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Abstract

Diffusion MRI (dMRI) has become a crucial imaging technique within the field of neuroscience
and has an increasing number of clinical applications. Although most studies still focus on the
brain, there is a growing interest in utilizing dMRI to investigate the healthy or injured spinal cord.
The past decade has also seen the development of biophysical models that link MR-based
diffusion measures to underlying microscopic tissue characteristics. Building upon 13 years of
research and development, we present an open-source, MATLAB-based academic software toolkit
dubbed ACID: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal Cord, and
Post-mortem Diffusion MRI Data. ACID is designed to process and model dMRI data of the brain, spinal
cord, and post-mortem specimens by incorporating state-of-the-art artifact correction tools, diffusion
and kurtosis tensor imaging, and biophysical models that enable the estimation of microstructural
properties in white matter. Additionally, the software includes an array of linear and non-linear fitting
algorithms for accurate diffusion parameter estimation. By adhering to the Brain Imaging Data
Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures
compatibility with other BIDS-compliant software, and aligns with the growing availability of large
databases utilizing the BIDS format. Furthermore, ACID seamlessly integrates into the popular
Statistical Parametric Mapping (SPM) framework, benefitting from a wide range of established
segmentation, spatial processing, and statistical analysis tools as well as a large and growing number
of SPM extensions. As such, this comprehensive toolbox covers the entire processing chain from

raw DICOM data to group-level statistics, all within a single software package.
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1. Introduction

Diffusion MRI (dMRI) exploits the self-diffusion of water molecules to produce images that are
sensitive to tissue microstructure by measuring the diffusion along various spatial directions (Callaghan
et al., 1988; Le Bihan et al., 1988; Stejskal & Tanner, 1965). dMRI has been applied to study a number
of phenomena including normal brain development (Dubois et al., 2014; Miller et al., 2002), aging
(Draganski et al., 2011; Sullivan et al., 2010), training-induced plasticity (Scholz et al., 2009), and
monitoring progression of and recovery from neurological diseases (Farbota et al., 2012; Meinzer et
al., 2010). Clinical applications of dMRI include the diagnosis of ischemic stroke (Urbach et al., 2000),
multiple sclerosis (Horsfield et al., 1996), cancer and metastases (Gerstner and Sorensen, 2011), and
surgical planning of brain tumors (Chun et al., 2005). Although the vast majority of dMRI applications
has focused on the brain, there is a growing interest in spinal cord dMRI, as researchers seek sensitive
and predictive markers of spinal cord white matter damage (Cohen et al., 2017; Martin et al., 2016).

To fully utilize the sensitivity of dMRI to tissue microstructure, expert knowledge is required to
minimize artifacts both during acquisition, e.g., by cardiac gating or twice-refocused spin-echo
sequences, and through dedicated post-processing methods. Commonly used post-processing
techniques include motion and eddy current correction (Andersson & Sotiropoulos, 2016; Mohammadi
et al., 2010), susceptibility distortion correction (Gu & Eklund, 2019; Ruthotto et al., 2012), denoising
(Becker et al., 2014; Veraart et al., 2016), Rician bias correction (Oeschger et al., 20233; Sijbers et al.,
1998), and robust tensor fitting techniques (Chang et al.,, 2005; Mohammadi et al., 2013).
Retrospective artifact correction techniques, along with diffusion signal modeling capabilities, are
widely available in open-source toolboxes such as FSL-FDT (Smith et al., 2004), DiPY (Garyfallidis et al.,
2014), DESIGNER (Ades-Aron et al., 2018), ExploreDTI (Leemans et al., 2009), MRtrix3 (Tournier et al.,
2019), TORTOISE (Pierpaoli et al., 2010), AFNI-FATCAT (Taylor & Saad, 2013), and others.

However, currently available toolboxes have one or more shortcomings. The majority of
toolboxes have been developed for brain dMRI and may not work for spinal cord dMRI, which features
higher level and different nature of artifacts (Barker, 2001; Stroman et al., 2014), or post-mortem dMRI
of tissue specimens, which have different and highly varying geometry (see Sébille et al., 2019 for a list
of post-mortem dMRI studies). Although there are some software options available for processing
spinal cord images, most notably the Spinal Cord Toolbox (De Leener et al., 2017), these tools lack
comprehensive artifact correction and biophysical modeling capabilities for estimation of
microstructural diffusion properties related to microscopic tissue properties. Biophysical modeling
directly estimates these microstructural properties (e.g., axonal water fraction and orientation
dispersion) as aggregated measures on voxel-level and thereby offers greater specificity than standard

diffusion tensor (DTI) or diffusion kurtosis imaging (DKI). Toolboxes dedicated for biophysical modelling
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of the dMRI signal, such as the NODDI (Zhang et al., 2012) or SMI toolbox (Coelho et al., 2022), typically
do not include a comprehensive processing pipeline to correct for artifacts in dMRI data. In addition,
only a few of the aforementioned dMRI toolboxes support the Brain Imaging Data Structure (BIDS,
Gorgolewski et al., 2016) standard for organizing and annotating raw and processed dMRI data. The
lack of standardization complicates not only the sharing and aggregation of processed dMRI data but
also the application of automated image analysis tools designed for big data, such as machine learning
techniques. Over the past two decades, tens of thousands of dMRI datasets have been made openly
available in large neuroimaging databases (e.g., HCP (Van Essen et al., 2013) and the UK Biobank
(Littlejohns et al., 2020)), underscoring the importance of consistent data storage practices.

Building upon 13 years of research and development, we introduce the open-source MATLAB-
based ACID toolbox: A Comprehensive Toolbox for Image Processing and Modeling of Brain, Spinal
Cord, and Post-mortem Diffusion MRI Data. ACID was initially developed as a collection of artifact
correction tools but has now been extended to a comprehensive toolbox for processing and
modeling of dMRI data. In particular, ACID offers (i) state-of-the-art image processing tools as well
as (ii) DTI, DKI, and biophysical model parameter estimation methods optimized for brain, spinal cord,
and post-mortem dMRI data. Additionally, (iii) ACID adheres to the BIDS standard for organizing the
output, making the processed images compliant with other BIDS software and facilitating data sharing.
Finally, (iv) ACID is embedded in the Statistical Parametric Mapping (SPM) framework, benefitting from
its established functions including spatial processing tools and statistical inference schemes. ACID tools
can be combined with other SPM tools to create pipelines in SPM’s batch processing system, which
offers an all-in-one software solution from conversion of DICOM data to statistical group analysis.
Many of the methods used in the ACID toolbox have already been published in the scientific dMRI
literature (Table 1). In this paper, we detail the design and function of the ACID modules, along with

guidance on their optimal combination for brain, spinal cord, and post-mortem applications.
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Table 1. Peer-reviewed methods of the ACID toolbox.

Method Introduced in

ECMOCO: Eddy current and motion correction Mohammadi et al., 2010
HySCO: Susceptibility artifact correction Ruthotto et al., 2012
msPOAS: Adaptive denoising Becker et al., 2014

RBC: Rician bias correction Oeschger et al., 2023a

DTl using robust fitting Mohammadi et al., 2013

DKI and axisymmetric DKI using NLLS Oeschger et al., 2023a, 2023b
NODDI-DTI Edwards et al., 2017
WMTI-Watson Oeschger et al., 2023b
Reliability masking David et al., 2017

Abbreviations: DTI, diffusion tensor imaging; DKI, diffusion kurtosis imaging; NLLS, non-linear least squares; NODDI, neurite
orientation dispersion and density imaging; WMTI, white matter tract integrity.

2. Methods

2.1 Installation and toolbox documentation
The ACID toolbox is an extension of SPM12 that requires existing MATLAB and SPM12 installations.

The toolbox has been developed and tested with MATLAB versions R2017b to R2023a and SPM12 from
versions r6906 onwards. It is recommended to use the latest SPM release, which can be downloaded
from the SPM website?, as developments in ACID are synchronized with those in SPM.

Information about the toolbox can be found on the main project website2. The source code is
available on Bitbucket?, where the latest version as well as all previous versions of the toolbox can be
downloaded. There are three ways to install the toolbox: (i) by cloning the repository (recommended
for staying up-to-date with the latest release), (ii) by downloading the toolbox as a zip file and placing
the unzipped directory into the spm12/toolbox directory, or (iii) by downloading the toolbox as a
zip file and using a redirection script that enables switching between different local versions of ACID.
The full documentation of the toolbox is available as a Wiki on the git repository?, which provides
detailed installation instructions, module descriptions, and step-by-step instructions for a typical
analysis pipeline.

ACID is free but copyrighted software, distributed under the terms of the GNU General Public
License as published by the Free Software Foundation (either version 2 of the License or, at your
option, any later version). Further details on "copyleft" can be found at the GNU website®. It should be

noted that ACID is supplied as is and no formal support or maintenance is provided. The toolbox was

L http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

2 http://www.diffusiontools.com/

3 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri

4 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home
5 http://www.gnu.org/copyleft/
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developed for academic research purposes only and comes with no warranty, nor is it intended for

clinical and diagnostics use.

2.2 Organization of the toolbox
The ACID modules can be found in the SPM12 Batch Editor by navigating to SPM -> Tools ->

ACID Toolbox. The toolbox is divided into six modules, as shown in Fig. 1: Startup, Pre-processing,
Diffusion tensor/kurtosis imaging, Biophysical models, Utilities, and External tools. A brief description

of each module is provided below.
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Fig. 1. The left panel shows the location of ACID toolbox in the SPM Batch Editor after successful installation (SPM
-> Tools). The toolbox is organized into six modules, each of which may be further divided into submodules.
The right panel provides an example of a submodule (Diffusion Tensor Imaging within the Diffusion

tensor/kurtosis imaging module). Each (sub-) module requires at least one mandatory input, indicated by “X”, as

well as several optional inputs and parameter settings, which can be adjusted for customization.

