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Abstract 1 

Estimation of parameters of evolutionary island biogeography models, such as 2 

colonization and diversification rates, is important for a better understanding of island 3 

systems. A popular statistical inference framework is likelihood-based estimation of 4 

parameters using island species richness and phylogenetic data. Likelihood 5 

approaches require that the likelihood can be computed analytically or numerically, 6 

but with the increasing complexity of island biogeography models, this is often 7 

unfeasible. Simulation-based estimation methods may then be a promising alternative. 8 

One such method is approximate Bayesian computation (ABC), which compares 9 

summary statistics of the empirical data with the output of model simulations. 10 

However, ABC demands the definition of summary statistics that sufficiently describe 11 

the data, which is yet to be explored in island biogeography. Here, we propose a set of 12 

summary statistics and use it in an ABC framework for the estimation of parameters of 13 

an island biogeography model, DAISIE (Dynamic Assembly of Island biota through 14 

Speciation, Immigration and Extinction). For this model, likelihood-based inference is 15 

possible, which gives us the opportunity to assess the performance of the summary 16 

statistics. DAISIE currently only allows maximum likelihood estimation (MLE), so we 17 

additionally develop a likelihood-based Bayesian inference framework using Markov 18 

Chain Monte Carlo (MCMC) to enable comparison with the ABC results (i.e., making the 19 

same assumptions on prior distributions). We simulated phylogenies of island 20 

communities subject to colonization, speciation, and extinction using the DAISIE 21 

simulation model and compared the estimated parameters using the three inference 22 

approaches (MLE, MCMC and ABC). Our results show that the ABC algorithm performs 23 

well in estimating colonization and diversification rates, except when the species 24 

richness or amount of phylogenetic information from an island are low. We find that 25 

compared to island species diversity statistics, summary statistics that make use of 26 

phylogenetic and temporal patterns (e.g., the number of species through time) 27 

significantly improve ABC inference accuracy, especially in estimating colonization and 28 

anagenesis rates, as well as making inference converge considerably faster and 29 

perform better under the same number of iterations. Island biogeography is rapidly 30 

developing new simulation models that can explain the complexity of island 31 

biodiversity, and our study provides a set of informative summary statistics that can 32 

be used in island biogeography studies for which likelihood-based inference methods 33 

are not an option. 34 

 35 
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Introduction 1 

Islands provide great opportunities for evolutionary and biogeographical studies. Their 2 

geographical isolation makes it easier to make inferences on their unique ecological and 3 

evolutionary processes, because of their well-defined boundaries. It also promotes 4 

endemism, providing opportunities to study speciation and diversification. The field of 5 

island biogeography is particularly concerned with understanding how island 6 

characteristics shape colonization, extinction and speciation rates, and how these affect 7 

species richness on islands (MacArthur & Wilson, 1963; Warren et al., 2015). Present-day 8 

island biogeography integrates ecological dynamics with evolutionary processes, and 9 

considers the disequilibrium of the islands affected by geological ontogeny over time 10 

(Whittaker et al., 2008; 2017). In recent years, advances in molecular biology and 11 

computational methods have allowed researchers to incorporate phylogenetic 12 

information into evolutionary models (Rabosky and Glor 2010; Ronquist, 2011; Valente 13 

et al., 2015), allowing a greater understanding of the evolutionary history and 14 

relationships in island biotas. Key parameters in island biogeography that can potentially 15 

be estimated from island phylogenetic and diversity data include rates of dispersal, 16 

colonization, speciation, extinction, island carrying capacity, the strength of ecological 17 

interactions, as well as rates of co-evolution and trait evolution (Patiño et al., 2017). 18 

However, the application of phylogenetic information to estimate parameters in island 19 

biogeography has remained relatively rare (Lim & Marshall, 2017; Valente et al., 2018). 20 

 21 

Accurately estimating rates of colonization and diversification (speciation minus 22 

extinction) in island biogeography models is essential for testing hypotheses on the 23 

macroevolution and biogeography of island species and predicting future patterns. 24 

Maximum likelihood and Bayesian estimation are widely used approaches for parameter 25 

inference in a phylogenetic context (Ellison 2004; Sanmartín et al. 2008). Maximum 26 

likelihood estimation is asymptotically unbiased and efficient, and also allows for 27 

straightforward model comparison (Akaike, 1973). However, the estimation approach 28 

can be sensitive to the choice of initial values, which could lead to local rather than global 29 

likelihood maxima (Rogers and Swofford, 1999). Bayesian inference is an alternative 30 

probabilistic approach that requires specifying a prior probability distribution reflecting 31 

the prior knowledge of the parameters. The posterior distribution is updated using Bayes’ 32 

theorem incorporating the likelihood and the prior. Compared with a single point 33 

estimation obtained through maximum likelihood, Bayesian inference can be more 34 

informative, providing a distribution of possible parameter values, and allowing for an 35 

escape from local maxima. Markov Chain Monte Carlo (MCMC) is a typical method used 36 

in the Bayesian inference framework. MCMC has been particularly developed for cases 37 

when only the likelihood ratio or the likelihood of an augmented data set is available, but 38 

here we use it with the full likelihood function. While efficiently computing the likelihood 39 

or likelihood ratio can be done for simple models of island biodiversity dynamics, the 40 

increasing complexity of models in island biogeography and the resulting increase in 41 
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parameters to be estimated makes it unfeasible. Thus, there is a need for likelihood-free 1 

parameter estimation methods.  2 

 3 

A promising approach to overcome this challenge is approximate Bayesian computation 4 

