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Abstract 
 
Almost every recent Alzheimer9s disease (AD) genome-wide association study (GWAS) 
has performed meta-analysis to combine studies with clinical diagnosis of AD with studies 
that use proxy phenotypes based on parental disease history. Here, we report major 
limitations in current GWAS-by-proxy (GWAX) practices due to uncorrected survival bias 
and non-random participation of parental illness survey, which cause substantial 
discrepancies between AD GWAS and GWAX results. We demonstrate that current AD 
GWAX provide highly misleading genetic correlations between AD risk and higher 
education which subsequently affects a variety of genetic epidemiologic applications 
involving AD and cognition. Our study sheds important light on the design and analysis 
of mid-aged biobank cohorts and underscores the need for caution when interpreting 
genetic association results based on proxy-reported parental disease history. 
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Introduction 
 
Genome-wide association studies (GWAS) have greatly advanced our understanding of 
the genetic underpinning of complex diseases, unveiling numerous genotype-phenotype 
associations(1). The tremendous success of GWAS in recent years can be attributed, in 
part, to the emergence of population biobanks, such as the UK Biobank (UKB)(2), which 
provide extensive genotype and phenotype data on large samples. However, a persistent 
challenge in biobank-based GWAS applications is that these cohorts mainly consist of 
mid-aged individuals who are too young to have a diagnosis of late-onset diseases. To 
address this limitation, Liu et al.(3) introduced GWAS-by-proxy (GWAX) based on a 
simple idea4although biobank participants may not have their own diagnosis on late-life 
disease outcomes, they report their parents9 diagnoses through the family health history 
survey; they also (indirectly) provide parental genetic data, as their biological child. In 
their paper, Liu et al. demonstrated the efficacy of GWAX through replicating risk loci 
identified in case-control GWAS for several diseases including Alzheimer9s disease 
(AD)(3). Since then, GWAX has quickly gained popularity in complex disease genetic 
research, particularly for neurodegenerative diseases. In fact, GWAX has become so 
popular in AD genetic studies that every recent AD GWAS performed meta-analysis to 
combine associations from clinically diagnosed AD cases-controls(4) with GWAX proxy 
associations to boost sample size and statistical power(5-10). Further, the largest AD 
GWAS to date(9) has stopped the earlier convention of sharing separate association 
results for GWAS and GWAX in their study. Instead, only the meta-analyzed association 
results were made available to the research community.  
 
However, methodological issues in GWAX and the quality of its association results have 
not been fully investigated. The Liu et al. 2017 paper provided evidence that top genome-
wide significant loci yielded similar results in GWAS and GWAX analyses(3). Since then, 
critiques of GWAX have mostly focused on the imprecision and heterogeneity in survey 
data (i.e., measurement error in parental health history) and their implications in certain 
genetic applications (e.g., heritability estimation)(11, 12). There have been few studies 
investigating potential systematic biases and methodological limitations in GWAX, 
particularly regarding the infinitesimal biases that do not appear substantial when 
focusing on top GWAS loci with large effects but could severely bias applications that 
involve more complete aggregations of genome-wide association estimates, such as 
genetic correlation estimation and polygenic risk score (PRS). 
 
In this study, we report evidence of widespread divergent findings between GWAX based 
on family health history and case-control GWAS for AD(13), revealing pervasive biases 
in current GWAX approaches. We implement GSUB, a GWAS-by-subtraction 
strategy(14), to quantify the biases originating from different sources, revealing that AD 
GWAX suffers from substantial survival bias from differential parental lifespans, 
participation bias in the parental health history survey, and reporting bias in the parental 
health history survey. We demonstrate that almost all existing GWAX approaches 
produce counter-intuitive and improbable positive associations between higher 
cognition/education and dementia risk. We show that several common genetic 
epidemiological applications involving AD and cognition yield mixed findings due to this 
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issue in existing AD genetic studies. We also employ a variety of methods to reduce these 
biases and benchmark their performance. Our findings emphasize an urgent need for 
caution when interpreting GWAX association results and provide guidance on future study 
designs involving proxy phenotypes derived from family health history.  
 

 

Figure 1. Comparing top association findings and genetic correlation results of AD GWAS and GWAX. (A) 
Manhattan plot for AD GWAX (upper) and GWAS (Kunkle et al. 2019; lower). The y-axis is capped at 20 for better 
visualization. Horizontal lines mark the genome-wide significance cutoff of 5.0E-8. (B) GWAS and GWAX effect size 
estimates for 20 genome-wide significant SNPs identified in Kunkle et al. 2019. GWAX effect sizes were adjusted using 
the 0.5 genetic relatedness between parents and children. The APOE locus was excluded due to its extreme effect 
size. (C) Genetic correlations of AD GWAX and GWAS with 40 complex traits. Traits with significant correlations 
(FDR<0.05) with both GWAS and GWAX are highlighted and labeled. HDL-C: high-density lipoprotein cholesterol. (D) 
Genetic correlation of AD and educational attainment based on 10 AD genetic studies published between 2013 and 
2022. In (B)-(D), dots and intervals indicate point estimates and standard errors. Significant results at an FDR cutoff of 
0.05 are highlighted with white circles in (D).  

 
 
Results 
 
GWAX replicates top AD risk loci but shows discrepant genetic correlations with 
other complex traits 
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To assess the validity of GWAX for AD, we first aimed to replicate the genome-wide 

significant loci (p f 5e-8) identified in a recent AD case-control study(13). We performed 

GWAX using UKB participants of European descent who reported parental history of 
AD/dementia (N = 47,993 proxy cases and 315,096 proxy controls; Methods). AD GWAX 
produced similar association results compared to GWAS (Figure 1A-B, Supplementary 
Table 1). Consistent with previous findings(3), GWAS and GWAX effect estimates were 
highly correlated (cor = 0.97 with APOE excluded), but we found a substantial attenuation 
in GWAX effect sizes (regression slope = 0.63). Such an attenuation is not explained by 
measurement errors in association effects (Supplementary Figure 1) but may be 
explained by winner9s curse: we obtained a regression slope of 1.15 (standard error [se] 
= 0.20) after correcting for winner9s curse(15) (Methods). Similar results were found using 
the top SNPs identified in GWAX (Supplementary Table 2 and Supplementary Figure 
1). 
 
