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Abstract

The tumor microenvironment (TME) significantly impacts cancer prog-
nosis due to its immune composition. While therapies for altering the
immune composition, including immunotherapies, have shown excit-
ing results for treating hematological cancers, they are less effective
for immunologically-cold, solid tumors. Spatial omics technologies cap-
ture the spatial organization of the TME with unprecedented molecular
detail, revealing the relationship between immune cell localization and
molecular signals. Here, we formulate T-cell infiltration prediction as
a self-supervised machine learning problem and develop a counter-
factual optimization strategy that leverages large scale spatial omics
profiles of patient tumors to design tumor perturbations predicted to
boost T-cell infiltration. A convolutional neural network predicts T-
cell distribution based on signaling molecules in the TME provided
by imaging mass cytometry. Gradient-based counterfactual generation,
then, computes perturbations predicted to boost T-cell abundance.
We apply our framework to melanoma, colorectal cancer (CRC) liver
metastases, and breast tumor data, discovering combinatorial pertur-
bations predicted to support T-cell infiltration across tens to hundreds
of patients. This work presents a paradigm for counterfactual-based
prediction and design of cancer therapeutics using spatial omics data.

1



Springer Nature 2021 LATEX template

2 Article Title

Keywords: spatial proteomics, tumor microenvironment, counterfactual,
T-cell infiltration

Introduction

The immune composition of the tumor microenvironment (TME) plays
a crucial role in determining patient prognosis and response to cancer
immunotherapies [1–3]. Immunotherapies that alter the immune composition
using transplanted or engineered immune cells (chimeric antigen receptor T
cell therapy) or remove immunosuppressive signaling (checkpoint inhibitors)
have shown exciting results in relapsed and refractory tumors in hematolog-
ical cancers and some solid tumors. However, effective therapeutic strategies
for most solid tumors remain limited [4–6]. The TME is a complex mixture of
immune cells, including T cells, B cells, natural killer cells, and macrophages,
as well as stromal cells and tumor cells [1]. The interactions between these
cells can either promote or suppress tumor growth and progression, and ulti-
mately impact patient outcomes. For example, high levels of tumor-infiltrating
lymphocytes (TILs) in the TME are associated with improved prognosis and
response to immunotherapy across multiple cancer types [7, 8]. Conversely,
an immunosuppressive TME, characterized by low levels of TILs and high
levels of tumor-associated macrophages (TAMs), is associated with poor prog-
nosis and reduced response to immunotherapy [9]. Durable, long-term clinical
response of T-cell-based immunotherapies are often constrained by a lack of
T-cell infiltration into the tumor, as seen in classically “cold” tumors such as
triple-negative breast cancer (TNBC) or prostate cancer, which have seen little
benefit from immunotherapy [10–12].

Spatial omics technologies capture the spatial organization of cellular activ-
ity in intact human tumors with unprecedented molecular detail, revealing the
relationship between localization of different cell types and tens to thousands
of molecular signals [13], paving the way for the design of novel strategies to
manipulate the tumor immune microenvironment. T-cell infiltration is mod-
ulated by a rich array of signals within the tumor microenvironment (TME)
such as chemokines, adhesion molecules, tumor antigens, immune checkpoints,
and their cognate receptors [14]. Recent advances in in situ molecular profil-
ing techniques, including spatial transcriptomic [15, 16] and protemic [17, 18]
techniques, simultaneously captures the spatial relationship of tens to thou-
sands of molecular signals and T cell localization in intact human tumors with
micron-scale resolution. Imaging mass cytometry (IMC) combines immunohis-
tochemistry using metal-labeled antibodies with laser ablation and detection
using mass cytometry by time-of-flight to enable simultaneous detection of up
to 40 antigens and transcripts in intact tissue [17].

Recent work on computational methods as applied to multiplexed tumor
images have primarily focused on predicting patient-level phenotypes such
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as survival, by identifying spatial motifs from tumor microenvironments [19–
21]. These methods have generated valuable insights into how the structure
of TMEs influences patient prognosis and treatment response, but they fall
short of generating concrete, testable hypothesis for therapeutic interven-
tions that may improve patient outcome. Given the importance of immune
cell localization such as CD8+ T cells in determining patient outcomes, we
need computational tools that can predict immune cell localization from
environmental signals and systematically generate specific, feasible tumor per-
turbations that are predicted to alter the TME in a way that improves patient
outcome.

