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Abstract

Almost every recent Alzheimer’s disease (AD) genome-wide association study (GWAS)
has performed meta-analysis to combine studies with clinical diagnosis of AD with studies
that use proxy phenotypes based on parental disease history. Here, we report major
limitations in current GWAS-by-proxy (GWAX) practices due to uncorrected survival bias
and non-random participation of parental illness survey, which cause substantial
discrepancies between AD GWAS and GWAX results. We demonstrate that current AD
GWAX provide highly misleading genetic correlations between AD risk and higher
education which subsequently affects a variety of genetic epidemiologic applications
involving AD and cognition. Our study sheds important light on the design and analysis
of mid-aged biobank cohorts and underscores the need for caution when interpreting
genetic association results based on proxy-reported parental disease history.
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Introduction

Genome-wide association studies (GWAS) have greatly advanced our understanding of
the genetic underpinning of complex diseases, unveiling numerous genotype-phenotype
associations(7). The tremendous success of GWAS in recent years can be attributed, in
part, to the emergence of population biobanks, such as the UK Biobank (UKB)(2), which
provide extensive genotype and phenotype data on large samples. However, a persistent
challenge in biobank-based GWAS applications is that these cohorts mainly consist of
mid-aged individuals who are too young to have a diagnosis of late-onset diseases. To
address this limitation, Liu et al.(3) introduced GWAS-by-proxy (GWAX) based on a
simple idea—although biobank participants may not have their own diagnosis on late-life
disease outcomes, they report their parents’ diagnoses through the family health history
survey; they also (indirectly) provide parental genetic data, as their biological child. In
their paper, Liu et al. demonstrated the efficacy of GWAX through replicating risk loci
identified in case-control GWAS for several diseases including Alzheimer’'s disease
(AD)(3). Since then, GWAX has quickly gained popularity in complex disease genetic
research, particularly for neurodegenerative diseases. In fact, GWAX has become so
popular in AD genetic studies that every recent AD GWAS performed meta-analysis to
combine associations from clinically diagnosed AD cases-controls(4) with GWAX proxy
associations to boost sample size and statistical power(5-70). Further, the largest AD
GWAS to date(9) has stopped the earlier convention of sharing separate association
results for GWAS and GWAX in their study. Instead, only the meta-analyzed association
results were made available to the research community.

However, methodological issues in GWAX and the quality of its association results have
not been fully investigated. The Liu et al. 2017 paper provided evidence that top genome-
wide significant loci yielded similar results in GWAS and GWAX analyses(3). Since then,
critiques of GWAX have mostly focused on the imprecision and heterogeneity in survey
data (i.e., measurement error in parental health history) and their implications in certain
genetic applications (e.g., heritability estimation)(77, 712). There have been few studies
investigating potential systematic biases and methodological limitations in GWAX,
particularly regarding the infinitesimal biases that do not appear substantial when
focusing on top GWAS loci with large effects but could severely bias applications that
involve more complete aggregations of genome-wide association estimates, such as
genetic correlation estimation and polygenic risk score (PRS).

In this study, we report evidence of widespread divergent findings between GWAX based
on family health history and case-control GWAS for AD(73), revealing pervasive biases
in current GWAX approaches. We implement GSUB, a GWAS-by-subtraction
strategy(74), to quantify the biases originating from different sources, revealing that AD
GWAX suffers from substantial survival bias from differential parental lifespans,
participation bias in the parental health history survey, and reporting bias in the parental
health history survey. We demonstrate that almost all existing GWAX approaches
produce counter-intuitive and improbable positive associations between higher
cognition/education and dementia risk. We show that several common genetic
epidemiological applications involving AD and cognition yield mixed findings due to this
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issue in existing AD genetic studies. We also employ a variety of methods to reduce these
biases and benchmark their performance. Our findings emphasize an urgent need for
caution when interpreting GWAX association results and provide guidance on future study
designs involving proxy phenotypes derived from family health history.
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Figure 1. Comparing top association findings and genetic correlation results of AD GWAS and GWAX. (A)
Manhattan plot for AD GWAX (upper) and GWAS (Kunkle et al. 2019; lower). The y-axis is capped at 20 for better
visualization. Horizontal lines mark the genome-wide significance cutoff of 5.0E-8. (B) GWAS and GWAX effect size
estimates for 20 genome-wide significant SNPs identified in Kunkle et al. 2019. GWAX effect sizes were adjusted using
the 0.5 genetic relatedness between parents and children. The APOE locus was excluded due to its extreme effect
size. (C) Genetic correlations of AD GWAX and GWAS with 40 complex traits. Traits with significant correlations
(FDR<0.05) with both GWAS and GWAX are highlighted and labeled. HDL-C: high-density lipoprotein cholesterol. (D)
Genetic correlation of AD and educational attainment based on 10 AD genetic studies published between 2013 and
2022. In (B)-(D), dots and intervals indicate point estimates and standard errors. Significant results at an FDR cutoff of
0.05 are highlighted with white circles in (D).

Results

GWAX replicates top AD risk loci but shows discrepant genetic correlations with
other complex traits
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To assess the validity of GWAX for AD, we first aimed to replicate the genome-wide
significant loci (p < 5e-8) identified in a recent AD case-control study(713). We performed

GWAX using UKB participants of European descent who reported parental history of
AD/dementia (N = 47,993 proxy cases and 315,096 proxy controls; Methods). AD GWAX
produced similar association results compared to GWAS (Figure 1A-B, Supplementary
Table 1). Consistent with previous findings(3), GWAS and GWAX effect estimates were
highly correlated (cor = 0.97 with APOE excluded), but we found a substantial attenuation
in GWAX effect sizes (regression slope = 0.63). Such an attenuation is not explained by
measurement errors in association effects (Supplementary Figure 1) but may be
explained by winner’s curse: we obtained a regression slope of 1.15 (standard error [se]
= 0.20) after correcting for winner’s curse(715) (Methods). Similar results were found using
the top SNPs identified in GWAX (Supplementary Table 2 and Supplementary Figure
1).