Discrepancies between GWAX and GWAS became evident in analyses leveraging 
genome-wide data which include single-nucleotide polymorphisms (SNPs) not reaching 
Bonferroni-corrected statistical significance. We estimated genetic correlations of AD 
GWAS and GWAX with 40 complex traits (Methods; Supplementary Tables 3-4). AD 
GWAS and GWAX are significantly correlated (cor = 0.63, p = 3.9E-31), but they showed 
divergent correlations with multiple traits (Supplementary Figure 2). For example, total 
cholesterol and hippocampal volume showed significant genetic correlations with AD 
GWAS (cor = 0.13 and -0.23, p = 0.01 and 3.1E-4, respectively) but not with GWAX (cor 
= -0.061 and -0.073, p = 0.23 and 0.23, respectively). Attention-deficit/hyperactivity 
disorder (ADHD) and coronary artery disease showed substantially stronger correlations 
with lower AD risk in GWAX (cor = -0.16 and -0.31; p = 2.9E-6 and 3.4E-21) than in GWAS 
(cor = 0.05 and -0.1; p = 0.18 and 9.5E-4).  
 
Only seven traits had significant correlations with AD in both GWAS and GWAX under a 
false discovery rate (FDR) cutoff of 0.05, out of which three correlations had flipped 
directions (Figure 1C). In particular, educational attainment (EA), a well-documented 
negative correlate of AD risk(16, 17), showed an expected negative genetic correlation 
with AD GWAS (cor = -0.13, p = 2.4E-5), but a significant yet positive correlation with AD 
GWAX (cor = 0.17, p = 1.7E-11). To see if this is a consistent finding across AD studies, 
we calculated and summarized the genetic correlations between EA and 10 AD studies 
published between 2013 and 2022(3, 5-9, 13, 18-20) (Supplementary Table 5). All 
studies showed a consistent pattern: higher education is correlated with lower AD risk in 
case-control studies but is correlated with higher AD risk when using family history as the 
proxy, and results based on GWAS-GWAX meta-analysis fall in-between (Figure 1D). 
The largest AD genetic association study to date(9), a meta-analysis of case-control 
GWAS and family history-based GWAX, showed a positive genetic correlation with EA 
but did not reach statistical significance (cor = 0.03, p = 0.18). 
 
 
GWAX biases risk prediction and causal inference applications involving AD and 
cognition 
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Given the concerningly divergent AD-EA genetic correlations based on GWAS and 
GWAX, we investigated two types of common genetic epidemiologic applications 
involving AD and cognition. First, we quantified the predictive performance of AD PRS on 
late-life cognition in the Health and Retirement Study (HRS). We calculated three different 
PRS from AD GWAS(13), GWAX, and a GWAS-GWAX meta-analysis(9), and associated 
these scores with the global cognition composite score while controlling for age, age-
squared, education years, year respondent entered study, sex, and top 5 genetic principal 
components (PCs) (N = 12,018; Methods). GWAS-based PRS exhibited a strong 
association with lower cognition (effect = -0.05, p = 2.5E-11) while GWAX-based PRS did 
not show significant associations (effect = -0.0017, p = 0.80; Figure 2A). PRS based on 
the Bellenguez et al. 2022 meta-analysis was associated with lower cognition in HRS but 
showed an attenuated effect size (effect = -0.03, p = 1.2E-7) despite the substantially 
larger sample size compared to the earlier case-control study. We obtained similar results 
after removing APOE from all PRS (Supplementary Figure 3; Methods). We also 
investigated an alternative PRS approach using only variants reaching genome-wide 
significance in Kunkle et al. 2019 case-control GWAS. The scores based on GWAS and 
GWAX effects showed very similar performance (Supplementary Figure 3), suggesting 
that biases in PRS analysis were mostly driven by SNPs not reaching statistical 
significance in AD GWAS. 
 

 
Figure 2. AD GWAX biases risk prediction and causal inference. (A) Association of AD PRS and late-life cognition 
in the HRS cohort. PRS were computed from genome-wide association results using the PRS-CS approach. (B) Causal 
effect of EA on AD risk estimated from Mendelian randomization. For both panels, dots and intervals indicate point 
estimates and standard errors. Significant results at an FDR cutoff of 0.05 are highlighted with white circles. Data for 
this plot are in Supplementary Tables 6-7. 

 
Education has been hypothesized to have a causal protective effect against AD. Many 
studies have investigated this hypothesis with mixed results(16, 17, 21, 22). Using 
Mendelian randomization, we estimated the causal effect of EA on AD risk (Methods). 
Once again, we observed inconsistent results between AD GWAS and GWAX (Figure 
2B). We identified a significant protective effect of EA on lower AD risk using AD case-
control GWAS (effect = -0.36; p = 8.6E-3). When GWAX was the outcome study, EA was 
estimated to increase AD risk although the effect was not statistically significant. A slightly 
positive but non-significant causal effect of EA on AD risk was also identified using the 
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Bellenguez 2022 meta-analysis. The discrepancies between AD GWAS and GWAX in 
these analyses underscore the need for a re-evaluation of GWAX applications in AD 
genetic studies.  
 

 
Figure 3. Schematic diagram for GWAS-by-subtraction. The main goal is to estimate genetic associations �! with 
the non-disease factor Fnon underlying parental disease history. �",! and �"","!,!! are the parameters that need to be 

estimated (Methods). 