In this work, we formulated T-cell infiltration prediction as a self-supervised
machine learning problem, and critically, we combine this prediction task with
the approach of counterfactual explanations to design perturbations predicted
to increase T-cell infiltration. Specifically, we first train a convolutional neu-
ral network to predict T-cell level based upon micron-resolution maps of the
signaling molecules in the TME provided by IMC. We then apply gradient-
based counterfactual generation strategy to the infiltration neural network to
compute perturbations to the signaling molecules that the network predicts
can increase T-cell abundance. We apply our analysis framework to spatial
proteomic profiles of tumors from melanoma [22], CRC liver metastases [23]
and breast cancer patients [24], discovering tumor perturbations that are pre-
dicted to support T cell infiltration across tens to hundreds of patients. In
melanoma patients, our framework predicts combinatorial perturbation to the
tumoral level of CXCL9, CXCL10, CCL22 and CCL18 can convert immune-
excluded tumors to be immune-inflamed in a cohort of 69 patients. For CRC
liver metastasis, our framework discovered a therapeutic strategy consist-
ing of CXCR4, PD1, PDL1 and CYR61 that is predicted to consistently
improve T-cell infiltration across a cohort of 30 patients. Our work provides a
paradigm for counterfactual-based prediction and design of cancer therapeu-
tics based on classification of immune system activity in spatial proteomics
and transcriptomic data.

Results

A counterfactual optimization framework for in situ

molecular profiles enables the discovery of tumor

perturbations predicted to drive T cell infiltration

The general logic of our framework is to train, in a self-supervised manner, a
classifier to predict the presence of CD8+ T cells from tissue images with CD8+
T cells masked (Figure 1A,B). Then we apply counterfactual reasoning to the
data by performing gradient descent on the input image, allowing us to dis-
cover perturbations to the tumor image that increases the classifier’s predicted
likelihood of CD8+ T cells being present (Figure 1A,C). The altered image
represents a perturbation of the TME predicted to improve T cell infiltration.
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We leverage IMC profiles of human tumors to train a classifier to predict
the spatial distribution of CD8+ T cell in a self-supervised manner. Consider
a set of IMC image patches {I(i)} where I(i) ∈ R

l×w×c, with l and w denotes
the pixel length and width of the image and c denotes the number of molecule
channels in the images (Figure 1B). Each image shows the level of c proteins
across all cells within a small patch of tissue. From patch I(i), we obtain a
binary label s(i) indicating the presence and absence of CD8+ T cells in the
patch and a masked copy x(i) with all signals originating from CD8+ T cells
removed (see Methods). The task for our model f is to classify whether T cells
are present (s(i) = 1) or absent (s(i) = 0) in image I(i) using only its masked
copy x(i). Specifically, f(x(i)) ∈ [0, 1] is the predicted probability of T cells,
and then we apply a classification threshold p to convert this probability to
a predicted label ŝ(i) ∈ {0, 1}. Since we obtain the image label s(i) from the
image I(i) itself by unsupervised clustering of individual cells, our overall task
is inherently self-supervised.

Given a set of image patches, we train a model f to minimize the following
T cell prediction loss, also known as the binary cross entropy (BCE) loss,

L = −
1
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and p is the classification threshold. We select p by minimizing the following
root mean squared error (RMSE) on a separate set of tissue sections Ω,
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The RMSE is a measure of the discrepancies between the observed and
predicted proportions of T cell patches in a tissue section averaged across a
set of tissues, which we take to be the validation set.

We analyzed the performance of a series of convolutional neural network
(CNN) architectures as our classifier, including CNNs and vision transformers,
and saw similar performance across the board (Table 5). We settled on a U-Net
architecture because of ease of extension of the model to multichannel data
sets. Our U-Net classifier consists of a standard U-Net architecture [25] and a
fully-connected layer with softmax activation (see Methods). To increase the
number of samples available for training, we take advantage of the spatial het-
erogeneity of TMEs and divide each tissue image into 50µm × 50 µm patches
upon which the classifier is trained to predict T cell presence (see Methods for
training details).

