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ABSTRACT WORD COUNT: 248
Background
The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma
and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells
(EpCs) maintain inflammation are poorly understood.

Objective

We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation
would allow us to define mechanisms by which EpCs perpetuate airway inflammation.

Methods

Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and
analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from
eosinophilic and non-eosinophilic CRSwWNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma
were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to
validate our findings.

Results

Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP
vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mMTORC1) as a
potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing
genes as potential sequelae. mMTORC1 activity was upregulated in CRSwWNP, and ex vivo inhibition
demonstrated that mTOR is critical for EpC generation of CXCLS8, IL-33, and CXCL2. Across patient samples,
the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2
inflammation in severe asthma.

Conclusions

Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical

to both chronic T2 and non-T2 inflammation in CRSwWNP and asthma.

KEY MESSAGES:

e Epithelial mMTORC1 activity is upregulated in CRSwWNP.
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e mTOR regulates EpC cytokine generation.
o Epithelial metabolic reprograming correlates with T2 inflammation in CRSwNP, and with both T2 and

non-T2 inflammation in asthma.

CAPSULE SUMMARY:

mTORC1 mediates EpC cytokine generation in CRSwNP.

Keywords: epithelial cell, basal cell, airway stem cell, basal cell adhesion molecule, airway inflammation, type
2 inflammation, interleukin-4, interleukin-13, chronic rhinosinusitis with nasal polyps, asthma, bulk RNA-

sequencing, single cell RNA-sequencing.

Abbreviations: type 2 (T2), T2 inflammation (T2l), chronic rhinosinusitis with nasal polyps (CRSwNP), chronic
rhinosinusitis without nasal polyps (CRSsNP), aspirin-exacerbated respiratory disease (AERD), epithelial cells
(EpCs), interleukin-4 (IL-4), interleukin-13 (IL-13), RNA-sequencing (RNA-seq), single cell RNA-sequencing
(scRNA-seq), differential expression (DE), differentially expressed genes (DEGs), basal cell adhesion molecule
(BCAM), keratin 5 (KRT5), tumor protein 63 (TP63), nerve growth factor receptor (NGFR), epithelial cell
adhesion molecule (EpCAM), secretoglobin family 1A (SCGB1A1), mucin 5AC (MUC5AC), insulin receptor
substrate (IRS), mammalian target of rapamycin (mTOR), mTOR complex (mTORC), innate lymphoid cell
(ILC), insulin receptor substrate (IRS), hypoxia-inducible factor 1a (HIF-1a), epithelial-mesenchymal transition

(EMT)
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INTRODUCTION WORD COUNT: 7396

Genomic and transcriptomic studies have identified a central role for the airway epithelium in the
pathogenesis of inflammatory respiratory diseases such as asthma and chronic rhinosinusitis with nasal
polyps (CRSwNP)."-* While the advent of therapeutic monoclonal antibodies that target signaling via IL-
4Ra%8 and IL-57-8° has been a major advance for the treatment of CRSwWNP and the common T2hish
endotype of asthma, ' there is a need to better define the mechanisms by which the airway epithelium
perpetuates and sustains T2 and non-T2 inflammation in chronic airway diseases.

Several studies using single cell RNA sequencing (scRNA-seq) of epithelial cells (EpCs) in
CRSwNP have identified top alterations in highly expressed genes that reflect the epithelial response to
T2 cytokines. Our group reported the first study using scRNA-seq in CRS,'" finding that basal EpCs from
CRSwWNP expressed a robust set of T2 cytokine-induced genes including ALOX15 (which encodes
arachidonate 15-lipoxygenase), POSTN, PTHLH, SERPINB2, and CCL26. In another scRNA-seq study,
Stevens et al. found increased expression of ALOX15 in sinonasal EpCs from subjects with aspirin-
exacerbated respiratory disease (AERD), a variant of CRSwWNP characterized by severe T2 inflammation,
as compared to aspirin-tolerant controls.'?> Moreover, ALOX15 expression was correlated with nasal
eosinophilic cationic protein, reflecting eosinophil tissue burden.'? A scRNA-seq study by Kotas et al.
featuring >100,000 EpCs confirmed that expression of ALOX715 and POSTN are induced by IL-13 in airway
EpCs,' while a more recent scRNA-seq study including healthy controls, CRS without nasal polyps
(CRSsNP), non-eosinophilic CRSWNP (neCRSwNP), and eosinophilic CRSWNP (eCRSwNP) identified that
overexpression of ALOX15 is also detected in a population of type 2 conventional dendritic cells (cDC2s) that
is uniquely present in eCRSWNP."* Genomic studies have identified variants in ALOX15 as risk factors for
CRSwWNP development,* and mechanistic studies have demonstrated that ALOX75 leads to glutathione
depletion’® and oxidized phosphatidyl ethanolamine metabolites that lead to ferroptosis,'®'” and also promotes
production of CCL26 (eotaxin-3) in airway EpCs."® Thus, T2 cytokine-driven upregulation of epithelial ALOX15
is a likely feed-forward pathway by which EpCs maintain T2 inflammation.

Another observation that has emerged from scRNA-seq studies of CRSwWNP is the prominence of
cellular/tissue remodeling, often associated with the response to T2 cytokines. We determined that
patients with CRSWNP have basal cell hyperplasia, wherein basal cells fail to differentiate normally,'" but

rather persist in a stem-like state that can be maintained through IL-4/13 and insulin receptor substrate


https://doi.org/10.1101/2023.10.13.562288
http://creativecommons.org/licenses/by-nc-nd/4.0/

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

(Which wa ot Gortlied by l/)/geeg/év(\)/)lg%/ezlgzbtfhgo/fzsgfi@gﬁﬁscgNaDti%%c;th(:a}ck%lsgozé)gglay}heppgpghtt i berpetity. 1L made
(IRS) signaling.’® A recent scRNA-seq study identified an increased tuft cell frequency in CRSwWNP, as
compared to healthy control mucosa.’® Here investigators used a murine model to show that chronic
exposure to IL-13 (one month duration) was sufficient to expand tracheal tuft cell numbers. Notably, while
goblet cell hyperplasia is also identified in this disease, it is not unique to the T2"d" phenotype, but is also
present in CRSsNP.2° Moreover, no study in CRSwWNP has detected the mucociliary EpC state identified
in T2 inflammation in asthma,’ suggesting interesting differences between epithelial response to T2
cytokines in the upper and lower airways. Finally, scRNA-seq studies and histologic assessments have
reliably identified a reduction in submucosal gland cells in CRSwWNP,'"2" which is poorly understood.
Taken together, the recent literature has emphasized alterations in lipid mediator biology and cellular
remodeling as dominant changes in the airway epithelium of CRSwWNP, often associated with T2 inflammation

Airway EpCs exhibit great plasticity and are highly tuned to their surrounding milieu.?? Accordingly,
airway EpC gene expression can predict individuals with T2 inflammation and therapeutic glucocorticoid
responsiveness.'® However, individual reports using the power of scRNA-seq to assess EpC gene
expression are constrained by small sample sizes and the sparsity of data,'"-'® while larger studies using
bulk RNA-seq are limited by the inability to detect individual cell states. Thus, we have not yet fully
leveraged the potential of transcriptomic studies in the respiratory epithelium to define EpC dysfunction
and endotype airway diseases.

We recently reported that human airway basal cells express high levels of basal cell adhesion
molecule (BCAM), which reliably distinguishes this progenitor population from differentiating EpCs.'° In
this study, we sorted highly purified BCAM" basal cells, transitional EpCs, and differentiated EpCs from
subjects with CRS and performed bulk RNA-seq to define novel mechanisms that support epithelial
inflammation. Here we identify that CRSwNP is distinguished by prominent mTORC1 activity and that
mTORC regulates the generation of select EpC cytokines. Furthermore, we show that while mTORC1-
dependent genes can be driven by both T2 and T17 cytokines in vitro, mMTORC1-related metabolic

reprogramming correlates with the degree of T2 inflammation and wound healing in CRSwWNP and

correlates with the degree of both T2 and T17 inflammation in asthma.
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MATERIALS AND METHODS
Bulk RNA-seq analysis of human sorted EpC subsets

Ethmoid sinus tissue was collected from human subjects between the ages of 18 and 75 who
underwent endoscopic sinus surgery at Brigham and Women’s Hospital (Boston, MA) for CRSwWNP (n=11) or
chronic rhinosinusitis without nasal polyps (CRSsNP) (n=8) (Table E1). The Mass General Brigham
Institutional Review Board approved the study and all subjects provided written informed consent prior to
participation.