 
 
GWAS-by-subtraction identifies potential sources of bias in AD GWAX 
 
Next, we applied a GWAS-by-subtraction approach to separate biases from AD genetic 
associations in GWAX. This approach assumes that GWAX associations can be 
explained by real AD signals (i.e., the AD factor FAD) and biases (i.e., the non-AD factor 
Fnon). It quantifies the genetic basis of the non-AD component by regressing out the AD 
case-control associations from GWAX results (Methods; Figure 3). GWAS-by-
subtraction(14, 23, 24) has had several important applications in the literature and is 
implemented under GenomicSEM(25). Our primary analyses using this tool encountered 
computational singularity issues due to the high genetic correlation between the two input 
datasets (i.e., AD GWAS and GWAX). Therefore, we applied an alternative strategy to 
perform GWAS-by-subtraction based on our previous work aimed at decomposing direct 
and parental genetic effects on children9s outcomes(26). This approach produces closed-
form estimates for the main parameters of interest, i.e., SNP effects on the non-AD factor 
Fnon (Figure 3). We have implemented this approach in a software package named GSUB. 
Compared to GenomicSEM, GSUB produces consistent effect estimates with 
comparable statistical power. It does not suffer from convergence issues and is 
computationally much faster (Supplementary Figure 4; Supplementary Table 8; 
Methods). 
 
To elucidate the mechanisms behind the non-AD (i.e., bias) genetic component 
underlying AD GWAX, we computed its genetic correlations with 50 complex traits. These 
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include 40 complex traits we have used in previous analysis (Supplementary Tables 9-
10). In addition, due to EA9s highly divergent genetic correlations with AD GWAS and 
GWAX (Figure 1C-D), we included three additional GWAS measuring different aspects 
of EA and cognition in the analysis: the direct and indirect (i.e., parental) genetic effects 
on EA estimated from family-based GWAS(26) and the non-cognitive component for 
EA(14). Further, to compare with non-AD dementia, we included GWAS for Parkinson9s 
disease(27), amyotrophic lateral sclerosis(28), frontotemporal dementia(29), and Lewy 
body dementia(30). Finally, to investigate the effect of non-random participation, we 
performed GWAS on <do not know parental illness= in UKB (Supplementary Figures 5; 
Supplementary Tables 11), and family medical history awareness and participation of 
family health history survey (Supplementary Figures 6-9; Supplementary Tables 12-
13) using data from the AllofUs research program (Methods). We included these 
additional GWAS for genetic correlation estimation, increasing the total number of traits 
to 50 in this analysis. 
 

 
Figure 4. Genetic correlation of the AD and non-AD factors in GWAX with other complex traits. Here, GWAS for 
the AD factor is Kunkle et al. 2019 case-control GWAS (Methods) while genetic associations with the non-AD 
component were obtained using GWAS-by-subtraction. 16 traits showing significant correlations with the non-AD factor 
are plotted. Dots and intervals indicate point estimates and standard errors. Significant correlations with FDR < 0.05 
are highlighted with white circles. Full genetic correlation results are reported in Supplementary Tables 3, 9 and 10.  
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Figure 4 shows significant genetic correlations with the non-AD factor underlying GWAX. 
16 traits reached statistical significance at FDR < 0.05. The non-AD GWAX component 
exhibited substantial correlations with higher EA (cor = 0.26, p = 5.2E-11), indirect 
(parental) effect on EA (cor = 0.53, p = 4.5E-4), cognition (cor = 0.19, p = 1.4E-4), and 
the non-cognitive component(14) for EA (cor = 0.23, p = 1.4E-6). In addition, we observed 
negative genetic correlations between the non-AD component with several health 
outcomes such as major depressive disorder (cor = -0.11, p = 0.012), schizophrenia (cor 
= -0.13, p = 8.3E-3), coronary artery disease (cor = -0.14, p = 2.8E-3), ADHD (cor = -0.17, 
p = 0.012), epilepsy (cor = -0.20, p = 7.1E-4), and heart failure (cor = -0.24, p = 4.1E-4), 
possibly suggesting survival bias in AD GWAX. That is, parents who have AD diagnosis 
would have to have lived long enough to receive the diagnosis, thus having lower genetic 
risks for other health issues due to the competing risk. Meanwhile, if some proxy 
respondents have younger parents who have not reached the age of dementia onset, 
they will not have lower genetic risks for other outcomes. Therefore, genetic footprints for 
many health outcomes could partially explain the genetic differences between proxy 
cases and controls. Indeed, we observed distinct age distributions between GWAX cases 
and controls (Supplementary Figure 10). Compared to proxy AD cases, participants who 
did not report parental AD history, along with their parents, tended to be younger. 
 
Since the parental health history survey question in UKB, i.e., <Has/did your father 
(mother) ever suffer from Alzheimer's disease/dementia?=, lacks a clear differentiation 
between AD and other dementia, we examined whether genetic associations for non-AD 
dementia could explain the biases in AD GWAX. Parkinson9s disease, amyotrophic lateral 
sclerosis, frontotemporal dementia, and Lewy body dementia all showed null results with 
genetic correlation estimates close to zero (Supplementary Table 9), providing very 
limited evidence to support this hypothesis. 
 
A recent study(31) demonstrated a genetic basis for non-random survey response in UKB. 
We next investigated whether participation in the family health history survey and 
systematic misreporting of parental disease status may explain biases in AD GWAX. We 
found significant genetic correlations between the non-AD component with participation 
in the family health history survey (cor = 0.44, p = 1.1E-9) and (not) knowing parental 
illnesses (cor = -0.18, p = 4.6E-3).  
 
