AATGGCTCAAGGGTTCA		2022)
<i>EHPptp2</i> -192R	CTCCTGCCCTGTTACG		
V1	CACCAGGTTGATTCTGCCTGAC	SSU rRNA of	(Zhu et al., 1993; Baker et al., 1995)
530r	CCGCGGC(T/G)GCTGGCAC	microsporidia	
CRF	TCGCTGTAAAGTTGAAGAAGTT	Mitochondrial	(Li et al., 2015)
CRR	TTAACCTCTTCATATCTTAATTA	control region of	
	C	<i>P. clarkii</i>	
LCO1490	GGTCAACAAATCATAAAGATATT	Mitochondrial	
	GG	cytochrome	
HCO2198	TAAACTCAGGGTGACCAAAAAA	oxidase subunit I	(Folmer et al., 1994)
	ATCA	gene of metazoan	
		invertebrates	

585