Specimens were chopped, digested in RPMI-1640 medium (ThermoFisher 11875093) with 10% FBS
containing type IV collagenase (Worthington LS004189) and DNasel (Sigma 10104159001) with magnetic stir
bar at 600 RPM at 37°C for 30 min, and triturated using a 25 mL syringe with 16g needle every 15 min. The
resultant cell suspension was filtered through a 70um cell strainer, centrifuged at 500g for 10min, washed, and
resuspended. Single cell suspensions were sorted using the gating strategy shown in Fig 1A. In brief, cells
were blocked with Fc receptor blocker (BioLegend 101320) for 10 min on ice, then incubated with fluorophore-
labeled antibodies to human EpCAM (BioLegend 118213), NGFR (Abcam ab52987), BCAM (MBL International
D295-3), CD31 (BioLegend 2434), CD45 (BioLegend 103116), and CD90 (BioLegend 105328) for 30 min.
7AAD (BioLegend 420403) was added immediately before cell sorting. After removing debris, doublets, and
dead cells, EpCAM* Lineage  EpCs were sorted into three populations: BCAMPish EpCAM"* NGFR* basal
EpCs, EpCAMP9" NGFR* transitional EpCs, and EpCAMM9" NGFR- differentiated EpCs. 1000 cells were
collected for each population, mixed with 5ul TCL buffer (Qiagen 1031576), and stored at —80°C. RNA libraries
were prepared using Smart-Seq2 and 38bp paired-end sequencing was performed by the Harvard-MIT Broad
Institute.

Sequencing quality was assessed with FastQC.?® Reads were pseudo-aligned and transcript
expression quantified using Kallisto** with the Ensembl GRCh38 transcriptome. Quantification files were then
processed for downstream analysis with the Tximport pipeline.?> Samples were considered acceptable for
downstream analysis if they had >90% of commonly expressed genes (defined as genes detected in 80% of
samples) and Pearson’s r>0.5 with all other samples. To enhance discovery and reduce computational

demand, genes that did not meet a minimum detection threshold within the dataset (raw count>12 in at least

15% of samples) were removed. PCA using the top 500 most variable genes (after variance stabilizing
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transformation of size factor-normalized counts)?® confirmed samples separated by EpC and there were no
outliers (Fig 1B). Gene expression was normalized using DESeq2’s median of ratios method,?” and differential
expression testing was performed within DESeq2 while including sex, oral corticosteroid usage, and
pseudoalignment rate as covariates. P-values were adjusted for multiple testing using the Benjamini-Hochberg
method.?® Genes meeting both |log.FoldChange|>0.58 (which corresponds to a base 10 foldchange of +50%)
and padj<0.05 were considered to be differentially expressed (DE).

Over-representation analysis (ORA) and gene set enrichment analysis (GSEA)?® were performed using
the clusterProfiler package?®® with the human MSigDb gene ontology (GO) biological processes and Hallmark
databases,?!3? respectively. For GSEA of the Hallmark glycolysis gene set, the gene IL13RA1 was excluded to
prevent bias. Gene set variation analysis (GSVA) was used to score samples for expression of selected gene
sets,®® and the Limma package3* was used to remove possible effects from oral corticosteroid usage prior to
generating normalized counts for GSVA. Of note, the IL-13 response score was only calculated for 10 of 11
subjects with CRSwNP, as one study subject had received dupilumab (IL-4Ra antagonist) before undergoing
sinus surgery. Spearman correlation calculation was performed between GSVA scores and other scores or
gene expression data (p indicates Spearman’s rho). When applicable for correlation between GSVA scores,
any overlapping genes were excluded from the score on the y-axis (for example, overlapping genes in the

Hallmark glycolysis and mTORC1 signaling scores were excluded from the mTORC1 signaling score in Fig 2D

and Fig 4B).

Bulk RNA-seq analysis of the publicly available bronchial ALI dataset

Bulk RNA-seq FASTQ files and metadata from human bronchial epithelial cell (HBEC) air-liquid
interface (ALI) cultures stimulated with a variety of cytokines were downloaded from the NCBI Gene
Expression Omnibus [GSE185202],%2 and pseudo-aligned using Kallisto?* as above. Differential expression
testing was performed with DESeq2,?” using donor as a covariate. GSEA was performed using clusterProfiler3°
and the Hallmark gene set database. The top 200 differentially expressed genes induced by each cytokine (the
200 genes with lowest padj and positive logzFoldChange in response to cytokine stimulation) were used to
construct epithelial cytokine response signatures for IL-13, IL-17, IFN-a, and IFN-y (Table E10); these cytokine

signatures were used to score samples in other datasets using GSVA®* (Fig 6E, Fig 6F) or Seurat module


https://doi.org/10.1101/2023.10.13.562288
http://creativecommons.org/licenses/by-nc-nd/4.0/

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.13.562288; this version posted October 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
scoring.%%3 Genes were considered IL-13 responsive (Fig E7) if they exhibited log.FoldChange>0 and

padj<0.05 in response to IL-13 stimulation.

Single cell RNA-seq (scRNA-seq) analysis of the publicly available Kotas dataset

A Seurat object of sinus EpCs from healthy control (n=4) and CRSwNP (n=5) was downloaded from the
NCBI Gene Expression Omnibus [GSE202100]."® The original cell-type annotations and SCT gene expression
values were used for visualization and analysis. Module scores were calculated using Seurat’s built-in

AddModuleScore function.3%:36

scRNA-seq (scRNA-seq) analysis of the publicly available Wang dataset

Metadata and scRNA-seq FASTQ files containing epithelial and immune cells from healthy control
(n=5), CRSsNP (n=5), non-eosinophilic CRSwWNP (neCRSwNP) (n=5), and eosinophilic CRSwNP (eCRSwNP)
(n=6) were downloaded from the Genome Sequence Archive [HRA000772]'* and aligned to Gencode GRCh38
using 10x Genomics Cell Ranger v6.1.2 with default parameters.3” Cells with >12,000 UMIs, >15%
mitochondrial reads, or <500 genes detected were filtered out, as they were considered to be either fragments
or doublets. RNA counts were scaled using the NormalizeData function prior to downstream analysis or
visualization. Principal component analysis was performed on top variable genes and PCs were subsequently
corrected using the Harmony package® to correct for disease (“Public_Description”) and sex (“Gender”).
UMAPs were generated using Harmonized principal components, and the dataset was sequentially re-
clustered into various immune and epithelial populations consistent with the original report'* (Fig E4 and
Tables E11-20). Gene expression module scores were calculated using Seurat’s built-in AddModuleScore
function.®53¢ A cluster of proliferating cells (Fig E4A) was excluded prior to cell type quantification as this was
comprised of mixed immune, epithelial, and stromal cells. A cluster of ciliated epithelial cells was also excluded

prior to cell type quantification due to poor capture in the neCRSWNP and eCRSwWNP nasal polyp samples.™

Bulk RNA-seq analysis of the publicly available IMSA bronchial brushing dataset
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Bulk RNA-seq FASTQ files and metadata for bronchial brushing samples (healthy control n=17, mild-to-
moderate asthma n=25, severe asthma n=23) from the Immune Mechanisms of Severe Asthma (IMSA)
bronchial brushing study were downloaded from the NCBI Gene Expression Omnibus [GSE158752],3%4° and
pseudo-aligned using Kallisto?* as above. Differential expression testing was performed with DESeq2,%” using
sex, age, and sequencing batch as covariates. Genes meeting both |logzFoldChange|>0.58 (which

corresponds to a base 10 foldchange of +50%) and padj<0.05 were considered to be differentially expressed

(DE). GSEA was performed using clusterProfiler®® and the Hallmark gene set database.