 
Reducing biases in GWAX 
 
Having identified several potential sources of bias in AD GWAX, we next explored various 
methods to correct for these biases in GWAX implementation. To reduce survival bias, 
we applied two approaches in the literature to control for parental age and vital status in 
the regression (Supplementary Table 14). Following Marioni et al. 2018, we excluded 
parents younger than 65 and added parental age as a covariate in GWAX(5); following 
Jansen et al. 2019, we constructed a continuous GWAX phenotype using parental AD 
status, their age, and AD prevalence(6) (Methods). Using AD-EA genetic correlation as 
a benchmark, both approaches reduced bias in GWAX (Figure 5). While the Marioni 
approach showed a null genetic correlation with EA, the Jansen approach flipped AD-EA 
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genetic correlation from 0.17 to -0.15 which became very close to the genetic correlation 
based on case-control AD GWAS (cor = -0.13). We also examined the genetic correlation 
with coronary artery disease as a benchmark for survival bias (Figure 5). The Marioni 
approach substantially reduced the genetic correlation (cor = -0.081, p = 0.01), showing 
a similar result compared to AD case-control GWAS. The Jansen approach yielded a 
significant but positive genetic correlation with coronary artery disease (cor = 0.14, p = 
1.5E-6).  
 

 
Figure 5. Genetic correlation of UKB AD GWAS and GWAX with educational attainments and coronary artery 
disease. We included two approaches to correct for survival bias. Following Marioni et al. (2018)9s approach, we require 
participants parental age (either current age or age at death) to be older than the AD onset age of 65 and including 
parental age in covariates (Methods). Following Jansen et al. (2019), we ran a GWAS on a continuous phenotype 
which was constructed based on parental AD status, parental age, and AD prevalence to quantify the disease load. 
Dots and intervals indicate the point estimates and +/- one standard error for the estimate, respectively. Significant 
results at an FDR cutoff of 0.05 are highlighted with white circles. Data for this plot is in the Supplementary Tables 
14-15. 

 
To reduce participation bias, we followed Schoeler et al.(32) and conducted a weighted 
GWAS on parental AD status. We trained a LASSO regression model on whether a 
survey participant reported parental illnesses using a random subset of UKB samples and 
then performed weighted GWAS on the remaining samples (Methods). However, this 
approach did not improve the genetic correlation estimates with EA (cor = 0.19, se = 
0.046, p = 4.3E-5) or coronary artery disease (cor = -0.41, se = 0.078, p = 2.1E-7; 
Supplementary Tables 14-15). We also explored using GWAS-by-subtraction to adjust 
for participation bias by regressing out the participation GWAS from AD GWAX where the 
participation GWAS was conducted using AllofUs samples (Methods). The residual 
GWAS showed reduced genetic correlations with EA (cor = 0.11, p = 1.1E-4) and 
coronary artery disease (cor = -0.18, p = 1.7E-9) but both correlations remained 
statistically significant (Supplementary Tables 14-15).  
 
To address the bias due to systematic over- or under-reporting in the parental health 
history survey, we explored two different strategies. First, in our default GWAX 
implementation, we have removed people who reported <do not know= in the parental 
health history survey, thus already controlling for family health awareness to some extent. 
To investigate whether this is a reasonable strategy, we implemented another GWAX with 
people not knowing about parental health added as controls (Supplementary Table 14). 
As expected, after this change we found further inflated genetic correlations between AD 
and higher EA (cor = 0.21, p = 7.7E-19; Supplementary Table 14) and lower risk for 
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coronary artery disease (cor = -0.33, p = 2.5E-26; Supplementary Table 15). Additionally, 
we once again utilized GWAS-by-subtraction, this time regressing out the <do not know 
parental illness= genetic component from AD GWAX (Methods; Supplementary Figure 
11). We estimated the residual GWAS9 genetic correlations with EA and coronary artery 
disease and obtained substantially reduced yet still significant correlations (cor = 0.07, p 
= 0.027 with EA; cor = -0.26, p = 1.3E-13 with coronary artery disease; Supplementary 
Tables 14-15).  
 
Finally, we note that although both the Marioni and Jansen approaches were primarily 
designed for reducing survival bias alone, they also removed some reporting bias. After 
correction, AD GWAX had null genetic correlations with <do not know parental illness= 
(cor = -0.03 and 0.087, p = 0.54 and 0.06 for Marioni and Jansen approaches, respectively; 
Supplementary Tables 16-17).  
 

 
Figure 6. Genetic correlation of meta-analyzed AD with EA and coronary artery disease. We show meta-analysis 
results based on GWAS from Kunkle et al. (2019) and three sets of AD GWAX. Results based on two meta-analysis 
approaches, i.e., METAL(33) and GenomicSEM(25), are also compared. We used METAL to combine GWAX based 
on parental AD history with GWAS associations. Since GenomicSEM requires at least three studies as input, we meta-
analyzed GWAS, paternal GWAX, and maternal GWAX. Data for this plot is in Supplementary Tables 14-15. 

 
 
Meta-analysis of GWAS and GWAX associations 
 
AD GWAX is often meta-analyzed with clinically diagnosed case-control GWAS summary 
statistics to boost statistical power. Next, we investigate whether accounting for 
heterogeneity when meta-analyzing GWAS and GWAX could reduce biases in the 
combined association results. We explored two approaches: METAL(33) is a common 
approach for meta-analysis and GenomicSEM was recently proposed as an alternative 
strategy that can account for measurement error and phenotype heterogeneity in GWAX-
GWAS meta-analysis(12, 20). Figure 6 illustrates the genetic correlations of the meta-
analyzed outcomes based on two meta-analytic approaches with EA and coronary artery 
disease. Compared to results in Figure 5, meta-analyzing GWAX with GWAS produces 
genetic correlations somewhere in-between those given by GWAX and GWAS. It was 
also clear that meta-analysis alone cannot sufficiently remove all the bias. The two meta-
analytic methods produced mostly comparable results, highlighting the importance of 
reducing biases in GWAX analysis instead of relying solely on post hoc bias reduction 
during meta-analysis.  
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Discussion 
 
