

1 **Title**

2 The transcription factor SpiB regulates Fibroblastic Reticular Cell network and CD8⁺ T cell
3 responses in lymph nodes

4

5 **Authors and affiliations**

6 Harry L Horsnell¹, Wang HJ Cao^{2,3}, Gabrielle T Belz^{2,3,4}, Scott N Mueller^{1,5,*}, Yannick O
7 Alexandre^{1,5,*}

8

9 ¹ Department of Microbiology and Immunology, University of Melbourne, Peter Doherty
10 Institute for Infection and Immunity, Melbourne, VIC, Australia

11 ² Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.

12 ³ Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.

13 ⁴ University of Queensland Frazer Institute, University of Queensland, Brisbane, QLD,
14 Australia.

15 ⁵ These authors contributed equally

16 * Correspondence: smue@unimelb.edu.au or yannick.alexandre@unimelb.edu.au

17

18 **Abstract**

19 Fibroblastic Reticular Cells (FRCs) construct microanatomical niches that support lymph node
20 homeostasis and coordination of immune responses. Transcription factors regulating the
21 functionality of FRCs remain poorly understood. Here we investigate the role of the
22 transcription factor SpiB that is expressed in lymph node FRCs. Conditional ablation of SpiB in
23 FRCs impaired the FRC network in the T cell zone of lymph nodes, leading to reduced numbers
24 of FRCs and altered homeostatic functions including reduced CCL21 and interleukin-7
25 expression. The size and cellularity of lymph nodes remained intact in the absence of SpiB but
26 the space between the reticular network increased, indicating that although FRCs were
27 reduced in number they stretched to maintain network integrity. Following virus infection,
28 antiviral CD8⁺ T cell responses were impaired, suggesting a role for SpiB expression in FRCs in
29 orchestrating immune responses. Together, our findings reveal a new role for SpiB as a critical
30 regulator of FRC functions and immunity in lymph nodes.

31

32 **Key words**

33 Fibroblastic Reticular Cells – Lymph node – CD8 T cells – Immune response – transcription
34 factor

35

36 **Introduction**

37 Lymph nodes (LNs) are secondary lymphoid organs that form a network of tissues designed
38 as a filtration and surveillance system. The microarchitecture of LNs is organised into distinct
39 compartments with the primary goal of capturing and presenting antigens from peripheral
40 tissues to cells of the immune system, generating immune responses¹. As such, dendritic cells
41 present antigens to T cells for priming in the T cell zone, whereas B cell responses and the
42 formation of germinal centres occurs in B cell follicles. The LN subcapsular sinus operates as a
43 first line of defence with a layer of specialised subcapsular sinus macrophages that sample
44 afferent lymph and capture pathogens and antigens that drain from the tissues². The medulla
45 contains blood vessels and medullary lymphatics that serve as an exit route for lymphocytes
46 back into the blood circulation. Several types of non-haematopoietic stromal cells support the
47 lymphoid architecture and function by constructing networks and defining compartments.
48 CD31⁺ lymphatic and blood endothelial cells build the vasculature of LNs required for the entry
49 and exit of immune cells. Contractile pericytes expressing the adhesion molecule CD146 are
50 also found in association with blood vessels. Fibroblastic Reticular Cells (FRCs) are the most
51 prominent stromal cell population in LNs that form an interconnected cellular network that
52 supports immune cell migration³. In addition, FRCs create a conduit system composed of
53 extracellular matrix components and reticular fibers that facilitates the transport of lymph-
54 derived antigens and signalling molecules, assisting in the induction of immune responses.
55 Inflammation transcriptionally reprograms FRCs towards immune related pathways that
56 further support ongoing immune responses⁴⁻⁶.

57

58 FRCs comprise several subsets based on their intranodal location, markers, and functions, that
59 all express podoplanin (PDPN). This heterogeneity in FRCs creates anatomical niches that
60 support the homeostasis and support of immune responses in LNs⁷. Within the subcapsular
61 sinus, marginal reticular cells (MRCs) and lymphatic endothelial cells form a unique niche for
62 subcapsular macrophage development and homeostasis⁸⁻¹⁰. B cell zone reticular cells include

63 follicular dendritic cells (FDCs) and other CXCL13-expressing reticular cells that define this
64 compartment and support humoral responses¹¹. Within the T cell zone, reticular cells (TRCs)
65 express the chemokines CCL19 and CCL21 that promote the attraction and retention of T cells
66 and DC that express CCR7 and produce cytokines such as interleukin (IL)-7 that are critical for
67 T cell survival^{12,13}. Additionally, MRCs, BRCs and TRCs are all characterised by high expression
68 of the bone marrow stromal cell antigen-1, or CD157. Conversely, in the medulla CD157^{low}
69 FRCs (medRC) were recently shown to support plasma cells by providing IL-6^{7,14}. Finally,
70 adventitial reticular cells (ARCs) that express CD34 and Ly6C form a specific niche by
71 surrounding blood vessels and may function as precursors of adult FRCs^{15,16}.

72

73 LN FRCs develop from fibroblast activation protein- α^+ lymphoid tissue organiser cells (LTos) of
74 mesenchymal origin¹⁷. Their development requires sequential differentiation and maturation
75 steps that are not fully understood. Several pathways such as the lymphotxin- β receptor
76 signalling, NF- κ B or effectors of Hippo signalling, YAP and TAZ were shown to instruct the
77 maturation of FRCs from FRC precursor cells¹⁸⁻²¹. Deficiency in these pathways results in a
78 reduction in the cellularity of FRCs and these immature FRCs harbor lower expression of the
79 homeostatic chemokines CCL19, CCL21 and CXCL13 as well as reduction in IL-7. Interestingly,
80 immature FRCs still produce reticular fibres and a functional conduit network in LNs, but the
81 overall size and immune cell cellularity is decreased^{18,19}. These defects in the FRC network also
82 resulted in impaired CD8 $^+$ T cell responses during viral infections, indicating that the
83 generation of optimal immune responses require a functional and healthy FRC network.
84 However, it is not clear how the FRC network impacted antiviral immunity because in those
85 studies the position and recruitment of immune cells in LNs were also perturbed^{18,19}.

86

87 We previously identified the transcription factor SpiB as a regulator of FRC maturation in the
88 spleen^{16,22}. Here we investigated the role of SpiB in LN homeostasis and immune responses.
89 We found that SpiB expression is conserved in LN FRCs and conditional ablation of SpiB
90 expression impacted the cellularity and functionality of the FRC network in the T cell zone at
91 steady state. Deletion of SpiB in FRCs did not affect LN tissue size or homeostasis of immune
92 cells but impacted T cell priming following viral infection. These data indicate conserved
93 function of the transcription factor SpiB in lymphoid organ FRCs for the induction of pathogen-
94 specific T cell responses.

95 **Results**

96 **The transcription factor SpiB is expressed by lymph node FRC**

97 We previously identified a role for SpiB in FRCs in the spleen¹⁶. We first sought to determine
98 if SpiB expression was conserved in LNs. Integration of scRNA-seq datasets analysing FRCs
99 from both spleen and LNs revealed expression of *Spib* mRNA in FRCs from LN B and T cell
100 zones as well as medullary reticular cells (medRCs) but low to no expression in LN ARC or
101 pericytes (Supp Fig. 1A). B cell follicle FRCs had higher expression of *Spib* compared to TRCs.
102 We then used SpiB-tdTomato reporter mice to examine expression in LN stromal cells by flow
103 cytometry and observed that FRCs and LECs had the highest levels of tdTomato whilst BEC and
104 pericytes had low expression (Fig. 1A-B). We then used a new gating strategy to further define
105 FRC subsets in LNs. We identified CD21/35⁺ FDC, MadCAM1⁺ MRCs, CD157⁺ TRC, Ly6C⁺CD157⁻
106 ARCs and Ly6C⁻CD157⁻ medRCs (Fig. 1C)^{14,16,23}. Flow cytometry analysis revealed that FDCs and
107 MRCs had the highest expression of tdTomato followed by TRC, whilst ARC and medRC had
108 low levels of tdTomato (Fig. 1D).