Immunofluorescence of human sinonasal tissue

Fresh human ethmoid sinus surgical samples from CRSwWNP and CRSsNP were fixed overnight with
4% paraformaldehyde (Boston BioProducts BM-155) at 4°C, washed with HBSS for 20 min, and dehydrated in
30% sucrose overnight at 4°C. Tissue was then embedded in OCT compound (Fisher 23-730-571),
cryosectioned at 5 pm thickness using a cryostat (Leica CM1850), and adhered to positively charged glass
slides (Fisher 12-550-15). Cryosections were blocked with 1x blocking buffer (Abcam ab126587) in PBST with
0.2% Triton X-100 and 0.1% Tween-20 for 1 h at room temperature. Afterwards, slides were incubated with
primary antibodies to human phospho-6SRP (Ser235/236) (CellSignaling 4858) or CD45 (BioLegend 304002)
at 1:50 dilution overnight at 4°C, washed 3x with PBS, incubated with the appropriate secondary antibodies
(Invitrogen AlexaFluor488 and AlexaFluor594 conjugates) at 1:200 dilution for 1 h at room temperature,
washed 3x with PBS, and mounted with DAPI mounting medium (Abcam ab104139). Images were obtained
with a Zeiss LSM 800 Laser Scanning Confocal Microscope. Images were analyzed and merged using ImageJ
(National Institutes of Health, Bethesda, MD). Percent of phospho-6SRPrsitve cells in the epithelial layer per

high power field (HPF) was quantified out of the total CD45"92tve cells in the epithelial layer per HPF.

Immunocytochemistry of cultured CRSwNP basal EpCs
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Human basal EpCs (BCAMMs" EpCAMP" NGFR*) from subjects with CRSWNP were expanded in
PneumacCult Ex basal medium (STEMCELL 05008) containing 500uL StemCell Hydrocortisone (STEMCELL
07925) and 1% Penicillin-Streptomycin (ThermoFisher 15140122). After 3 passages, basal EpCs were seeded
onto 8-well chamber slides. Cells were stimulated with 20 ng/mL IL-1B (BioLegend 579402) and 20 ng/mL
TNF-a (BioLegend 570104) for 48 h, in the presence or absence of 5 nM Torin 1 (Selleck Chem S2827). Cells
were then fixed with 4% paraformaldehyde for 10 mins and incubated overnight with antibodies to human
CXCL2 (LSBio B14609), CXCL8 (R&D MAB208), or IL-33 (R&D AF3625) using the recommended
manufacturers’ dilutions, followed by the appropriate secondary antibodies. Slides were mounted using DAPI
mounting medium (Abcam ab104139), and fluorescence images were obtained with a Zeiss LSM 800 Laser
Scanning Confocal Microscope. Images were analyzed and merged using ImageJ*' (National Institutes of

Health, Bethesda, MD). Normalized integrated density was quantified by taking the average integrated density

divided by the number of nuclei per HPF.

Statistical analyses
Statistical analyses were performed using GraphPad Prism v9, Seurat v4,3%3 and DESeq2 v3.17.2’ R
packages were implemented in RStudio*? with R version 4.1.2. Where applicable, non-parametric Mann-

Whitney U tests or Wilcoxon rank-sum tests were used for statistical comparisons.

Data availability

Bulk RNA-seq expression data will be available via NCBI GEO.
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RESULTS
EpCs from CRSwWNP are enriched for wound healing and metabolic genes and have lost key protective
factors

Live, lineage negative (CD31-, CD45-, CD90") EpCs from 19 human ethmoid sinus specimens (11
CRSwWNP and 8 CRSsNP) were sorted into basal (EpCAM", NGFR*, BCAM"9")  transitional (EpCAMM"ig",
NGFR*), and differentiated EpCs (EpCAM"s", NGFR") (Fig E1) and then subjected to bulk RNA-seq. Principal
component analysis (PCA) using the top 500 most variable genes showed that PC1 (explaining 40.1% of
variance) captured the spectrum of EpC differentiation, with basal EpC genes'" ' (e.g. KRT5, TP63)
contributing strongly to positive scores on PC1, and with differentiated EpC genes' '® (e.g. SCGB1A1,
MUCSAC) contributing strongly to negative scores on PC1 (Fig 1A). PC2 (explaining 12.7% of variance)
captured the spectrum of disease, with previously reported CRSWNP genes'"'® such as PTHLH, POSTN, and
ALOX15 contributing strongly to positive scores on PC2 (Fig 1A). As expected, basal EpCs demonstrated high
expression of marker genes'"-'® such as KRT5, TP63, BCAM, and NGFR, while differentiated EpCs had high
expression of ciliated (PIFO, FOXJ1, TUBB4B) and secretory (SCGB1A1, MUC5B, MUC5AC) genes (Fig 1B).
Interestingly, transitional EpCs had high expression of the ionocyte marker FOXI1 (Fig 1B).+3

Differential expression (DE) testing for CRSWNP vs CRSsNP within basal EpCs, while controlling for
sex and OCS usage as covariates, demonstrated 260 differentially expressed genes (DEGs)
(llogzFoldChange|>0.58 and padj<0.05) for CRSWNP vs CRSsNP, including 188 DEGs with higher expression
in CRSwWNP basal EpCs (Fig 1C, Table E2). Among the top basal EpC DEGs with higher expression in
CRSwNP were genes associated with airway T2 inflammation such as PTHLH, CDH26, CCL26, POSTN, and
ALOX15.114445 Additionally, two top DEGs SLC9A3 and SYNPO were previously reported to be IL-13-
inducible, upregulated in the esophagus of patients with active eosinophilic esophagitis, and important in
barrier function,*647 underscoring the potential for shared barrier dysfunction across these T2 disorders. Other
top DEGs included those involved in maintenance of stemness or inhibition of EpC differentiation such as the
notch ligand DLL1,*® and the hematopoietic stem cell marker CD34, now appreciated to maintain the stem
potential of diverse stromal cell types.*®%° This is consistent with our recent work demonstrating an increased

number of BCAM" basal cells in CRSwWNP.'° Finally, basal cells from CRSwNP also had high levels of

expression of genes involved in metabolism including SLC5A3, encoding a sodium and myo-inositol co-
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transporter that activates cell proliferation through an Akt/mTOR pathway,®' and SLC2A1, encoding the
glucose transporter GLUT1 that is upstream of the glycolysis pathway.52% Over-representation analysis of the
188 DEGs with higher expression in CRSWNP basal EpCs yielded GO biological processes gene sets involved
in wound healing (padj=0.028) and secreted peptidase inhibitors (padj=0.0061) (Fig 1D), perhaps consistent
with DEGs involved in barrier function, stemness, and growth.

Visual inspection of the top basal EpC DEGs in CRSwWNP compared to CRSsNP showed that many
appeared to have preserved differential expression throughout the spectrum of EpC differentiation (Fig 1E).
Moreover, formal DE testing between CRSWNP and CRSsNP within transitional (Fig E1B, Table E3) and
differentiated EpCs (Fig E1C, Table E4) identified many of the same DEGs. Given the notable overlap in
DEGs across EpC subsets, we enhanced our resolution by performing DE analysis for CRSwWNP vs CRSsNP
across all samples while controlling for EpC subset, sex, and OCS usage as covariates. We identified 359 pan-
epithelial DEGs with higher expression in CRSwWNP vs CRSsNP (log2FoldChange>0.58 and padj<0.05) and
137 pan-epithelial DEGs with lower expression in CRSWNP vs CRSsNP (logzFoldChange<-0.58 and
padj<0.05) (Fig 1F). Among the top pan-epithelial DEGs with higher expression in CRSwWNP were expected
genes of T2 inflammation (including PTHLH, CDH26, POSTN, CCL26), as well as PFKP
(log2FoldChange=1.29, padj=6.72E-10) which encodes a rate limiting enzyme of glycolysis,?*5® and SLC2A1
(log2FoldChange=0.713, padj=1.82E-6) (Fig 1G). In addition to these differences in T2 and metabolic genes,
we detected higher expression of genes involved in regulation of growth factor signaling (/GFBP3) and the
hypoxia response (EGLN3, which encodes a prolyl hydroxylase that post-translationally modifies hypoxia-
inducible factor 1a, HIF-1a).56 Over-representation analysis of the 359 pan-epithelial DEGs with higher
expression in CRSwWNP again revealed gene sets involved in wound healing, as well as a more prominent role
for genes involved the inflammatory response (padj=4.4E-5), chemotaxis (padj=7.2E-5), and cytokine
production (padj=0.031) (Fig 1H). Among the top pan-epithelial DEGs with lower expression in CRSWNP were
genes involved in protection against oxidative stress such as ALDH?2 (log2FoldChange=-0.902, padj=4.25E-7)
and ALDH3A1 (logzFoldChange=-1.63, padj=2.78E-6) (Fig 11-K, Table E5). Interestingly, we observed that
ALDH?2 expression tended to be lower in CRSwWNP subjects with AERD vs aspirin-tolerant CRSwWNP (Fig 1K).