Discrepancies between GWAX and GWAS became evident in analyses leveraging
genome-wide data which include single-nucleotide polymorphisms (SNPs) not reaching
Bonferroni-corrected statistical significance. We estimated genetic correlations of AD
GWAS and GWAX with 40 complex traits (Methods; Supplementary Tables 3-4). AD
GWAS and GWAX are significantly correlated (cor = 0.63, p = 3.9E-31), but they showed
divergent correlations with multiple traits (Supplementary Figure 2). For example, total
cholesterol and hippocampal volume showed significant genetic correlations with AD
GWAS (cor = 0.13 and -0.23, p = 0.01 and 3.1E-4, respectively) but not with GWAX (cor
= -0.061 and -0.073, p = 0.23 and 0.23, respectively). Attention-deficit/hyperactivity
disorder (ADHD) and coronary artery disease showed substantially stronger correlations
with lower AD risk in GWAX (cor =-0.16 and -0.31; p = 2.9E-6 and 3.4E-21) than in GWAS
(cor =0.05and -0.1; p = 0.18 and 9.5E-4).

Only seven traits had significant correlations with AD in both GWAS and GWAX under a
false discovery rate (FDR) cutoff of 0.05, out of which three correlations had flipped
directions (Figure 1C). In particular, educational attainment (EA), a well-documented
negative correlate of AD risk(76, 77), showed an expected negative genetic correlation
with AD GWAS (cor =-0.13, p = 2.4E-5), but a significant yet positive correlation with AD
GWAX (cor =0.17, p = 1.7E-11). To see if this is a consistent finding across AD studies,
we calculated and summarized the genetic correlations between EA and 10 AD studies
published between 2013 and 2022(3, 5-9, 13, 18-20) (Supplementary Table 5). All
studies showed a consistent pattern: higher education is correlated with lower AD risk in
case-control studies but is correlated with higher AD risk when using family history as the
proxy, and results based on GWAS-GWAX meta-analysis fall in-between (Figure 1D).
The largest AD genetic association study to date(9), a meta-analysis of case-control
GWAS and family history-based GWAX, showed a positive genetic correlation with EA
but did not reach statistical significance (cor = 0.03, p = 0.18).

GWAX biases risk prediction and causal inference applications involving AD and
cognition
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Given the concerningly divergent AD-EA genetic correlations based on GWAS and
GWAX, we investigated two types of common genetic epidemiologic applications
involving AD and cognition. First, we quantified the predictive performance of AD PRS on
late-life cognition in the Health and Retirement Study (HRS). We calculated three different
PRS from AD GWAS(73), GWAX, and a GWAS-GWAX meta-analysis(9), and associated
these scores with the global cognition composite score while controlling for age, age-
squared, education years, year respondent entered study, sex, and top 5 genetic principal
components (PCs) (N = 12,018; Methods). GWAS-based PRS exhibited a strong
association with lower cognition (effect = -0.05, p = 2.5E-11) while GWAX-based PRS did
not show significant associations (effect = -0.0017, p = 0.80; Figure 2A). PRS based on
the Bellenguez et al. 2022 meta-analysis was associated with lower cognition in HRS but
showed an attenuated effect size (effect = -0.03, p = 1.2E-7) despite the substantially
larger sample size compared to the earlier case-control study. We obtained similar results
after removing APOE from all PRS (Supplementary Figure 3; Methods). We also
investigated an alternative PRS approach using only variants reaching genome-wide
significance in Kunkle et al. 2019 case-control GWAS. The scores based on GWAS and
GWAX effects showed very similar performance (Supplementary Figure 3), suggesting
that biases in PRS analysis were mostly driven by SNPs not reaching statistical
significance in AD GWAS.

A : B
:
Kunkle et al. (2019)4  m—m— ! — —
1 :
Bellenguez et al. (2022) — — ! —r-.—
1 1
1
|
1 1
i
1 P
AD GWAX ® GWAS —.!— !
@ GWAX |
@® GWAS + GWAX meta i
!
-0.04 -0.02 0.00 -0.50 -0.25 0.00 0.25
Association between AD PRS and cognition Estimated causal effect of education on AD

Figure 2. AD GWAX biases risk prediction and causal inference. (A) Association of AD PRS and late-life cognition
in the HRS cohort. PRS were computed from genome-wide association results using the PRS-CS approach. (B) Causal
effect of EA on AD risk estimated from Mendelian randomization. For both panels, dots and intervals indicate point
estimates and standard errors. Significant results at an FDR cutoff of 0.05 are highlighted with white circles. Data for
this plot are in Supplementary Tables 6-7.

Education has been hypothesized to have a causal protective effect against AD. Many
studies have investigated this hypothesis with mixed results(16, 77, 21, 22). Using
Mendelian randomization, we estimated the causal effect of EA on AD risk (Methods).
Once again, we observed inconsistent results between AD GWAS and GWAX (Figure
2B). We identified a significant protective effect of EA on lower AD risk using AD case-
control GWAS (effect = -0.36; p = 8.6E-3). When GWAX was the outcome study, EA was
estimated to increase AD risk although the effect was not statistically significant. A slightly
positive but non-significant causal effect of EA on AD risk was also identified using the
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Bellenguez 2022 meta-analysis. The discrepancies between AD GWAS and GWAX in
these analyses underscore the need for a re-evaluation of GWAX applications in AD
genetic studies.