In recent years, GWAX has emerged as a crucial study design for complex trait genetics 
in general and AD genetic research in particular, gaining popularity due to its ability to 
leverage mid-aged population data to study late-onset health outcomes. The validity of 
GWAX was supported by two types of evidence in the literature: similar effect size 
estimates for top SNP findings and high genetic correlation between GWAS and GWAX 
based on genome-wide data. Some critiques have been raised concerning the GWAX 
design, mostly focusing on measurement errors in family health history survey. Escott-
Price and Hardy(11) argued that parental AD cases inferred from vaguely defined surveys 
may encompass both AD and non-AD dementia cases, each with distinct genetic 
underpinnings, which would attenuate genuine genetic associations for AD. More recently, 
Grotzinger et al. demonstrated that naively combining GWAS and GWAX without 
accounting for heterogeneity among the associations will lead to substantial downward 
bias in heritability estimation(12). Despite these critiques, GWAX has become an integral 
component of every recent AD GWAS(5-10), raising concerns about quality of reported 
associations and prospect of follow-up studies based on GWAS findings. 
 
In this paper, we revealed pervasive and systematic biases in AD GWAX associations. In 
particular, AD GWAX yielded an unexpected positive genetic correlation with EA, and 
such biases are present in almost all published AD GWAS that included proxy AD cases. 
The significance of this issue is two-fold. First, the biases identified in our analyses are 
not just speculations of some negligible issue in empirical applications. We demonstrated 
substantial divergence of AD GWAS and GWAX in some aspects due to these biases. 
Second, an important social factor at the center of many of these biases is education 3 it 
is known to associate with longevity, parent-child relationship, and general health 
awareness(34). But because cognition is such a crucial marker for AD and is commonly 
used in dementia research, biases caused by education/cognition become particularly 
important in AD genetics research and may give misleading results if not handled properly, 
complicating diagnosis, treatment, and the design and testing of new drugs. We 
investigated two types of analyses that are frequently done in genetic epidemiology 
studies of AD: predicting late-life cognition using AD PRS and estimating causal 
(protective) effect of education on AD using Mendelian randomization. Indeed, both 
analyses are substantially influenced by biases in GWAX. 
 
Despite the strong evidence for bias, the source of such bias was not clearly understood. 
In addition to genuine AD associations, we hypothesized that there could be at least three 
types of mechanisms contributing to bias in GWAX findings. First, only people with 
parents who lived long enough can report parental AD diagnosis. Without adjusting for 
such survival bias, we expect to see spurious negative genetic correlations between AD 
GWAX and other health outcomes. That is, genetic variants that are protective for other 
diseases will appear to increase the risk of AD because they increase longevity. Second, 
people who are more aware of their parents9 health are more likely to report parental AD 
diagnosis. This could be affected by people9s general awareness of health issues, but 
may also be explained by people9s relationship with their parents, whether they grew up 
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in single-parent families, parents9 socioeconomic status, and other complex socio-
environmental factors. Third, parental AD cases reported in the UKB parental health 
survey may include non-AD dementia cases. Therefore, we expect genetic associations 
with other types of dementia to explain some differences between AD GWAS and GWAX. 
Using an innovative GWAS-by-subtraction strategy(14) (with our novel closed-form 
implementation), we quantified genetic effects underlying AD GWAX that are not 
explained by genuine AD associations. We found substantial evidence for survival bias, 
supported by negative genetic correlations of the non-AD (bias) component with many 
health outcomes. We also found genetic correlations with survey participation and 
awareness of parental health history, which suggest non-random participation and 
reporting in UKB survey as a possible source of bias. We did not find evidence for other 
dementia associations in AD GWAX, although this is possibly explained by the lower 
statistical power in current non-AD dementia studies. 
 
We also investigated several approaches to reduce biases in AD GWAX. We 
demonstrated that controlling for parental age and vital status could effectively reduce 
survival bias. In particular, the approach which creates a continuous disease risk 
phenotype based on parental age(6) produced education genetic correlation results 
comparable to AD case-control GWAS. However, one potential limitation of this approach 
is that it does not produce SNP effect sizes on a similar scale to case-control studies, 
which creates challenges in the interpretation and some applications requiring effect sizes. 
While weighted least squares is a common approach to account for non-random study 
participation(32), it did not give promising results in our analysis. Excluding individuals 
who do not know about parental health from the analysis and residualizing GWAX on 
genetic associations with parental health awareness both reduced the spurious AD-EA 
genetic correlation. We note that the approaches designed to remove survival bias also 
reduced some participation and reporting biases, suggesting entangled mechanisms 
behind these possibly over-simplified labels for different sources of bias. This provides a 
potential one-stop solution to multiple sources of bias but its effectiveness still remains to 
be carefully investigated in the future. We also note that these biases could not be 
mitigated by a simple meta-analysis with AD case-control GWAS, further highlighting the 
importance of improving the quality of GWAX analysis. Finally, besides the issues we 
have detailed in this study, many association mapping approaches being used in GWAX 
studies appear statistically poorly justified. For example, AD GWAX sometimes combine 
clinically diagnosed cases and proxy cases together in logistic regression without properly 
scaling the SNP effect size according to the proxy case-control design(7, 9). Some 
studies combine both sibling and parental proxy cases(3, 7, 9) which could introduce 
additional survival bias and other complications. Some other studies meta-analyze GWAX 
associations based on maternal and paternal AD histories without accounting for the 
sample overlap between them(5). There is an urgent need to improve the general 
statistical methodology for handling family history outcomes in genetic association studies. 
 