Genetic polymorphisms causing ALDH2 deficiency contribute to ethanol-induced cutaneous and respiratory

reactions®”% as well as increased risk of various epithelial malignancies,* and we speculate that the reduced
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ALDH?Z2 expression here may underly the alcohol intolerance that is commonly observed in patients with

AERD.®0

Enhanced mTORC1 signaling in CRSWNP EpCs is tightly correlated with glycolysis

Gene set enrichment analysis (GSEA) using the Hallmark gene sets demonstrated that glycolysis was
positively enriched in CRSwWNP within each EpC subset (basal padj=0.0020, transitional padj=6.3E-4,
differentiated padj=0.013) (Fig 2A) as well as in the pan-epithelial comparison (pan-epithelial padj=5.6E-4)
(Fig E2). Additionally, similar to prior reports,® higher expression of key glycolytic genes was also evident in
CRSwNP vs CRSsNP across EpC subsets (Fig 2B). To better assess the importance of glycolytic
programming across replicate patient samples, we used gene set variation analysis (GSVA) to score the
transcriptome of individual CRSWNP samples for expression of Hallmark glycolysis genes. GSVA
demonstrated a wide range of scores within this group (Fig 2C), so we leveraged this variation to identify co-
expressed genes and potential molecular regulators. We observed that SLC2A71 (GLUT1, p=0.67 and
p=0.028), which is not a member of the Hallmark glycolysis gene set (Fig 2C), correlated with expression of
the glycolysis score, consistent with a role for GLUT1 in regulating EpC glycolytic activity.5® We also observed
that the glycolysis score was tightly correlated with mTORC1 signaling in all CRSwWNP EpC subsets (basal
p=0.87, p=9.5E-4; transitional p=0.72, p=0.024; differentiated p=0.78, p=0.012) (Fig 2D). Furthermore,
focusing on the highly purified basal EpC population, we found significant correlations between glycolysis and
positive regulators of mMTORC1 signaling, including RHEB, LAMTOR1, and every member of the Ragulator
complex (Fig 2E).5"-%2 In contrast, we did not detect statistically significant positive correlations between
glycolysis and a PISK-AKT-MTOR gene signature, which is more representative of mTORC2 signaling (Fig
E3).%2 We validated epithelial mMTORC1 activity at the protein level across 19 additional subjects with CRS,
demonstrating robust phosphorylated S6 ribosomal protein (phospho-S6RP) in CRSwNP that was absent in
CRSsNP (Fig 2F, Fig 2G).

As mTORC1 signaling regulates a plethora of downstream pathways, we sought to clarify which
mTORC1-dependent genes may be responsible for enhancement of glycolysis in CRSwWNP EpCs. Among the
genes in the Hallmark mTORC1 signaling gene set, those which were most positively correlated with the basal

EpC glycolysis score were CD9 (p=0.92, p=6.7E-5) and SHMT2 (p=0.85, p=8.1E-4), as well as genes with
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known glycolytic function including GAPDH (p=0.91, p=1.1E-4) and PGM1 (p=0.92, p=6.7E-5). CD9 encodes a
membrane-spanning protein that has previously been reported to enhance glycolytic activity in tumor cells®
and has been implicated as an inducer of cellular senescence.?®* SHMT2 is a key enzyme in the glycine
biosynthetic pathway and has been implicated in tumor growth and permitting the shift to glycolytic metabolism
seen in hypoxic tumor microenvironments.®¢ Interestingly, although CD9 expression could be elicited in HBEC
ALI cultures in response to IL-13 stimulation [GSE185202]?? (log.FoldChange=1.46, padj=3.34E-45), SHMT2
was not IL-13 inducible (log2FoldChange=-0.055, padj=0.77), highlighting that mechanisms beyond T2

inflammation alone may drive mTORC1-dependent metabolic reprogramming in airway EpCs.

mTOR signaling regulates cytokine production in CRSwWNP basal EpCs

A recent study by Chen et al. reported that glycolysis is required for ex vivo production of inflammatory
mediators such as CXCL8 by CRS EpCs in response to IL-1B and TNF-a.53 Building upon this, we found that
the in vivo transcriptomic glycolysis score in CRSWNP basal EpCs correlated positively with expression of the
chemokines CXCL8 and CXCL2 and the alarmin /L33 (p<0.05) (Fig 3A), while there was no significant
correlation with TSLP (p=0.094) (Fig 3A). Having established the close relationship between glycolysis and
mTORC1 signaling in CRSwWNP EpCs (Fig 2D), we hypothesized that mTOR signaling was also necessary for
production of these EpC mediators in CRSwWNP. To assess this, we expanded primary human BCs from
patients with CRSwNP in ex vivo culture, stimulated them with or without the combination of IL-1 and TNF-a
and assessed for expression of the indicated cytokines by immunofluorescence. We found that production of
CXCL8 and IL-33 was low at baseline, induced by IL-1B and TNF-a, and completely inhibited by the
mTORC1/C2 inhibitor Torin 1 (Fig 3B, 3C). CXCL2 expression was present at baseline and did not clearly
increase with stimulation, but baseline expression was also inhibited by Torin 1. The Torin 1 inhibitor was not
toxic to cells, as stimulated cells robustly upregulated TSLP in the presence or absence of the inhibitor. In
summary, here we demonstrate that mTOR signaling regulates the production of several epithelial cytokines
predicted to elicit both T2 and non-T2 inflammation, highlighting the potential importance of epithelial mMTOR

signaling in disease pathogenesis.

The epithelial nMTORC1-glycolysis axis correlates with immune cell tissue infiltration in CRSwWNP
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As we had determined that the mTOR-glycolysis axis was necessary for production of several
inflammatory mediators by CRSwWNP basal EpCs (Fig 3), we asked whether glycolysis in CRSwWNP basal EpCs
correlated with the presence of immune cells in nasal polyp tissue. To answer this, we explored the Wang
scRNA-seq dataset which includes >70,000 cells (immune cells and EpCs) from healthy controls (n=5),
CRSsNP (n=5), non-eosinophilic CRSWNP (neCRSwNP, n=5), and eosinophilic CRSWNP (eCRSwNP, n=6)."4
This dataset was iteratively subclustered into various epithelial and immune cell lineages (Fig E4).

As expected, eCRSwWNP basal EpCs demonstrated higher glycolysis (p=0.0087) and mTORC1
signaling (p=0.0043) scores than healthy control basal EpCs (Fig 4A). Notably, the glycolysis and mTORC1
signaling scores in neCRSwWNP were not significantly different from control, and there was a trend toward
higher glycolysis and mTORC1 signaling scores in eCRSwWNP compared to neCRSwNP, but this was not
statistically significant with the limited sample size (neCRSwWNP n=5, eCRSwWNP n=6) (Fig 4A). As we saw
previously, the glycolysis score in CRSwWNP basal EpCs correlated tightly with mTORC1 signaling (p=0.63,
p=0.044) (Fig 4B).