109

110 **The transcription factor SpiB supports FRC homeostasis**

111 To investigate a role for SpiB in LN FRCs, we used *Ccl19-Cre/Spib*^{fl/fl} mice (SpiB^{ΔCCL19}) as
112 previously described¹⁶ and confirmed the absence of *Spib* in sorted populations of TRCs, ARCs
113 and medRCs by qPCR (Supp Fig. 1B). We observed a significant reduction in the numbers of
114 FRCs, LECs and BECs but not of pericytes in the LN of SpiB^{ΔCCL19} mice (Fig. 2A). The reduction
115 in LECs and BECs may reflect a bystander effect because endothelial cells are not targeted in
116 CCL19-Cre mice^{19,24}. Amongst FRC subsets, TRCs and MRCs were reduced in cellularity in
117 SpiB^{ΔCCL19} mice but FDCs, ARCs and medRCs were not changed (Fig. 2B). Thus, expression of
118 SpiB was required for maintenance of the stromal cell networks that support LNs in defined
119 areas of LNs.

120 We previously showed that in the absence of SpiB, splenic TRCs had increased expression of
121 genes expressed by ARCs, notably the stem marker CD34, and decreased expression of mature
122 TRC markers, including *Il7*, *Ccl19* and *Grem1*, which indicated a role for SpiB in supporting the
123 differentiation of spleen TRCs from adventitial precursor cells¹⁶. We did not observe changes
124 in *Ccl19* expression in SpiB-deficient LN TRCs (Supp Fig. 1C), however, expression of the
125 homeostatic cytokine *Il7* was significantly reduced in FRC subsets and *Grem1* as well as *Cd34*

126 expression were reduced in TRCs (Fig. 2C and Supp Fig. 1C). This suggests that SpiB likely
127 regulates some aspects of the differentiation of FRCs in LNs. We then asked if SpiB regulates
128 the expression of other canonical FRC markers in FRCs, including the proteins PDPN, CD157,
129 VCAM-1 and CD140a (PDGFRa). We observed small changes in expression of these markers in
130 MRCs in the absence of SpiB and no differences amongst other LN FRC subsets except for
131 CD140a that was also slightly reduced in LN TRCs (Supp Fig. 1D). In addition, SpiB^{ΔCCL19} FRCs
132 demonstrated normal expression of the chemokines *Ccl2*, *Ccl7*, *Cxcl9*, *Cxcl10*, *Cxcl12*, *Cxcl13*
133 and the alarmin *Il33*, except for a reduction of *Ccl7* expression in TRCs and *Cxcl13* in medRC
134 (Supp Fig. 1E). We observed a significant reduction in intracellular CCL21 expression in
135 SpiB^{ΔCCL19} FRCs, particularly within TRCs, but not in endothelial cells or pericytes (Fig. 2D).
136 Histological examination showed no difference in CCL21 deposition in the T cell zone of
137 SpiB^{ΔCCL19} mice (Fig. 2E), possibly due to accumulation of the chemokine on the reticular
138 network via heparan sulphate binding²⁵. LN FRCs that surround HEV and LEC also
139 predominantly express the leptin receptor (LepR), which might promote FRC survival and
140 functions²⁶. We found that *Lepr* was reduced in TRCs in the absence of SpiB and confirmed
141 the decrease of LepR expression by flow cytometry in SpiB-deficient TRCs (Fig 2. F-G). Overall,
142 these data show that SpiB regulates the maintenance of TRCs and MRCs in LNs and regulates
143 discreet components of FRC function.

144

145 **Normal lymph node architecture in mice lacking SpiB in FRCs**

146 Because FRCs play crucial roles in regulating LN homeostasis, we investigated if the reduction
147 in numbers of TRCs and altered functionality impacted immune cell cellularity and the LN
148 architecture. The loss of SpiB in FRCs resulted in a small but non-significant decrease in total
149 LN cellularity, composed of small but non-significant changes in the numbers of B cells, CD4⁺
150 and CD8⁺ T cells (Fig. 3A). Other immune cells including NK and NK-T cells, monocytes,
151 neutrophils and dendritic cell subsets, apart from plasmacytoid dendritic cells, were not
152 altered in the LNs of SpiB^{ΔCCL19} mice (Fig. 3A). The gross architecture and total surface area of
153 LNs remained unchanged in SpiB^{ΔCCL19} mice (Fig. 3B-C). The absence of SpiB expression in FRCs
154 also did not affect the organisation or size of the LN T cell zone, B cell follicles or medulla (Fig.
155 3C). However, a closer examination of the PDPN⁺ TRC network in the T cell zone revealed that
156 the TRC network was less dense in SpiB^{ΔCCL19} mice (Fig. 3D). Quantification of the spacing
157 between FRCs in the T cell zone network using gap analysis confirmed that the space between

158 the reticular network fibers was increased in the absence of SpiB (Fig. 3E). The reduction in
159 FRC and lymphocyte cellularity resulted in maintenance of the ratio of T cells to TRCs (Fig. 3F).
160 Thus, increased spacing between TRCs in LNs from SpiB^{ΔCCL19} mice occurred in the absence of
161 a reduction in tissue size, suggesting that the FRC network stretched to maintain T cell
162 homeostasis.

163

164 **SpiB expression enables FRC to regulate T cell immunity**

165 Having identified a role for SpiB in regulating the TRC function and network properties at
166 homeostasis, we then investigated if SpiB expression in FRCs supports immune responses. For
167 this, we labelled with CellTrace Violet (CTV) gBT-I CD8⁺ T cells specific for an Herpes simplex
168 virus (HSV) glycoprotein B epitope and transferred into SpiB^{ΔCCL19} and control mice followed
169 by subcutaneous HSV-1 KOS infection (Fig. 4A). We tracked CD45.1⁺ gBT-I CD8⁺ T cells in the
170 draining popliteal LNs of infected mice (Fig. 4B). Proliferation of gBT-I CD8⁺ T cells 3 days after
171 infection was diminished in SpiB^{ΔCCL19} mice, reflected by a lower average number of divisions
172 (proliferation index) and reduced fold expansion (replication index) amongst dividing cells (Fig.
173 4B-C). Accumulation of divided gBT-I CD8⁺ T cells required SpiB expression in FRCs (Fig. 4D),
174 yet upregulation of the activation markers CD69 and CD25 by gBT-I cells was unaffected,
175 suggesting normal differentiation of the CD8⁺ T cells that entered division (Fig. 4E).

176 We then explored if the reduced early proliferation of gBT-I cells would further impact their
177 effector functions. For this, we similarly tracked and analysed the differentiation of gBT-I cells
178 into short lived effector cells (SLECs) and memory precursor effector cells (MPECs) based on
179 expression of KLRG1 and the IL-7R respectively, in the draining popliteal LNs of infected mice
180 8 days post-infection (Fig. 4F-G). Although total numbers of CD8⁺ T, CD4⁺ T and B cells were
181 similar in LNs of SpiB^{ΔCCL19} mice when compared to littermate control mice, we observed a
182 significant reduction in numbers of virus-specific gBT-I CD8⁺ T cells (Fig. 4H). The
183 differentiation of gBT-I cells into SLEC and MPEC was not affected (Fig. 4I), and induction of
184 GL7⁺CD38⁻ germinal centre B cells, CD138⁺ antibody secreting cells and CXCR5⁺PD-I⁺ T_{FH} cells
185 were not altered in the LNs of HSV-1 infected SpiB^{ΔCCL19} mice (Supp Fig. 2A-B). This suggested
186 that SpiB expression in FRCs preferentially supported CD8⁺ T cell responses. To confirm this,
187 we infected mice with Lymphocytic choriomeningitis virus and examined cellularity in inguinal
188 LNs. Expansion of endogenous CD4⁺ and CD8⁺ T cells and virus-specific transgenic P14 CD8⁺ T

189 cells was reduced in SpiB^{ΔCCL19} mice, but differentiation of effector CD8⁺ T cells was not altered
190 (Supp Fig. 2C-D).

191 Finally, we observed a significant defect in the expansion of the TRC network during the course
192 of HSV-1 infection in SpiB^{ΔCCL19} mice that resulted in a significant increase in the ratio of total
193 T cells to TRCs in LNs (Fig. 4J, Supp Fig. 2E). These results suggest that SpiB expression in FRCs
194 is critical for the expansion of the FRC network that regulates the early priming and
195 proliferation of CD8⁺ T cells during viral infection. Together, our findings expand our
196 understanding of the role of SpiB in regulating the LN FRC network and a crucial role in
197 supporting the induction of CD8⁺ T cell responses.