Our study has several limitations. First, we treated the AD case-control GWAS as the gold 
standard throughout the paper, but it remains plausible that some issues could also affect 
the analysis based on AD clinical diagnosis. For example, the significant genetic 
correlation between Kunkle et al. 2019 GWAS and lower risk for coronary artery disease 
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(Figure 5) is suggestive of uncorrected survival bias in AD GWAS. In fact, GWAX 
following the Jansen approach showed a positive genetic correlation with coronary artery 
disease. It is unclear if this is caused by limitations in the bias-removal approach or 
correctly recovering shared genetics between AD and cardiovascular disease risk(35, 36). 
Second, it is unclear what metrics should be used to benchmark the performance of 
GWAX. In this study, we used the genetic correlations of AD with EA and coronary artery 
disease to quantify the effectiveness of bias-reduction approaches. But fully addressing 
issues in GWAX would require replication and functional validation of findings. Third, the 
non-presentiveness of UKB participants is well-documented(37-39), but it has been 
suggested that some sampling issues in UKB are not observed in other cohorts(38). 
Additionally, we only focused on individuals of European descent in our analysis. It is an 
important future direction to investigate how these issues generalize to other ancestries 
and cohorts. 
 
Taken together, our findings bear significant implications for the field, as they uncover an 
urgent, ubiquitous, yet understudied problem hidden in plain sight. Given its popularity 
and the potential of creating misleading results, it is of great urgency to reassess the 
statistical foundation of GWAX. We urge the research community to critically reconsider 
their utilizations of family history-based proxy phenotypes and adopt a more cautious and 
rigorous approach when drawing conclusions based on GWAX findings. An immediate 
remedy for all future studies is to release separate GWAS and GWAX summary statistics 
for research use, although fully addressing these issues will most likely require 
tremendous efforts in results validation and development of novel statistical 
methodologies.  
 
 
Methods 
 
GWAS analysis in UKB 
 
We conducted GWAS in UKB for parental AD history and parental illness awareness 
using Regenie(40) while controlling sex, year of birth, and genotyping array (data field 
22000 in UKB) as fixed effect covariates. Population stratification was accounted for in 
the ridge regression step of Regenie which is similar to a linear mixed model approach 
without having to compute the genetic relatedness matrix. We excluded participants with 
conflicting genetically inferred (data field 22001) and self-reported sex (data field 31), 
those who withdrew from the study, and those that are recommended to be excluded by 
UKB (data field 22010). Individuals of European ancestry were identified from principal 

component analysis (data field 22006). We kept only the SNPs with a missing call rate f

0.01, minor allele frequency g0.01, and Hardy3Weinberg equilibrium test P value g1E-

6. 
 
Parental AD history (i.e., the outcome in AD GWAX) was derived from survey responses 
to questions regarding the <illnesses of father= (data-field 20107) and <illness of mother= 
(data-field 20110). Responses options include <Do not know=, <Prefer not to answer=, 
<None of the above=, or one of the twelve diseases including <Alzheimer9s 
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diseases/dementia=. Participants were coded as proxy cases if either parent had AD, and 
as controls if both parents were not affected by AD. Samples were removed from analysis 
if otherwise. Additionally, participants self-identified as adopted (data-field 1767) were 
excluded from the study. We identified 47,993 proxy cases and 315,096 controls in the 
parental AD GWAX.  
 
The parental illness awareness phenotype was derived from UKB data fields 20107 and 
20110. Cases were those who selected <Do not know (group 1)= or <Do not know (group 
2)= for either father or mother9s illnesses. Controls were those who selected <None of the 
above= or any disease in both groups for both father and mother9s illnesses. Others were 
excluded from the analysis. 59,471 cases and 339,170 controls were identified. 
 
 
GWAS analysis in AllofUs 
 
The AllofUs research program is a nationally representative cohort in the US with a goal 
of recruiting 1 million participants. We conducted GWAS using AllofUs samples for two 
phenotypes: participation of the family health history survey and family medical history 
awareness. The family health history survey is an optional module and only a subset of 
AllofUs samples participated in this module. We determined survey participation status 
by checking whether an individual answered the first question in this module, which reads, 
<How much do you know about illnesses or health problems for your parents, 
grandparents, brothers, sisters, and/or children?= This question has four possible 
response options: <none at all=, <some=, <a lot=, and <skip=. The GWAS on family medical 
history awareness was based on the answers to this question. We coded the responses 
as follows, <none= as 0, <some= as 1, and <a lot= as 2. Individuals selecting <skip= were 
excluded from the analysis. 
 
For both GWAS in AllofUs, we used independent samples of European descent and 
adjusted for biological sex, standardized age, square of the standardized age, and top 16 
genetic PCs. GWAS was performed using Hail on version 7 of the whole genome 
sequencing data. Genetic ancestry inferred from PCs and genetic relatedness between 
participants were provided in AllofUs. Samples flagged as outliers were excluded from 

analysis. We kept only the SNPs with a missing call rate f 0.01, minor allele frequency 

g 0.01, and Hardy3Weinberg equilibrium test P value g 1E-6. Sample size for the GWAS 

on family medical history awareness is 77,579. There were 78,027 cases (participants) 
and 47,519 controls (non-participants) in the GWAS on participation of the family medical 
history survey. 
 
 
Measurement error and winner9s curse correction 
 
We used Deming regression implemented in R package <mcr= to correct for measurement 
errors in SNP effect estimates. We used the <mcreg()= function and specified the ratio of 
the error variances to be 42,706/41,679 where 42,706 is the effective sample size (sum 
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of all the effective sample sizes from all contributing cohorts) for Kunkle et al. (2019) AD 
GWAS, and 41,649 is the effective sample size for the AD GWAX we performed in UKB. 
We used R package <WinCurse= to correct for winner9s curse in the Kunkle et al. (2019) 
GWAS. The adjusted SNP effect size followed formulas in Turley et al.(41) 
 
 
Heritability and genetic correlation estimation 
 
We used GNOVA(42) to estimate genetic correlations. We corrected GWAS sample 
overlap in GNOVA if bivariate LDSC(43) outputs an intercept significantly different from 
zero at P < 0.05. We used LDSC to estimate heritability. 
 