Using our trained classifier and IMC profiles of cold tumors, we employ
a counterfactual optimization method to predict tumor perturbations that
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Fig. 1 (A) Overview of counterfactual optimization framework for discovering therapeutic
strategies predicted to support CD8+ T cell infiltration in immune-cold tumors. Framework
consists of first (B) training a classifier (neural network) to predict the presence of CD8+ T
cells from multiplexed tissue images where CD8+ T cells are masked. (C) The trained clas-
sifier is then used to compute an optimal perturbation vector δ per patch, which represents
a strategy for altering the level of different proteins in a way that increases the probability of
T cell presence as predicted by the classifier. The positive/negative values (shaded red/blue)
of δ correspond to increases/decreases in mean relative channel intensity. Finally, taking the
median across all such perturbations enables us to obtain a tumor-wide perturbation vector
that represents a more feasible and potentially effective therapeutic strategy.

enhance CD8+ T cell infiltration (Figure 1C). For each image patch x
(i)
0 lacking

CD8+ T cell, our optimization algorithm searches for a perturbation δ(i) such

that our classifier f predicts the perturbed patch x
(i)
p = x

(i)
0 + δ(i) as having T

cells, hence referred to as a counterfactual. In general, δ(i) is a 3D tensor that
describes perturbation made to each pixel of the patch, which we compute by
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solving the following optimization problem adopted from [26],

δ(i) = min
δ

Lpred(x
(i)
0 , δ) + Ldist(δ) + Lproto(x

(i)
0 , δ), (4)

such that

Lpred(x
(i)
0 , δ) = cmax(−f(x

(i)
0 + δ), −p),

Ldist(δ) = β∥δ∥1 + ∥δ∥22,

Lproto(x
(i)
0 , δ) = θ∥x

(i)
0 + δ − proto(i)∥22

(5)

where p is the classification threshold.
The three loss terms in Equation 4 each correspond to a desirable property

of the perturbation we aim to discover. The Lpred term encourages the pertur-
bation to increase the classifier’s predicted probability of T cells to be larger
than p, meaning the network will predict the perturbed tissue patch as having
T cells when it previously did not contain T cells. Next, the elastic net regular-

ization term, Ldist, minimizes the distance between the original patch x
(i)
0 and

the perturbed patch x
(i)
p = x

(i)
0 + δ to generate sparse perturbations, favoring

strategies that do not require making as many changes to the tumor. Lastly,
proto(i) in Lproto refers to, among all patches in the training set that is classi-

fied as having T cells, the nearest neighbour of x
(i)
0 (see Methods). Thus this

last term explicitly guides the perturbed image x
(i)
p to falls in the distribution

of training images predicted to contain T cells, leading to perturbed patches
that appear similar to what has been observed in TMEs infiltrated by T cells.

Since drug treatments cannot act at the spatial resolution of individ-
ual micron-scale pixels, we also constrain the spatial resolution of our
perturbations by defining δ(i) in the following way,

δ(i) = γ(i) »3 x
(i)
0 , (6)

where γ(i) g −1 a c-dimensional vector with c being the number of pro-

tein channels. In practice, we directly optimize for γ(i), where γ
(i)
j can be

interpreted as the relative change to the mean intensity of the j-th channel.
This constraint ensures that the perturbation we find changes the level of any
molecule by the same multiplicative factor across all cells. However, given our
classifier does have fine spatial resolution, we can search for targeted therapies
such as perturbing only a specific cell type or restricting the perturbation to
specific tissue locations by changing Equation 6.

Taken together, our algorithm obtains an altered image predicted to contain
T cells from an original image which lacks T cells, by minimally perturbing the
original image in the direction of the nearest training patch containing T cells
until the classifier predicts the perturbed image to contain T cells. Since our
strategy may find different perturbations for different tumor patches, we reduce
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the set of patch-wise perturbations {δ(i)}i to a whole-tumor perturbation by
taking the median across the entire set.