198

199 **Discussion**

200 This study identified the transcription SpiB as a regulator of FRC homeostasis and functionality
201 in LNs. We found that in the absence of SpiB, FRCs were decreased in cellularity and key
202 homeostatic factors expressed by FRCs such as CCL21 and IL-7 were reduced. However, we
203 found that the size and architecture of LNs were not affected. In addition, we found that the
204 absence of SpiB expression in FRCs did not affect the expression of canonical FRC markers such
205 as PDPN, CD140a, BST1 and VCAM1, or the expression of other chemokines, including *Ccl19*,
206 suggesting normal differentiation of FRCs from precursor cells. This is sharp in contrast with
207 previous work that identified that the lymphotoxin beta signalling pathway or the expression
208 of YAP/TAZ in CCL19⁺ FRCs are critical for the maturation of FRCs from precursor cells required
209 for proper organisation of LN structures¹⁸⁻²⁰. In these models, homeostatic chemokine
210 expression such as CCL21 and CCL19 were also strongly reduced in FRCs that impacted the
211 recruitment of immune cells leading to smaller LN size and deformed architecture, notably
212 the delineation of the T and B cell compartments. We found that even though CCL21
213 expression was reduced in FRCs in the absence of SpiB, our histological examination of LNs
214 showed normal CCL21 accumulation on the reticular network, suggesting that reduced
215 chemokine expression in FRCs might be compensated from other sources such as endothelial
216 cells, that are a source of the chemokine in lymphoid tissues^{5,13}.

217

218 Despite normal compartmentalisation of the LN, we observed that the space between the
219 reticular network fibers within the T cell zone of LNs was increased in the absence of SpiB

220 expression. This implies that the FRC network has remodelled to maintain the size of the LN
221 and ratio with T cells in the steady state. Under basal conditions, FRCs maintain tension via
222 PDPN expression that facilitates the contraction of the actomyosin cytoskeleton^{27,28} and this
223 contraction of the FRC network regulates the stiffness of the LN as well as their size. During
224 the first few days of an immune response, CLEC-2 expression from mature dendritic cells
225 engages and blocks PDPN functions and downstream signalling to relax the actomyosin
226 cytoskeleton and induce the stretching of FRCs^{27,28}. This regulates LN tension to accommodate
227 the increase of cellularity due to lymphocyte recruitment²⁹⁻³¹. We did not find that SpiB
228 regulates PDPN expression in FRCs suggesting that additional molecules involved in FRCs
229 contractility should be investigated in our model. A recent report identified that the PDPN
230 binding partner surface proteins CD44 and CD9 suppress PDPN functions and the contractility
231 of FRCs³². Whether SpiB regulates expression of both CD44 and CD9 remains to be addressed.
232 In addition, the subcellular distribution of the transcription factors YAP and TAZ are a direct
233 proxy of mechanical signalling that cells receive³³ and two recent studies identified that the
234 nuclear relocalisation of YAP/TAZ correlates with increased tension while their cytoplasmic
235 localisation correlates with decreased tension and relaxation of the FRC network^{30,34}. Our
236 imaging indicates that the FRC network may be relaxed in the T cell zone of LNs and may
237 indicate a lower nuclear/cytoplasmic ratio of YAP/TAZ in WT FRCs compared to their SpiB
238 deficient counterparts.

239
240 Our data identified that SpiB expression in FRCs is required for the optimal activation of naïve
241 CD8⁺ T cells during viral infection. In the absence of SpiB, the early proliferation of antiviral
242 CD8⁺ T cells was delayed. This corroborates our previous findings where we identified a role
243 for SpiB expression in spleen FRCs in regulating CD8 T cell responses to acute and chronic
244 systemic viral infection¹⁶. Previous studies also identified a defect in CD8⁺ T cell responses
245 when the FRC network was impaired in the absence of the lymphotoxin beta signalling
246 pathway or the expression of YAP/TAZ in FRCs^{18,19}. In these two studies, the decrease of FRC
247 as well as reduction in homeostatic chemokine expression resulted in a paucity of immune
248 cells in LNs, and disorganised T/B segregation that likely contributed to the reduced T cell
249 response. Similarly, gradual depletion of the CCL19⁺ FRC network revealed that the topology
250 of the network can accommodate up to 50% decrease before affecting immune cell
251 recruitment to LNs, intranodal cell motility or priming of CD8⁺ T cells³⁵. Given that we found

252 only a small reduction in FRC numbers in SpiB^{ACCL19} LNs, our data therefore indicate that
253 functional changes in FRC were responsible for defects in T cell priming. Yet, the mechanisms
254 behind FRC support for T cell responses, beyond the chemokine-dependent positioning of
255 immune cells, is still unclear. We identified that SpiB expression is required for LN remodelling
256 via optimal FRC expansion during viral infection and that the ratio of T cells to FRC was
257 increased over the course of infection suggesting that T cells would likely make less contacts
258 with FRCs as the LN expands. Additionally, we cannot exclude the requirement for direct
259 signals from FRCs for T cell activation that are regulated by SpiB but not identified in our study.
260 Future studies would need to determine how SpiB regulates FRC functionality during
261 inflammation to identify factors that could influence immune responses. In summary, our
262 study establishes a role for the transcription factor SpiB in regulating LN FRC functions and
263 provide new insights into how the FRC network support immune responses.

264

265 **Conflict of interest**

266 The authors declare that they have no competing interests.

267

268 **Funding**

269 This work was supported by the Australian Research Council (DP230102108 to S.N.M. and
270 Y.O.A.) and the National Health and Medical Research Council (Senior Research Fellowship
271 2017220 to S.N.M.). H.L.H. is supported by an EMBO Postdoctoral Fellowship ALTF 776-2022.

272

273 **Acknowledgements**

274 We thank the Bioresources Facility and the Melbourne Cytometry Platform at the Peter
275 Doherty Institute for technical support. Confocal Imaging was performed at the Biological
276 Optical Microscopy Platform (BOMP) Facility at The University of Melbourne.

277

278 **Author contribution**

279 Conceptualization: Y.O.A. and S.N.M. Methodology: H.L.H. and Y.O.A. Investigation: H.L.H. and
280 Y.O.A. Writing (original draft): Y.O.A. Writing (review and editing): H.L.H., Y.O.A. and S.N.M.
281 Resources: W.C. and G.T.B. Visualization: H.L.H. and Y.O.A. Supervision: Y.O.A and S.N.M.
282 Funding acquisition: Y.O.A. and S.N.M.

283

284 **Material and methods**

285 *Mice*

286 C57BL/6, CCL19-Cre, SpiB^{fl/fl}, gBT-I3B6.SJL-PtprcaPep3b/BoyJ (gBT-I.CD45.1), P143B6.SJL-
287 PtprcaPep3b/BoyJ (P14.CD45.1) mice were bred in the Doherty Institute. SpiB-tdTomato were
288 bred at WEHI. SpiB^{ΔCCL19} mice were generated by crossing CCL19-Cre and SpiB^{fl/fl} mice.
289 Animal experiments were approved by the University of Melbourne Animal Ethics Committee.
290 Mice were maintained under specific pathogen-free conditions and housed in individually
291 ventilated cages. All mice were sex- and age-matched, and both female and male mice were
292 used between 8 and 14 weeks of age.

293

294 *Adoptive transfer of transgenic CD8+ T cells*

295 Recipient mice were intravenously injected with 5x10⁴ gBT-I or P14 cells 24 hours before
296 infection. For priming experiments, gBT-I cells were first labelled with CellTrace Violet
297 (ThermoFischer) at a final concentration of 5µM according to manufacturer's instructions and
298 1.5 million cells were intravenously injected in recipient mice.

299

300 *Virus and infections*

301 Herpes Simplex Virus-1 (HSV-1) KOS strain and Lymphocytic choriomeningitis virus Armstrong
302 strain were used in this study. Mice were anaesthetized with a mixture of ketamine/xylazine
303 at 100mg/kg and 20mg/kg respectively and infected subcutaneously in the footpad with 2 x
304 10⁴ of plaque-forming units (PFU) of HSV-1. Mice were infected intraperitoneally with 2 x
305 10⁵ PFU of LCMV Armstrong.