Whereas IL-33 is recognized for its capacity to promote a T2 immune response through its actions on
T2 cells, ILC2s, mast cells, and eosinophils;8” CXCL-8 (IL-8) and CCL2 (MCP1) are chemokines that attract
various granulocytes and monocytes.%85° Thus, we looked to assess inflammatory cell recovery across diverse
immunocytes. Of note, the Wang scRNA-seq dataset did not capture eosinophils, as these cells often do not
survive processing for scRNA-seq.”® Within the CRSwWNP samples in the Wang dataset, we observed that the
glycolysis score in basal EpCs correlated positively with the infiltration of total immune cells out of all recovered
cells per sample in vivo (p=0.69, p=0.023) (Fig 4C), as well as with the infiltration of CD4 Th2 cells out of all
recovered cells per sample (p=0.84, p=0.0026) (Fig 4C). We also observed that the basal EpC glycolysis
score correlated positively with the frequency of three ALOX15* macrophage populations per sample —
including FCER2* monocyte-macrophages (p=0.83, p=0.0031), CCL18" resident tissue resident macrophages
(p=0.85, p=0.0016), and FN1* activated tissue resident macrophages (p=0.77, p=0.0060) (Fig 4D) —
populations which Wang et al. report play a key role in the T2 immune pathogenesis of eCRSWNP.* In
contrast, the basal EpC glycolysis score was not significantly positively correlated with other macrophage
populations (p>0.05) and there was in fact a negative correlation with the frequency of C1Q* resting tissue

resident macrophages (p=-0.75, p=0.010) (Fig 4D). Interestingly, we also found that basal EpC glycolysis
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correlated positively with various CD8 effector T-cell populations, including CD8 Teff cells (p=0.80, p=0.0052)
and IFN-y* CD8 Tem cells (p=0.69, p=0.023) (Fig E5A-B, Table E15). Prior studies have shown that CD8 T-
cells in nasal polyp tissue correlate with eosinophilic inflammation,”*-"3 and that IFN-y prevents eosinophil
apoptosis and promotes eosinophil mediator generation,”’> suggesting a mechanism by which CD8 T-cells
may contribute to T2 disease. In summary, our analysis of the Wang scRNA-seq dataset identified that the
degree of epithelial metabolic reprograming in CRSwWNP correlates tightly with the tissue infiltration of several

types of immunocytes, demonstrating that metabolic reprograming of EpCs may support a proinflammatory

epithelial niche in CRSwNP tissue.

Wound healing and tissue remodeling genes are differentially expressed in CRSwWNP vs CRSsNP and
correlate with EpC glycolysis

After having observed that mTOR signaling was required for expression of several basal EpC cytokines
and that basal EpC glycolysis correlates with immune cell infiltration in CRSwWNP, we returned to our original
bulk RNA-seq dataset to better understand the non-immune implications of the metabolic reprogramming in
CRSwNP EpCs. Thus, we performed an unsupervised analysis within each EpC subset to identify genes which
had both a higher expression in CRSWNP than CRSsNP (log-.FoldChange>0.58 and padj<0.05) and a positive
correlation with glycolysis (p>0 and p<0.05) (Fig 5A, 5C, 5E). Annotation of the basal EpC DEGs that
correlated with glycolysis against the GO Biological Processes database identified over-representation of
genes involved in wound healing (padj=0.018) and ECM remodeling (padj=0.025) (Fig 5B); while genes
involved in peptidase inhibition and regulation of vasculature were over-represented in transitional and
differentiated EpC, respectively (padj<0.05) (Fig 5D, 5F). The epithelial wound healing response in CRSwNP
involves coordination of extracellular matrix remodeling, cell migration, and type 2 epithelial-mesenchymal
transition”®77 — all of which likely impose a tremendous energetic stress on the EpCs. Taken together, we
propose that the metabolic reprograming of EpCs in CRSwWNP supports the energetic requirements of wound

healing and tissue remodeling that are central to nasal polyposis.

Epithelial glycolysis can be induced by T2 and T17 cytokines in vitro, and correlates with T2 cytokine

response in vivo
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Metabolic rewiring in T-cells towards glycolysis can be driven by cytokines and has been long
recognized as a central feature of T-cell effector polarization,”®8" while more recent studies have begun to
explore the drivers and consequences of metabolic reprogramming in airway EpCs.53%2 To understand how the
local cytokine milieu influences glycolysis in airway EpCs, we analyzed an external bulk RNA-seq dataset of
human bronchial EpC (HBEC) air-liquid interface (ALI) cultures which were stimulated with IFN-a, IFN-y, IL-13,
or IL-17 [GSE185202]%2. Hallmark GSEA of DE testing results for each cytokine vs control demonstrated that
the glycolysis gene set was weakly positively enriched in IL-13-stimulated ALIs (padj=0.034) and more strongly
positively enriched in IL-17-stimulated ALIs (padj=4.1E-4) (Fig 6A, Tables E6-7); in contrast, stimulation with
IFN-a and IFN-y did not lead to significant enrichment of the glycolysis gene set (padj>0.05) (Fig 6A). When
we examined the cytokine responses of individual HBEC donors using GSVA, stimulation with IL-17
consistently drove an increase in the glycolysis score while the response to IL-13 was variable (Fig 6B).

We utilized the top 200 genes induced by each cytokine in HBEC ALlIs as cytokine response signatures
with which we scored basal EpCs in our in vivo dataset using GSVA (Table E10). As expected, samples from
subjects with CRSwWNP exhibited higher IL-13 response scores than those with CRSsNP, and within CRSwNP
the subjects with AERD exhibited the highest IL-13 response scores (Fig 6C). In contrast, the IL-17 response
scores were low across CRSsNP and CRSwWNP throughout our dataset (Fig 6D). While we observed a non-
significant trend toward positive correlation between glycolysis and IL-13 response score in CRSwNP basal
EpCs (p=0.56, p=0.096) (Fig 6E), there was no detectable correlation between glycolysis and the low IL-17
response score in CRSwWNP EpCs (p=0.042, p=0.92) (Fig 6F). Here, a caveat is that the lack of association
between EpC glycolysis and IL-17 response may be due to the limited diversity in IL-17 response scores in our
CRSwNP dataset.

In the Western hemisphere, CRSWNP is predominantly a T2-high and eosinophilic disease,38
consistent with the elevated transcriptional IL-13 response scores we observed in our bulk RNA-seq dataset
(Fig 6C). However, CRSWNP in Asia is noted to be more heterogeneous, with neutrophilic and eosinophilic
subtypes, as reviewed in Fig 4.83 Accordingly, in order to examine the relationship between cytokine response
and metabolic rewiring across diverse disease subtypes including eCRSwWNP and neCRSwNP, we explored

this in the Wang scRNA-seq dataset. Within basal EpCs in the Wang dataset, we observed that eCRSwWNP

samples exhibited the highest IL-13 response score (Fig 6G). Similar to our findings in bulk RNA-seq (Fig 6D),
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there was no significant difference in IL-17 response score between CRSsNP and eCRSwNP in the Wang
dataset (p>0.05) (Fig 6H). In contrast, basal EpCs from neCRSwNP (defined by the authors as fewer than 10
Eos/HPF on nasal polyp histology)'* demonstrated modest elevations in the IL-17 response score compared to
healthy controls (p=0.0079) (Fig 6H), although the IL-17 response score did not significantly correlate with the
fraction of neutrophils recovered by scRNA-seq per sample (p=0.066) (Fig E5C), consistent with prior
reports.® Basal EpCs from neCRSwWNP also exhibited modest but statistically significant elevations in IFN-a
signaling (p=0.0032) and IFN-y signaling (p=0.0079) compared to healthy controls (Fig E6). Among CRSwNP
samples in the Wang dataset, the glycolysis score in CRSwNP basal EpCs correlated tightly with IL-13
response (p=0.77, p=0.0081) (Fig 6l) but not with the IL-17 response (p=0.26, p=0.43) (Fig 6J). Here,
although not significant within only 5 samples, neCRSwWNP samples with higher IL-17 response scores tended
to have higher glycolysis scores (Fig 6J), suggesting that non-T2 cytokines such as IL-17 could potentially
drive metabolic reprogramming in upper airway EpCs. Taken together, we observed that the enhanced
glycolytic activity in CRSwWNP EpCs correlates with the T2 cytokine response in vivo.

Finally, to investigate the relationship between T2 inflammation and EpC glycolysis more closely, we
queried the pan-epithelial DEGs with higher expression in CRSwWNP (Fig 2H) against the list of genes induced
by IL-13 stimulation to identify which pan-epithelial DEGs could be attributable to IL-13 response and which
could not. We found that 209 of the 359 pan-epithelial DEGs with higher expression in CRSwWNP (over 50%)
were not directly IL-13 responsive (Fig E7A). Interestingly, whereas PFKP was IL-13 inducible
(log2FoldChange=1.18, padj=5.02E-23) in the HBEC ALls, SLC2A1 was not (log.FoldChange=-0.14,
padj=0.33). This indicates that metabolic reprograming in CRSwWNP EpCs cannot be fully attributed to direct
effects of IL-13 signaling, and that additional mechanisms are also present. Interestingly, over-representation
analysis of the 209 non-IL13-responsive pan-epithelial DEGs identified gene sets involved in type 1 interferon

signaling (padj=0.043) (Fig E7B), highlighting a contribution of non-T2 mechanisms in the immune

pathogenesis of CRSwNP.