(ABC), a likelihood-free simulation-based Bayesian method. The ABC algorithm estimates 5 

model parameters by simulating data, and accepts the parameters which can generate 6 

simulations close enough to the observations according to summary statistics and 7 

distance measures (Beaumont et al., 2002; Toni & Stumpf, 2009). The ABC approach 8 

originated in the context of population genetic analysis with a basic ABC rejection 9 

algorithm (Beaumont, 2010). However, this algorithm can be inefficient with a low 10 

acceptance rate in complex models, especially when the prior distribution is difficult to 11 

specify (Sadegh and Vrugt, 2014). In the past decade, Monte Carlo algorithms, such as 12 

Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC), have been 13 

incorporated in ABC and have been applied to infer diversification rates in ecological or 14 

evolutionary models (Jabot & Chave, 2009; Rabosky, 2009; Bokma, 2010; Slater et al., 15 

2012; Janzen et al., 2015). The ABC-SMC algorithm has become a popular method as it 16 

allows for tackling large and complex systems. 17 

 18 

The computational efficiency and performance of the ABC algorithm are largely 19 

determined by the choice of summary statistics (Janzen et al., 2015; Jiang et al. 2017). In 20 

macroevolutionary studies, potentially informative statistics are those describing the 21 

species richness and the endemism of the extant species of interest. In addition, summary 22 

statistics that quantify the phylogenetic relationships between species and branching 23 

times may also be important. In island biogeography, phylogenetic data provide 24 

information on whether island species are derived from single or multiple independent 25 

colonization events. Furthermore, phylogenies also help to identify the biogeographic 26 

regions from which island colonizers originated, and can provide information on the role 27 

of dispersal or vicariance in shaping the distributions of island lineages. In a likelihood 28 

context, the inference accuracy of island colonization, speciation and extinction rates has 29 

been shown to be improved by adding temporal phylogenetic information on the pattern 30 

of accumulation of species on island, particularly the colonization times of island lineages, 31 

but also cladogenetic branching times (Valente et al. 2018). Hence identifying summary 32 

statistics capturing phylogenetic information seems a promising strategy. 33 

 34 

Phylogenetic diversity (PD) and mean pairwise distance (MPD) are widely used statistics 35 

in phylogenetic analysis (Tsirogiannis & Sandel, 2016). Another promising summary 36 

statistic, the normalized Lineage Through Time (nLTT), was proposed to assess the 37 

similarity between any two phylogenetic trees (Janzen et al., 2015). It was shown that 38 

nLTT performs better than traditionally used statistics (PD, tree size and gamma statistic) 39 

in estimating diversification rates in birth-death, time-dependent and diversity-40 

dependent speciation models (Janzen et al., 2015). The good performance of this statistic 41 

can be explained by the fact that it has been shown to be a sufficient statistic for the 42 
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estimation of speciation and extinction rates in a constant-rate or time-dependent birth-1 

death model of diversification (Louca & Pennell, 2020). Furthermore, while PD and MPD 2 

statistics are calculated based on binary trees, in which all the species evolved from the 3 

same ancestor, (a variant of) the LTT statistic can also be used for analyzing phylogenies 4 

of multiple independent clades (Neves et al., 2022). This is relevant in island 5 

biogeography models, where the focus is often on the diversity dynamics of the entire 6 

island community, that is, the phylogenetic trees composed of the clades descending from 7 

multiple independent colonization events.  8 

 9 

The ABC approach has been used in island biogeography on population genetic analyses 10 

(Patiño et al., 2015), but remains relatively underutilized in macroevolutionary models. 11 

Island biogeography is rapidly developing new models that can better explain the 12 

complexity of island biodiversity, for example incorporating geodynamics (Borregaard et 13 

al 2015, Neves et al., 2022), trait evolution (Xie et al., 2023), or both (Sukumaran et al., 14 

2016). It is thus essential to identify general but efficient summary statistics, particularly 15 

for phylogenies of island species and communities, in order to be able to use ABC 16 

approaches to estimate parameters in complex island biogeography models (which are 17 

not amenable to likelihood methods). In this study, we develop an ABC-SMC framework 18 

and test its inference ability on simulations with the island biogeography model, DAISIE 19 

(Dynamic Assembly of Island biotas through Speciation, Immigration and Extinction) 20 

(Valente et al., 2015) by comparing with the results using likelihood-based methods. 21 

DAISIE integrates phylogenetic information into island biogeography. It allows 22 

estimation of the rates of colonization, extinction and speciation (CES) from phylogenetic 23 

data, and can be used to simulate these processes for given rates. The DAISIE simulation 24 

framework was expanded into various directions incorporating island ontogeny and sea-25 

level change (Neves et al., 2022) and trait effects (Xie et al., 2023). However, computing 26 

the likelihood is often not possible for these extended models, and thus a likelihood-free 27 