2p(1-p)
()
SNP
—
1 Cur— (Fao) (Frop) s, D1
/111 J /112 l}{ZZ
o
f t
Uy, Uy,
U U
0 0

Figure 3. Schematic diagram for GWAS-by-subtraction. The main goal is to estimate genetic associations y, with
the non-disease factor Fnon underlying parental disease history. y, , and A, 1, ,, are the parameters that need to be
estimated (Methods).

GWAS-by-subtraction identifies potential sources of bias in AD GWAX

Next, we applied a GWAS-by-subtraction approach to separate biases from AD genetic
associations in GWAX. This approach assumes that GWAX associations can be
explained by real AD signals (i.e., the AD factor Fap) and biases (i.e., the non-AD factor
Fnon). It quantifies the genetic basis of the non-AD component by regressing out the AD
case-control associations from GWAX results (Methods; Figure 3). GWAS-by-
subtraction(74, 23, 24) has had several important applications in the literature and is
implemented under GenomicSEM(25). Our primary analyses using this tool encountered
computational singularity issues due to the high genetic correlation between the two input
datasets (i.e., AD GWAS and GWAX). Therefore, we applied an alternative strategy to
perform GWAS-by-subtraction based on our previous work aimed at decomposing direct
and parental genetic effects on children’s outcomes(26). This approach produces closed-
form estimates for the main parameters of interest, i.e., SNP effects on the non-AD factor
Fnon (Figure 3). We have implemented this approach in a software package named GSUB.
Compared to GenomicSEM, GSUB produces consistent effect estimates with
comparable statistical power. It does not suffer from convergence issues and is
computationally much faster (Supplementary Figure 4; Supplementary Table 8;
Methods).

To elucidate the mechanisms behind the non-AD (i.e., bias) genetic component
underlying AD GWAX, we computed its genetic correlations with 50 complex traits. These
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include 40 complex traits we have used in previous analysis (Supplementary Tables 9-
10). In addition, due to EA’s highly divergent genetic correlations with AD GWAS and
GWAX (Figure 1C-D), we included three additional GWAS measuring different aspects
of EA and cognition in the analysis: the direct and indirect (i.e., parental) genetic effects
on EA estimated from family-based GWAS(26) and the non-cognitive component for
EA(74). Further, to compare with non-AD dementia, we included GWAS for Parkinson’s
disease(27), amyotrophic lateral sclerosis(28), frontotemporal dementia(29), and Lewy
body dementia(30). Finally, to investigate the effect of non-random participation, we
performed GWAS on “do not know parental illness” in UKB (Supplementary Figures 5;
Supplementary Tables 11), and family medical history awareness and participation of
family health history survey (Supplementary Figures 6-9; Supplementary Tables 12-
13) using data from the AllofUs research program (Methods). We included these
additional GWAS for genetic correlation estimation, increasing the total number of traits
to 50 in this analysis.
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Figure 4. Genetic correlation of the AD and non-AD factors in GWAX with other complex traits. Here, GWAS for
the AD factor is Kunkle et al. 2019 case-control GWAS (Methods) while genetic associations with the non-AD
component were obtained using GWAS-by-subtraction. 16 traits showing significant correlations with the non-AD factor
are plotted. Dots and intervals indicate point estimates and standard errors. Significant correlations with FDR < 0.05
are highlighted with white circles. Full genetic correlation results are reported in Supplementary Tables 3, 9 and 10.
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Figure 4 shows significant genetic correlations with the non-AD factor underlying GWAX.
16 traits reached statistical significance at FDR < 0.05. The non-AD GWAX component
exhibited substantial correlations with higher EA (cor = 0.26, p = 5.2E-11), indirect
(parental) effect on EA (cor = 0.53, p = 4.5E-4), cognition (cor = 0.19, p = 1.4E-4), and
the non-cognitive component(74) for EA (cor = 0.23, p = 1.4E-6). In addition, we observed
negative genetic correlations between the non-AD component with several health
outcomes such as major depressive disorder (cor = -0.11, p = 0.012), schizophrenia (cor
=-0.13, p = 8.3E-3), coronary artery disease (cor =-0.14, p = 2.8E-3), ADHD (cor =-0.17,
p = 0.012), epilepsy (cor = -0.20, p = 7.1E-4), and heart failure (cor = -0.24, p = 4.1E-4),
possibly suggesting survival bias in AD GWAX. That is, parents who have AD diagnosis
would have to have lived long enough to receive the diagnosis, thus having lower genetic
risks for other health issues due to the competing risk. Meanwhile, if some proxy
respondents have younger parents who have not reached the age of dementia onset,
they will not have lower genetic risks for other outcomes. Therefore, genetic footprints for
many health outcomes could partially explain the genetic differences between proxy
cases and controls. Indeed, we observed distinct age distributions between GWAX cases
and controls (Supplementary Figure 10). Compared to proxy AD cases, participants who
did not report parental AD history, along with their parents, tended to be younger.

Since the parental health history survey question in UKB, i.e., “Has/did your father
(mother) ever suffer from Alzheimer's disease/dementia?”, lacks a clear differentiation
between AD and other dementia, we examined whether genetic associations for non-AD
dementia could explain the biases in AD GWAX. Parkinson'’s disease, amyotrophic lateral
sclerosis, frontotemporal dementia, and Lewy body dementia all showed null results with
genetic correlation estimates close to zero (Supplementary Table 9), providing very
limited evidence to support this hypothesis.

A recent study(37) demonstrated a genetic basis for non-random survey response in UKB.
We next investigated whether participation in the family health history survey and
systematic misreporting of parental disease status may explain biases in AD GWAX. We
found significant genetic correlations between the non-AD component with participation
in the family health history survey (cor = 0.44, p = 1.1E-9) and (not) knowing parental
illnesses (cor =-0.18, p = 4.6E-3).