Glycolysis and mTORC1 signaling are enriched in CRSwWNP across basal and secretory EpCs as

compared to healthy controls
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As our flow cytometric strategy did not distinguish between secretory and ciliated EpCs, we next
assessed the mTORC1-glycolysis axis in a recently reported scRNA-seq dataset that included over >100,000
ethmoid sinus EpCs from donors with CRSWNP (n=5) and healthy controls (n=4).'® As expected, gene module
scoring demonstrated higher expression of the IL13 response score (p=0.016) (Fig 7A), Hallmark glycolysis
gene set (p=0.016) (Fig 7B), and Hallmark mTORC1 signaling gene set (p=0.016) (Fig 7C) in basal EpCs from
CRSWNP vs healthy controls. Although limited to 5 samples with CRSwWNP, there was still a trend toward
positive correlation between glycolysis and mTORC1 signaling in CRSwNP basal EpCs (p=0.70, p=0.23) (Fig
7D). Increased expression of key glycolytic genes including SLC2A 1 was evident in the CRSwWNP basal EpCs
(Fig 7E).

The mTORC1-glycolytic axis was apparent in CRSwWNP vs control across multiple lineages of EpCs,
including basal, suprabasal, secretory, and goblet secretory EpCs (Fig 7F); by contrast, this wasn’t appreciable
in ciliated EpCs. Interestingly, enrichment of mMTORC1 signaling and glycolytic genes were highly apparent in
CRSwNP ionocytes compared to healthy control ionocytes (Fig 7F), although the CRSwNP ionocytes did not
exhibit strong IL-13 response scores. The low ionocyte IL-13 response scores may reflect a lack of ionocytes in
the ALI cultures used to define the IL-13 response signature or reflect a role for non-T2 mechanisms in
regulating mTORC1-associated metabolic reprogramming in CRSwNP EpCs. Similarly, CRSwWNP goblet
secretory EpCs with high IL-13 response score exhibited little upregulation of glycolytic genes (Fig 7F),
demonstrating that T2 cytokine signaling alone is not sufficient to elicit the full cascade of glycolytic rewiring
that was detected in basal and suprabasal EpCs.

Having established that metabolic rewiring of EpCs may support tissue remodeling in CRSwNP (Fig 5),
we queried if this axis was related to compositional changes among EpCs in the Kotas dataset. Although
limited to only 5 CRSwWNP samples, we observed the basal EpC glycolysis score was negatively correlated
with the fraction of KRT13+ “hillock” basal EpCs out of all cells recovered per sample (p=1, p=0.017) (Fig ES8).
The function of hillock basal EpCs is poorly understand and the authors of the Kotas dataset did not identify

any differences in their frequency between CRSWNP and healthy control,’ but it has been proposed that they

have roles in squamous metaplasia and immunomodulatory functions as well.8-88


https://doi.org/10.1101/2023.10.13.562288
http://creativecommons.org/licenses/by-nc-nd/4.0/

(WhiCh Was ot Gertte by peer review) is the auiorIder. s a5 ATAntet oI & Icerss 1 dlapiay the PrapAt in PerpEt.iy I matie
available under aCC-BY-NC-ND 4.0 International license.

543 The mTORC1-glycolysis axis is detected in the lower airway and correlates with T2 and non-T2
544  cytokine response genes
545 Finally, to understand whether the inflammatory mTOR-glycolysis axis is also present in the lower
546  airway, we analyzed the Immune Mechanisms of Severe Asthma (IMSA) bulk RNA-seq dataset of bronchial
547  brushings (containing both EpCs and immune cells) from 65 adults (17 healthy controls, 25 with mild-to-
548 moderate asthma, and 23 with severe asthma).3®4% DE analysis of severe vs mild-to-moderate asthma (while
549  controlling for batch, sex, and age as covariates) identified 96 DEGs (|log2FoldChange|>0.58 and padj<0.05),
550 including 86 DEGs with higher expression in bronchial brushings from severe asthma (Fig 8A).
551 GSEA of the Hallmark gene sets identified positive enrichment of both glycolysis (padj=6.32E-8) (Fig
552  8B) and mTORC1 signaling (padj=0.0012) (Fig 8C) in severe asthma. Furthermore, GSVA scoring for these
553  gene sets revealed that glycolysis and mTORC1 signaling were tightly positively correlated in asthmatic
554  bronchial brushings (p=0.93, p<2.2E-16) (Fig 8D). Asthma, particularly severe asthma, represents a
555  heterogeneous disease with evidence of combinatorial variants of T1, T2, and T17 inflammation;3°8%-°1 thus we
556  wondered if the local cytokine milieu was also related to epithelial metabolic reprogramming in asthmatic
557 tissue. We found that the glycolysis score was weakly but positively correlated with multiple cytokine response
558  signatures in asthmatic bronchial brushings in vivo (IL-17 p=0.54, p=8.4E-5; IL-13 p=0.49, p=4.7E-4) (Fig 8E),
559  consistent with our findings in HBEC ALI cultures (Fig 6A). Thus, in the lower airway in vivo, epithelial
560  metabolic reprograming may reflect a response to stimulation from one (or more) of several cytokines.

561

562
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563 DISCUSSION AND CONCLUSIONS
564 Defining the pathways that maintain barrier tissue inflammation is essential to understanding chronic
565 respiratory diseases such as CRSwWNP. A recent seminal paper by Chen and colleagues used metabolomics
566  from nasal secretions and measurements of extracellular acidification in stimulated epithelial cells to identify
567 enhanced glycolysis in nasal epithelial cells from CRS.%® Additionally, they demonstrated that glycolysis is
568 required for the production of several EpC cytokines, including IL-1a, TNF-q, IL-18, CXCL8, and CCL20.% In
569 this study, we demonstrate that enhanced glycolytic programming detected in the epithelium of CRSwWNP is
570 tightly linked to mTORC1 pathway, and further demonstrate that mTOR regulates airway epithelial cytokine
571  generation. Moreover, we find a close correlation in vivo between EpC glycolytic reprogramming and EpC
572  cytokine generation, inflammation, and epithelial remodeling. Taken together, our findings highlight a critical
573  role for mTORC1-dependent metabolic reprogramming of airway EpCs in chronic airway inflammation.
574  Whereas to date most studies of immunometabolism in chronic respiratory diseases have focused on immune
575  cell populations,®?% these studies highlight the field of epithelial immunometabolism, which is an emerging
576  area of investigation.%
577 Increased mTORC signaling has previously been implicated in chronic airway inflammation. In the
578  upper airway, increased phospho-mTOR staining has been observed in CRSwWNP lysates®%. In the lower
579  airway, multiple groups have detected increased phosphorylation of mMTORC1 targets in whole lung lysates in
580  murine models of asthma.®”-% Accordingly, studies using mTOR inhibitors and mTOR knockout models have
581  begun to explore the functional consequences of mTOR signaling in lung inflammation. Several studies have
582  shown that systemic administration of rapamycin (which inhibits mMTORC1 acutely and downregulates
583 mTORC2 chronically'®) attenuates airway inflammation and airway hyperresponsiveness (AHR) in mouse
584  models of asthma,®”-101:192 gand a recent study found that rapamycin lowered serum levels of IL-4 and IL-17
585  while restoring IFN-y in a mouse asthma model.*® Similarly, administration of Torin 2 (which inhibits both
586 mTORC1 and mTORC2) led to decreased goblet cell hyperplasia and decreased AHR in a mouse asthma
587  model."®However, very few studies have pursued epithelial-specific knockout models to identify the
588 consequences of epithelial mMTORC signaling in vivo. Interestingly, one study demonstrated that abrogating

589 mTORC1 and mTORC2 signaling in the bronchial epithelium via EpC-specific mTOR deletion did not

590 ameliorate airway inflammation in asthmatic mice.'® By contrast, a study in the small intestine demonstrated
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that intestinal EpC-specific deletion of RAPTOR (which is required for mTORC1 but not mTORC2 signaling)
resulted in impaired formation of tuft cells and decreased T2 immunity in the context of parasitic infection.%
Thus, while we do find a correlation between the recovery of Th2 cells and the EpC glycolysis score, more
studies are needed to understand the contribution of epithelial mMTORC1 and mTORC2 to inflammation in vivo.