ABC algorithm is necessary for parameter estimation. To facilitate comparison with the 28 

ABC results (i.e., making the same assumptions on prior distributions), here we also 29 

develop a likelihood-based Bayesian inference framework using Markov Chain Monte 30 

Carlo (MCMC). We simulated a variety of island biogeography scenarios with the DAISIE 31 

simulation model and compared the estimated values using the three inference 32 

approaches: MLE, ABC and MCMC. We asked the following questions by comparing the 33 

estimation performance: 1) Can the ABC algorithm accurately estimate parameters in 34 

phylogenetic island biogeography models (as accurately as MLE or MCMC)? 2) If not, 35 

under what conditions are estimations poor? 3) Which summary statistics are most 36 

relevant and efficient for ABC island biogeography studies? 4) Are phylogenetic summary 37 

statistics more informative than statistics of the tips of the tree (e.g. species richness)? 38 

 39 

 40 

 41 
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Methods 1 

Simulation model and scenarios  2 

Our focal system is a community of extant species living on an island, for which one would 3 

like to estimate rates of colonization, speciation and extinction based on diversity and 4 

phylogenetic data. Hence, we used as observations island diversity and phylogenetic data 5 

simulated in the DAISIE framework. The species richness on the island is determined by 6 the colonization rate γ, anagenesis rate »a, cladogenesis rate »c and extinction rate ¼. 7 

Cladogenesis and colonization rates can be diversity-dependent, declining linearly with 8 

an increasing number of species on the island. The simulation output is a set of 9 

phylogenies of island species each resulting from an independent colonization event of 10 

the island. Some phylogenies may have multiple species (e.g. island radiation), and others 11 

may have just a single island species (e.g., non-endemic species that have not had time to 12 

speciate or endemic singleton species with no close relatives on the island). To mimic 13 

empirical studies in which it is difficult to obtain complete extinction information, we 14 

pruned all extinct species from the simulations and used as data entries the reconstructed 15 

trees containing all species that are extant on the island at the end of the simulation. We 16 

used the standard DAISIE simulation code implemented in the R package DAISIE (Etienne 17 

et al., 2023). We do not consider extensions of the original model (such as trait-18 

dependence or area-dependence of rates) because there are currently no likelihood 19 

methods for these more complex models. The simulated data produced in this way are 20 

hereafter referred to as observed data, as they are meant to mimic empirical data, and to 21 

distinguish them from the simulations performed in the ABC analysis. 22 

 23 

We used a total of 16 parameter combinations (Table 1) to simulate observed islands 24 

(composed of one or more phylogenetic trees, each representing a lineage descending 25 

from a colonization event). We ran 10 replicates for each parameter combination, thus 26 

obtaining 160 simulated islands in total as observed data that were used for the 27 

subsequent inference using different estimation methods. We set the island age as 5 28 

million years in all the simulations. We tested the estimation performance in a diversity-29 

independent (DI) model with no upper bound for the species richness on the island. 30 

 31 

Table 1. Parameter space used to generate the observed data used in ABC-SMC and MCMC algorithms. 32 

In total, 16 parameter combinations were used. 33 

Parameters Meaning Parameter values »c Cladogenetic speciation rate 0.4, 0.7 ¼ Extinction rate 0, 0.3 γ Colonization rate 0.003, 0.009 »a Anagenetic speciation rate 0.1, 1.0 

 34 

 35 
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Maximum likelihood estimation 1 

A likelihood computation method already exists in the DAISIE framework (Valente et al., 2 

2015). The method allows estimating colonization, speciation and extinction rates using 3 

maximum likelihood, based on the phylogenetic information of colonization and 4 

branching times, as well as the endemicity status of species (endemic or not endemic to 5 

the island). The code for parameter estimation is implemented in the R package DAISIE 6 

(Etienne et al., 2023). 7 

 8 

Metropolis-Hastings MCMC algorithm 9 

We developed and performed a Metropolis–Hastings Markov chain Monte Carlo (MCMC, 10 

Metropolis et al. 1953; Hastings 1970) analysis to obtain our reference estimates on the 11 

observed data using the analytical likelihood (Valente et al. 2015). In Bayesian MCMC, a 12 

sequence (chain) of parameter values is generated using Monte Carlo sampling, where 13 

each step in the chain only depends on the previous step (Markov property). The chain is 14 

designed such that the distribution of the generated parameter values converges to the 15 

posterior distribution of the parameters. We ran 1,000,000 iterations for the MCMC chain, 16 

with a discarded burn-in phase of 100,000 at the beginning, and the chain was thinned 17 

by sampling every 400th iteration, with low autocorrelation coefficient values (< 0.15). 18 

In order to reduce the influence of the prior distribution, we chose uniform distributions 19 

as the prior distributions for each parameter, using two sets of prior distributions with 20 

different ranges (Table 2) to evaluate the effect of the choice of the prior. 21 

 22 

 23 

Table 2. The ranges of the two uniform prior distributions used in ABC-SMC and MCMC algorithms. 24 