 
PRS regression analysis 
 
We evaluated the performance of AD PRS in HRS. The HRS is a nationally representative 
longitudinal biennial panel consisting of around 42,000 Americans from 26,000 
households since 1992. A global cognition composite score was derived from a 27-point 
scale that includes: 1) an immediate and delayed 10-noun free recall test to measure 
memory (0 to 20 points); 2) a serial sevens subtraction test to measure working memory 
(0 to 5 points); and 3) a counting backwards test to measure speed of mental processing 
(0 to 2 points). There are 10 waves of data available: once every 2 years from 2000 to 
2018.  
 
We obtained imputed genetic data from a subset of around 15,000 participants who had 
their genetic information collected between 2006 and 2012 (NIAGADS accession number 
NG00119.v1). PRS were calculated using two different approaches: PRS-CS(44) and 
clumped significant SNPs in Kunkle et al. 2019 GWAS(13). Only overlapping SNPs that 
exist in all GWAS summary statistics as well as HRS genotype data were used. We used 
the PRS-CS-auto implementation to estimate SNP posterior effect sizes from genome-
wide summary statistics. The second PRS approach weighted allele counts with effect 
sizes obtained from GWAS summary statistics and only included independent SNPs 
reaching genome-wide significance in Kunkle et al. 2019 GWAS. Clumping was executed 
using PLINK1.9, with clumping parameters set at r2 of 0.1 and kb of 1000. We also 
generated an additional set of PRS excluding the APOE region by removing all SNPs in 
the region (chr19: 45,116,911-46,318,605; GRCh37).  
 
To analyze longitudinal cognition data in HRS, we used random intercepts in linear mixed 
model to account for within-sample (repeated measures) and within-family (related 
samples) correlations. The regression analyses were performed using the <lme4= 
package in R, where we regressed cognitive scores against PRS while controlling for age, 
age-squared, education years, year respondent entered study, sex, and top 5 genetic 
PCs. Individual and family IDs were coded as random effects. Only HRS participants of 
European descent were included in the analysis with a total sample size of 12,018.  
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Causal effect estimation 
 
Mendelian randomization was conducted using the <TwoSampleMR= package in R (45). 
To infer the causal effect of EA on AD, we first clumped EA GWAS summary statistics 
with r2 = 0.001, kb = 10000 in PLINK1.9, then we selected only SNPs reaching genome-
wide significance (p < 5E-8) as instruments. The <mr= function was used to estimate 
causal effects based on the inverse variance weighted approach. 
 
 
GSUB: a new implementation for GWAS-by-subtraction 
 
Consider the GWAS-by-subtraction model shown in Figure 3 where we aim to subtract 
genuine AD associations from GWAX associations based on AD family history (i.e., 
decomposing GWAX into AD and non-AD components). There are five parameters to 
estimate (i.e., �!!,!#,## and �!,#) and the main parameter of interest (i.e., the SNP effect �# 
on the non-AD component) is highlighted in red. First, we can write the expressions for 
AD and AD family history phenotypes in the liability scale: �� = �!!�$% + �&! = �!!)�!� + �'!+ + �&! = �()$*� + �! ��	������	/������ = �##�+,+ + �!#�$% + �&# = �##)�#� + �'"+ + �!#)�!� + �'!+ + �&# = �()$-� + �# 
The variances and covariances of the genetic components of the two phenotypes are: 

���(�!!�$%) = �!!# ���(�$%) j �!!# = /!# ���(�##�+,+ + �!#�$%) = �### ���(�+,+) + �!## ���(�$%) j �### + �!## = /## ���(�!!�$% , �##�+,+ + �!#�$%) = �!!�!#���(�$%) j �!!�!# = �!# 
Here, � is the SNP allele count, �$% and �+,+ are the two latent factors (with variance of 

1) underlying AD and AD family history. �()$* and �()$- are the SNP effect sizes in 

GWAS and GWAX, respectively. � and � are residuals. From the first two equations, we 
have �()$* = �!!�! �()$- = �##�# + �!#�! 
Based on this, we obtain the expressions for �! and �#: �! = �()$*�!!  

�# = �()$- 2 �!#�!�## = �()$- 2 �!#�()$* �!!d�##  

From the third to fifth equations, we could solve for the 3 loading factors: 
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�!! = D/!# 
�!# = �!,#�!!  

�## = D/## 2 �!## = E/## 2 �!##/!# = D/##(1 2 �!## ) 
In order to estimate the five parameters, we can plug in the SNP effect size estimates 
and their standard errors from the summary statistics, the LDSC heritability estimates and 
genetic covariance between the two traits: 

�G! = �H()$*

D/I!#
 

�G# = �H()$- 2 �H()$*�G!# /I!#d
D/I## 2 �G!## /I!#d  

The standard error for �G! can be approximated by 

��(�G!) j ��)�H()$*+
D/I!#

 

We note that based on this model setting, GWAS for the AD factor is essentially very 
similar to the input AD case-control GWAS.  
 

To obtain the standard errors for �G#, we need the covariance between �H! and �H#. When 
there are sample overlaps between GWAS and GWAX, their covariance can be estimated 
using the intercept from the bivariate LDSC: 

��(�G#) j 1�H##E��)�H#+# + L�H!#�H!!M
# ��)�H!+# 2 2�H!#�H!! ����Q .+/��)�H!+��)�H#+ 

where ����Q .+/ is the bivariate LDSC intercept. 
 