Beyond perpetuating chronic inflammation, our findings suggest a potential role for epithelial mMTORC1
activity in supporting the wound healing response in CRSwWNP (Fig 5). Previous reports have demonstrated
that mTORC1 signaling in murine epidermal EpCs is necessary for and can augment cutaneous wound
healing.'° Similarly, in the gastrointestinal tract, mMTORC1 signaling in murine intestinal enterocytes is critical
for epithelial regeneration following surgical or radiation-induced injury and this process can be highjacked in
neoplastic tissue.'9-1%° In the human airways, prior reports have identified abnormal wound healing of airway
EpCs in chronic respiratory diseases, including increased markers of epithelial-mesenchymal transition (EMT)
in CRSWNP tissue''%'"" and dysfunctional behavior of asthmatic airway EpCs in wound healing assays.!'113
Intriguingly, this latter finding suggests that enhanced mTORC1-mediated upregulation of wound healing
genes may even be a compensatory mechanism for other defects in tissue repair.

We found that, across stages of secretory EpC development, mTORC1 signaling was tightly correlated
with GSVA glycolytic score in bulk RNA-seq and was tightly correlated with glycolytic module score in two
additional single cell datasets. One plausible mechanism by which mTORC1 signaling may enhance glycolysis
in airway EpCs is through hypoxia-inducible factor (HIF) signaling. HIF signaling is both elicited by mTOR
through direct transcriptional and translational mechanisms,®'62 and widely recognized to promote expression
of glycolytic genes in several physiologic contexts.''* Indeed, hypoxia genes were strongly enriched in
CRSwNP vs CRSsNP EpCs (Fig E2). Furthermore, we noted that EGLN3, encoding a key alpha ketoglutarate-
dependent hydroxylase that is expressed in response to HIF-1a,%6:115 was among the top DEGs with higher
expression in CRSwWNP in basal EpCs (log-FoldChange=1.71, padj=9.68E-7) (Fig 1F) and across all EpC
subsets (logzFoldChange=2.94, padj=6.71E-27) (Fig 1H). Importantly, an epithelial axis of mTOR signaling
driving HIF-1a nuclear localization, enhanced glycolytic metabolism, and glycolytic-dependent wound healing

was recently described in the context of IL-17 skin inflammation.''® Taken together, these findings suggest that

mTOR-dependent glycolytic reprogramming may be a conserved axis in injured epithelium.
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Although we observed that EpC glycolysis correlated with an IL-13 response score in CRSwWNP (Fig 6)
in vivo, this association does not exclude the presence of concomitant cytokines driving these metabolic
alterations in diseased tissue. In HBEC ALI cultures in vitro, IL-13 stimulation only weakly drove glycolysis (Fig
6) and key glycolytic genes such as SLC2A1 were not IL-13 inducible (Fig E7); therefore T2 cytokines alone
may not be sufficient to drive mTORC1-dependent glycolytic reprograming in airway EpCs. Additionally, one
study participant (D438) with the AERD variant of CRSwWNP had received dupilumab (which antagonizes IL-4
and IL-13 signaling through the alpha chain of the IL-4 receptor) before undergoing sinus surgery. Basal EpCs
from subject D438 exhibited low IL-13 response score, as expected, but still demonstrated relatively high
glycolysis score and mTORC1 signaling score [Fig E9], suggesting that a high IL-13 response score is not
required, and that mechanisms other than IL-4/13 signaling can cause metabolic reprograming in CRSwNP
EpCs. Moreover, the findings from cultured EpCs that IL-17 can upregulate the glycolysis score (Fig 6A-B),
and that mTOR-dependent EpC cytokines can be elicited by TNF-a and IL-1 (Fig 3B), by LPS "7, and by
flagellin’® demonstrate the potential for both endogenous and exogenous insults to elicit changes in EpC
metabolic pathways with profound consequences for tissue inflammation and remodeling.

Our in vivo data demonstrated a strong correlation between glycolysis and IL-17 response score in the
lower airway, but little correlation in the upper airway in eCRSwWNP, neCRSwWNP, or CRSsNP. Although it is
possible that the upper and lower airway epithelium respond differentially to these environmental cues, an
equally plausible explanation is that the limited diversity of IL-17 response scores in our CRS datasets
precluded our ability to detect non-T2 cues that contribute to mTORC1-dependent metabolic reprogramming in
CRSwNP. Furthermore, although we did not observe that EpC glycolysis correlated with an IL-17 response
score in CRSwWNP in vivo (Fig 6), we found that IL-17 stimulation more robustly drove glycolytic metabolism in
HBEC ALls in vitro (Fig 8), consistent with the mTOR-dependent induction of glycolysis seen by others in
cutaneous EpCs.'6

Finally, a limitation of this study is that we used epithelial transcriptomics to assess the glycolytic
behavior of CRS EpCs. Although studies in the field of cancer biology have embraced the use of transcriptomic
glycolysis scores for clinical prognostication in epithelial tumors,''®-'2" further studies are needed to understand

how closely transcriptomic readouts mirror metabolism in chronic inflammation. While our analysis lacks the

resolution of metabolomics and we were limited to assessing transcriptional signatures rather than individual
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glycolytic intermediates, our RNA-seq findings are highly consistent with those reported by Chen et al. who
identified enhanced glycolysis in CRSwWNP EpCs through assessing bioenergetic function with the Seahorse
assay and performing metabolomic analyses.5® In addition, we replicated the finding of an increased glycolytic
transcriptional signature in CRSWNP EpCs in 2 independent scRNA-seq cohorts.

Here we have shown that mTORC1 activity in the epithelium is upregulated in CRSwNP, as compared
to CRSsNP, correlates with epithelial glycolytic reprogramming, and regulates airway EpC cytokine generation.
Furthermore, we find that epithelial glycolytic pathways are closely correlated with both T2 and non-T2 immune
cell recovery, and with the epithelial expression of wound healing genes. As mTORC1 signaling is a master
regulator of cell growth and cell fate, pairing alterations in nutrient metabolism with protein synthesis required
for tissue development and repair, these findings suggest that mTORC1 may play a key role in the
maintenance of barrier integrity, repair, and remodeling in CRSwWNP, and identify mTORC1-dependent

pathways as targets for further study.
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970 FIGURE LEGENDS

971

972  Fig 1: EpCs from CRSwNP are enriched for wound healing and metabolic genes and have lost key
973  protective factors

974  A) PCA plots (PC1 and PC2) of bulk-RNA seq samples. Left is colored by EpC subset. Right is colored by
975 disease.

976  B) Dot plot of canonical EpC markers for basal, transitional, and differentiated EpCs.

977  C) Volcano plot of CRSwWNP vs CRSsNP DE testing in basal EpCs. Positive log.FoldChange indicates higher
978  expression in CRSWNP. Red indicates DEGs meeting |log2FoldChange|>0.58 and padj<0.05.

979 D) Net plot of selected top over-represented gene sets (in the gene ontology biological processes database)
980 for DEGs with higher expression in CRSwWNP basal EpCs.

981 E) Heatmap of top DEGs with higher expression in CRSwWNP basal EpCs.

982  F) Volcano plot of pan-epithelial CRSwWNP vs CRSsNP DE testing. Positive logzFoldChange indicates higher
983  expression in CRSWNP. Red indicates DEGs meeting |log-FoldChange|>0.58 and padj<0.05.

984 ) Heatmap of top pan-epithelial DEGs with higher expression in CRSwWNP EpCs.

985 H) Net plot of selected top over-represented gene sets (in the gene ontology biological processes database)
986 for pan-epithelial DEGs with higher expression in CRSwWNP EpCs.

987 |) Heatmap of top pan-epithelial DEGs with lower expression in CRSwWNP EpCs.

988 J) Net plot of selected top over-represented gene sets (in the gene ontology biological processes database) for
989  pan-epithelial DEGs with lower expression in CRSwWNP EpCs.

990 K) Dot plot of ALDH2 and ALDH3A1 by cell subset and disease (including aspirin tolerant CRSwNP and
991 AERD).

992
993 Fig 2: The enhanced mTORC1 signaling in CRSWNP EpCs is tightly correlated with glycolysis

994  A) GSEA plots of the Hallmark glycolysis gene set for CRSwWNP vs CRSsNP DE testing in basal EpCs,
995 transitional EpCs, and differentiated EpCs. Positive ES or NES indicates enrichment in CRSwNP. IL13RA1
996 was excluded from the glycolysis gene set to prevent bias.