Parameters Prior distribution 1 Prior distribution 2 »c [0, 1] [0, 2] ¼ [0, 0.5] [0, 2] γ [0, 0.02] [0, 0.02] »a [0, 1.5] [0, 2] 

 25 

 26 

ABC-SMC algorithm 27 

We applied a likelihood-free ABC-SMC algorithm to the observed data to estimate 28 

parameters (Toni et al., 2009). ABC-SMC uses a sequential sampling approach that 29 

generates a series of intermediate distributions with narrowing-down scales (Fig 1). In 30 

our ABC-SMC algorithm, we first sample a group of parameters (collectively called 31 

particle) from the prior and perturb the parameters using a normal distribution with zero 32 

mean and a standard deviation of 0.05, and then we use these to simulate islands with 33 

the DAISIE simulation model. The similarity between the observed data and the 34 

simulated data is assessed with the distance between vectors of summary statistics. The 35 

particles are accepted when the distance for each summary statistic between the two 36 
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datasets is smaller than a predefined threshold ε. Otherwise, the particle should be 1 

resampled from the prior distribution until accepted. When a sufficient number of 2 

particles (set beforehand at 500 in our simulations) is accepted, then a new iteration 3 

starts, where again particles are sampled, but now from the previous parameter 4 

population. Then the above processes of simulating datasets and accepting particles is 5 

repeated (Fig 1). The threshold decreases with each new iteration (ε1 > ε2 >& > εn), where 6 

we use the median values of the summary statistic distances as the new thresholds in the 7 

following iteration. The algorithm stops when the acceptance rate is lower than 0.002 8 

(one accepted particle in every 500 simulation steps), and we assume that the particles 9 

have converged. The population of the samples in the last iteration are regarded as the 10 

posterior, which is used to compare with the other approaches. 11 

 12 

To be comparable, we used the same observed data and the same prior distributions as 13 

in the MCMC algorithm (Table 2). In the ABC simulations, we kept the same island age (5 14 

million years) as in the observed island dataset, but the number of species and the 15 

number of colonists present on the island can vary stochastically. We also pruned extinct 16 

species from each ABC-simulated island dataset. 17 

 18 

 19 

 20 

Figure 1. Illustration of the ABC-SMC algorithm. θ1, θ2,&, θn indicate n particles sampled from the prior 21 

distribution, and SS(θ) is the summary statistic of the particle (a single simulation). ε is the distance 22 

threshold for each iteration, which decreases with each iteration.  23 

 24 
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We selected eight summary statistics that describe the number of extant species on 1 

islands, the phylogenetic relationships between species as well as the timing of 2 

accumulation of species (times of colonization and branching times) (Table 3). We 3 

evaluated the ABC performance using four groups of summary statistics, a) ABC diversity, 4 

with three statistics with island species richness and endemism information but without 5 

information on evolutionary history: the total number of extant species on the island 6 

(Ntotal), the number of endemic species (Nend), and the number of non-endemic species 7 

(Nnon-end); b) ABC NLTT, with three LTT statistics with temporal information: the total 8 

number of species on the island through time (NLTTtotal), the number of singleton 9 

endemic species through time (NLTTsingleton-end), the number of non-endemic species 10 

through time (NLTTnon-end); c) ABC phylogenetic, with five statistics consisting of the 11 

three temporal statistics in the ABC NLTT group plus two additional phylogenetic 12 

statistics: the standard deviation of colonization time (SD-CT), and the standard deviation 13 

of clade size (SD-CS); d) ABC all, the combination of all eight statistics. Phylogenetic 14 

information allows us to determine whether an endemic island clade is composed of a 15 

single endemic species (singleton endemic) or of multiple endemic species (radiation). In 16 

the three groups of summary statistics that use phylogenetic information (ABC NLTT, 17 

ABC phylogenetic and ABC all), we used the NLTT of singleton endemic species 18 

(NLTTsingleton-end) instead of NLTT of all the endemics, because it is more informative on 19 

anagenetic speciation (e.g., if there are fewer endemic singleton clades than endemic 20 

clades with multiple species, this suggests that cladogenesis is more frequent than 21 

anagenesis). We do not lose information, because the number of endemics in a radiation 22 

can be calculated from the total number of species, the number of non-endemics and the 23 

number of singleton endemics. We calculated NLTT statistics using the R package nLTT 24 

on CRAN, which is also available on GitHub (https://github.com/thijsjanzen/nLTT). The 25 

code used to perform the MCMC and the ABC-SMC analyses was implemented in the R 26 

package DivABC on GitHub (https://github.com/xieshu95/DivABC).  27 

 28 

Table 3. Summary statistics used for the ABC algorithm. We consider statistics 1-3 to be diversity-29 

related statistics (ABC diversity), 4-6 to be temporal/phylogenetic statistics (ABC NLTT), and 7-8 to 30 

be phylogenetic statistics (ABC phylogenetic). 31 

 Summary 

statistics 

Description   Category 

1 Ntotal Total number of extant species on the island Diversity-related 

2 Nend Number of endemic island species Diversity-related 

3 Nnon-end Number of non-endemic island species Diversity-related 

4 NLTTtotal Number of island lineages through time Phylogenetic (NLTT) 

5 NLTTsingleton-end Number of singleton island endemics through time Phylogenetic (NLTT) 

6 NLTTnon-end Number of non-endemic island species through time Phylogenetic (NLTT) 

7 SD-CT Standard deviation of colonization time among island clades Phylogenetic 

8 SD-CS Standard deviation of clade size among island clades Phylogenetic 
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 1 