306 *LN digestion and Flow cytometry*

307 LNs were incubated at 37°C in RPMI with 2mg/mL collagenase D, 0.8mg/mL Dispase and
308 100ug/mL DNase and 2% Fetal Bovine Serum. LNs were gently digested by removing and
309 replacing the cell suspension every 10 min until completely digested. LN cell suspensions were
310 resuspended in FACS buffer (PBS 2% BSA 5mM EDTA) and filtered through 70 µM before
311 antibody staining. Cells were stained in FACS buffer containing CD16/32 Fc blocking antibody
312 for 30min at 4°C. Antibodies used for staining are detailed in Table S1. Intracellular staining
313 for CCL21 was performed using eBioscience Intracellular Fixation & Permeabilization Buffer

314 Set according to the manufacturer's instructions. Cells were enumerated by adding SPHERO
315 calibration particles to each sample before acquisition on flow cytometer and samples were
316 acquired using FACSFortessa (BD) or Cytek Aurora, and FlowJo software was used for analysis.

317

318 *Quantitative Real-Time PCR*

319 Total RNA was extracted from sorted samples using RNeasy Plus Micro Kit (Qiagen) and
320 converted to complementary DNA (cDNA) using the High Capacity cDNA Reverse Transcription
321 Kit (Thermo Fisher Scientific) according to the manufacturer's instructions. Genes of interest
322 were preamplified from cDNA using TaqMan PreAmp Master Mix (Thermo Fisher Scientific)
323 and samples were analysed by real-time qPCR using Fast SYBR Green Master Mix. Cycle-
324 threshold values were determined for genes individually, and gene expression was normalized
325 to the housekeeping genes Hprt and Gapdh (ΔCt) and presented as $2^{-\Delta Ct}$ [arbitrary units (AU)].

326

327 *Immunofluorescence and confocal imaging*

328 LNs were harvested and fixed in 4% paraformaldehyde for 4 hours, incubated in 30% sucrose
329 and embedded in OCT freezing media. Control and SpiB $^{\Delta CCL19}$ LNs were embedded in the same
330 block for comparative analysis. Tissue sections were cut at 20 μ m thickness with a cryostat
331 (Leica CM3050S). Sections were blocked for 2 hours (10% normal serum (NS), 0.3% Triton X-
332 100 in PBS) at room temperature (RT). Sections were stained with primary antibodies (Table
333 S2) overnight at 4 degrees (Diluted in PBS, 10% NS, 0.01% Triton X-100). Sections were washed
334 in PBS-Tween 0.05% three times for 15 minutes and then blocked at room temperature for
335 2hrs. Secondary antibodies (Table S2) were applied for 2hrs at RT (Diluted in PBS, 10% NS,
336 0.01% Triton X-100). This was followed by two 15 minutes washes of PBS-Tween 0.05% and a
337 final wash of 15 minutes in PBS. Sequential staining and blocking of CCL21 (goat) and PDPN
338 (hamster) was performed to prevent cross reactivity. Stained sections were mounted in
339 ProLong Gold antifade reagent and images acquired on a LSM980 confocal microscope (Carl
340 Zeiss). Image analysis was performed in ImageJ. *Quantification of CCL21 and LN architecture.*
341 Hand drawn ROIs of the LN were used to calculate the LN area. T, B cell zones and the
342 medullary area were calculated by using the CD3, B220 and LYVE-1 positive stained region on
343 maximum projections. T-cell zone FRCs regions of interest (ROI) were used to generate PDPN
344 masks which were applied to CCL21 staining to calculate the fluorescent intensity within the
345 fibroblast network. *Gap analysis.* The FRC gap analysis used a MATLAB script from the Acton

346 lab²⁹. PDPN fluorescence maximum projections were converted into a binary mask before a
347 circle-fitting algorithm consecutively fit the largest circle possible within the gaps in the
348 network that did not overlap with other fitted circles. Each circle was given a radius. The top
349 10 largest radii from each ROI were plotted.

350

351 *Statistical analysis*

352 Graphs and statistics were generated using Prism 9 (GraphPad). Samples were tested for
353 normality, and two groups were compared using two-tailed Mann-Whitney U test or unpaired
354 t test. Multiple groups were analysed with one-way analysis of variance (ANOVA), followed by
355 Tukey's post-test comparison or Kruskal-Wallis, based on Gaussian distribution. All graphs
356 depict means \pm SEM. Details of statistical analysis are indicated in the figure legends and
357 include the statistical test used. ns indicates nonsignificant; *P < 0.05, **P < 0.01, ***P <
358 0.001, and ****P < 0.0001.

359

360 **Figure legends**

361 **Figure 1: LN FRCs express the transcription factor SpiB**
362 **(A)** Gating strategy to identify lymph node (LN) stromal cells by flow cytometry. Hematopoietic
363 cells were excluded, and stromal cells were identified with the markers PDPN, CD31 and
364 CD146. FRC: Fibroblastic Reticular Cells; LEC: Lymphatic endothelial cells; BEC: Blood
365 endothelial cells. **(B)** Flow cytometry of LN stromal cell subsets in SpiB-TdTomato mice.
366 Representative histograms of SpiB expression (left) and pooled data (means \pm SEM) from eight
367 mice combined from three experiments. Dotted line represents baseline fluorescence from
368 WT control. **(C)** Gating strategy to identify lymph node FRC subsets by flow cytometry. FDC:
369 Follicular Dendritic Cells; MRC: Marginal Reticular cells; ARC: Adventitial Reticular Cells;
370 MedRC: Medullary Reticular Cells; TRC: T zone Reticular Cells. **(D)** Flow cytometry of LN
371 stromal cell subsets in SpiB-TdTomato mice. Representative histograms of SpiB expression
372 (left) and pooled data (means \pm SEM) from eight mice combined from three experiments.
373 Dotted line represents baseline fluorescence from WT control. *P < 0.05, **P < 0.01, and

374 ****P < 0.0001, ns, non-significant, by ANOVA with Tukey's multiple comparisons test (B and
375 D).

376 **Figure 2: The transcription factor SpiB controls the T zone reticular cell network and**
377 **functionality**

(A-B) Enumeration of lymph node stromal cells and FRC subsets from control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice by flow cytometry. Graphs show pooled data (means ± SEM) from two independent experiments with 8 mice per group. **(C)** Analysis of *Il7* and *Grem1* expression in lymph node sorted TRCs, ARC and medRC of control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice by qPCR. n = 6 mice from 3 independent sorts. **(D)** Flow cytometry analysis and representative histograms (left) of intracellular CCL21 expression in FRCs from control SpiB^{Flx/Flx} and SpiB^{ΔCCL19}. Fluorescence minus one staining is shown by the histogram with a dotted line and used to discriminate CCL21⁺ from CCL21⁻ cells. Percentage (right) of CCL21⁺ stromal cell subsets and TRCs in the LNs of control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice. Graphs show pooled data (means ± SEM) from two independent experiments with 7 mice per group. **(E)** Skin draining lymph node sections from control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice were stained for PDPN and CCL21 and analysed by confocal microscopy, and the area of CCL21 area was quantified in the T cell zone of LN. Graph shows pooled data (means ± SEM) from two independent experiments with 5-6 mice per group. Scale bar, 50 μm. **(F)** Analysis of *Lepr* expression in lymph node sorted TRCs, ARC and medRC of control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice by qPCR. n = 6 mice from 3 independent sorts. **(G)** Flow cytometry analysis of LepR expression in TRCs from control SpiB^{Flx/Flx} and SpiB^{ΔCCL19} mice. Left: representative histograms of LepR staining with Fluorescence minus one staining shown as dotted line and used to discriminate LepR⁺ from LepR⁻ cells. Right: graphs show the percentage of LepR⁺ TRCs in LNs and the Mean Fluorescence Intensity (GeoMean) of LepR in TRCs. Data are representative of one experiment out of two with three mice per group. *p < 0.05, **p < 0.01, ****p < 0.0001, ns, non-significant, by unpaired two-tailed t test (A-B and G) and Mann-Whitney test (C-F).