2.3 Startup

The ACID modules rely on a set of default settings, which were selected to yield reasonable results for
typical dMRI data. However, adjustments may be necessary depending on the specific dataset (see
Section 3.2 for recommendations). For convenience, the module’s graphical user interface (GUI) only
presents the settings that are likely to be modified. Advanced users can access and modify all settings
through the script config/local/acid local defaults.m. To use modified settings, the
Startup module must be executed with the customized file provided as input; these settings will remain
in effect even after restarting SPM or MATLAB until new settings are specified.

ACID requires all input images to be in uncompressed NIfTl format (either NIfTI-1 or NIfTI-2), and
all dMRI images to be in 4D NIfTI format. Users can convert from DICOM to NIfTI format using SPM’s
DICOM Import function, which can also export metadata into JSON files if the “Export metadata”
option is enabled. To bring dMRI data into the required format, the Startup module can be utilized to

(i) convert a set of 3D NIfTI files into a single 4D NIfTI file, (ii) generate corresponding bval/bvec files
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from the JSON files (if not already available), (iii) create an additional metadata file containing the most
commonly reported subject and acquisition parameters (such as TE and TR) to provide a concise
overview of the dataset, and (iv) set an output directory alternative to the default one. The output
from Startup (4D NIfTI file and corresponding bval/bvec files) can be automatically passed to

subsequent processing steps through dependencies.

2.4 Pre-processing
In the following sections, we provide a brief description of each artifact correction tool implemented

in ACID. For specific recommendations regarding different dMRI datasets (brain, spinal cord, post-

mortem/ex vivo), refer to Sections 3.2 and 4.1.

2.4.1 Eddy current and motion correction (ECMOCO)
ACID uses the eddy current and motion correction (ECMOCO) algorithm (Mohammadi et al., 2010) to

correct for spatial misalignments that may occur between the dMRI volumes. These misalignments can
be caused by motion and eddy currents induced by the rapidly varying field of the diffusion-sensitizing
gradients (Jezzard et al., 1998), which may lead to biased diffusion estimates (Mohammadi et al.,
2013). ECMOCO aligns all source volumes to a target volume using a co-registration algorithm (Friston
& Ashburner, 1997) implemented in the SPM function spm_coreg. It was previously shown that the
robustness of registration can be increased by separately registering diffusion-weighted (DW) and non-
diffusion-weighted (b0) volumes to their corresponding target volumes (Mohammadi et al., 2015a).
ECMOCO features the multi-target registration mode, where source volumes from each diffusion shell
(b-value) are co-registered to their shell-specific target volume (Fig. A1). ECMOCO rotates the b-vectors
by the obtained rotational parameters; the rotated b-vectors can be passed on to subsequent
processing steps.

In spinal cord dMRI, eddy current and motion correction is more challenging than in brain dMRI
due to the considerably lower number of voxels and lower signal-to-noise ratio (SNR), particularly in
volumes with high b-values (>1000 s/mm?) or with diffusion-sensitizing gradients parallel to the spinal
cord. While movement of the brain can be considered rigid to the first approximation, the spinal cord
may experience varying degrees of displacement along the rostro-caudal axis caused by factors such
as breathing, pulsation of the cerebrospinal fluid, or swallowing (Yiannakas et al., 2012). To address
this, we introduced slice-wise (2D) registration, which independently aligns each slice of the source
volume to the corresponding slice of the target volume, thereby correcting for non-rigid, slice-
dependent displacements. For more details on ECMOCO, including other recently introduced features

(initialized registration and exclusion mode), refer to Appendix A.
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2.4.2 Adaptive denoising (msPOAS)
Multi-shell Position-Orientation Adaptive Smoothing (msPOAS) is an iterative adaptive denoising

algorithm designed to adaptively reduce noise in dMRI data while preserving tissue boundaries without
introducing blurring (Becker et al., 2012, 2014; Tabelow et al., 2015). The algorithm adapts to the
intensity values and their distance in both voxel space and the spherical space of diffusion directions,
allowing smoothing only within spatially homogeneous areas of the DW images. One of the key
advantages of msPOAS is its compatibility with all diffusion models as it operates on the raw dMRI
data. Adjustable parameters include kstar (number of iterations that define the image smoothness),
lambda (adaptation parameter that defines the strength of edge detection), kappa (initial ratio of the
amount of smoothing between the local space of neighboring voxels and the spherical space of
diffusion gradients), and ncoils (parallel imaging factor, i.e., the number of receiver coils that
contributed to the measured signal). To distinguish random fluctuations from structural differences,
msPOAS requires an estimate of SNR, or equivalently the noise standard deviation (sigma). A higher
kstar leads to greater smoothness within homogeneous image regions, while a larger lambda results
in weaker adaptation and more blurring at tissue edges. The optimal kappa depends on the number
of directions per shell, while ncoils should be the same as the value used for noise estimation. When
using msPOAS, we recommend starting with the default parameters and the sigma estimated with the
Noise estimation utility function (Table 2). In case of insufficient noise reduction, parameters should

be adjusted according to Appendix C.

2.4.3 Rician bias correction
The voxel intensities of MRI magnitude images exhibit a Rician distribution in case of a single receiver

coil (Gudbjartsson & Patz, 1995) and a non-central x distribution in case of multiple receiver coils (Aja-
Fernandez et al., 2014). When fitting diffusion signal models (Section 2.5), this distribution leads to a
bias, known as the Rician bias, in the estimated tensor (Basser & Pajevic, 2000; Gudbjartsson & Patz,
1995; Jones & Basser, 2004) and kurtosis parameters (Veraart et al., 2011; Veraart et al., 2013a), such
as an overestimation of kurtosis. This Rician bias is particularly relevant in low SNR situations (Polzehl
& Tabelow, 2016). Two approaches of Rician bias correction (RBC) are implemented in ACID. The M2
approach, introduced in (Miller & Joseph, 1993) and later extended to multi-channel receiver coil
(André et al., 2014), operates on the dMRI data and uses the second moment of the non-central x
distribution of the measured intensities and noise estimates to estimate the true voxel intensities. The
second approach modifies the parameter estimation by considering the non-central x distribution to
account for the Rician bias during model fitting (Oeschger et al., 2023a). Note that the latter approach
assumes uncorrected data, therefore it must not be combined with the first method and is currently
only available for non-linear least squares fitting. Both methods require an estimate of the noise

standard deviation, which can be obtained using the Noise estimation utility function, either by the
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standard or the repeated measures method (Table 2). While we generally recommend using the
repeated measures method, it requires the acquisition of several bO images and is therefore not
applicable if only a single b0 image is available. In addition, ACID offers the Rician bias simulation utility

function to determine the optimal RBC method for the dMRI dataset and SNR at hand (Table 2).

2.4.4 Susceptibility artifact correction (HySCO)
Hyperelastic Susceptibility Artifact Correction (HySCO) is a technique used to correct for geometric

distortions caused by susceptibility artifacts (Ruthotto et al., 2012, 2013). These artifacts can occur at
interfaces between tissues with different magnetic susceptibilities, such as those found near paranasal
sinuses, temporal bone, and vertebral bodies. To correct for these artifacts, HySCO estimates the bias
field based on a reversed-gradient spin-echo echo planarimaging (EPI) acquisition scheme. This requires
the acquisition of at least one image with identical acquisition parameters as the dMRI data but with
opposite phase-encoding direction. The obtained bias field map is then applied to the entire dMRI data
to unwarp the geometric distortions. For datasets that include a full blip-reversed acquisition, the
submodule HySCO: combine blip-up and blip-down images is recommended for a more accurate

correction of susceptibility artefacts.

2.5 Diffusion signal models
The dependence of dMRI signal on the direction and strength of diffusion-weighting is commonly

described by mathematical models. Two of the most widely used models are DTI (Basser et al., 1994)

and DKI (Hansen et al., 2016; Jensen et al., 2005).

2.5.1 Diffusion tensor imaging (DTI)
DTI describes the anisotropic water diffusion in the white matter by a diffusion tensor with six

independent diffusion parameters. The eigenvalues of the tensor can be used to compute rotationally
invariant DTI scalar metrics including fractional anisotropy (FA) and mean (MD), axial (AD), and radial
diffusivities (RD). The interpretation of DTl assumes that the direction of axial diffusivity is aligned with
the white matter tracts, which may not be the case in complex fiber geometry such as crossing or
fanning fibers.

ACID provides four algorithms to obtain the diffusion tensor (see Appendix D for details).
Ordinary least squares (OLS) fits the tensor model by minimizing the sum of squared model-fit errors,
while weighted least squares (WLS) minimizes the weighted sum of squared model-fit errors,
accounting for the distortion of noise distribution in the logarithmized data. Robust fitting is similar to
WLS but factorizes the weights into three components to account for local and slice-specific artifacts
as well, while also featuring Tikhonov regularization to handle ill-conditioned weighting matrices
resulting from a high occurrence of outliers. Robust fitting is designed to downweigh outliers in the

model fit, which can otherwise introduce a bias in the fitted model parameters (Mohammadi et al.,
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2013) (Fig. D1). Unlike the linearized models, the non-linear least squared (NLLS) method is based on
an implementation (Modersitzki, 2009) of the Gauss-Newton algorithm and operates on the non-

logarithmic data, avoiding the distortion of noise distribution.