Results 2 

We compared the performance of the parameter estimation using the MLE, ABC and 3 

MCMC approaches. We found that MLE performs the best. The ABC algorithm performs 4 

well in estimating the colonization, extinction and speciation (CES) rates when the 5 

colonization rate is high, and thus the observed data contain more clades and species on 6 

the island. For most of the parameter sets we tested in this study, using phylogenetic 7 

statistics in the ABC approach results in higher estimation accuracy than using only 8 

diversity-related statistics. Furthermore, for all three methods (MLE, MCMC and ABC), 9 

we find that the inference error and the standard deviation decrease as the species 10 

richness and the number of clades increase. 11 

 12 

Observed data 13 

The island datasets generated with different parameter sets show large differences in the 14 

total species diversity and the number of clades present on the island (Table 4). As for 15 

the endemicity status, the number of non-endemics differs less than the number of 16 

endemic species (Table S1). High cladogenesis (»c = 0.7) and colonization (γ = 0.009) rates 17 

can cause some islands to have more than 500 extant species in total, with the largest 18 

recorded clade containing 129 species (Table S1). The smallest island dataset we 19 

obtained in this study has just seven species distributed over five clades, which was 20 

obtained under conditions of low colonization (γ = 0.003) and speciation rates (»c = 0.4), 21 

and a high extinction rate (¼ = 0.3). Although such highly diverse or very species-poor 22 

islands may not be common in empirical studies, we nevertheless wanted to evaluate the 23 

inference power in those extreme cases. We calculated the summary statistics of all the 24 

observations used in this study, and evaluated the correlations between the statistics 25 

with a heatmap (Fig 2). There are strong one-to-one correlations between the diversity-26 

related statistics (Ntotal, Nnon-end) and the temporal NLTT statistics (NLTTtotal, NLTTnon-end), 27 

which indicates a high overlap of the information provided by these statistics. Nend is 28 

independent from NLTTsingleton-end, but is positively correlated with Ntotal. However, SD-CT, 29 

which is a statistic to measure the colonization time variance, is independent of other 30 

statistics, as is evident from a low correlation coefficient (Fig 2).  31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 
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Table 4. Statistics of the observed datasets. We show the mean (standard deviation) of the 10 1 

replicates for each parameter set. 2 

 3 

 4 

Figure 2. Correlation heatmap between summary statistics of all the observations that were used in 5 

the ABC algorithm. Red indicates a negative correlation between two statistics, and blue a positive 6 

correlation. The size and color of the circle show the strength of the correlation.  7 

Scenario »c ¼ γ »a Number of clades Total species richness Largest clade 

1 0.4 0 0.003 0.1 14 (4) 44 (15) 13 (5) 

2 0.7 0 0.003 0.1 14 (3) 134 (58) 52 (28) 

3 0.4 0.3 0.003 0.1 9 (3) 19 (10) 7 (3) 

4 0.7 0.3 0.003 0.1 11 (5) 47 (21) 17 (7) 

5 0.4 0 0.009 0.1 44 (6) 138 (30) 20 (9) 

6 0.7 0 0.009 0.1 41 (8) 352 (124) 56 (22) 

7 0.4 0.3 0.009 0.1 30 (5) 64 (16) 11 (4) 

8 0.7 0.3 0.009 0.1 32 (6) 159 (41) 35 (17) 

9 0.4 0 0.003 1 17 (4) 52 (18) 14 (9) 

10 0.7 0 0.003 1 16 (2) 127 (40) 42 (19) 

11 0.4 0.3 0.003 1 8 (3) 15 (6) 5 (2) 

12 0.7 0.3 0.003 1 13 (3) 55 (22) 16 (7) 

13 0.4 0 0.009 1 42 (6) 155 (39) 22 (13) 

14 0.7 0 0.009 1 44 (6) 389 (124) 71 (28) 

15 0.4 0.3 0.009 1 30 (4) 60 (15) 9 (4) 

16 0.7 0.3 0.009 1 32 (5) 152 (47) 27 (10) 
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 1 

Inference comparison between ABC, MCMC and MLE  2 

To facilitate comparison between the methods across various parameter combinations 3 

used as generating values, we calculated the relative difference between the generating 4 (<true=) rates and the estimated rates, and compared the differences (-rate) between 5 

methods. As for the choice of the prior distribution, we find that the ABC estimation 6 

performs better under the narrower prior (Fig S1 and S2), with relatively less bias and 7 

variance than under the broader prior (Fig 4 and 5), but with the same bias patterns 8 

(overestimation or underestimation). Because speciation and extinction rates can often 9 

be high on islands (Warren et al., 2015), and because researchers are unlikely to have 10 

sufficient information to specify narrow primers, here we discuss the parameter 11 

estimations under the broader prior distribution, and we show the estimation results 12 

under the narrow prior distribution in supplementary Figure S1 and S2. 13 

 14 

Overall, the MLE approach showed the highest accuracy in estimating parameters in the 15 