Reducing biases in GWAX

Having identified several potential sources of bias in AD GWAX, we next explored various
methods to correct for these biases in GWAX implementation. To reduce survival bias,
we applied two approaches in the literature to control for parental age and vital status in
the regression (Supplementary Table 14). Following Marioni et al. 2018, we excluded
parents younger than 65 and added parental age as a covariate in GWAX(5); following
Jansen et al. 2019, we constructed a continuous GWAX phenotype using parental AD
status, their age, and AD prevalence(6) (Methods). Using AD-EA genetic correlation as
a benchmark, both approaches reduced bias in GWAX (Figure 5). While the Marioni
approach showed a null genetic correlation with EA, the Jansen approach flipped AD-EA
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genetic correlation from 0.17 to -0.15 which became very close to the genetic correlation
based on case-control AD GWAS (cor =-0.13). We also examined the genetic correlation
with coronary artery disease as a benchmark for survival bias (Figure 5). The Marioni
approach substantially reduced the genetic correlation (cor = -0.081, p = 0.01), showing
a similar result compared to AD case-control GWAS. The Jansen approach yielded a
significant but positive genetic correlation with coronary artery disease (cor = 0.14, p =
1.5E-6).

EA Coronary artery disease

1 1
Kunkle et al. (2019){ — =—O— I - i
i |
1 1
AD GWAX+ : e € o !
| |
AD GWAX (Marioni approach) 1 —— —_——
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Genetic correlation

Figure 5. Genetic correlation of UKB AD GWAS and GWAX with educational attainments and coronary artery
disease. We included two approaches to correct for survival bias. Following Marioni et al. (2018)’s approach, we require
participants parental age (either current age or age at death) to be older than the AD onset age of 65 and including
parental age in covariates (Methods). Following Jansen et al. (2019), we ran a GWAS on a continuous phenotype
which was constructed based on parental AD status, parental age, and AD prevalence to quantify the disease load.
Dots and intervals indicate the point estimates and +/- one standard error for the estimate, respectively. Significant
results at an FDR cutoff of 0.05 are highlighted with white circles. Data for this plot is in the Supplementary Tables
14-15.

To reduce participation bias, we followed Schoeler et al.(32) and conducted a weighted
GWAS on parental AD status. We trained a LASSO regression model on whether a
survey participant reported parental illnesses using a random subset of UKB samples and
then performed weighted GWAS on the remaining samples (Methods). However, this
approach did not improve the genetic correlation estimates with EA (cor = 0.19, se =
0.046, p = 4.3E-5) or coronary artery disease (cor = -0.41, se = 0.078, p = 2.1E-7;
Supplementary Tables 14-15). We also explored using GWAS-by-subtraction to adjust
for participation bias by regressing out the participation GWAS from AD GWAX where the
participation GWAS was conducted using AllofUs samples (Methods). The residual
GWAS showed reduced genetic correlations with EA (cor = 0.11, p = 1.1E-4) and
coronary artery disease (cor = -0.18, p = 1.7E-9) but both correlations remained
statistically significant (Supplementary Tables 14-15).

To address the bias due to systematic over- or under-reporting in the parental health
history survey, we explored two different strategies. First, in our default GWAX
implementation, we have removed people who reported “do not know” in the parental
health history survey, thus already controlling for family health awareness to some extent.
To investigate whether this is a reasonable strategy, we implemented another GWAX with
people not knowing about parental health added as controls (Supplementary Table 14).
As expected, after this change we found further inflated genetic correlations between AD
and higher EA (cor = 0.21, p = 7.7E-19; Supplementary Table 14) and lower risk for
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coronary artery disease (cor = -0.33, p = 2.5E-26; Supplementary Table 15). Additionally,
we once again utilized GWAS-by-subtraction, this time regressing out the “do not know
parental illness” genetic component from AD GWAX (Methods; Supplementary Figure
11). We estimated the residual GWAS’ genetic correlations with EA and coronary artery
disease and obtained substantially reduced yet still significant correlations (cor = 0.07, p
= 0.027 with EA; cor = -0.26, p = 1.3E-13 with coronary artery disease; Supplementary
Tables 14-15).

Finally, we note that although both the Marioni and Jansen approaches were primarily
designed for reducing survival bias alone, they also removed some reporting bias. After
correction, AD GWAX had null genetic correlations with “do not know parental illness”
(cor=-0.03 and 0.087, p = 0.54 and 0.06 for Marioni and Jansen approaches, respectively;
Supplementary Tables 16-17).

EA Coronary artery disease
1 1
1 1
AD GWAX - = e I
\ :
1 1
s 1 il s 1
AD GWAX (Marioni approach)- . y
| |
1 1

— — 1 1 — —
AD GWAX (Jansen approach)- ! ® METAL )
: GenomicSEM :
1 1
0.2 0.1 0.0 0.1 0.2 0.1 0.0 0.1

Genetic correlation

Figure 6. Genetic correlation of meta-analyzed AD with EA and coronary artery disease. \We show meta-analysis
results based on GWAS from Kunkle et al. (2019) and three sets of AD GWAX. Results based on two meta-analysis
approaches, i.e., METAL(33) and GenomicSEM(25), are also compared. We used METAL to combine GWAX based
on parental AD history with GWAS associations. Since GenomicSEM requires at least three studies as input, we meta-
analyzed GWAS, paternal GWAX, and maternal GWAX. Data for this plot is in Supplementary Tables 14-15.