2.5.2 Diffusion kurtosis imaging (DKI)
DKl expands the diffusion tensor model by the kurtosis tensor, a fourth-order tensor with 15

independent parameters, which captures the effects of non-Gaussian water diffusion. From the 15
kurtosis parameters, several kurtosis metrics can be estimated including the mean of the kurtosis
tensor (MW), the axial (AW), and radial kurtosis (RW) (Tabesh et al., 2011), as well as the apparent
mean (MK), axial (AK), and radial kurtosis (RK) (Fig. 2). These metrics provide additional information
about tissue complexity beyond what can be captured by tensor metrics alone. DKI requires the
acquisition of a second diffusion shell with higher b-value (typically between 1000 and 2500 s/mm?).
ACID also includes the axisymmetric DKI model, a recent modification of DKI which reduces the
parameter space to 8 independent parameters by imposing the assumption of axisymmetrically
distributed axons (Hansen et al., 2016).

Note that the diffusion tensor parameters from DKI might differ from standard DTI parameters.
In particular, diffusivities (AD, MD, and RD) derived from the DTl model are often underestimated
compared to those derived from the DKI model (referred to as kurtosis bias) (Edwards et al., 2017). By
incorporating higher-order moments of the diffusion signal, DKI can address kurtosis bias, resulting in

more accurate diffusivities (see Appendix F for a comparison of MD derived from DTl and DKI).
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Fig. 2. Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo brain, in vivo spinal cord, and

post-mortem dMRI dataset (refer to Section 3.2 for details on the dataset). Shown are maps of fractional
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anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), apparent mean kurtosis (MK),

apparent axial kurtosis (AK), and apparent radial kurtosis (RK).

2.6 Biophysical models

Biophysical models separate the dMRI signal into distinct signal components from various tissue
compartments, each with their own underlying assumptions. Biophysical models provide more specific
and biologically interpretable metrics that are directly linked to tissue microstructure (Jelescu et al.,
2020). The application of biophysical models is often referred to as dMRI-based in vivo histology
(Mohammadi & Callaghan, 2021; Weiskopf et al., 2021) or microstructural dMRI (Jelescu et al., 2020;
Novikov, 2021; Novikov et al., 2019). In the following, we briefly describe the two biophysical models
currently implemented in ACID (WMTI-Watson and NODDI-DTI), while recommendations on their
usage are provided in Section 4.2.2. Example maps are shown in Fig. 3, and specific values obtained

from the brain and spinal cord are presented in Appendix H.

2.6.1 WMTI-Watson model
The white matter tract integrity (WMTI)-Watson model as an implementation of the Standard Model

assumes two non-exchanging water compartments (intra- and extra-axonal tissue water) (Alexander
et al., 2019; Novikov et al., 2019). The model characterizes the intra-axonal compartment as "sticks"
of zero radius, with an intra-axonal diffusivity D, and axonal water fraction f. Axon alignment (or
orientation dispersion) is modeled using the Watson distribution parameter k. The extra-axonal
space is modeled as a homogenous medium, described by an axisymmetrical diffusion tensor with
parallel (D, ) and perpendicular (D, , ) extra-axonal diffusivities. The five biophysical parameters
(Dg, f, K, Dg, De 1) are derived from the axisymmetric DKI tensor metrics (D, Dy, W, W,, W)
according to the formulas described in (Jespersen et al., 2018; Novikov et al., 2018). Being derived
from the biophysical Standard Model, the estimation of WMTI-Watson biophysical parameters is
generally degenerate, which leads to two solutions: the plus branch, which assumes D, > D, , and the
minus branch, which assumes D, < D, ;. We recommend using the plus branch (default in the toolbox),
as in our experience, and also reported by others (Jelescu et al., 2020; Jespersen et al., 2018), the minus

branch is the biologically invalid solution.
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Fig. 3. Maps of biophysical parameters derived from the WMTI-Watson model using an in vivo brain, in vivo spinal
cord and post-mortem dMRI dataset (refer to Section 3.2 for details on the dataset). Shown are maps of axon
orientation dispersion (k), axonal water fraction (f), parallel and perpendicular extra-axonal diffusivities (D,
and D, , ), and intra-axonal diffusivity (D,). Note that for the in vivo spinal cord dataset, the maximum b-value
(b=1500 s/mm?) was too low for accurate estimation of D, , resulting in voxels with negative values within the

spinal cord.

2.6.2 NODDI-DTI
NODDI-DTI (Edwards et al., 2017) is based on the neurite orientation dispersion and density imaging

(NODDI) model (Zhang et al., 2012). While NODDI is a three-compartment biophysical model with
intra- and extra-axonal space, and cerebrospinal fluid compartments, NODDI-DTI assumes that the
latter compartment can be neglected in normal appearing white matter. It further assumes fixed
compartmental diffusivities: Dg j=Dq=1.7 pm*/ms and D, ; =(1-f)-D, ;. NODDI-DTI estimates the
intra- (f or v;c) and extra-neurite (1 — f) signal fraction as well as the Watson distribution parameter
Kk from single-shell data, whereas both NODDI and WMTI-Watson require specific multi-shell dMRI

data for robust parameter estimation.
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2.7 Utilities

ACID offers a variety of utility functions for image manipulation, mask generation, quality assessment,

and other related tasks (refer to Table 2 for more details).

Table 2. List of the ACID utility functions.

FUNCTION

DESCRIPTION

Image cropping

Crops images to a smaller size for less storage space and faster processing. Inputs:
images to crop, new matrix size, and voxel coordinates of the center of cropping. The
center of cropping can also be selected manually through a pop-up window. Outputs:
cropped images and the cropping parameters. Cropping is particularly useful for
spinal cord dMRI, where the spinal cord occupies a small part of the image. When
using reduced field-of-view sequences, cropping is typically only necessary in the
frequency-encoding direction.

Resample to dimension

Resamples images to the desired resolution. Inputs: images to be resampled, desired
resolution, and type of interpolation. Output: resampled images.

Slice-wise realignment

Allows for manual translation and scaling of images along the x and y directions, on
a slice-by-slice basis, facilitated by intensity contour lines of the source image
overlaid on the target image. Inputs: a single image to be realigned, target image,
and other images to which the realignment parameters are applied. Outputs:
realigned image(s) and the realignment parameters. It is particularly helpful for
realigning spinal cord images, where residual misalighment is often slice-dependent.

Make brain mask

Creates a binary brain mask by (i) segmenting the brain image into gray matter, white
matter, and cerebrospinal fluid using SPM12's unified segmentation (Ashburner &
Friston, 2005), (ii) summing up the resulting probability maps, and (iii) thresholding
it at a certain value (default: 0.8). Input: brain image. Output: binary brain mask.

Reliability masking

Aims to identify "unreliable" voxels, i.e., voxels irreversibly corrupted by
artifacts. Reliability masks are generated by thresholding the map of root-mean-
square model-fit error (rms(€)) (David et al., 2017). Inputs: maps of rms(€) (output
by tensor fitting with label: RMS-ERROR) and the desired threshold value. Outputs:
a binary “reliability mask” that can be used in region-of-interest (ROI)-based
analyses. The optimal threshold can be determined using the Determine
threshold submodule. Reliability masking is a supplementary outlier rejection
technique that can be applied after each model fitting method. It is particularly
useful in scenarios where many data points are affected by outliers (often the case
in spinal cord dMRI), which could otherwise lead to unstable tensor fits and
inaccurate tensor estimates.

DWI series browser

Allows to browse through the slices of the dMRI data for quality assessment. Slices
with low SNR and/or artifacts can be identified and labeled. The saved labels can be
used to inform ECMOCO about unreliable slices (see Exclusion mode in Appendix A).

DWI series movie

Allows to simultaneously stream the images of dMRI datasets in a video mode for
quality assessment. It can be used either to visually assess a single dMRI dataset or
to compare the images before vs. after a certain processing step (e.g., ECMOCO).
Inputs: up to three dMRI datasets. Output: a video file containing the image streams.

Noise estimation

Estimates the noise standard deviation (o) in the dMRI data using either the
standard or the repeated measures method. The standard method uses the formula

o= \/Ziemask S? /(2Ln), where S; is the voxel intensity within a background mask
defined outside the body, L is the number of voxels within the background mask,
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and n is the parallel imaging factor, i.e., the effective number of coil elements that
contributed to the measured signal (Constantinides et al., 1997). The repeated

measures method uses the formula: 0 = mean, (stdk(S(i, k))), where S(i, k) is the

voxel intensity at voxel i in the kth repeated image (Dietrich et al., 2007). The
standard deviation and mean operators are performed across the repetitions and
voxels, respectively. The set of repeated images can be either the non-diffusion-
weighted (b=0) or strongly diffusion-weighted (the highest b-value) images (see
Appendix B for recommendations). Inputs: the raw (unprocessed) dMRI dataset, a
mask (standard method: background mask; repeated measures method: see
Appendix B), n (for the standard method only), and b-values (for the repeated
measures method only). Output: a single o, assuming a homogeneous variance.
Recommendations for noise mask generation can be found on the wiki page.

Rician bias simulation

Simulates diffusion-weighted MRI signals at specified SNR values in voxels within the
brain white and gray matter. The simulated signals are corrected using specified
Rician bias correction (RBC) methods (for details, see Oeschger et al., 2023a). Inputs:
a voxel (from a list of 27 pre-defined voxels, each with different diffusivities), a list
of SNR values, and the number of repetitions. Output: a figure displaying the distance
between the estimated metric and the ground truth value for each RBC method.

ROI analysis

Calculates the mean values within a specified region of interest (ROI). Inputs: list of
images for ROl analysis, and various types of ROIs including (i) global ROIls, applied
on all images in the list, (ii) subject-specific ROIs, applied only on the corresponding
image, and (iii) reliability masks (see entry Reliability masking). The user has the
option to specify one or multiple types of ROIs. In the latter case, the function will
apply the intersection of selected ROIs. The function offers flexibility for a range of
ROI-based analyses; for example, ROI-based analysis in the native space requires a
set of subject-specific ROIs, while a single global mask is sufficient in the template
space (with optional reliability masks in both cases). Output: an array containing the
mean values per subject, ROI, and (optionally) slice.