Convolutional neural networks trained on IMC images

accurately predict T cell distribution from distribution of

other cell types

Fig. 2 U-Net classifier trained on IMC images of melanoma, metastatic liver ,
and breast tumor accurately predicts T cell distribution. (A) histograms showing
the distribution of tumor cores per patient and CD8+ T cell fractions per core across all
three tumor datasets. (B) Predicted and actual T cell distribution of tissue sections from
test patients in melanoma, liver tumor, and breast tumor dataset. (C) Predicted and true
proportion of patches with T cells within a tissue section, each dot corresponds to a tissue
section, points along the diagonal black line indicates perfect prediction. Paired t-test on
predicted and true proportion gives p-value of 0.87 (melanoma), 0.81(liver tumor), 0.90
(breast tumor), indicating the predicted and true proportions are not distinct enough to
reject the null that they are represent the same population (D) The RMSE (Equation 3)
across all tissue sections from test patients, prediction from three different types of models.
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We applied our optimization framework to three publicly available IMC
datasets of tumors from metastatic melanoma [22], liver metastasis gener-
ated by primary colorectal cancer, [23], and breast cancer patients [24]. The
melanoma dataset was obtained by IMC imaging of 159 tumor cores from 69
patients with stage III or IV metastatic melanoma with samples collected from
sites including skin and lymph-node. Each tissue was approximately 1mm in
diameter, imaged at 1µm resolution across 41 channels, consisting of protein
markers for tumor cells, immune cells, stromal cells and 11 different chemokines
[22]. The liver metastasis dataset consists of 209 tumor cores taken from 30
colorectal cancer patients with liver metastasis [23] spanning patients with
and without a diagnosis of non-alcoholic fatty liver disease. The breast can-
cer dataset was obtained by IMC imaging of 749 breast tumor cores from 693
patients from the METABRIC study with different molecular sub-types of
breast cancer [24] . Most tissues (93%) were 0.6mm in diameter, image at 1um
resolution across 37 channels, consisting of markers for lymphoid, myeloid and
stromal cells.

For each of the three tumor datasets, we trained a separate U-net classifier
that effectively predicts CD8+ T cell infiltration level in unseen tumor sections.
Figure 2B shows example tissue sections colored by the predictions made by the
U-net classifiers, with green denoting a patch was predicted to have T cells. For
each tissue section of a cancer type, the predictions were obtained by applying
the corresponding classifier to each image patch. From visual inspection, our
model consistently captures the general distribution of T cells. Comparing the
true proportion of patches in a tissue section with T cells against our predicted
proportion also shows strong agreement (Figure 2C). The true proportion of
patches with T cells is calculated by dividing the number of patches within a
tissue section that contains CD8+ T cells by the total number of patches within
that section, hence it is restricted to be between 0 and 1. We quantify the
performance of our U-Nets on the test data set using the RMSE (Equation 3)
which represents how far off, on average, our predicted proportion is from the
true proportion. Our model performs exceptionally well on liver tumor and
melanoma, achieving a RMSE of only 6% and 8% respectively and a relatively
lower performance of 11% on breast tumor(Figure 2D). Taken together, these
results suggest that our models accurately predict the T cell infiltration status
of melanoma, liver and breast tumors.

In order to gain insight into the relative importance of non-linearity and
spatial information in the performance of the U-Net on the T cell clasification
task, we compared the performance of the U-Net to two other models (A)
a logistic regression model (B) a multi-layer perceptron (MLP). The logistic
regression model is essentially a linear model with a threshold, and the MLP
is a non-linear model without explicit spatial structures. Figure 2D shows that
across all three cancer datasets, the MLP classifier consistently outperforms
the logistic regression model, reducing RMSE by 20−40% to suggest that there
are significantly nonlinear interactions between different molecular features
when it comes to predicting the presence of T cells. The importance of spatial
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features on the T cell prediction task, however, is less consistent across cancer
types. Figure 2D shows that for the prediction task in breast tumor, the U-Net
model offers negligible boost in performance relative to the MLP model (< 2%
RMSE reduction), whereas for liver tumor, the U-Net model achieved a RMSE
50% lower compared to the MLP model. This preliminary result suggests that
the spatial organization of signals may have a stronger influence on CD8+ T
cell localization in liver tumor compared to breast tumor, or that the functional
role of signals profiled in the liver data sets are more spatially-dependent.

Optimization framework predicts combinatorial

chemokine treatment can improve T cell infiltration in

melanoma patients

Applying our counterfactual optimization procedure using the U-Net classi-
fier trained on melanoma IMC images, we discovered a combinatorial therapy
predicted to be highly effective in improving T cell infiltration in melanoma
patients. For simplicity, we restricted the optimization algorithm to only per-
turb the level of chemokines, which is a family of secreted proteins that are
known for their ability to stimulate cell migration [27] and has been shown to
play a significant role in T cell tumor localization [28]. Figure 3A shows per-
turbations computed for each patient in the training group separates into two
clusters. In patient cluster 1, only the level of CXCL9 is consistently increased,
whereas in patient cluster 2, the levels of CXCL10 is consistently increased
while the levels of CCL18 and CCL22 are consistently reduced (Figure 3A).
Both CXCL9 and CXCL10 are well-known for playing a role in recruiting
CD8+ T cells to tumor, whereas CCL22 is known to be a key chemokine for
recruiting regulatory T cells, and relatively little is currently known regarding
the role of CCL18 in T cell infiltration.