401 **Figure 3: SpiB deletion in FRC does not impact immune cell homeostasis or LN architecture**

418 **Figure 4: SpiB expression in FRC regulates T cell responses during viral infection**

419 **(A)** Experimental schematic of HSV-1 infection for T cell priming. Mice were injected with
420 1.5×10^6 CTV-labelled gBT-I cells and 24h later infected subcutaneously in the footpad with
421 HSV-1. Draining popliteal LNs were analysed 3 days post-infection. **(B)** Flow cytometry analysis
422 of CD45.1 $^+$ CD8 $^+$ gBT-I cells and representative histograms of CTV labelled gBT-I cells in the
423 draining popliteal lymph node of control SpiB $^{\text{Flox/Flox}}$ and SpiB $^{\Delta \text{CCL19}}$ mice, 3 days post
424 subcutaneous HSV-1 infection. Dotted histogram represents CTV staining on gBT-I cells from
425 naïve mice used to gate on divided gBT-I cells. **(C-E)** Quantification of gBT-I cell expansion and
426 activation. (C) Left graph shows the replication index (calculated as Total Number of Divided
427 Cells / Cells that Went into Division) and right graph the proliferation index (calculated as Total
428 Number of Divisions / Cells that went into division) of gBT-I cells in the draining popliteal lymph
429 node of control SpiB $^{\text{Flox/Flox}}$ and SpiB $^{\Delta \text{CCL19}}$ mice. (D) Graph shows the enumeration of divided
430 gBT-I cells, 3 days post subcutaneous HSV-1 infection. (E) Quantification of the percentage of
431 CD25 $^+$ and CD69 $^+$ gBT-I cells from. Graphs show pooled data (means \pm SEM) from two
432 independent experiments with 9-8 mice per group. **(F)** Experimental schematic of HSV-1
433 infection. Mice were injected with 5×10^4 gBT-I cells and 24h later infected subcutaneously in
434 the footpad with HSV-1. Draining popliteal LNs were analysed 8 days post-infection. **(G-I)** Flow

435 cytometry analysis of CD45.1+ gBT-I cells in the draining popliteal lymph node, 8 days post
436 subcutaneous HSV-1 infection. (G) Short lived effector cells (SLEC) and memory precursor
437 effector cells (MPEC) gBT-I cells were identified as KLRG1⁺ and IL-7R⁺ respectively.
438 Enumeration of lymphocytes and gBT-I cells (H), and gBT-I cell differentiation (I) in the draining
439 popliteal lymph node of control SpiB^{FloxFlox} and SpiB^{ΔCCL19} mice, 8 days post subcutaneous HSV-
440 1 infection. (J) Ratio analysis of total T cells versus TRCs in control SpiB^{FloxFlox} and SpiB^{ΔCCL19}
441 mice in the draining popliteal lymph node, 8 days post subcutaneous HSV-1 infection. Graphs
442 (H-J) show pooled data (means ± SEM) from two independent experiments with 7-9 mice per
443 group. *p < 0.05, **p < 0.01, ns, non-significant, by unpaired two-tailed t test (C-E) and Mann-
444 Whitney test (H-J).

445

446 **Supp Figure 1: The transcription factor SpiB regulates TRC network and functionality**

447 (A) Violin plots showing expression of *Spib* in Fibroblastic Reticular Cell subsets and pericytes
448 in spleen and lymph node by single cell RNA sequencing. Data and plots were generated from
449 http://muellerlab.mdhs.unimelb.edu.au/frc_scrnaseq/. (B-C) Analysis of *Spib* (B), *Cd34* and
450 *Ccl19* (C) expression in lymph node sorted TRCs, ARC and medRC of control SpiB^{FloxFlox} and
451 SpiB^{ΔCCL19} mice by qPCR. n = 6 mice from 3 independent sorts. (D) Flow cytometry analysis of
452 PDPN, CD157, CD106 and CD140a expression in FRC subsets from control SpiB^{FloxFlox} and
453 SpiB^{ΔCCL19}. Graphs display the Mean Fluorescence Intensity (GeoMean) of the different
454 markers from pooled data (means ± SEM) from two independent experiments with 8 mice per
455 group. (E) Analysis of *Ccl2*, *Ccl7*, *Cxcl9*, *Cxcl10*, *Cxcl12*, *Cxcl13* and *Il33* expression in lymph
456 node sorted TRCs, ARC and medRC of control SpiB^{FloxFlox} (WT) and SpiB^{ΔCCL19} (SpiB) mice by
457 qPCR. n = 6 mice from 3 independent sorts. *p < 0.05, **p < 0.01, ns, non-significant, by
458 unpaired two-tailed t test (D) and Mann-Whitney test (B, C and E).

459 **Supp Figure 2: SpiB expression in FRC regulates T cell expansion during viral infection**

460 (A) Flow cytometry analysis of Germinal centre (GC), antibody secreting (ASC) and T_{FH} cells in
461 the draining popliteal lymph node of mice 8 days post-subcutaneous HSV-1 infection. (B)
462 Enumeration GC, ASC and T_{FH} in the draining popliteal lymph node of control SpiB^{FloxFlox} (WT)
463 and SpiB^{ΔCCL19} (SpiB) mice, 8 days post subcutaneous HSV-1 infection. Graphs show pooled
464 data (means ± SEM) from two independent experiments with 7-9 mice per group. (C) Flow
465 cytometry analysis of CD45.1+ P14 cells in inguinal lymph node, 8 days post LCMV infection.

474

475 **References**

476

477 1 Alexandre, Y. O. & Mueller, S. N. Stromal cell networks coordinate immune response
478 generation and maintenance. *Immunol Rev* **283**, 77-85, doi:10.1111/imr.12641 (2018).
479 2 Moran, I., Grootveld, A. K., Nguyen, A. & Phan, T. G. Subcapsular Sinus Macrophages:
480 The Seat of Innate and Adaptive Memory in Murine Lymph Nodes. *Trends Immunol* **40**,
481 35-48, doi:10.1016/j.it.2018.11.004 (2019).
482 3 Bajenoff, M., Egen, J. G., Koo, L. Y. *et al.* Stromal cell networks regulate lymphocyte
483 entry, migration, and territoriality in lymph nodes. *Immunity* **25**, 989-1001,
484 doi:10.1016/j.immuni.2006.10.011 (2006).
485 4 Gregory, J. L., Walter, A., Alexandre, Y. O. *et al.* Infection Programs Sustained Lymphoid
486 Stromal Cell Responses and Shapes Lymph Node Remodeling upon Secondary
487 Challenge. *Cell Rep* **18**, 406-18, doi:10.1016/j.celrep.2016.12.038 (2017).
488 5 Malhotra, D., Fletcher, A. L., Astarita, J. *et al.* Transcriptional profiling of stroma from
489 inflamed and resting lymph nodes defines immunological hallmarks. *Nat Immunol* **13**,
490 499-510, doi:10.1038/ni.2262 (2012).
491 6 Perez-Shibayama, C., Islander, U., Lutge, M. *et al.* Type I interferon signaling in
492 fibroblastic reticular cells prevents exhaustive activation of antiviral CD8(+) T cells. *Sci
493 Immunol* **5**, doi:10.1126/sciimmunol.abb7066 (2020).
494 7 Rodda, L. B., Lu, E., Bennett, M. L. *et al.* Single-Cell RNA Sequencing of Lymph Node
495 Stromal Cells Reveals Niche-Associated Heterogeneity. *Immunity* **48**, 1014-28 e6,
496 doi:10.1016/j.immuni.2018.04.006 (2018).
497 8 Camara, A., Cordeiro, O. G., Alloush, F. *et al.* Lymph Node Mesenchymal and
498 Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the
499 Sinusoidal Macrophage Niche. *Immunity* **50**, 1467-81 e6,
500 doi:10.1016/j.immuni.2019.05.008 (2019).
501 9 Camara, A., Lavanant, A. C., Abe, J. *et al.* CD169(+) macrophages in lymph node and
502 spleen critically depend on dual RANK and LTbetaR signaling. *Proc Natl Acad Sci U S A*
503 **119**, doi:10.1073/pnas.2108540119 (2022).
504 10 Mondor, I., Baratin, M., Lagueyrie, M. *et al.* Lymphatic Endothelial Cells Are Essential
505 Components of the Subcapsular Sinus Macrophage Niche. *Immunity* **50**, 1453-66 e4,
506 doi:10.1016/j.immuni.2019.04.002 (2019).

507 11 Pikor, N. B., Morbe, U., Lutge, M. *et al.* Remodeling of light and dark zone follicular
508 dendritic cells governs germinal center responses. *Nat Immunol* **21**, 649-59,
509 doi:10.1038/s41590-020-0672-y (2020).

510 12 Weber, M., Hauschild, R., Schwarz, J. *et al.* Interstitial dendritic cell guidance by
511 haptotactic chemokine gradients. *Science* **339**, 328-32, doi:10.1126/science.1228456
512 (2013).

513 13 Link, A., Vogt, T. K., Favre, S. *et al.* Fibroblastic reticular cells in lymph nodes regulate
514 the homeostasis of naive T cells. *Nat Immunol* **8**, 1255-65, doi:10.1038/ni1513 (2007).