Fusion

Merges two images with different field of views (FOV), such as a brain and a spinal
cord image, into a single combined image. Inputs: two images to be merged and a
target image (typically a structural image with a larger FOV). Output: a combined
image, resampled according to the target image. The intensity in overlapping regions
is the average of the two intensities. Note that before merging the images, they must
be in the correct spatial position; if needed, image realignment can be performed
using the SPM Realign or the Slice-wise realignment utility function.

2.8 External tools

ACID provides the option to integrate external tools from other packages, which can be accessed

directly from the ACID GUI (External tools module), ensuring a seamless integration into ACID pipelines.

We included the following external tools in the current release, which we considered as particularly

valuable additions: FSL eddy® (Andersson & Sotiropoulos, 2016), Koay noise estimation’, and the WMTI

model (part of the DESIGNER toolbox) (Fieremans et al., 2011).

5 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
7 https://github.com/jan-martin-mri/koays-inversion
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2.9 Output structure and naming convention
ACID supports the BIDS standard, while also being compatible with non-BIDS data. Following BIDS

recommendations, ACID appends a label to the output filename’s desc field, indicating the applied
processing step (refer to Table 3 for a list of labels used in the modules Pre-processing, Diffusion
tensor/kurtosis imaging, and Biophysical models). For instance, after applying ECMOCO to
sub01l dwi.nii, the output file becomes sub0l desc-ECMOCO dwi.nii. When multiple
processing steps are involved, the labels are concatenated, as in sub0l desc-ECMOCO-
msPOAS dwi.nii. Model fitting appends three labels indicating the type of diffusion model,
algorithm, and parametric map, such as sub01 desc-ECMOCO-POAS-DKI-OLS-FA dwi.nii.
For BIDS-compliant input, ACID generates a bval and bvec file after each processing step. ACID stores
all output in the derivatives folder, with separate subfolders for each module’s output (e.g.,
derivatives/POAS-Run). Even if non-BIDS input is provided, ACID retains the same folder

structure and naming convention.

Table 3. List of labels in the output filename's de sc field within ACID.

Label Description Label Description

ECMOCO Eddy Current and Motion Correction Vi 1st Eigenvector of the Diffusion Tensor
msPOAS Multi-shell Position-Orientation Adaptive Smoothing ~ V2 2nd Eigenvector of the Diffusion Tensor
RBC Rician Bias Correction V3 3rd Eigenvector of the Diffusion Tensor
HySCO Hyperelastic Susceptibility Artifact Correction DKI Diffusion Kurtosis Imaging

fmap Off-Resonance Field DKlax Axisymmetric Diffusion Kurtosis Imaging
COMB-WM Write Combined Weighted Mean MK Mean Kurtosis

COMB-AM Write Combined Arithmetic Mean AK Apparent Axial Kurtosis

DTI Diffusion Tensor Imaging RK Apparent Radial Kurtosis

oLs Ordinary Least Squares MW Mean of the Kurtosis Tensor

WLS Weighted Least Squares AW Axial Kurtosis

ROB Robust Tensor Fitting RW Radial Kurtosis

NLLS Non-linear Least Squares WMTI-W WMTI-Watson

FA Fractional Anisotropy NODDI-DTI Neurite Orientation Density and Dispersion -
MD Mean Diffusivity Diffusion Tensor Imaging

AD Axial Diffusivity AWF Axon Water Fraction

RD Radial Diffusivity DA Intra-axonal Diffusivity

L1 1st Eigenvalue of the Diffusion Tensor DE-PARA Parallel Extra-axonal Diffusivities

L2 2nd Eigenvalue of the Diffusion Tensor DE-PERP Perpendicular Extra-axonal Diffusivities
L3 3rd Eigenvalue of the Diffusion Tensor KAPPA Axon/Neurite Orientation Dispersion

2.10 Quality assessment
We highly recommended assessing the data quality before and after each processing step. In addition

to the quality assessment utility functions DWI series browser and DWI series movie (Table 2), multiple
ACID modules generate diagnostic plots to identify the presence and type of artifacts in the dMRI data.

Example diagnostic plots are provided in Appendix E.


https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.13.562027; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

3. Results

3.1 Pipelines

ACID is fully integrated into the SPM12 batch system, allowing users to execute its functions
individually or combined into linear pipelines with multiple steps. Each step can receive the output
of any of the previous steps via flexible and easy-to-use dependencies. While pipelines are typically
set up in the SPM Batch Editor, they can also be converted into MATLAB code (SPM batch script) for
automation and further customization. In addition to its own functions, ACID integrates seamlessly
with a range of standard SPM features, including segmentation, co-registration, normalization,
and voxel-based statistical analyses, as well as a growing number of SPM extensions®. For
instance, ACID can be combined with the hMRI toolbox (Tabelow et al., 2019) for multi-modal analysis

of dMRI and quantitative MRI data acquired within the same imaging session, all in a single pipeline.

3.2 Example applications
To demonstrate the application of ACID toolbox on different types of dMRI data, here we provide three

example pipelines for in vivo brain, in vivo spinal cord, and post-mortem dMRI (Fig. 4). Details of these
three datasets are summarized in Table 4. Note that "blip-up" data were available for all three datasets,
which refers to the acquisition of either a single bO volume or all volumes with identical geometry and
sequence parameters but opposite phase encoding direction. All example pipelines consist of artifact
correction (ECMOCO, msPOAS, RBC, HySCO) and model fitting steps. While the pipelines for brain,
spinal cord, and post-mortem dMRI follow similar concepts, recommended settings for each region
may differ (Table 5). It is important to note that the settings listed in Table 5 serve as initial values for
typical datasets. The optimal settings for a particular dataset depend on the sequence parameters, the
subject, and the imaged region. Model fitting may be followed by spatial processing, such as co-
registration to the structural image or normalization to a template, and statistical analysis (e.g., ROI-

or voxel-based analysis).

& https://www.fil.ion.ucl.ac.uk/spm/ext/
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Table 4. Scan parameters of the in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets used in this

paper.

Dataset

In vivo brain

In vivo spinal cord

Post-mortem specimen

Imaged body part or tissue

Scanner
Receive coils

Sequence

Volumes and b-values

[s/mm?]

Cardiac gating

Slices
Resolution [mm?]
Field of view [mm?]

Echo time

Repetition time

Parallel imaging
Multi-band

Phase partial Fourier

Phase-encoding dir.

Readout bandwidth

EPI spacing

EPI factor

Acquisition time [min:sec]
Existence of a "blip-up"

dataset

entire brain (incl. cerebellum)
of a 34-year-old healthy

volunteer

3T Siemens Prisma Fit
64-channel Head/Neck

2D single-shot spin-echo EPI

30x b=600; 45x b=1100; 60x
b=2500; 18x b=0 [n=153]

100 (interleaved, no gap)
1.7x1.7x1.7
204 x 170 x 201

75 ms

5800 ms

2x (GRAPPA)

7/8

A-P

1842 Hz/pixel
0.77 ms

120

17:46

One b0 volume with opposite

phase-encoding direction

upper cervical cord (appr.
C1-C4) of a 43-year-old

healthy volunteer

3T Siemens Prisma Fit
64-channel Head/Neck
2D single-shot spin-echo
EPI

30x b=500; 30x b=1000;
30x b=1500; 11x b=0
[n=101]

2 slices per cycle, trigger
delay of 260 ms

14 (interleaved, no gap)
1.0x1.0x5.0
128 x 36 x 70

73 ms

pulse-dependent

(cardiac gated)

A-P
1396 Hz/pixel
0.93 ms

36

06:51 (nominal)

All volumes with opposite

phase-encoding direction

post-mortem specimen of the
temporal lobe from an
epilepsy patient, embedded
in phosphate buffered saline

3T Siemens Prisma Fit
16-channel Hand/Wrist

2D single-shot spin-echo EPI

30x b=600; 75x b=1100; 45x
b=2200; 60x 2500; 60x
b=5000; 36x b=0 [n=306]

0.8x0.8x0.8
128 x48 x 48

99 ms

8700 ms

7/8

A-P

802 Hz/pixel
1.37 ms

60

93:10

All volumes with opposite

phase-encoding direction
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Fig. 4. Standard processing pipelines for typical in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets
(refer to Table 4 for details on the datasets). Although not explicitly shown here, noise estimation should be
performed on the raw (unprocessed) data, which serves as input for msPOAS, Rician bias correction, and diffusion
tensor fitting (for fitting methods WLS and robust fitting). However, in case of substantial misalignments across
volumes, and when using the repeated measures noise estimation method, it might be beneficial to perform this
step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual comparison is shown
between a diffusion-weighted (DW) image before (middle row) and after applying msPOAS (bottom row); the
msPOAS-corrected image appears less noisy while preserving tissue edges. For HySCO, contour lines of the
corresponding structural image (displayed as red lines) are overlaid on a zoomed-in DW image both before
(middle row) and after applying HySCO (bottom row). HySCO improves the alighment between the DW and the
structural image. Note that HySCO is applied as the final pre-processing step; however, the HySCO field map used
for “unwrapping” the images is estimated on the ECMOCO-corrected datasets. Rician bias correction (not
explicitly shown here) should be applied either before (recommended: between msPOAS and HySCO) or during
model fitting. Diffusion signal models are fitted on the processed dataset; here, we display the maps of fractional
anisotropy (FA) and mean of the kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The output from DKI
can be used to compute biophysical parameters of the white matter; shown here is the map of axon orientation

dispersion (k) from the WMTI-Watson biophysical model.

Table 5. Settings of selected modules for in vivo brain, in vivo spinal cord, and post-mortem dMRI datasets.