Figure 3B shows that the choice of which of the two strategies was selected
for a patient appear to be strongly associated with the cancer stage of the
patient, with strategy 1 being significantly enriched for stage IV colorectal
cancer patients and strategy 2 being significantly enriched for stage III CRC
patients. Probing deeper into the difference between these two patient clusters,
we find that all chemokine are more highly expressed in the tumors of patients
in cluster 2 compared to cluster 1, while there are no significant differences
between the two groups in terms of the cell type compositions within tumors
(Figure 3C). The fact that only patient cluster 2’s strategy involves increasing
CXCL10, but they actually have higher CXCL10 to start with suggests that
differences in strategy between the two groups are not a simple reflection of
differences in their chemokine levels, hinting at the possibility that there isn’t
a single optimal chemokine composition that supports T cell infiltration in
melanoma tumor.

Our optimization procedure selected perturbations that would make the
chemokine composition of a TMEmore similar to T cell rich regions of immune-
infiltrated tumors. Figure 3D shows that melanoma tissue patches can be
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Fig. 3 Tumor perturbation strategy optimized on groups of melanoma patients
(A) Chemokine perturbations computed for each patient (row) from training cohort; Bar
graph shows the median perturbation across all patients, expressed in terms of the relative
change in intensity. (B) Distribution of cancer stages among patients within two clusters,
gray indicates unknown cancer stage. (C) Volcano plot comparing chemokine level and cell
type abundance from patient cluster 1 and 2, computed using median values and Wilcoxon
rank sum test. Gray indicates non-statical significance, blue indicates highly enriched in
patient cluster 2, red indicates highly enriched in patient cluster 1.
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Fig. 3 (continued) (D) Chemokine concentration profile for each tumor patch (row);
Three 1-D heatmap (right) provides additional information for each patch: infiltration status
(light/dark = infiltrated/deserted tumor), tumor cell (light/dark = tumor cells/ no tumor
cells), and CD8+ T cells (light/dark = T cells/no T cells). (E) Correlation between the
chemokine signals and the presence of CD8+ T cells in a patch, yellow bars corresponds to
chemokines that were discovered as key perturbations in panel A. (F) UMAP projection of
patches from melanoma tumor images (top), using only chemokine channels; colored arrows
connect UMAP projection of patches without T cells and their corresponding perturbed
image (bottom), color corresponds to k-nearest neighbor clusters of the perturbed images.
Pie charts shows the patient distribution of original images near the four different clusters
of perturbed images. (G) Cell maps computed from one patient’s IMC image, showing the
predicted distribution of T cells before and after perturbation. (H) Original vs. perturbed
(predicted) median infiltration level across all patients (test group), error bar represents the
interquartile range across multiple tumor sections per patient. Stage IV patients received
perturbation strategy 1 (orange), stage III patients received perturbation strategy 2 (green).
(I) Predicted (median) infiltration level across all patients (test group) for different pertur-
bation strategy of varying sparsity, error bar represents interquartile range.

clustered into distinct groups based on their chemokine concentration pro-
file. One cluster (highlighted by green box) contains exactly the patches from
immune-infiltrated tumors that contains both tumor and T cells, which likely
represents a chemokine signature that is suitable for T cell infiltration. On
the other hand, a second cluster (highlighted by red box) which contains
patches from immune-deserted tumors and has tumor but no T cell likely
represents an unfavorable chemokine signature. In comparison to the second
cluster highlighted in green, Figure 3B shows the first cluster (in red) from
immune-infiltrated tumor contains elevated levels of CXCL9, CXCL10 and
reduced levels of CCL22 which partially agrees with the perturbation strat-
egy (Figure 3A) discovered by our optimization procedure. Notably, Figure 3E
shows that our four selected chemokine targets cannot be predicted from simple
correlation with the presence of CD8+ T cells.