Meta-analysis of GWAS and GWAX associations

AD GWAX is often meta-analyzed with clinically diagnosed case-control GWAS summary
statistics to boost statistical power. Next, we investigate whether accounting for
heterogeneity when meta-analyzing GWAS and GWAX could reduce biases in the
combined association results. We explored two approaches: METAL(33) is a common
approach for meta-analysis and GenomicSEM was recently proposed as an alternative
strategy that can account for measurement error and phenotype heterogeneity in GWAX-
GWAS meta-analysis(72, 20). Figure 6 illustrates the genetic correlations of the meta-
analyzed outcomes based on two meta-analytic approaches with EA and coronary artery
disease. Compared to results in Figure 5, meta-analyzing GWAX with GWAS produces
genetic correlations somewhere in-between those given by GWAX and GWAS. It was
also clear that meta-analysis alone cannot sufficiently remove all the bias. The two meta-
analytic methods produced mostly comparable results, highlighting the importance of
reducing biases in GWAX analysis instead of relying solely on post hoc bias reduction
during meta-analysis.
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Discussion

In recent years, GWAX has emerged as a crucial study design for complex trait genetics
in general and AD genetic research in particular, gaining popularity due to its ability to
leverage mid-aged population data to study late-onset health outcomes. The validity of
GWAX was supported by two types of evidence in the literature: similar effect size
estimates for top SNP findings and high genetic correlation between GWAS and GWAX
based on genome-wide data. Some critiques have been raised concerning the GWAX
design, mostly focusing on measurement errors in family health history survey. Escott-
Price and Hardy(77) argued that parental AD cases inferred from vaguely defined surveys
may encompass both AD and non-AD dementia cases, each with distinct genetic
underpinnings, which would attenuate genuine genetic associations for AD. More recently,
Grotzinger et al. demonstrated that naively combining GWAS and GWAX without
accounting for heterogeneity among the associations will lead to substantial downward
bias in heritability estimation(72). Despite these critiques, GWAX has become an integral
component of every recent AD GWAS(5-10), raising concerns about quality of reported
associations and prospect of follow-up studies based on GWAS findings.

In this paper, we revealed pervasive and systematic biases in AD GWAX associations. In
particular, AD GWAX yielded an unexpected positive genetic correlation with EA, and
such biases are present in almost all published AD GWAS that included proxy AD cases.
The significance of this issue is two-fold. First, the biases identified in our analyses are
not just speculations of some negligible issue in empirical applications. We demonstrated
substantial divergence of AD GWAS and GWAX in some aspects due to these biases.
Second, an important social factor at the center of many of these biases is education — it
is known to associate with longevity, parent-child relationship, and general health
awareness(34). But because cognition is such a crucial marker for AD and is commonly
used in dementia research, biases caused by education/cognition become particularly
important in AD genetics research and may give misleading results if not handled properly,
complicating diagnosis, treatment, and the design and testing of new drugs. We
investigated two types of analyses that are frequently done in genetic epidemiology
studies of AD: predicting late-life cognition using AD PRS and estimating causal
(protective) effect of education on AD using Mendelian randomization. Indeed, both
analyses are substantially influenced by biases in GWAX.

Despite the strong evidence for bias, the source of such bias was not clearly understood.
In addition to genuine AD associations, we hypothesized that there could be at least three
types of mechanisms contributing to bias in GWAX findings. First, only people with
parents who lived long enough can report parental AD diagnosis. Without adjusting for
such survival bias, we expect to see spurious negative genetic correlations between AD
GWAX and other health outcomes. That is, genetic variants that are protective for other
diseases will appear to increase the risk of AD because they increase longevity. Second,
people who are more aware of their parents’ health are more likely to report parental AD
diagnosis. This could be affected by people’s general awareness of health issues, but
may also be explained by people’s relationship with their parents, whether they grew up
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in single-parent families, parents’ socioeconomic status, and other complex socio-
environmental factors. Third, parental AD cases reported in the UKB parental health
survey may include non-AD dementia cases. Therefore, we expect genetic associations
with other types of dementia to explain some differences between AD GWAS and GWAX.
Using an innovative GWAS-by-subtraction strategy(74) (with our novel closed-form
implementation), we quantified genetic effects underlying AD GWAX that are not
explained by genuine AD associations. We found substantial evidence for survival bias,
supported by negative genetic correlations of the non-AD (bias) component with many
health outcomes. We also found genetic correlations with survey participation and
awareness of parental health history, which suggest non-random participation and
reporting in UKB survey as a possible source of bias. We did not find evidence for other
dementia associations in AD GWAX, although this is possibly explained by the lower
statistical power in current non-AD dementia studies.

We also investigated several approaches to reduce biases in AD GWAX. We
demonstrated that controlling for parental age and vital status could effectively reduce
survival bias. In particular, the approach which creates a continuous disease risk
phenotype based on parental age(6) produced education genetic correlation results
comparable to AD case-control GWAS. However, one potential limitation of this approach
is that it does not produce SNP effect sizes on a similar scale to case-control studies,
which creates challenges in the interpretation and some applications requiring effect sizes.
While weighted least squares is a common approach to account for non-random study
participation(32), it did not give promising results in our analysis. Excluding individuals
who do not know about parental health from the analysis and residualizing GWAX on
genetic associations with parental health awareness both reduced the spurious AD-EA
genetic correlation. We note that the approaches designed to remove survival bias also
reduced some participation and reporting biases, suggesting entangled mechanisms
behind these possibly over-simplified labels for different sources of bias. This provides a
potential one-stop solution to multiple sources of bias but its effectiveness still remains to
be carefully investigated in the future. We also note that these biases could not be
mitigated by a simple meta-analysis with AD case-control GWAS, further highlighting the
importance of improving the quality of GWAX analysis. Finally, besides the issues we
have detailed in this study, many association mapping approaches being used in GWAX
studies appear statistically poorly justified. For example, AD GWAX sometimes combine
clinically diagnosed cases and proxy cases together in logistic regression without properly
scaling the SNP effect size according to the proxy case-control design(7, 9). Some
studies combine both sibling and parental proxy cases(3, 7, 9) which could introduce
additional survival bias and other complications. Some other studies meta-analyze GWAX
associations based on maternal and paternal AD histories without accounting for the
sample overlap between them(5). There is an urgent need to improve the general
statistical methodology for handling family history outcomes in genetic association studies.