Modul Adjustable In vivo In vivo Post-mortem
oaute parameter brain dMRI spinal cord dMRI dMRI
ECMOCO type of registration volume-wise volume- and slice-wise volume-wise
degrees of freedom 9 [transl. x,y,z; volume-wise: 4 4 [transl. y; scaling
rotationx, vy, z; [transl. x, v, z; scaling y] y; shearing x-y, y-z]
scaling y; slice-wise: 3 per slice
shearing x-y, y-z] [transl. x, y; scaling y]
msPOAS kappa automatically increase default for low automatically
determined SNR data (e.g., +20%) determined
RBC defaults defaults defaults
HySCO defaults defaults defaults
DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS
DKI/axDKI Fitting algorithm NLLS NLLS NLLS
NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters
WMTI-Watson defaults defaults defaults

Notes: In the "degrees of freedom" settings (ECMOCO), x, y, and z represent the frequency-, phase-, and slice-encoding

directions, respectively.
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4. Discussion

We have developed the ACID toolbox, which extends the capabilities of the SPM framework by
providing comprehensive artifact correction and model fitting techniques for brain, spinal cord, and
post-mortem dMRI data. Besides commonly used diffusion signal models such as DTI and DKI, ACID
also offers biophysical models that provide parameters of white matter tissue microstructure such as
axonal water fraction and axon orientation dispersion. Being seamlessly integrated into the SPM batch
system, ACID allows for user-friendly access to SPM's powerful spatial processing tools and statistical
framework. In addition to offering recommended pipelines for brain, spinal cord, and post-mortem
dMRI, ACID provides the flexibility for users to create custom pipelines tailored to their specific data.
Adhering to the BIDS conventions facilitates data sharing, enhances data comprehension for
investigators, and makes ACID compliant with software requiring BIDS-compliant input (https://bids-

apps.neuroimaging.io).

4.1 Considerations for artifact corrections
ACID offers artifact correction steps typically applied on dMRI, including image realignment (ECMOCO),

denoising (msPOAS), correction for susceptibility-induced geometric distortions (HySCO), and Rician
bias correction (RBC). Here, we discuss specific considerations regarding their use for various
applications.

Correcting for displacements within the dMRI data through image realignment is one of the
most important but also challenging steps. ECMOCO provides users with the flexibility to choose the
degrees of freedom for image realignment based on the anticipated type of displacement, but also
offers a selection of pre-defined degrees of freedom that are optimized for brain, spinal cord, and post-
mortem dMRI.

In brain dMRI, motion can be approximated as a rigid body displacement with 6 degrees of
freedom (DOF). Eddy-current spatial displacements, to a first-order approximation, result in translation
and scaling along y and in-plane and through-plane shearing (assuming y to be the phase-encoding
direction) (Mohammadi et al., 2010). Since these displacements affect the entire brain similarly, we
recommend employing a 9-DOF volume-wise (volume to volume) registration with translation and
rotation along x, y, and z, scaling along y, and shearing in the x-y and y-z planes. First-order
approximation of eddy-current displacements might not always be sufficient, as dMRI data can also be
affected by higher-order eddy-current displacements causing non-linear distortions (Andersson &
Sotiropoulos, 2016; Rohde et al., 2004). For example, in our observations, ECMOCO was not effective
in removing pronounced eddy-current displacements present in the dMRI data of the Human
Connectome Project (Van Essen et al., 2012). In such cases, we recommend using FSL eddy, which
incorporates higher-order correction terms (Andersson & Sotiropoulos, 2016) and can be called

directly from ACID as an external tool (Section 2.8).
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In spinal cord dMRI, volume-wise registration has been found to be less effective (Cohen-Adad
et al., 2009; Mohammadi et al., 2013) due to displacements that vary along the rostro-caudal axis of
the spinal cord. These displacements appear mostly in the phase-encoding direction and are caused
by physiological factors such as respiration and cardiac pulsation (Kharbanda et al., 2006; Summers et
al., 2006). We recommend applying volume-wise registration for rough alignment and correction of
through-slice displacements, followed by slice-wise (slice to slice) registration for correcting any
remaining slice-dependent displacement. This combined approach has demonstrated effectiveness in
realigning not only volumes but also individual slices (Fig. A2), as well as improving the contrast-to-
noise ratio between gray and white matter and reducing test-retest variability in DTI maps of the spinal
cord (Mohammadi et al., 2013). Eddy-current distortions are typically less severe in the spinal cord
compared to the brain, because the in-plane field of view is smaller and located near the scanner
isocenter. This makes the first-order approximation of eddy-current displacements, as supported by
ECMOCO, generally adequate. We recommend employing a 4-DOF volume-wise registration
(translation along x, v, z; scaling along y) followed by a 3-DOF slice-wise registration (translation along
X, y; scaling along y). In datasets with low SNR, slice-wise correction along x can be omitted, given the
smaller range of movement which makes reliable estimation difficult. We discourage correcting for in-
plane rotation and shearing, as their expected range is very small. The correction for these DOFs might
introduce spurious displacements during realignment, which we consider to be a greater risk than not
applying correction at all. Structures surrounding the spinal cord (bones, ligaments, etc.) may move
independently from the spinal cord, potentially leading to inaccuracies in transformation parameters.
Moreover, as these structures typically occupy a larger portion of the image, they can dominate the
estimation of transformation parameters. To address this challenge, ECMOCO provides the option of
specifying a spinal cord mask to restrict the estimation of transformation parameters to the spinal cord
only. Any residual misalignments can be manually corrected using the Slice-wise realignment utility
function (Table 2).

In post-mortem dMRI, specimen motion is not anticipated if the specimen is appropriately
fixed, for instance, by using a sample holder or embedding it in agarose. Thus, we recommend
correcting only for the four first-order eddy-current displacements (y-translation, y-scaling, x-y
shearing, y-z shearing). The first-order approximation is typically adequate for small specimens where
eddy-current displacements are not severe.

In general, the performance of msPOAS and HySCO is largely independent of the anatomical
features present in the image; therefore, default parameters are expected to work well for both brain,
spinal cord, and post-mortem dMRI data. It has been noted that HySCO stands out in its ability to
reduce susceptibility distortions in spinal cord dMRI when compared to other susceptibility distortion

correction tools such as TOPUP (Snoussi et al., 2021). Nevertheless, the default regularization
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parameters (alpha "diffusion” and beta "Jacobian" regulator), accessible via the script
config/local/acid local defaults.m, are optimized for the brain and may require
adjustment for the spinal cord if performance is inadequate.

Applying HySCO is particularly important for acquisitions with severe susceptibility-related
distortions, such as multi-band EPI without parallel imaging, and for multi-contrast analyses where
dMRI data or other quantitative maps are combined with structural reference images, e.g., the dMRI-
based axonal water fraction and magnetization transfer saturation maps in g-ratio mapping
(Mohammadi & Callaghan, 2021) or multi-contrast MRI in the spinal cord (David et al., 2019). In these
cases, HySCO improves the overlap between the undistorted structural image and the dMRI data,
leading to better performance of subsequent co-registration and normalization algorithms. HySCO also
improves the accuracy of g-ratio mapping; for example, the g-ratio can be significantly biased if

susceptibility distortions are not adequately corrected (Clark et al., 2021; Mohammadi et al., 2015b).

4.2 Considerations for model fitting

4.2.1 Physical diffusion models

At a given b-value, the SNR in spinal cord dMRI is typically lower than in brain dMRI due to (i) the
smaller cross-sectional area that requires higher in-plane resolution (see Fig. 5A for a size comparison),
(ii) the high signal attenuation for diffusion-gradient directions parallel to the highly aligned fibers in
the head-feet direction (Fig. 5B), (iii) the high prevalence of signal outliers caused by cardiac,
respiratory, and other physiological artifacts, and (iv) the suboptimal coil configuration in the thoracic
and lumbar regions, which are not covered by the head and neck coil. Lower SNR increases the variance
of parameter estimates and makes spinal cord dMRI more susceptible to Rician bias. Consequently,
SNR is often prohibitively low at higher b-values necessary for fitting the kurtosis tensor, making the
application of DKl in the spinal cord very challenging.

The application of adaptive denoising (msPOAS) is important as it reduces the variance and
therefore improves the precision of the tensor and kurtosis parameter estimates (see Appendix G for
examples). Rician bias correction, whether applied on the raw data or during model fitting, mitigates
the Rician bias in parameter estimates, resulting in more realistic parameter estimates (see Appendix
G for examples). A more in-depth analysis of the impact of Rician bias correction on DKI and

axisymmetric DKI can be found in (Oeschger et al., 2023a).
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Fig. 5. (A) Illustration of differences in the cross-sectional area between the brain and spinal cord, displaying a
single axial slice of the mean T2-weighted (b0) image (refer to Table 4 for details on the datasets). (B) Schematic
visualization of the spinal cord, highlighting the “butterfly-shaped” gray matter, which is located in the middle of
the spinal cord and contains neuronal cell bodies and loosely aligned fibers, and the surrounding white matter,

which contains highly aligned fibers.

Bias in parameters estimates, induced by signal outliers from cardiac, respiratory, and other
physiological artifacts, can be mitigated by applying robust fitting as a tensor fitting method (Appendix
D.3). Given the higher occurrence of signal outliers in the spinal cord, robust fitting holds particular
relevance for spinal cord dMRI. In a previous study, we demonstrated that robust fitting leads to higher
FA values within the white matter and lower FA values within the gray matter in spinal cord dMRI data,
resulting in an approximately 8% enhancement in contrast-to-noise ratio (Mohammadi et al., 2013).
However, it is important to note that robust fitting requires a sufficiently large number of unbiased
("artifact-free") data points; otherwise, it might fail to detect outliers (Chang et al., 2012).