515 14 Huang, H. Y., Rivas-Caicedo, A., Renevey, F. *et al.* Identification of a new subset of lymph
516 node stromal cells involved in regulating plasma cell homeostasis. *Proc Natl Acad Sci
517 U S A* **115**, E6826-E35, doi:10.1073/pnas.1712628115 (2018).

518 15 Sitnik, K. M., Wendland, K., Weishaupt, H. *et al.* Context-Dependent Development of
519 Lymphoid Stroma from Adult CD34(+) Adventitial Progenitors. *Cell Rep* **14**, 2375-88,
520 doi:10.1016/j.celrep.2016.02.033 (2016).

521 16 Alexandre, Y. O., Schienstock, D., Lee, H. J. *et al.* A diverse fibroblastic stromal cell
522 landscape in the spleen directs tissue homeostasis and immunity. *Sci Immunol* **7**,
523 eabj0641, doi:10.1126/sciimmunol.abj0641 (2022).

524 17 Denton, A. E., Carr, E. J., Magiera, L. P., Watts, A. J. B. & Fearon, D. T. Embryonic FAP(+)
525 lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. *J
526 Exp Med* **216**, 2242-52, doi:10.1084/jem.20181705 (2019).

527 18 Choi, S. Y., Bae, H., Jeong, S. H. *et al.* YAP/TAZ direct commitment and maturation of
528 lymph node fibroblastic reticular cells. *Nat Commun* **11**, 519, doi:10.1038/s41467-020-
529 14293-1 (2020).

530 19 Chai, Q., Onder, L., Scandella, E. *et al.* Maturation of lymph node fibroblastic reticular
531 cells from myofibroblastic precursors is critical for antiviral immunity. *Immunity* **38**,
532 1013-24, doi:10.1016/j.immuni.2013.03.012 (2013).

533 20 Bogdanova, D., Takeuchi, A., Ozawa, M. *et al.* Essential Role of Canonical NF- κ B
534 Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs. *J
535 Immunol* **201**, 3580-6, doi:10.4049/jimmunol.1800539 (2018).

536 21 Pikor, N. B., Cheng, H. W., Onder, L. & Ludewig, B. Development and Immunological
537 Function of Lymph Node Stromal Cells. *J Immunol* **206**, 257-63,
538 doi:10.4049/jimmunol.2000914 (2021).

539 22 Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity.
540 *Nat Rev Immunol*, doi:10.1038/s41577-023-00857-x (2023).

541 23 Alexandre, Y. O., Devi, S., Park, S. L. *et al.* Systemic Inflammation Suppresses Lymphoid
542 Tissue Remodeling and B Cell Immunity during Concomitant Local Infection. *Cell Rep*
543 **33**, 108567, doi:10.1016/j.celrep.2020.108567 (2020).

544 24 Cremasco, V., Woodruff, M. C., Onder, L. *et al.* B cell homeostasis and follicle confines
545 are governed by fibroblastic reticular cells. *Nat Immunol* **15**, 973-81,
546 doi:10.1038/ni.2965 (2014).

547 25 Schumann, K., Lammermann, T., Bruckner, M. *et al.* Immobilized chemokine fields and
548 soluble chemokine gradients cooperatively shape migration patterns of dendritic cells.
549 *Immunity* **32**, 703-13, doi:10.1016/j.immuni.2010.04.017 (2010).

550 26 Jiang, L., Yilmaz, M., Uehara, M. *et al.* Characterization of Leptin Receptor(+) Stromal
551 Cells in Lymph Node. *Front Immunol* **12**, 730438, doi:10.3389/fimmu.2021.730438
552 (2021).

553 27 Astarita, J. L., Cremasco, V., Fu, J. *et al.* The CLEC-2-podoplanin axis controls the
554 contractility of fibroblastic reticular cells and lymph node microarchitecture. *Nat
555 Immunol* **16**, 75-84, doi:10.1038/ni.3035 (2015).

556 28 Acton, S. E., Farrugia, A. J., Astarita, J. L. *et al.* Dendritic cells control fibroblastic
557 reticular network tension and lymph node expansion. *Nature* **514**, 498-502,
558 doi:10.1038/nature13814 (2014).

559 29 Horsnell, H. L., Tetley, R. J., De Belly, H. *et al.* Lymph node homeostasis and adaptation
560 to immune challenge resolved by fibroblast network mechanics. *Nat Immunol* **23**,
561 1169-82, doi:10.1038/s41590-022-01272-5 (2022).

562 30 Assen, F. P., Abe, J., Hons, M. *et al.* Multitier mechanics control stromal adaptations in
563 the swelling lymph node. *Nat Immunol* **23**, 1246-55, doi:10.1038/s41590-022-01257-
564 4 (2022).

565 31 Yang, C. Y., Vogt, T. K., Favre, S. *et al.* Trapping of naive lymphocytes triggers rapid
566 growth and remodeling of the fibroblast network in reactive murine lymph nodes. *Proc
567 Natl Acad Sci U S A* **111**, E109-18, doi:10.1073/pnas.1312585111 (2014).

568 32 de Winde, C. M., Makris, S., Millward, L. J. *et al.* Fibroblastic reticular cell response to
569 dendritic cells requires coordinated activity of podoplanin, CD44 and CD9. *J Cell Sci*
570 **134**, doi:10.1242/jcs.258610 (2021).

571 33 Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ
572 in physiology and disease. *Nat Rev Mol Cell Biol* **18**, 758-70, doi:10.1038/nrm.2017.87
573 (2017).

574 34 Rovera, C., Berestjuk, I., Lecacheur, M. *et al.* Secretion of IL1 by Dedifferentiated
575 Melanoma Cells Inhibits JAK1-STAT3-Driven Actomyosin Contractility of Lymph Node
576 Fibroblastic Reticular Cells. *Cancer Res* **82**, 1774-88, doi:10.1158/0008-5472.CAN-21-
577 0501 (2022).

578 35 Novkovic, M., Onder, L., Cupovic, J. *et al.* Topological Small-World Organization of the
579 Fibroblastic Reticular Cell Network Determines Lymph Node Functionality. *PLoS Biol*
580 **14**, e1002515, doi:10.1371/journal.pbio.1002515 (2016).