Our study has several limitations. First, we treated the AD case-control GWAS as the gold
standard throughout the paper, but it remains plausible that some issues could also affect
the analysis based on AD clinical diagnosis. For example, the significant genetic
correlation between Kunkle et al. 2019 GWAS and lower risk for coronary artery disease
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(Figure 5) is suggestive of uncorrected survival bias in AD GWAS. In fact, GWAX
following the Jansen approach showed a positive genetic correlation with coronary artery
disease. It is unclear if this is caused by limitations in the bias-removal approach or
correctly recovering shared genetics between AD and cardiovascular disease risk(35, 36).
Second, it is unclear what metrics should be used to benchmark the performance of
GWAX. In this study, we used the genetic correlations of AD with EA and coronary artery
disease to quantify the effectiveness of bias-reduction approaches. But fully addressing
issues in GWAX would require replication and functional validation of findings. Third, the
non-presentiveness of UKB participants is well-documented(37-39), but it has been
suggested that some sampling issues in UKB are not observed in other cohorts(38).
Additionally, we only focused on individuals of European descent in our analysis. It is an
important future direction to investigate how these issues generalize to other ancestries
and cohorts.

Taken together, our findings bear significant implications for the field, as they uncover an
urgent, ubiquitous, yet understudied problem hidden in plain sight. Given its popularity
and the potential of creating misleading results, it is of great urgency to reassess the
statistical foundation of GWAX. We urge the research community to critically reconsider
their utilizations of family history-based proxy phenotypes and adopt a more cautious and
rigorous approach when drawing conclusions based on GWAX findings. An immediate
remedy for all future studies is to release separate GWAS and GWAX summary statistics
for research use, although fully addressing these issues will most likely require
tremendous efforts in results validation and development of novel statistical
methodologies.

Methods
GWAS analysis in UKB

We conducted GWAS in UKB for parental AD history and parental illness awareness
using Regenie(40) while controlling sex, year of birth, and genotyping array (data field
22000 in UKB) as fixed effect covariates. Population stratification was accounted for in
the ridge regression step of Regenie which is similar to a linear mixed model approach
without having to compute the genetic relatedness matrix. We excluded participants with
conflicting genetically inferred (data field 22001) and self-reported sex (data field 31),
those who withdrew from the study, and those that are recommended to be excluded by
UKB (data field 22010). Individuals of European ancestry were identified from principal
component analysis (data field 22006). We kept only the SNPs with a missing call rate <

0.01, minor allele frequency =0.01, and Hardy-Weinberg equilibrium test P value =1E-
6.

Parental AD history (i.e., the outcome in AD GWAX) was derived from survey responses
to questions regarding the “ilinesses of father” (data-field 20107) and “illness of mother”

(data-field 20110). Responses options include “Do not know”, “Prefer not to answer”,
“‘None of the above”, or one of the twelve diseases including “Alzheimer’s
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diseases/dementia”. Participants were coded as proxy cases if either parent had AD, and
as controls if both parents were not affected by AD. Samples were removed from analysis
if otherwise. Additionally, participants self-identified as adopted (data-field 1767) were
excluded from the study. We identified 47,993 proxy cases and 315,096 controls in the
parental AD GWAX.

The parental illness awareness phenotype was derived from UKB data fields 20107 and
20110. Cases were those who selected “Do not know (group 1)” or “Do not know (group
2)” for either father or mother’s ilinesses. Controls were those who selected “None of the
above” or any disease in both groups for both father and mother’s illnesses. Others were
excluded from the analysis. 59,471 cases and 339,170 controls were identified.

GWAS analysis in AllofUs

The AllofUs research program is a nationally representative cohort in the US with a goal
of recruiting 1 million participants. We conducted GWAS using AllofUs samples for two
phenotypes: participation of the family health history survey and family medical history
awareness. The family health history survey is an optional module and only a subset of
AllofUs samples participated in this module. We determined survey participation status
by checking whether an individual answered the first question in this module, which reads,
‘How much do you know about illnesses or health problems for your parents,
grandparents, brothers, sisters, and/or children?” This question has four possible
response options: “none at all”, “some”, “a lot”, and “skip”. The GWAS on family medical
history awareness was based on the answers to this question. We coded the responses
as follows, “none” as 0, “some” as 1, and “a lot” as 2. Individuals selecting “skip” were
excluded from the analysis.

For both GWAS in AllofUs, we used independent samples of European descent and
adjusted for biological sex, standardized age, square of the standardized age, and top 16
genetic PCs. GWAS was performed using Hail on version 7 of the whole genome
sequencing data. Genetic ancestry inferred from PCs and genetic relatedness between
participants were provided in AllofUs. Samples flagged as outliers were excluded from
analysis. We kept only the SNPs with a missing call rate < 0.01, minor allele frequency

= 0.01, and Hardy-Weinberg equilibrium test P value = 1E-6. Sample size for the GWAS

on family medical history awareness is 77,579. There were 78,027 cases (participants)
and 47,519 controls (non-participants) in the GWAS on participation of the family medical
history survey.