One potential limitation of linearized fitting methods is their operation on logarithmically
transformed signals, where the assumption of Gaussian (or Rician) error distribution may not hold. The
presence of logarithmically distorted Rician noise distribution not only restricts validity but can also
impact the accuracy of the parameter estimates (Andersson, 2008; Chang et al., 2005; Koay et al.,
2006), particularly in the low-SNR regime such as in spinal cord dMRI. The WLS and robust fitting
algorithms incorporate the signal intensity into the weights of the estimator function (Appendix D.2
and D.3), which was shown to reduce the effect of log-Rician distortion (Salvador et al., 2005).
Alternatively, the NLLS algorithm (Appendix D.4) can be used, which circumvents the distortion of the
Rician distribution by operating on the original (non-logarithmic) signals, and is therefore expected to
yield more accurate parameter estimates, provided that the numerical fitting problem is sufficiently

well-conditioned.
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In summary, we recommend using robust fitting for dMRI data with a high level of artifacts
(frequent outliers), relatively high SNR, and a sufficiently large number of "artifact-free" data points
(no outliers). NLLS, especially when combined with Rician bias correction, might be more suitable for
dMRI data with lower SNR, such as those acquired for DKI (see Oeschger et al., 2023a for recommended

minimum SNR values).

4.2.2 Biophysical diffusion models
Of the biophysical models implemented in ACID, WMTI-Watson rely on DKI metrics (requiring at least

two diffusion shells), while NODDI-DTI relies on DTI metrics (requiring a single diffusion shell only). This
implies that the challenges associated with the estimation of DTl and DKI metrics, as discussed earlier,
also apply to derived biophysical models. Therefore, accurate and precise estimation of DKI and DTI
metrics is essential for the successful application of WMTI-Watson and NODDI-DTI, respectively.

For brain dMRI, the DKI-based WMTI-Watson model is typically favored over NODDI-DTI due to the
fewer model assumptions, allowing it to better capture diffusion patterns in complex axonal
configurations within brain white matter. However, complex models are more "data-hungry" and more
susceptible to noise due to the higher number of fitted parameters, which can lead to poorly
conditioned optimization problems when the amount and/or the quality of input data are insufficient.
Therefore, for low-SNR data, the less complex but better-conditioned NODDI-DTI model might be the
preferred choice. On the other hand, NODDI-DTI assumes fixed intra- and extra-cellular diffusivities
which are optimized for the brain and might not be valid for the spinal cord. Note that a compromise
between these two models could be the WMTI model, which is included as an external tool in ACID
(Section 2.8). WMTI which assumes highly aligned fibers, which holds true in white matter regions with
high fiber alignment, such as the corpus callosum, but is less appropriate in regions with more complex
axonal configurations. The challenges of applying appropriate biophysical models in the spinal cord are
further discussed in Appendix H.

Post-mortem and ex vivo neuronal tissues exhibit different diffusivities compared to in vivo
tissues due to various factors, including the effect of fixation, changes in chemical properties, and
differences in temperature and composition of the embedding fluid. For example, white matter
diffusivity was reported to reduce by approximately 85% from in vivo to ex vivo conditions, while the
ratio between gray and white matter diffusivities remain similar at around 2-3 (Roebroeck et al., 2019).
To accommodate the reduced diffusivities under ex vivo conditions, ACID offers the possibility to adjust
the compartmental diffusivities, which act as fixed model parameters, within the NODDI-DTI model.
Such an adjustment is not necessary for WMTI and WMTI-Watson, as their compartmental diffusivities

are fitted rather than fixed.
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4.3 Other considerations

4.3.1 Integration with SPM modules

ACID can be easily combined with SPM tools for segmentation, spatial processing, and voxel-based
analysis of parametric maps. Segmenting the brain or spinal cord is often necessary for co-registration,
normalization, or tissue specific analyses. In the brain, tissue probability maps of white matter, gray
matter, and cerebrospinal fluid can be created by unified segmentation, which is the default
segmentation routine in SPM12 (Ashburner & Friston, 2005). A binary brain mask can be generated
using the Make brain mask utility function (Table 2). To enable SPM’s unified segmentation in the
spinal cord, the brain tissue priors need to be substituted with the joint brain and spinal cord tissue
priors from the probabilistic brain and spinal cord atlas (Blaiotta et al., 2017). However, the atlas only
covers the upper cervical cord down to C3; for other spinal levels, the user is referred to automatic
(e.g., deepseg (Perone et al., 2018)) or semi-automatic (e.g. active surface method (Horsfield et al.,
2010)) segmentation techniques.

Brain dMRI data can be co-registered to the corresponding structural image using spm_coreg.
For normalizing to the MNI space, we recommend SPM DARTEL (Ashburner, 2007) or Geodesic
Shooting (Ashburner & Friston, 2011). As SPM registration tools often rely on brain tissue priors, they
cannot be applied directly on spinal cord dMRI. For such data, we recommend the PAM50 template
(De Leener et al., 2018) and corresponding normalization tools integrated into the Spinal Cord Toolbox
(De Leener et al., 2017).

ACID benefits from SPM’s rich statistical framework for voxel-based analysis. SPM’s second-level
analysis tool (SPM -> Specify 2nd-level) performs voxel-based statistical tests on the
parametric maps using t-test, ANOVA, or general linear model. In the SPM -> Results module,
the framework also offers (i) multiple comparison correction in the form of family-wise error rate and
false discovery rate, (ii) thresholding the test statistics at cluster- and voxel-level and providing a list of
significant clusters/voxels, and (iii) various visualization tools for displaying and saving the significant
clusters. Furthermore, ACID’s ROI analysis utility function (Table 2) can be used to extract mean metrics
within subject-specific ROls in the native space or perform atlas-based analysis in the template space.
For atlas-based analysis in the spinal cord, the user is referred to the PAM50 white and gray matter
atlas (De Leener et al., 2018).

While brain and spinal cord images are typically analyzed separately, there are scenarios where
combining them into a single image can be beneficial. For example, when registering both the brain
and spinal cord to a brain-spinal cord template, such as the probabilistic atlas of the brain and spinal
cord, the warping field is often obtained using a structural image with a large field of view covering

both regions (Fig. 6). To apply this warping field to the brain and spinal cord images, they need to be
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fused into a single image. ACID provides the Fusion utility function (Table 2) which merges two distinct
images, acquired with different FOVs and geometric properties, into a unified large-FOV image (Fig. 6).

Although ACID does not provide tractography or tract-based analysis tools, the output of its
model fitting methods can be input into tractography tools such as FSL or the SPM12-based Fibertools
(see ACID Wiki for more details).

Fractional anisotropy

Fractional anisotropy Reference image

©
—
o
(]
©
£
%
V)

Fig. 6. Merging of two fractional anisotropy (FA) maps, covering the brain and cervical cord, respectively, into a
unified FA map using the Fusion utility function (Table 2). The two images should ideally share an overlapping
region, but they may have different geometric properties such as resolution and number of slices. In the
overlapping region, the values are computed as the average of the two underlying images. The merging process

requires a structural image for reslicing the images.

4.3.2 Computation time
To speed up the processing and analyzing dMRI data, parallel computing is implemented wherever

possible. This technique can significantly accelerate the most time-consuming ACID modules, such as
ECMOCO and DTI/DKI fit. Note that parallel computing requires the Parallel Computing Toolbox in
MATLAB. Table 6 provides the computation times for selected ACID functions on a typical brain and

spinal cord dMRI dataset.
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Table 6. Computation times of selected ACID modules on an example in vivo brain and in vivo spinal cord dMRI dataset (refer

to Table 4 for details on the datasets), when run on a MacBook M1 laptop (4 cores, 16 GB RAM).

Module In vivo In vivo
Brain dMRI spinal cord dMRI
ECMOCO 38 min 2 min
msPOAS 7 min 1 min
HySCO 20 min 1 min
RBC <1 min <1min
DKI (using NLLS) 27 min 2 min
WMTI-Watson 4 min 1 min

4.3.3 Research applications
ACID has been used in a variety of clinical and neuroscience research, e.g., in dMRI studies assessing

cerebral changes in patients with multiple sclerosis (Deppe et al., 2016a, 2016b; Dossi et al., 2018;
Kugler & Deppe, 2018) and Parkinson’s disease (Szturm et al., 2021), and to assess gliomas (Paschoal
etal.,2022; Raja et al., 2016). ACID has also been used to investigate spinal cord white matter following
spinal cord injury (David et al., 2019, 2021, 2022; Grabher et al., 2016; Huber et al., 2018; Seif et al.,
2020; Vallotton et al., 2021). A non-comprehensive list of studies using the ACID toolbox can be found
on the project website®. Note that certain ACID functions can be applied to MRI data beyond dMRI as
well; for instance, HySCO has been used to correct brain fMRI data for susceptibility artifacts (De
Groote et al., 2020). It is important to note that ACID has not been approved for clinical applications
by any health agency and it comes with no warranty. Therefore, it should not be used for diagnosis in

clinical settings.

4.4 Future directions
The ACID toolbox is the result of a collaborative effort to extend the SPM ecosystem with state-of-the-

art processing and modelling tools for dMRI data. Our aim is to make the toolbox widely accessible,
leveraging SPM’s large and vibrant community. Users can submit their questions, bug reports, and
suggestions via the dedicated mailing list or by opening an issue on the git website. This paper provides
a snapshot of the toolbox’s current state, with several ongoing developments not covered here. The
modularity of the toolbox allows for integration of newly developed methods, even when used
concurrently with old ones. Biophysical modeling is an emerging field, and we expect many
methodological advancements to occur in the coming years. To stay aligned with this development,
we aim to continuously incorporate state-of-the art biophysical models into ACID. For ECMOCO, we
strive to improve robustness by automatically eliminating voxels with weak signals in the optimization
process. If the proportion of voxels with weak signals exceed a critical level, the entire volume will be

excluded from estimating the transformation parameters. This feature would offer an unsupervised

9 http://www.diffusiontools.org/sidebar/studies-using-acid.html
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identification of unreliable volumes, as opposed to the current method of manual labelling of slices

(see Exclusion mode in Appendix A).