DAISIE framework (Figs 3 and 5), with median  values closest to zero for most of the 16 

parameter sets. The MCMC and the ABC estimations (except when using diversity-related 17 

statistics) have similar performance with minor difference, but both show relatively 18 

larger bias in estimating cladogenesis and extinction rates when the generating rate of 19 

colonization is low (Fig 5). In addition, because the MCMC and the ABC are Bayesian 20 

algorithms producing a distribution as posterior, the standard errors are relatively larger 21 

than for the MLE. 22 

 23 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.13.562305doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.13.562305
http://creativecommons.org/licenses/by-nc/4.0/


 1 

Figure 3. Inference of cladogenesis, extinction, colonization and anagenesis rate parameters 2 

across all 160 parameter sets. The ABC results are from the analyses using the broader prior (See 3 

Table 2). Plots show the -rate, that is, the difference between the estimated value and the true value 4 

used for generating the observed simulations. The diagonal shows density distributions of the 5 

estimations using MCMC (green), ABC with diversity-related (orange) or NLTT (red) statistics. The 6 

dashed line is the baseline at zero, and the blue solid line is the median of all MLE estimations across 7 

all the parameter sets. The scatter plots in the lower triangle show the -rates for different parameter 8 

combinations: the point estimation of MLE (blue triangles), the median value of the posterior 9 

distribution using MCMC (green diamonds) and ABC (orange squares and red circles). The gray 10 

dashed lines are the baseline, which intersect at zero. ABC Diversity - three diversity-related statistics; 11 

ABC NLTT - three NLTT statistics; MLE - maximum likelihood estimation; MCMC - Markov Chain Monte 12 Carlo; γ - colonization rate; ¼ - extinction rate; »c – cladogenesis rate; »a – anagenesis rate. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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 2 

 3 

Figure 4. Results of inference of the net diversification rate (rate of cladogenesis minus rate of 4 

extinction) using MLE, MCMC and ABC. Lines show 95% confidence intervals, dots the median value. 5 

The ABC results are from the analyses using the broader prior (See Table 2). Plots show the -net 6 

diversification rate, that is, the difference between the estimated value and the true value used for 7 

generating the observed simulations. The true values are shown at the top of each column and to the 8 

right of each row. The distribution for each method combines the 10 replicates for each parameter set. 9 

For MLE, these replicates result in 10 data points, whereas for MCMC and ABC these replicates result 10 

in 10 posterior distributions combined. In the case of ABC-SMC, the posterior distribution for each 11 

replicate is based on 500 particles from the last iteration step of the algorithm. ABC All - all statistics; 12 

ABC Diversity - three diversity-related statistics; ABC NLTT - three NLTT statistics; ABC Phylogenetic 13 

- five phylogenetic statistics; MLE - Maximum likelihood estimation; MCMC - Markov Chain Monte 14 Carlo; γ - colonization rate; ¼ - extinction rate; »c – cladogenesis rate; »a – anagenesis rate. 15 

 16 

 17 

 18 
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 1 

Figure 5. Inference of the cladogenesis, extinction, colonization and anagenesis rates using MLE, MCMC and ABC. Lines show 95% confidence intervals, 2 

dots the median value. The ABC results are from the analyses using the broader prior (See Table 2). Plots show the -rate, that is, the difference between 3 

the estimated value and the true value used for generating the observed simulations. The true values are shown at the top of each column and to the right of 4 

each row. The distribution for each method combines the 10 replicates for each parameter set. For MLE, these replicates result in 10 data points, whereas for 5 

MCMC and ABC these replicates result in 10 posterior distributions combined. In the case of ABC-SMC, the posterior distribution for each replicate is based 6 

on 500 particles from the last iteration step of the algorithm. ABC-All – all eight statistics; ABC Diversity – three diversity-related statistics; ABC-NLTT – three 7 

NLTT statistics; ABC-Phylogenetic – five phylogenetic statistics; MLE – maximum likelihood estimation; MCMC – Markov chain Monte Carlo; γ – colonization 8 rate; ¼ – extinction rate; »c – cladogenesis rate; »a – anagenesis rate.9 
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Summary statistics  1 

When comparing the posterior distribution of the last ABC iteration we find that, overall, 2 

the estimation using phylogenetic statistics (ABC-phylogenetic and ABC-NLTT) appears 3 

to be more accurate and stable than that using diversity-related statistics (ABC-diversity), 4 

especially when estimating colonization and anagenesis rates (Figs 3-5). We do note that 5 

the ABC algorithm with phylogenetic statistics tends to overestimate the cladogenesis 6 and extinction rates when the colonization rate is low (γ = 0.003) (Fig 5). The bias in the 7 

extinction rate is larger than that of the cladogenesis rate, therefore resulting in 8 

underestimated net diversification rates (Fig 4). The estimations of anagenesis and 9 

colonization are accurate for most of the parameter scenarios (Fig 5).  10 

 11 

The ABC approach using only diversity-related statistics produces large inference bias. 12 