Measurement error and winner’s curse correction
We used Deming regression implemented in R package “mcr” to correct for measurement

errors in SNP effect estimates. We used the “mcreg()” function and specified the ratio of
the error variances to be 42,706/41,679 where 42,706 is the effective sample size (sum
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of all the effective sample sizes from all contributing cohorts) for Kunkle et al. (2019) AD
GWAS, and 41,649 is the effective sample size for the AD GWAX we performed in UKB.
We used R package “WinCurse” to correct for winner’s curse in the Kunkle et al. (2019)
GWAS. The adjusted SNP effect size followed formulas in Turley et al.(47)

Heritability and genetic correlation estimation

We used GNOVA(42) to estimate genetic correlations. We corrected GWAS sample
overlap in GNOVA if bivariate LDSC(43) outputs an intercept significantly different from
zero at P < 0.05. We used LDSC to estimate heritability.

PRS regression analysis

We evaluated the performance of AD PRS in HRS. The HRS is a nationally representative
longitudinal biennial panel consisting of around 42,000 Americans from 26,000
households since 1992. A global cognition composite score was derived from a 27-point
scale that includes: 1) an immediate and delayed 10-noun free recall test to measure
memory (0 to 20 points); 2) a serial sevens subtraction test to measure working memory
(0 to 5 points); and 3) a counting backwards test to measure speed of mental processing
(0 to 2 points). There are 10 waves of data available: once every 2 years from 2000 to
2018.

We obtained imputed genetic data from a subset of around 15,000 participants who had
their genetic information collected between 2006 and 2012 (NIAGADS accession number
NG00119.v1). PRS were calculated using two different approaches: PRS-CS(44) and
clumped significant SNPs in Kunkle et al. 2019 GWAS(73). Only overlapping SNPs that
exist in all GWAS summary statistics as well as HRS genotype data were used. We used
the PRS-CS-auto implementation to estimate SNP posterior effect sizes from genome-
wide summary statistics. The second PRS approach weighted allele counts with effect
sizes obtained from GWAS summary statistics and only included independent SNPs
reaching genome-wide significance in Kunkle et al. 2019 GWAS. Clumping was executed
using PLINK1.9, with clumping parameters set at r2 of 0.1 and kb of 1000. We also
generated an additional set of PRS excluding the APOE region by removing all SNPs in
the region (chr19: 45,116,911-46,318,605; GRCh37).

To analyze longitudinal cognition data in HRS, we used random intercepts in linear mixed
model to account for within-sample (repeated measures) and within-family (related
samples) correlations. The regression analyses were performed using the “Ime4”
package in R, where we regressed cognitive scores against PRS while controlling for age,
age-squared, education years, year respondent entered study, sex, and top 5 genetic
PCs. Individual and family IDs were coded as random effects. Only HRS participants of
European descent were included in the analysis with a total sample size of 12,018.
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Causal effect estimation

Mendelian randomization was conducted using the “TwoSampleMR” package in R (45).
To infer the causal effect of EA on AD, we first clumped EA GWAS summary statistics
with r2 = 0.001, kb = 10000 in PLINK1.9, then we selected only SNPs reaching genome-
wide significance (p < 5E-8) as instruments. The “mr” function was used to estimate
causal effects based on the inverse variance weighted approach.

GSUB: a new implementation for GWAS-by-subtraction

Consider the GWAS-by-subtraction model shown in Figure 3 where we aim to subtract
genuine AD associations from GWAX associations based on AD family history (i.e.,
decomposing GWAX into AD and non-AD components). There are five parameters to
estimate (i.e., 411122, and y; ;) and the main parameter of interest (i.e., the SNP effect y,
on the non-AD component) is highlighted in red. First, we can write the expressions for
AD and AD family history phenotypes in the liability scale:
AD = /111FAD + qu
= /111(]’16 + uFl) + uy,
= BewasG + e,
AD family history = AypFuon + A2Fap + uy,
= AZZ(VZG + uFZ) + Alz(ylG + uFl) + uyz
= BewaxCG + e,
The variances and covariances of the genetic components of the two phenotypes are:
Var(11Fap) = 241, Var(Fyp) = A4, = hi
Var(Ay2Fpon + Ai2Fap) = 25,Var (Fyon) + A3,Var(Fap) = A3, + 23, = h3
Cov(A11Fap, A22Fpon + A12Fap) = AiidioVar(Fup) = Ay1dip = 01
Here, G is the SNP allele count, F,, and F,,,, are the two latent factors (with variance of
1) underlying AD and AD family history. Sswas and Sewax are the SNP effect sizes in

GWAS and GWAX, respectively. u and e are residuals. From the first two equations, we
have

Bewas = 1111

Bowax = A22Y2 + 1211

Based on this, we obtain the expressions for y; and y,:

_ Bowas
L=
A11

_ Bowax — AM2v1 _ Bewax — A12Bewas/ 1
V2 = =
A2z Az2

From the third to fifth equations, we could solve for the 3 loading factors:
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0.
Aoy = |h5 =21, = |h3 _ﬁ = [h5(1—13)
1
In order to estimate the five parameters, we can plug in the SNP effect size estimates
and their standard errors from the summary statistics, the LDSC heritability estimates and
genetic covariance between the two traits:

~ Bew as
V1=

~

hi
Az — BGWAX - BGWASa-lz/E%
,’Eg - 6122/E%
The standard error for y; can be approximated by
SE(Vl) ~ SE(BGWAS)

n2
hl

We note that based on this model setting, GWAS for the AD factor is essentially very
similar to the input AD case-control GWAS.

To obtain the standard errors for 7,, we need the covariance between #; and §,. When

there are sample overlaps between GWAS and GWAX, their covariance can be estimated
using the intercept from the bivariate LDSC:

1 A N2
SE(72) ~ 5 \[SE(IBZ) +(

where gcov;,; is the bivariate LDSC intercept.