5. Conclusion

ACID is an open-source extension to SPM12 that provides a comprehensive framework for processing
and analyzing brain, spinal cord, and post-mortem dMRI data. The toolbox was developed to meet the
growing demand for spinal cord dMRI studies and research applying biophysical models. ACID
leverages the core SPM tools and other SPM extensions, which can be easily integrated into the ACID

pipeline.
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Appendix A. Details on ECMOCO

ECMOCO consists of four steps (Fig. Al):

1. The type of the registration (slice-wise or volume-wise) and the degrees of freedom (DOF) for the
affine transformation are specified by the user.

2. Shell-specific target volumes are generated, and transformation parameters are obtained between
all non-diffusion-weighted (b0) volumes and their corresponding targets (Mohammadi et al.,
2015a). The parameter iteration for a given b0 volume can be initialized by the transformation
parameters of the preceding b0 volume (initialized registration, see details below). Only the DOF
associated with rigid-body transformation are applied for the b0 volumes, as eddy currents are
expected to be negligible for b0 volumes due to the absence of diffusion-sensitizing gradients.

3. Transformation parameters are obtained between all diffusion-weighted (DW) volumes and their
corresponding targets. The parameter iteration for a given DW volume can be initialized by the
interpolated transformation parameters (rigid-body parameters only) from the b0 volumes
(initialized registration, see details below).

4. The obtained transformation parameters are applied to reslice all volumes.

(1) type of registration rigid body (6 DOF) affine (12 DOF) rigid body (6 DOF) affine (12 DOF)
(2) registration groups b0 group DW group b0 group DW group
b0, b0,

DW, DW, DW, bOn DOnsa b0y,

. A w
§ B

DWpyy1 DWyy  DWoy

‘l' \.‘ ‘\ .
: ’,‘ N <

AY
(3)-(4) registration to target
registration order 1 2 n 2n+1  2n+2 2n+N n+1 n+2 2n 2n+N+1 2n+N+2 2n+2N
initialized by - b0, b0, interpolated from all b0 b0, bOn b0y b0y, b0y, b0,
& @)
3) (4)
(2) target creation
b0 target DW target

Fig. Al. Registration scheme for an example dMRI dataset, which consists of two sets of non-diffusion-weighted
(b0) volumes (n volumes each) and two sets of diffusion-weighted (DW) volumes (N volumes each) interspersed
with each other. The b0 and DW volumes form separate registration groups and are registered to their
corresponding target volumes. First, the b0 volumes are registered using the rigid-body components of the
specified degrees of freedom (DOF), followed by the registration of the DW volumes using all specified DOF. The
parameter iteration for a given bO or DW can be initialized using previously obtained transformation parameters

(initialized registration).
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In addition to slice-wise registration, introduced in Section 2.4.1 and demonstrated in Fig. A2,
ACID incorporates two additional recent features: initialized registration and exclusion mode.
Initialized registration is based on the observation that transformation parameters obtained from high-
SNR b0 volumes tend to be more accurate than those obtained from low-SNR DW volumes. With
initialized registration, the parameter iteration for each b0 volume starts with the transformation
parameters obtained from the preceding b0 volume. Once all the b0 volumes have been registered,
their transformation parameters are interpolated to the positions of the DW volumes situated
between the b0 volumes. Subsequently, the parameter iteration for each DW starts with these
interpolated values. If interpolation is not feasible (e.g., the DW volume is situated before the first or
after the last b0 volume), the parameter iteration starts with the parameters obtained from the
nearest b0 volume. This approach is particularly useful for correcting slow spatial drifts across volumes.

The exclusion mode is designed to address volumes with very low SNRs, which can make
obtaining reliable transformation parameters difficult. Volumes that are considered not feasible for
registration can be identified through visual inspection, e.g., using the DWI series browser utility
function, and can be inputted into ECMOCO. For these volumes, the rigid-body transformation

parameters from the preceding non-excluded volume are applied instead.

no ECMOCO ECMOCO: ECMOCO:

volume-wise volume- and slice-wise
M

| AN
0 20 40 60 80 100 120 O 20 40 &0 ) 120
DW volumes DW volumes DW volumes

signal intensity
along PE direction

Fig. A2. Qualitative comparison of different motion correction techniques including no correction, volume-wise
ECMOCO, and the combination of volume- and slice-wise ECMOCO. The plots show the concatenation of 1D
cross-sections along the phase-encoding (PE) direction (anterior-posterior), extracted at fixed x- and z-
coordinates from each of the 120 diffusion-weighted (DW) volumes in an in vivo spinal cord dMRI dataset.
Additionally, zoomed-in views of a subset of DW volumes are provided to facilitate the assessment of
improvements by ECMOCO. Substantial motion along the y-direction was initially observed, which was notably
reduced after applying ECMOCO. Importantly, volume-wise ECMOCO did not entirely correct for spatial
misalignments in all volumes (an example of failed correction is indicated by the red arrow). Conversely, the

combination of volume- and slice-wise ECMOCO effectively corrected spatial misalignments in all DW volumes.
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Appendix B. Regions for repeated measures noise estimation method

For optimal denoising (msPOAS, Section 2.4.2) and Rician bias correction (Section 2.4.3), it is crucial to
accurately estimate the image noise within the appropriate region of interest. Noise measurements
taken from regions outside the body are often suboptimal due to the lower parallelization factor (g-
factor) at the edge compared to the center of the field of view. Instead, we recommend estimating the
noise according to two distinct scenarios, with each case using the repeated measures method (see
Noise estimation in Table 2). In datasets affected by (temporally varying) physiological artifacts, such
as in in vivo brain and spinal cord datasets, we recommend estimating the noise across images with
high b-values and within regions where the signal reaches the noise plateau (i.e., within cerebrospinal
fluid compartments). For automatic ventricle segmentation within the brain, ACID provides a
segmentation batch located at ACID TPM/acid-ventricles-batch.m, which utilizes the
spm_segment function. In datasets not affected by physiological artifacts, such as in post-mortem
dMRI, we recommend estimating the noise across non-diffusion-weighted (b0) images and within

either the entire or part of the specimen. Example noise regions are shown in Fig. B1.

In vivo In vivo Post-mortem
brain spinal cord specimen

T

Fig. B1. Non-diffusion-weighted (b0) images of the brain, spinal cord, and a post-mortem specimen, with binary
noise masks outlined in red. For the brain and spinal cord, the noise masks encompass areas containing
cerebrospinal fluid (CSF), such as the lateral ventricles within the brain and the subarachnoid space within the
spinal cord. These masks are considered noise masks for high b-values because the CSF signal, having a high
diffusivity, reaches the noise plateau at these high b-values. For the post-mortem specimen, the noise mask

encompasses the entire specimen.
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Appendix C. Recommendations for adaptive denoising (msPOAS)

If the overall noise reduction is insufficient, kstar can be increased at the cost of longer computation
time (Tabelow et al., 2015). It is important to note that msPOAS assumes a single global value of sigma,
which may not always hold. If sigma is correctly estimated, the default lambda value will ensure
optimal adaptation. Incorrect estimation of sigma can be compensated by the choice of lambda, which
makes msPOAS robust against misspecification of sigma (Becker et al.,, 2014). We recommend
determining kappa automatically based on the number of diffusion directions (Tabelow et al., 2015).
However, manual adjustment of kappa may be necessary in cases where the SNR is low (e.g., for spinal
cord dMRI) or if the dataset has more images with high than with low b-values. The effective number
of coils (ncoils) is 1 when using SENSE1 reconstructions (Polzehl & Tabelow, 2016; Sotiropoulos et al.,
2013), but the correct value is more difficult to determine when using multiple receiver channels for
acquisition (Aja-Fernandez et al., 2014). It is important to use the same ncoils for the estimation of

sigma and in msPOAS to ensure the same number of degrees of freedom.

Appendix D. Model fitting methods implemented in ACID

Appendix D.1. Ordinary Least Squares

Tensor fitting involves solving the linear regression problem y = Ba + €, where y contains the
logarithmic signals, B (b-matrix) contains the gradient directions and strengths, a contains the
elements of the diffusion tensor, and & contains the model-fit errors (the difference between the
actual and fitted signal). The ordinary least squares (OLS) approach employs the estimator function
p(&;) = 2, where &; represents the model-fit error of acquisition i. The solution is obtained by

minimizing ¥; £, yielding a,;s = (BTB) 'BTy.