Cladogenesis and extinction rates tend to be underestimated, especially when the 13 

generating rate of extinction is non-zero (¼ = 0.3) (Figs 3 and 5). In addition, colonization 14 

and anagenesis rates are largely overestimated for most of the parameter sets (Fig 3), and 15 

are more biased when the generating rate of anagenesis is low (»a = 0.1) (Fig 5). Unlike 16 

phylogenetically-informed statistics, diversity-related statistics cannot determine how 17 

extant species are divided among clades, or whether an endemic species is in a singleton 18 

or in a radiation clade. Therefore, anagenesis rates are difficult to estimate, and tend to 19 

be uniformly distributed across the posterior distribution, leading to larger bias. Under 20 

the same total number of species and endemic species as in the observed data, an 21 

overestimated anagenesis rate may cause more singleton endemic clades and fewer 22 

radiations in the ABC simulation (Fig 6), which in turn tends to result in an overestimated 23 

colonization rate (Fig 5) and an underestimated net diversification rate. (Fig 4).  24 

 25 

If we zoom in on each single replicate (the estimation of each observed dataset), the 26 

estimation using diversity-related statistics (ABC-diversity) is more likely to converge to 27 

an extremely deviating value (Figs S3 and S4). Furthermore, comparing the estimations 28 

under the same iterations, we observe that using phylogenetic statistics always 29 

converges faster, which means higher efficiency in estimation (Figs 7 and S5-S8). In 30 

addition, estimations with NLTT statistics (ABC-NLTT) contain the least bias and 31 

variance comparing the distributions under the same iteration. Adding SD-CS and SD-CT 32 

to the three NLTT statistics (ABC-phylogenetic) or combining all the summary statistics 33 

(ABC-all) does not provide significant improvement over using only the ABC-NLTT 34 

statistics. 35 
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 2 

 3 

Figure 6. Illustration of how the ABC method with only diversity-related statistics may cause bias in estimating parameters, highlighting the importance of including 4 

phylogeny-related statistics. The phylogenetic tree on the left side is an example of an observed dataset, and the tree on the right side is an example of a simulated tree. 5 

The two columns in the middle show the endemicity status of the extant species for both observed and simulated data, with non-endemic in red and endemic species in 6 

blue. Species inside rectangles are endemic species from the same clade (radiation). The simulated tree has the same total number of species, endemic species and non-7 

endemic species as the observed tree, but a different distribution of species between clades and the number of clades, with many more endemic singletons than the 8 

observed data.9 

https://doi.org/10.1101/2023.10.13.562305
http://creativecommons.org/licenses/by-nc/4.0/


 1 

Figure 7. Results of inference of the net diversification rate (rate of cladogenesis minus rate of extinction) through iterations using ABC with different 2 

groups of summary statistics. The ABC results are from the analyses using the broader prior scale (Table 2). Plots show the -net diversification, that is, the 3 

difference between the estimated values and the true values used for generating the observed data. The true values are shown at the top of each column. The 4 

right of each row shows the number of the ABC iteration. The distribution for each method combines the replicates for each parameter set at a specific 5 

iteration. ABC All - all statistics; ABC Diversity - three diversity-related statistics; ABC NLTT - three NLTT statistics; ABC Phylogenetic - five phylogenetic 6 statistics; γ - colonization rate; ¼ - extinction rate; »c – cladogenesis rate; »a – anagenesis rate. 7 
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 1 

Correlation between observed dataset properties and estimation 2 

As we found that the generating value of colonization rate plays an important role in 3 

estimating parameters, and that colonization rate can affect both the species richness and 4 

the number of island clades, we investigated how the parameter estimations depend on 5 

properties of the observed data. We used three property metrics to describe the observed 6 

datasets: species richness (total number of species on the island), the number of clades, 7 

and size of the largest clade. We fitted the relationships between the metrics (median and 8 

standard deviation) and the parameter estimations (median) for each observation, and 9 

find that all the estimation methods have the same trend: datasets with fewer species and 10 

smaller size of the largest clade are likely to cause larger inference and standard errors 11 

(Figs 8, and S9, S10 and S11). However, the relationship between the number of clades 12 

and the parameter estimations shows two clusters according to the generating 13 

colonization rate (Figs 9 and S12). The datasets with higher generating colonization rate 14 

contain more clades and have significantly lower bias, especially in estimating 15 

cladogenesis and extinction rates. 16 

 17 
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 1 

Figure 8. The relationship between the species richness of the whole island community and the relative difference in estimating CES rates. Different colors 2 

indicate different estimation methods. The points show the point estimation of MLE or the median value of the posterior distribution using MCMC and ABC. 3 