997 B) Heatmap of key genes in the glycolysis pathway.

998  C) Scatterplot of glycolysis GSVA score vs SLC2A1 estimated counts in CRSwWNP basal EpCs. p indicates
999  Spearman'’s rho.

000 D) Scatterplots of glycolysis GSVA score vs mTORC1 signaling GSVA score in CRSwNP basal EpCs,
001  CRSwNP transitional EpCs, and CRSwNP differentiated EpCs.

002  E) Scatterplots of glycolysis GSVA score vs estimated counts of mTORC1 regulators (RHEB, LAMTORA4,
003 LAMTORS5, LAMTOR2, LAMTOR1, LAMTORS3) in CRSwWNP basal EpCs.

004  F) Representative images of phospho-S6RP, CD45, and DAPI staining in ethmoid sinus samples from adult
005  human donors with CRSsNP and CRSsNP.

006  G) Quantification of percentage of phospho-S6RPrestive cells out of CD45"e92tve cells in the epithelial layer of
007  adult human donors with CRSsNP and CRSsNP. The non-parametric Mann-Whitney U test was used for
008  statistical testing.
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Fig 3: mTOR signaling regulates cytokine production in CRSwWNP basal EpCs

A) Scatterplots of glycolysis GSVA score vs estimated counts of selected epithelial cytokines in CRSwNP
basal EpCs. p indicates Spearman’s rho.

B) Representative images of cytokine and DAPI staining immunocytochemistry in CRSwWNP basal EpCs in the
presence vs absence of stimulation (IL-18 and TNF-a) and Torin 1 (mTOR inhibitor). Blue represents DAPI
staining.

C) Quantification of cytokine immunofluorescence for CRSwWNP basal EpCs from B. Normalized integrated
density refers to the cytokine integrated density divided by the number of nuclei per high power field. The non-
parametric Wilcoxon test was used for statistical testing, with pairing by donor.

Fig 4: The epithelial nMTORC1-glycolysis axis correlates with immune cell tissue infiltration in CRSwWNP

A) Violin plots of the glycolysis and mTORC1 signaling scores in basal EpCs from the Wang scRNA-seq
dataset.

B) Scatterplot of the mean glycolysis score vs mean mTORC1 signaling in basal EpCs from the 11 CRSwNP
samples in the Wang scRNA-seq dataset. p indicates Spearman’s rho.

C) Scatterplots of the mean glycolysis score in basal EpCs vs fraction of total immune cells and fraction of CD4
Th2 cells recovered by scRNA-seq from the 11 CRSwNP samples in the Wang scRNA-seq dataset.

D) Scatterplots of the mean glycolysis score in basal EpCs vs macrophage populations recovered by scRNA-
seq from the 11 CRSwWNP samples in the Wang scRNA-seq dataset. FCER2* monocyte-macrophages,
CCL18* resting tissue resident macrophages, and FN1* resting tissue resident macrophages are each
ALOX15* macrophage populations.

Fig 5: Increased wound healing in CRSWNP correlates with glycolysis

A) Volcano plot of basal EpC DEGs (logzFoldChange>0.58 and padj<0.05) with higher expression in CRSwNP
that also correlate positively with basal EpC glycolysis (0>0 and p<0.05).

B) Dot plot of top over-represented gene sets (in the gene ontology biological processes database) for basal
EpC DEGs with higher expression in CRSwNP that correlate with basal EpC glycolysis.

C) Volcano plot of transitional EpC DEGs (log2FoldChange>0.58 and padj<0.05) with higher expression in
CRSwNP that also correlate positively with transitional EpC glycolysis (o >0 and p<0.05).

D) Dot plot of top over-represented gene sets (in the gene ontology biological processes database) for
transitional EpC DEGs with higher expression in CRSwNP that correlate with transitional EpC glycolysis.

E) Volcano plot of differentiated EpC DEGs (log2FoldChange>0.58 and padj<0.05) with higher expression in
CRSwNP that also correlate positively with differentiated EpC glycolysis (p>0 and p<0.05).

F) Dot plot of top over-represented gene sets (in the gene ontology biological processes database) for
differentiated EpC DEGs with higher expression in CRSwNP that correlate with differentiated EpC glycolysis.

Fig 6: Epithelial glycolysis can be induced by T2 and T17 cytokines
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A) GSEA plots of the Hallmark glycolysis gene set for bulk RNA-seq DE testing of HBEC ALI cultures from
healthy lung transplant donors stimulated with IL-13, IL-17, IFN-q, or IFN-y (GSE185202). Positive ES or NES
indicates enrichment with cytokine stimulation.

B) GSVA glycolysis scores for HBEC ALls by cytokine stimulation condition.

C) IL-13 response score in basal EpCs by disease (including aspirin tolerant CRSwWNP and AERD). One
sample (from D438) was excluded because the donor had received dupilumab.

D) IL-17 response score in basal EpCs by disease (including aspiring tolerant CRSwWNP and AERD).

E) Scatterplot of glycolysis GSVA score vs |IL-13 response score in CRSwWNP basal EpCs. p indicates
Spearman’s rho. One sample (from D438) was excluded because the donor had received dupilumab.

F) Scatterplot of glycolysis GSVA score vs IL-17 response score in CRSwNP basal EpCs.

G) Violin plot of the IL-13 response scores in basal EpCs from the Wang scRNA-seq dataset. Each dot
represents one basal EpC. The non-parametric Mann-Whitney U test was performed using the mean score for
each donor (control n=5, CRSsNP n=5, neCRSwWNP n=5, eCRSwWNP n=6). Relevant statistical results are
labeled where * denotes p<0.05 and ns denotes p>0.05.

H) Violin plot of the IL-17 response scores in basal EpCs from the Wang scRNA-seq dataset.

I) Scatterplot of the mean glycolysis score vs mean IL-13 response scores in basal EpCs from the 11 CRSwWNP
samples in the Wang scRNA-seq dataset. p indicates Spearman’s rho.

J) Scatterplot of the mean glycolysis score vs mean IL-17 response scores in basal EpCs from the 11
CRSwNP samples in the Wang scRNA-seq dataset.

Fig 7: Glycolysis and mTOR signaling are enriched in CRSWNP across basal and secretory EpCs

A) Violin plot of the IL-13 response score in basal EpCs from the Kotas scRNA-seq dataset. Each dot
represents one basal EpC. The non-parametric Mann-Whitney U test was performed using the mean score for
each donor (control n=4, CRSwWNP n=5).

B) Violin plot of the glycolysis score in basal EpCs from the Kotas scRNA-seq dataset.
C) Violin plot of the mTORC1 signaling score in basal EpCs from the Kotas sRNA-seq dataset.

D) Scatterplot of the mean glycolysis score vs mean mTORC1 signaling score in basal EpCs from the 5
CRSwNP samples in the Kotas scRNA-seq dataset. p indicates Spearman’s rho.

E) Dot plot of module scores and key genes in the glycolysis pathway for basal EpCs in the Kotas scRNA-seq
dataset, split by donor.

F) Dot plot of module scores and key genes in the glycolysis pathway for various EpC lineages in the Kotas
scRNA-seq dataset, split by disease (control and CRSwNP).

Fig 8: The mTOR-glycolysis axis correlates with T2 and non-T2 cytokine response genes in asthma

A) Volcano plot of severe asthma vs mild-to-moderate asthma DE testing in the IMSA bronchial brushing bulk
RNA-seq dataset [GSE158752]. Positive log-FoldChange indicates higher expression in severe asthma. Red
indicates DEGs meeting |log2FoldChange|>0.58 and padj<0.05.

B) GSEA plot of the Hallmark glycolysis gene set for bulk RNA-seq DE testing of severe vs mild-to-moderate
asthma. Positive ES or NES indicates enrichment in severe asthma.
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C) GSEA plot of the Hallmark mTORC1 signaling gene set for bulk RNA-seq DE testing of severe vs mild-to-
moderate asthma.

D) Scatterplot of the glycolysis score vs mTORC1 signaling score in asthmatic bronchial brushings in the IMSA
bulk RNA-seq dataset. p indicates Spearman’s rho.

E) Scatterplots of the glycolysis score vs IL-13, IL-17, IFN-a, and IFN-y response scores in asthmatic bronchial
brushings in the IMSA bulk RNA-seq dataset.
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