581

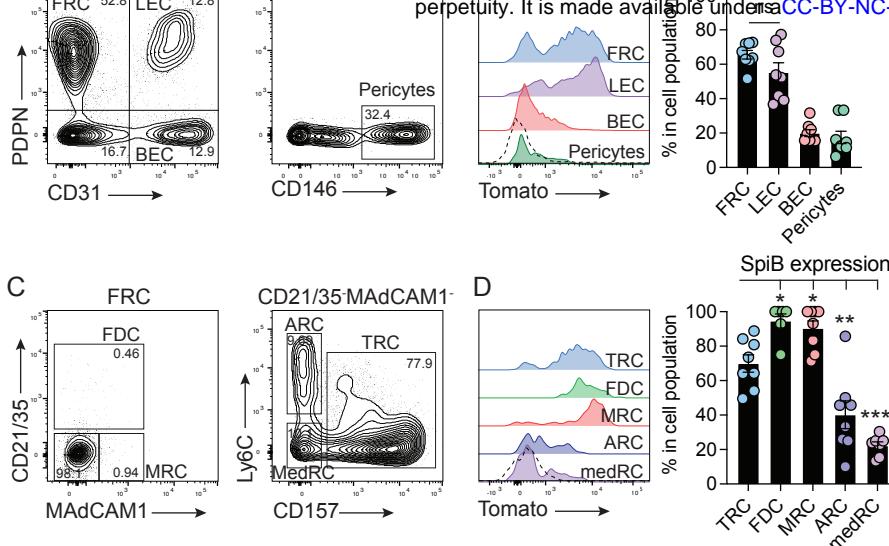


Figure 1

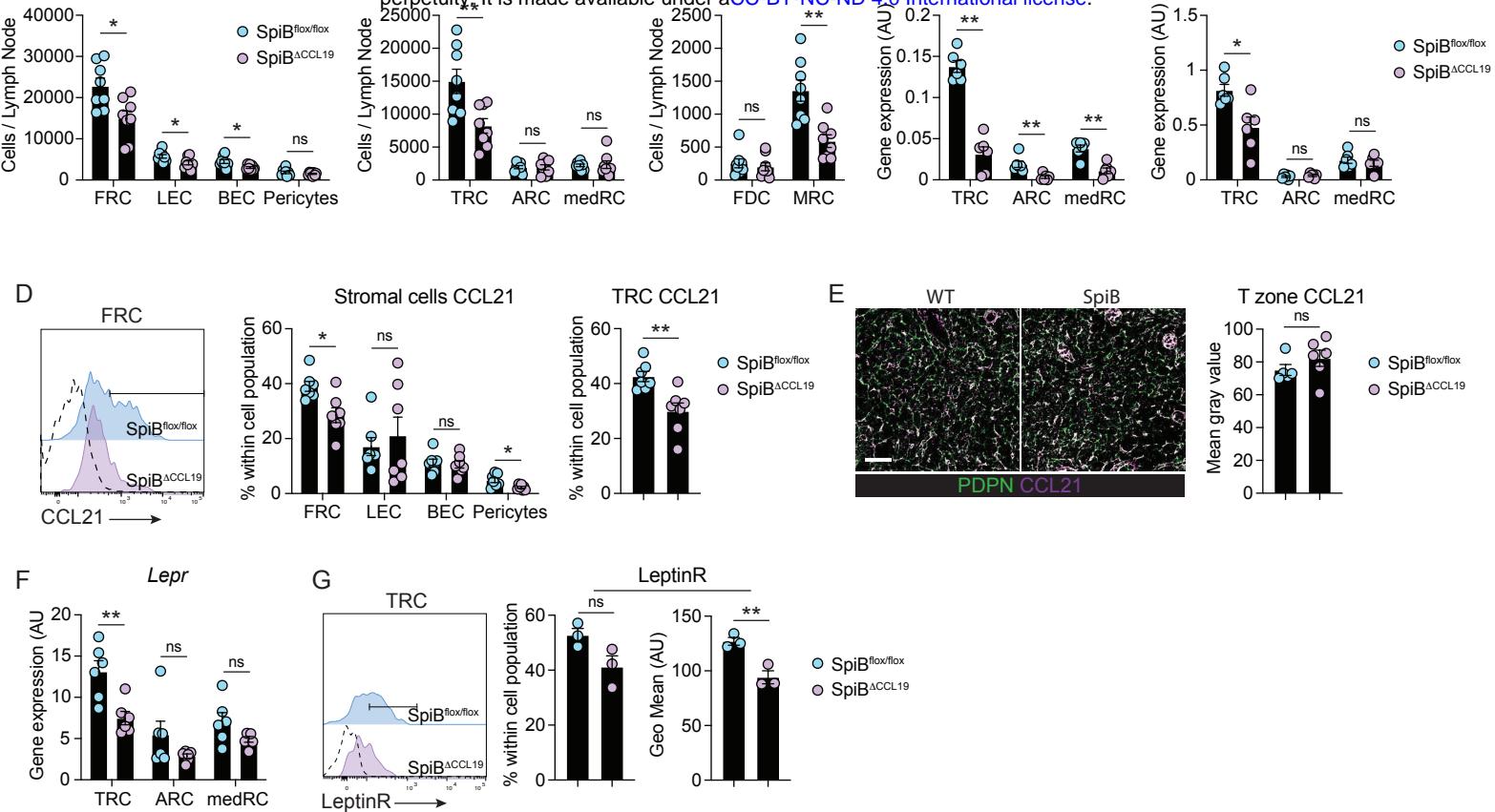


Figure 2

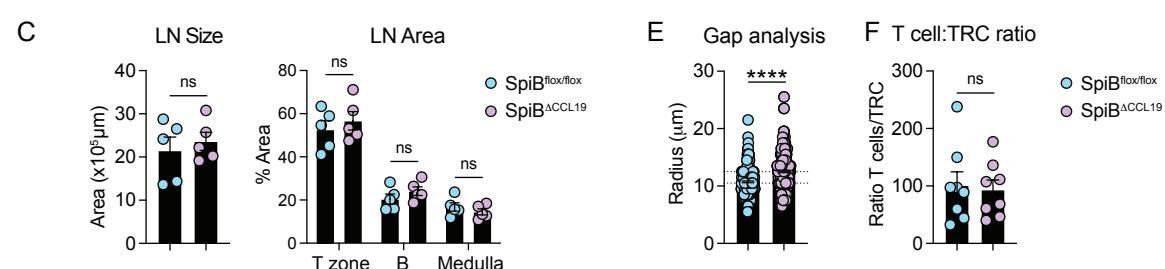
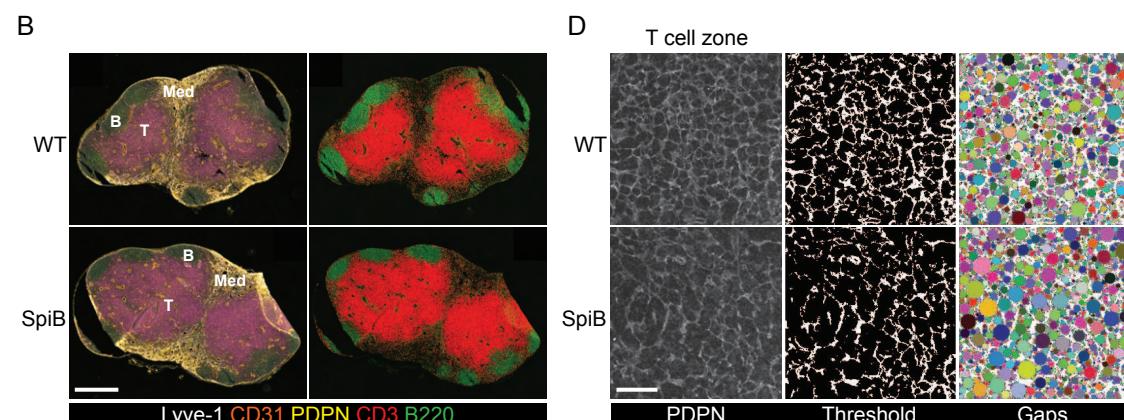
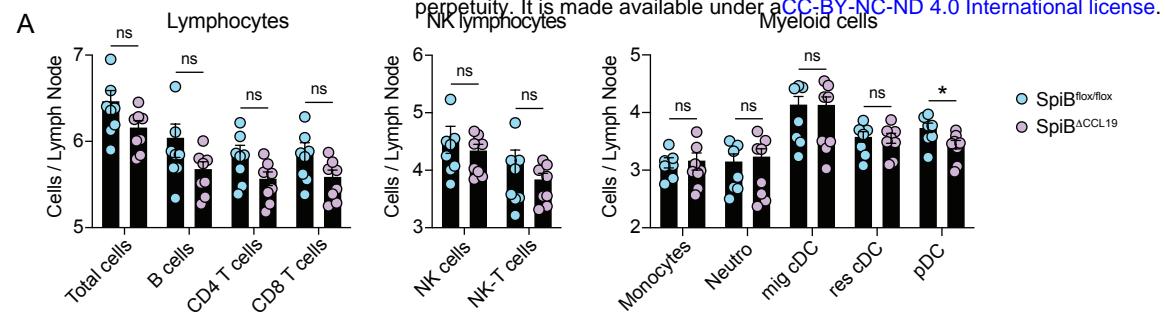
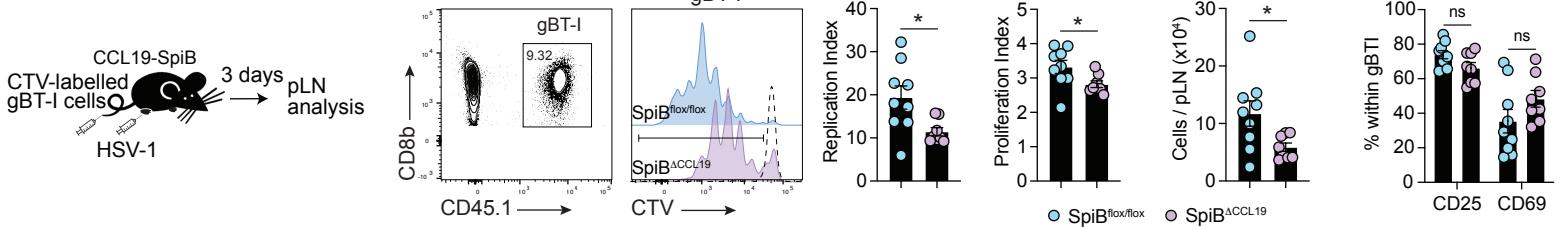