 4 
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 1 

Figure 9. The relationship between the number of clades present on the island and the relative difference in estimating CES rates. Different colors indicate 2 

different estimation methods. The points show the point estimation of MLE or the median value of the posterior distribution using MCMC and ABC. The points 3 

are clustered based on the generating rates of colonization. 4 

 5 
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Discussion 1 

We developed and tested the use of ABC inference in estimating colonization, speciation 2 

and extinction rates in an island biogeography model. We compared the estimation 3 

performance of the likelihood-free ABC approach with the MCMC and MLE approaches, 4 

and evaluated the ABC performance with different sets of summary statistics. Our results 5 

indicate that, overall, the performance of the ABC method with phylogenetic statistics is 6 

comparable to the likelihood-based methods (especially for MCMC), as the median values 7 

of the distributions show minor differences. However, the accuracy of the ABC estimation 8 

is sensitive to the generating colonization rate, which is associated with the properties of 9 

the observed data (e.g., species richness, the number of clades in the whole island 10 

community) (Figs. 8-9 and S9-S12). Furthermore, adding phylogenetic information 11 

significantly improves the estimation accuracy and efficiency in the ABC algorithm. 12 

 13 

In ABC algorithms, the selection of the prior distribution and the summary statistics 14 

significantly affect the power of the estimation (Aeschbacher et al., 2012; Burr & 15 

Skurikhin, 2013). We found that a broader prior distribution exacerbates the bias when 16 

the observation provides limited information with poor species richness, which was also 17 

found in the MCMC results. In this case, higher colonization and cladogenesis than 18 

expected (true) rates are more likely to be sampled from broad prior distributions, and 19 

can be balanced by high extinction rates to reach the target number of species on the 20 

island. However, in the island biogeography context, the extinction or speciation rate 21 

could be high in some clades, and from the phylogenetic data one cannot easily extract a 22 

suitable prior distribution. Therefore, a broader distribution is necessary to cover the 23 

potential true values. In this study, we used uniform distributions as priors. A popular 24 

alternative is using the exponential prior distribution for estimating diversification rates 25 

(Scarpino et al., 2014). The advantage of using the exponential distribution is to avoid 26 

setting boundaries, and always obtain positive values. However, the choice of prior 27 

distribution is more important in shaping the posterior when the likelihood function is 28 

not highly informative. In this case, using an exponential prior distribution tends to shape 29 

the posterior to an asymmetric distribution with low values, which may not be 30 

problematic for estimating colonization rates, but could have a significant impact on 31 

extinction rates in island biogeography models. 32 

 33 

The robustness of the inference on extinction rates is a topic of debate, because of the 34 

difficulty in high-precision extinction estimation for single lineages and the lack of 35 

information on extinctions (Burin et al., 2019; Louca and Pennell, 2021). However, in the 36 

DAISIE framework the likelihood-based approaches can more accurately estimate 37 

extinction rates likely because DAISIE works on multiple clades instead of a single lineage. 38 

Independent clades can be regarded as multiple replicates, which can be informative for 39 

providing almost unbiased estimations (Valente et al., 2015; 2017; 2018). In our study, 40 

we also found that the MLE approach can accurately estimate extinction rates for most of 41 
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the parameter sets (Fig 5). However, because we use pruned phylogenetic trees (both 1 

observed and simulations in the ABC algorithm) which exclude extinction events, the ABC 2 

algorithm is apparently more sensitive than MLE or MCMC to how much information can 3 

be gained from the extant phylogenies (Fig 5), leading to larger inference error in smaller 4 

trees. Therefore, the choice of efficient summary statistics, which contain more 5 

information on evolutionary dynamics is crucial.  6 

 7 

The NLTT statistic is regarded as a powerful statistic that contains evolutionary 8 

information as well as the species richness existing at the tips (Janzen et al., 2015; 9 

Saulnier et al., 2016; Richter & Wit, 2021). In our study, we find that NLTT statistics are 10 

more efficient than diversity-related statistics, with fewer iterations required to reach 11 

convergence and less bias (Figs 3-6). In island biogeography, NLTT statistics include the 12 

information of colonization time and branching time of each extant clade on the island. 13 

When species richness and endemic status are the same, different branching times can 14 

lead to variations in NLTT accumulation over time, and the additional phylogenetic 15 

information can improve parameter estimation by controlling the temporal variance (Fig 16 

6). This is similar to the conclusions in studies that have shown higher inference accuracy 17 

incorporating phylogenetic information (Valente et al., 2018; Antonelli et al., 2018). 18 

According to our results, the most efficient combination of the summary statistics in 19 

island biogeography modelling is that of NLTT statistics of total species, singleton island 20 

endemism and non-endemic species. Including additional statistics does not always 21 

result in higher inference accuracy, because they are highly correlated and hence 22 

relatively redundant (Fig 2). 23 

 24 

The ABC method is considered a good alternative to maximum likelihood estimation, 25 

especially when the model is computationally complex. There are a few ABC related R 26 

packages implementing ABC algorithms (Csilléry et al., 2012; Jabot et al., 2013), and ABC 27 

has been used in a large number of ecological and evolutionary studies (Beaumont, 2010). 28 

However, ABC algorithms are rarely used in estimating parameters in macroevolutionary 29 

studies in island biogeography. Furthermore, it is rare to find studies comparing the 30 

estimation performance between maximum likelihood and ABC when it is possible to 31 

analytically calculate the likelihood. This study has identified useful summary statistics 32 

to be used for inference in island biogeography models and their extensions. However, 33 

more complex summary statistics may be needed for these models. For example, in trait-34 

dependent island biogeography models, trait-related summary statistics will still be 35 

required. 36 

 37 

 38 

 39 

 40 

 41 
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