We note that similar derivations for the point estimate of �G# have been previously shown 
in the supplementary note of Demange et al. (2021). Here, we provide details for the 
standard error estimation and have implemented the approach as an open-source 
software. 
 
 
Simulations 
 
We conducted simulations to compare our analytical approach for GWAS-by-subtraction 
with GenomicSEM. We used HapMap 3 SNP genotype data (853,041 SNPs) from 
independent UKB samples of European descent. We performed simulations for both 
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quantitative traits (N = 200,000 and 100,000) and binary traits (N = 100,000; case 
proportion = 20% and 10%). Each setting was repeated 100 times. 
 
Following Figure 3, we first simulated SNP effect sizes on each latent factor from a 
normal distribution with mean 0 and variance 1/M, where M is the number of causal SNPs. 
The effect sizes were then transformed by dividing 2�(1 2 �), where � is the minor allele 

frequency of each SNP. The latent factors F1 and F2 were computed as �! = 3 �01
02! �!0  

and �# = 3 �01
02! �#0, respectively, where �0 is the allele count (i.e., 0, 1, or 2) for the jth 

SNP. Then, we calculated the observed continuous trait or disease liabilities as follows.  �! =	�!!�! + �! �# = �!#�! + �##�# + �# 
For binary trait, we set samples at the top 10% or 20% disease liability as cases and 
others as controls. In each repeat, we randomly selected 10,000 causal SNPs for each 

latent factor. We set �!! = :0.5, �!# = 0.5, and �## = :0.5. 
 
After simulating phenotype values, we performed GWAS using Plink2.0 for each 
phenotype. Then, we applied GWAS-by-subtraction using both GenomicSEM and GSUB 
to compare the type-I error and power. Due to the computational burden of GenomicSEM, 
we randomly selecting 10,000 null SNPs for type-I error calculation in each repeat. Type-
I error (and power) were calculated as the percentage of null (and causal) SNPs with P 
values < 0.05.  
 
 
Approaches for bias reduction in GWAX 
 
We explored several strategies to reduce biases in GWAX. To address survival bias, we 
implemented two approaches. Following Marioni et al. 2018, we required both parents to 
be older than 65 which was determined by either current age (data-fields 2946 and 1845) 
or age at death (data-fields 1807 and 3526). We also included parental age (either current 
age or age at death) as a fixed-effect covariate. There were 36,309 cases and 199,969 
controls in this GWAX. Following Jansen et al. 2019, we created a continuous <disease 
load= based on parental AD status, parental age, and AD prevalence in the population: 
each affected parent contributed 1 while each unaffected parent contributed ���{(100 2 ���) 100d , 0.32} to the disease load phenotype, where 0.32 is the population 
prevalence of AD. Those with unknown parental AD status or parental age were excluded 
from the analysis giving a sample size of 355,501. We performed GWAS on this 
continuous outcome while controlling for sex, genotyping array, year of birth, and 
assessment center (data field 54).  
 
We used a weighted GWAS approach to account for non-random survey participation. 
Following Schoeler et al.(32), we used 14 variables to train a participation prediction 
model. These variables comprise five continuous ones: age, body mass index, weight, 
height, and the age at which full-time education was completed, and nine categorical 
variables: household size (1-7 or more individuals), sex (male or female), alcohol 
consumption frequency (never to daily), smoking habits (never, previous, or current 
smoker), employment status (employed, economically inactive, retired, or unemployed), 
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income brackets (from <18k to >100k), obesity classification (underweight, healthy weight, 
overweight, or obese), general health status (poor, fair, or good), and urbanization level 
(from village/hamlet to urban). We identified 28,179 independent non-reporting 
individuals (i.e., the non-adopted European ancestry samples that were not included in 
AD GWAX) for parental AD history. We then randomly sampled the same numbers of 
individuals who reported parental illnesses to match with these non-reporting individuals. 
We used LASSO regression in <glmnet= package in R to predict the reporting of parental 
illnesses. The model included all main effects and two-way interaction terms, with the 
shrinkage parameter lambda being determined via 5-fold cross-validation. We then 
conducted weighted GWAS on parental AD history with remaining samples using 
weighted least squares in R. We used the Huber-White estimator for the variance of the 
estimates implemented in the <sandwich= package in R. The sampling weights were 

calculated as � = (1 2 �) �d , where � represents the probability of reporting, predicted 
through the trained LASSO model. GWAS covariates included sex, year of birth, year of 
birth squared, genotyping array, and the top 20 PCs. In addition, we also explored using 
GWAS-by-subtraction to remove participation bias, where we regressed out the 
participation GWAS from the UKB AD GWAX (Supplementary Table 14). The 
participation GWAS was conducted using the AllofUs samples which we have described 
in detail. 
 
We applied two approaches to adjust for the reporting bias. The first approach is to include 
those who selected <Do not know= when answering illnesses of father or illnesses of 
mother in the analysis as controls, and then repeated the AD GWAX (N = 47,993 cases 
and 349,165 controls). The second approach is to apply GWAS-by-subtraction to regress 
out the GWAS on parental illness awareness from AD GWAX. 
 
 
URLs 
 
GSUB: https://github.com/qlu-lab/GSUB 
R package <mcr=: https://cran.r-project.org/web/packages/mcr/index.html 
R package <WinCurse=: https://github.com/zrmacc/WinCurse/tree/master 
R package <TwoSampleMR=: https://mrcieu.github.io/TwoSampleMR/ 
R package <sandwich=: https://cran.r-project.org/web/packages/sandwich/index.html 
Regenie: https://github.com/rgcgithub/regenie 
GNOVA: https://github.com/qlu-lab/GNOVA-2.0 
LDSC: https://github.com/bulik/ldsc 
 
 
Data and code availability 
 
Summary statistics for the AD GWAX are available at http://qlu-lab.org/data.html. GSUB 
software is freely available at https://github.com/qlu-lab/GSUB. 
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