Figure 3

A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.12.562124>; this version posted October 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

F

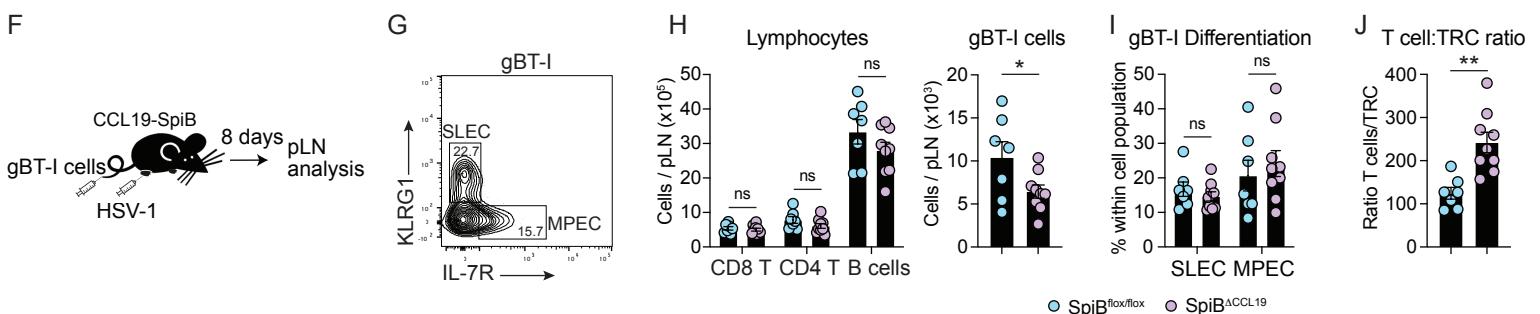
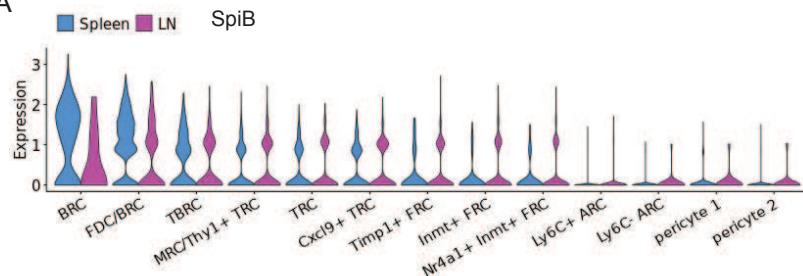
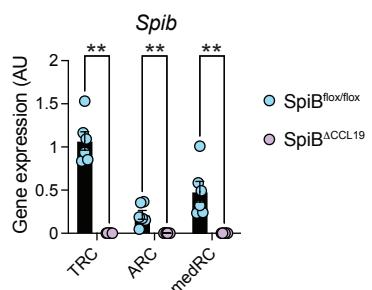
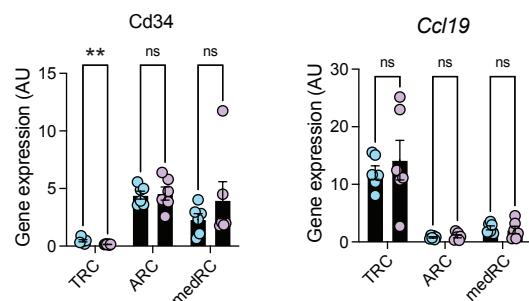
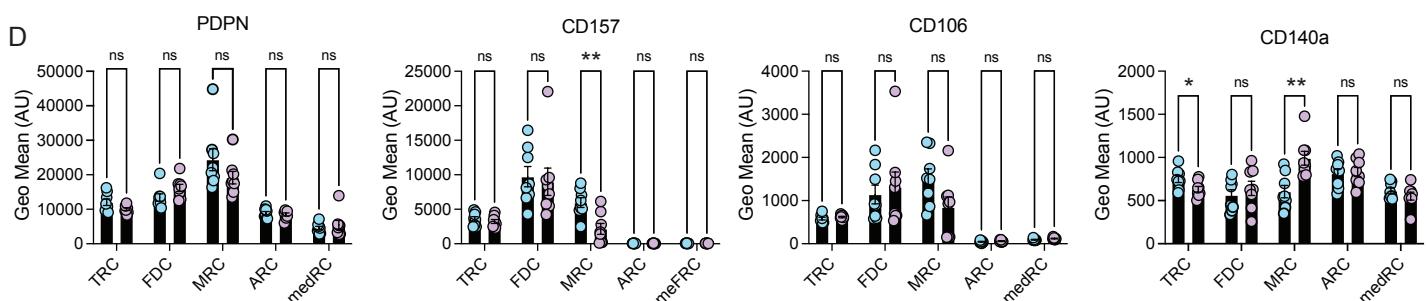
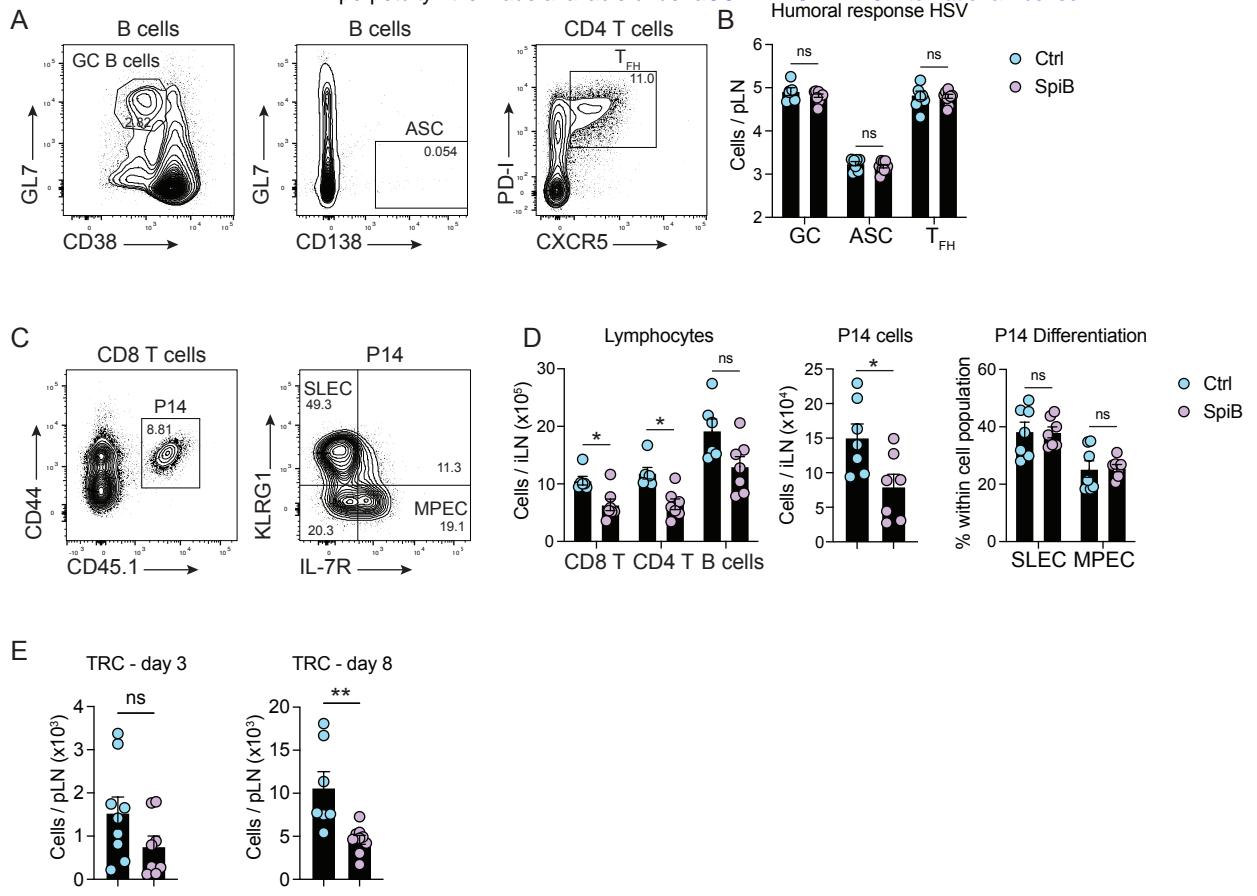




Figure 4


A


B

C



D

E

Supp Figure 2