~ 2 ~

A A A R R

22) 68 - 23 geominSE (B)sE(4.)
11 11

We note that similar derivations for the point estimate of 7, have been previously shown
in the supplementary note of Demange et al. (2021). Here, we provide details for the
standard error estimation and have implemented the approach as an open-source
software.

Simulations
We conducted simulations to compare our analytical approach for GWAS-by-subtraction

with GenomicSEM. We used HapMap 3 SNP genotype data (853,041 SNPs) from
independent UKB samples of European descent. We performed simulations for both
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quantitative traits (N = 200,000 and 100,000) and binary traits (N = 100,000; case
proportion = 20% and 10%). Each setting was repeated 100 times.

Following Figure 3, we first simulated SNP effect sizes on each latent factor from a
normal distribution with mean 0 and variance 1/M, where M is the number of causal SNPs.
The effect sizes were then transformed by dividing 2p(1 — p), where p is the minor allele
frequency of each SNP. The latent factors F1 and F2> were computed as F;, = Zﬁ-”:l Gj P

and F, = Zj{l Gj B, respectively, where G; is the allele count (i.e., 0, 1, or 2) for the jth
SNP. Then, we calculated the observed continuous trait or disease liabilities as follows.
Y, = A1F; + e
Y, = A,F, + A,,F, + e,
For binary trait, we set samples at the top 10% or 20% disease liability as cases and
others as controls. In each repeat, we randomly selected 10,000 causal SNPs for each

latent factor. We set 1,; = 0.5, 1,;, = 0.5, and 1,, = V0.5.

After simulating phenotype values, we performed GWAS using Plink2.0 for each
phenotype. Then, we applied GWAS-by-subtraction using both GenomicSEM and GSUB
to compare the type-I error and power. Due to the computational burden of GenomicSEM,
we randomly selecting 10,000 null SNPs for type-I error calculation in each repeat. Type-
| error (and power) were calculated as the percentage of null (and causal) SNPs with P
values < 0.05.

Approaches for bias reduction in GWAX

We explored several strategies to reduce biases in GWAX. To address survival bias, we
implemented two approaches. Following Marioni et al. 2018, we required both parents to
be older than 65 which was determined by either current age (data-fields 2946 and 1845)
or age at death (data-fields 1807 and 3526). We also included parental age (either current
age or age at death) as a fixed-effect covariate. There were 36,309 cases and 199,969
controls in this GWAX. Following Jansen et al. 2019, we created a continuous “disease
load” based on parental AD status, parental age, and AD prevalence in the population:
each affected parent contributed 1 while each unaffected parent contributed
min{(100 — age) /100, 0.32} to the disease load phenotype, where 0.32 is the population
prevalence of AD. Those with unknown parental AD status or parental age were excluded
from the analysis giving a sample size of 355,501. We performed GWAS on this
continuous outcome while controlling for sex, genotyping array, year of birth, and
assessment center (data field 54).

We used a weighted GWAS approach to account for non-random survey participation.
Following Schoeler et al.(32), we used 14 variables to train a participation prediction
model. These variables comprise five continuous ones: age, body mass index, weight,
height, and the age at which full-time education was completed, and nine categorical
variables: household size (1-7 or more individuals), sex (male or female), alcohol
consumption frequency (never to daily), smoking habits (never, previous, or current
smoker), employment status (employed, economically inactive, retired, or unemployed),
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income brackets (from <18k to >100k), obesity classification (underweight, healthy weight,
overweight, or obese), general health status (poor, fair, or good), and urbanization level
(from village/hamlet to urban). We identified 28,179 independent non-reporting
individuals (i.e., the non-adopted European ancestry samples that were not included in
AD GWAX) for parental AD history. We then randomly sampled the same numbers of
individuals who reported parental illnesses to match with these non-reporting individuals.
We used LASSO regression in “glmnet” package in R to predict the reporting of parental
illnesses. The model included all main effects and two-way interaction terms, with the
shrinkage parameter lambda being determined via 5-fold cross-validation. We then
conducted weighted GWAS on parental AD history with remaining samples using
weighted least squares in R. We used the Huber-White estimator for the variance of the
estimates implemented in the “sandwich” package in R. The sampling weights were
calculated as w = (1 — p)/p, where p represents the probability of reporting, predicted
through the trained LASSO model. GWAS covariates included sex, year of birth, year of
birth squared, genotyping array, and the top 20 PCs. In addition, we also explored using
GWAS-by-subtraction to remove participation bias, where we regressed out the
participation GWAS from the UKB AD GWAX (Supplementary Table 14). The
participation GWAS was conducted using the AllofUs samples which we have described
in detail.

We applied two approaches to adjust for the reporting bias. The first approach is to include
those who selected “Do not know” when answering illnesses of father or illnesses of
mother in the analysis as controls, and then repeated the AD GWAX (N = 47,993 cases
and 349,165 controls). The second approach is to apply GWAS-by-subtraction to regress
out the GWAS on parental illness awareness from AD GWAX.

URLs

GSUB: https://github.com/qlu-lab/GSUB

R package “mcr”: https://cran.r-project.org/web/packages/mcr/index.html

R package “WinCurse”: https://github.com/zrmacc/WinCurse/tree/master

R package “TwoSampleMR”: https://mrcieu.github.io/TwoSampleMR/

R package “sandwich”: https://cran.r-project.org/web/packages/sandwich/index.html
Regenie: https://github.com/rgcgithub/regenie

GNOVA: https://github.com/qlu-lab/GNOVA-2.0

LDSC: https://github.com/bulik/ldsc

Data and code availability

Summary statistics for the AD GWAX are available at http://qlu-lab.org/data.html. GSUB
software is freely available at https://github.com/qglu-lab/GSUB.
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