Appendix D.2. Weighted Least Squares

The weighted least squares (WLS) approach addresses the heteroscedasticity of the logarithmic data
by assigning individual weights to each image in the form of w; = fi/ai, where .§'i represents the
unknown true signal (without noise) and o; is the background noise for acquisition i. The estimator
function now becomes p(g;) = (w;¢;)?, yielding the solution a,,;s = (WTBTWB) " 'WTBTWYy, with
W being the diagonal matrix of w;. Note that OLS is a special case of WLS, where w; = 1 for all i. A
practical consideration in obtaining a,,s is related to estimating Si. One approach is to use the
measured noisy signal S; as an estimate of Si. Another approach is to start with the OLS solution and

use the fitted signal as an estimate of .§l~, which was shown to be more accurate (Veraart et al., 2013b).
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Appendix D.3. Robust fitting

The concept behind robust fitting is to assign lower weights to data points with higher model-fit errors
during the fitting process (Mangin et al., 2002). The robust fitting method implemented in ACID
(Mohammadi et al., 2013) is based on the “Patching ArTefacts from Cardiac and Head motion” (PATCH)
technique (Zwiers, 2010). While the form of the estimator function is similar to that of WLS, PATCH
factorizes the weighting function into a product of dedicated weighting functions. Specifically, w; is
factorized into three components as w; = w;;wj;w;3, where each component is designed to address
different types of artifacts: w;; and w;; account for regional and slice-wise artifacts, respectively, while

wj3 is the same as the weight term in WLS. w;; and w;, are exponentially decaying functions of &;:

Ag&;
1

2 2
Ay g Eik . . .
wip = exp (— [ - ] ), wi; =exp (— [ZC—Z‘SZ] ), where ;o = n_, =% is the slice-average model-fit

Vn

error, with n being the number of voxels in the slice. A; and A, are model parameters, by default set
to 0.3 and 0.1, respectively, with higher values resulting in a faster exponential decay. C; and C, are
estimates of the standard deviation of ¢; and ¢; i, respectively, in the absence of outliers, and are
computed as C; = 1.4826 - median(|g;|), C; = 1.4826 - median(|g; g;|) (Hampel, 1974; Rousseeuw
& Croux, 1993). Note that accurate estimation of C; and C, is crucial for effectively downweighing
outliers. This holds true as long as outliers are sparsely distributed and the median of the model-fit
errors remains unaffected. However, frequent occurrence of outliers can increase C, resulting in less
efficient downweighing of outliers. While OLS and WLS independently fit the tensor in each voxel,
PATCH makes use of the observation that physiological noise represents a structured, spatially
correlated noise. To accommodate the anticipated smoothness of C;, the median operator is spatially
smoothed using a 2D Gaussian kernel before computing C; (Zwiers, 2010).

As a modification to PATCH, the robust fitting method incorporates Tikhonov regularization to
handle ill-conditioned weighting matrices resulting from a high occurrence of outliers. This leads to the
solution a; = [W'BTWB + ABTB]"'WTBTWYy, where W represents the diagonal matrix of
factorized weights, and A is the Tikhonov regularization factor. A must be carefully chosen as a trade-
off since too low values fail to eliminate ill-conditioning, whereas too high values result in bias in the
estimated parameters. The above equation cannot be solved readily, as W is a function of &, which is
only available after obtaining the solution. This is addressed by using an iteratively re-weighted least
squares (IRLS) algorithm. In the first iteration, w; is set to 1 for all i to obtain the OLS solution &g, and
to calculate the initial €. In the second iteration, an updated W is computed based on the initial g,
which is then used to compute a;. In each further iteration, &€ from the preceding iteration is used to
update W, which is in turn used to compute the updated «,. This iterative process is repeated until

convergence or until the predefined number of iterations is exceeded.


https://doi.org/10.1101/2023.10.13.562027
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.13.562027; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

no outlier )
high
fit without outliers g
= fit with outliers :;
@
c
I 2
Ly £
S =
> x ©
e 5
W e *uw @
g') _ X R ow
» ; 3 X low
O o % 3 x ‘x_‘ x
S - L XX S
E 2‘ 3 : ":di - y
=" WSR X x  X X outlier
=T “x o xewadhe X high
S| * e *";?4’4
o] » T A —_
— x Ty x x§ S
o | s A B,
x x *S
L x x - 2>
x x ‘»
c
8}
\ 2
[
(=]
o »
Angle [°]
low

Fig. D1. Schematic illustration of how robust fitting downweighs outliers in the model fit. The scatter plot displays
the signal intensities against the angle of the diffusion gradient (bvec) in a particular voxel. The confidence
interval of the data points is indicated as blue dashed lines. The voxels corresponding to two selected data points,
one inside (upper arrow) and another far outside the confidence interval ("outlier", lower arrow), are indicated
by green crosshairs in the axial slices on the right. During the model fit, a linear curve is fitted on the logarithmic
signal intensities. The presence of outlier data points leads to a biased model fit (red dashed line) and hence to
biased tensor estimates when using ordinary least squares (OLS) model fitting. In contrast, robust fitting

downweighs the influence of outliers, leading to a more robust model fit (yellow dashed line).

Appendix D.4. Non-linear least squares
The non-linear least squares (NLLS) method solves the optimization problem a5 =

2

argminE (Sbjm—f(a)) , Where f represents the signal model (DTl or DKI), @ the model
a i

parameters (elements of the diffusion and/or kurtosis tensors), and Sp,g; the measured signal

intensities for a specific diffusion weighting b and diffusion gradient direction g,. The NLLS optimization

problem is solved with a Gauss-Newton algorithm.
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Appendix E. Example diagnostic plots
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Fig. E1. Diagnostic plots, optionally generated by ECMOCO, displaying the transformation parameters for all
volumes (in the case of volume-wise registration) or slices (in the case of slice-wise registration). In volume-wise
registration, demonstrated here with an in vivo brain dMRI dataset, two figures are created to plot the
transformation parameters associated with motion (A) and eddy-current-related displacements (B). In slice-wise
registration, shown here with an in vivo spinal cord dMRI dataset, a single figure is created to plot the
transformation parameters with separate subfigures for each estimated degree of freedom (B). Excessive
displacements in volumes/slices indicate either extreme movements, eddy-current artifacts, or a failed

estimation of transformation parameters.
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Fig. E2. Diagnostic plots, optionally generated by the Diffusion tensor/kurtosis imaging module, displaying the
average (logarithmic) model-fit error within the provided mask of the region of interest for each volume and
slice, demonstrated here with an in vivo spinal cord dataset and a spinal cord mask. Volumes/slices with high
model-fit error (outliers) indicate a significant number of corrupted volumes (e.g., due to misregistration,
physiological, or other artifacts) or an inadequate model for capturing the underlying complexity of diffusion.
Here, periodically occurring pairs of volumes with high model-fit errors are the result of an inadequate model fit
due to the low signal-to-noise ratio caused by the diffusion-sensitizing gradient aligned parallel to the spinal cord
(A). Also notice that model-fit error is the highest within slice 2, which could be due to more physiological artifacts
in that location. For an even more precise diagnosis of signal outliers, the voxel-wise root-mean-square of the
model-fit error map (suffix: RMSE-LOG_map.nii) or the 4D model-fit error map (suffix: ERROR-LOG_map.nii) can

be visually inspected to help identify individual outlier voxels or data points, respectively.
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Appendix F. Kurtosis bias
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Fig. F1. Kurtosis bias in the mean diffusivity (MD) maps in an in vivo brain and in vivo spinal cord dataset (refer
to Table 4 for details on the datasets). This bias, shown in the right column, refers to the difference in the
estimated diffusivity values when using the lower diffusion shells only (MDpr;, tensor model, left column) or
both the lower and higher diffusion shells (MDp;, kurtosis model, middle column). On average, the kurtosis bias

was 12% and 54% within the brain white matter and spinal cord, respectively.
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Appendix G. Effect of artifact correction on diffusion kurtosis
estimates
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Fig. G1. Comparison between maps of fractional anisotropy (FA), axial diffusivity (AD), mean of the kurtosis
tensor (MW), axial kurtosis (AW), and radial kurtosis (RW) with and without applying adaptive denoising

(msPOAS). The msPOAS-corrected maps appear less noisy while preserving tissue edges.
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Fig. G2. The influence of Rician bias correction (RBC) on maps of biophysical parameter estimates, derived from
the NODDI-DTI and WMTI-Watson model, including axon orientation dispersion (k), in an in vivo brain and spinal
cord dataset (refer to Table 4 for details on the datasets). These maps were computed without (left column) and
with (middle column) RBC; their voxel-wise difference, known as the Rician bias, is shown in the right column.
RBC slightly decreased the mean of the kurtosis tensor both in the brain and spinal cord, which resulted in an
increase in k. The estimation of AWF was not feasible using the NODDI-DTI model, as the DTI-derived MD values
fell below the range in which the NODDI-DTI model provides a valid representation (Equation (4) in Edwards et
al., 2017). This could be attributed to either the underestimation of MD due to the kurtosis bias (Appendix F), or

the invalidity of fixed compartmental diffusivities in the NODDI-DTI model.
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Appendix H. Biophysical parameters in the brain and spinal cord
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Fig. H1. Bar plots displaying the neurite orientation dispersion (k) and axonal water fraction (AWF) within the five
central slices of the corpus callosum and the lateral corticospinal tracts in the spinal cord. The corpus callosum
was manually segmented, while the lateral corticospinal tracts were segmented using the PAMS50 spinal cord
white matter atlas. The red horizontal lines represent literature values. Orientation dispersion index values
reported in the literature were converted to k as per Equation (1) in (Mollink et al., 2017). Within the corpus
callosum, the k values were (mean + std) 10.8 10.3 and 8.1 5.1 when derived from the NODDI-DTI (single
shell) and WMTI-Watson model (two shells), respectively, which fall within the range of literature values
obtained post-mortem using polarized light imaging (Mollink et al., 2017). The AWF values derived from NODDI-
DTI (0.40 0.25) and WMTI-Watson model (0.47 0.13) were also similar to literature values obtained using
WMTI (Margoni et al., 2019). Within the lateral corticospinal tracts, the k values derived from NODDI-DTI were
notably lower than those derived from WMTI-Watson (2.0 0.3 vs. 4.79 1.22) and were in agreement with
literature values obtained post-mortem by NODDI (Grussu et al., 2017). The AWF values were 0.82 0.04 when
derived from the WMTI-Watson model, which were substantially higher than literature values obtained using
AxCaliber diffusion data (Duval et al., 2015). The estimation of AWF was not feasible using the NODDI-DTI model,
as the DTI-derived MD values fell below the range in which the NODDI-DTI model provides a valid representation
(see Equation (4) in Edwards et al., 2017). This could be attributed to either the underestimation of MD due to

the kurtosis bias (Appendix F), or the invalidity of fixed compartmental diffusivities in the NODDI-DTI model.
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