We can directly observed how our optimization procedure searches for effi-
cient perturbations by viewing both the original patch and perturbed patches
in a dimensionality-reduced space. Figure 3F (top) shows in a UMAP space
where each point represents the chemokine profile of an IMC patch, patches
with CD8+ T cells are well-separated from those without CD8+ T cells. The
colored arrows in the bottom panel of Figure 3F illustrating the perturba-
tion for each patch as computed by our optimization procedure demonstrates
two key features of our optimization procedure. First, the perturbations push
patches without T cell towards the region in UMAP space as occupied by T-
cell-infiltrated patches. Second, the colored arrows in Figure 3C show that the
perturbations are efficient in that patches are perturbed just far enough to
land in the desired region of space. Specifically, red points that start out on
the right edge end up closer to the right after perturbation, while points that
start on the left/bottom edge end up closer to the left/bottom, respectively.
The colored patches are meant to illustrated this point. Furthermore, the pie
charts (i-iv) show the region of space where points are being perturbed to are
not occupied just tissue samples from a single patient with infiltrated tumor,
rather these region consists of tissue samples from multiple patients, suggesting
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that our optimization procedure combines information from different patients
when searching for perturbation strategies.

After applying in silico the set of five perturbations from Figure 3A to IMC
image of a tumor, Figure 3G shows that T cells infiltration level (defined as %
of tumor cells with T cells nearby) is predicted to increase by 20 fold. Further-
more, Figure 3H shows that this predicted improvement in T cell infiltration
holds across nearly all 14 patients from the test group, with little variability
across multiple tumor samples of each patient. Specifically we selected which
perturbation to perform in silico based on the cancer stage of the patient.

The combinatorial nature of our designed perturbation strategy is crucial
to its predicted effectiveness. We systematically explore the importance of com-
binatorial perturbation by changing parameters β of Equation 9 which adjusts
the sparsity of the solution, where sparser solution means less molecules are
perturbed. Figure 3I shows that perturbing multiple targets is predicted to
be necessary for driving significant T cell infiltration across multiple patients.
In conclusion, within the scope of the chemokine targets considered, com-
binatorial perturbation of the TME appears necessary for improving T cell
infiltration.
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Optimization framework predicts inhibition of CXCR4,

CYR61, PD-1, and PD-L1 can improve T cell infiltration

into liver tumor

Fig. 4 Reducing levels of CXCR4, PD-1, CYR61 and IL10 predicted to drive
T cell infiltration into immune-cold liver tumors. (A) Normalized whole-tumor per-
turbations optimized across IMC images of individual patients (row) from the train group.
Green and orange marks to two patient clusters. (B) Correlation between the protein level
and the presence of CD8+ T cells. (C) Horizontal bars indicate proportion of patients in
each of the two groups that have fatty liver, where the probability of seeing such propor-
tions by chance is 10%. T-tests with Bonferroni correction performed to assess differences in
cell type composition and protein levels between the two patient cluster in (A), computed
using median values and Wilcoxon rank sum test. (D) UMAP projection of patches from
liver tumor sections (top and middle); colored arrows connect UMAP projection of image
patches without T cells and their corresponding optimally perturbed image (bottom), color
corresponds to KNN clusters of the perturbed images. (E) Predict median T cell infiltration
level in test population (left). Error bar represents the interquartile range across multiple
tumor sections per patient. T cell infiltration level for individual tissue section before and
after perturbation (right), where patient 13, 18, 28 have fatty liver disease. (F) Predicted
infiltration level across all test patients for different perturbation strategy of varying spar-
sity, error bar represents interquartile range.
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Applying our optimization framework to IMC images of CRC liver metastases,
we discovered that a combination of 3-5 molecular perturbations is predicted
to be highly effective in improving T cell infiltration. Figure 4A shows the
optimal perturbations computed for every CRC patient in the training group,
using IMC images of their liver metastases. Hierarchical clustering on this
collection of perturbation strategies reveals our optimization framework con-
sistently discovered two strategies for improving T cell infiltration from this
patient population. The first cluster of patients, marked in green in Figure 4A,
corresponds to a strategy that involves inhibiting PD-1, PD-L1, and CXCR4.
The second strategy is similar except with the additional inhibition of CYR61.
Interestingly, Figure 4B shows that nearly all of the perturbation targets
selected correlated poorly with the presence of CD8+ T cells compared to the
other proteins that were not selected as targets, suggesting the presence of
significant spatial and nonlinear effects not captured by correlations alone.

All targets identified by our method have been found to play crucial roles
in suppressing effector T cell function in the TME, and inhibitors of cer-
tain targets have already been shown to drive T cell infiltration in CRC
liver metastases. Regulatory T cells (Tregs) get recruited into tumor through
CXCL12/CXCR4 interaction [29]. Next, the PD-1/PD-L1 pathway inhibits
CD8+ T cell activity and infiltration in tumors. In addition, CYR61 is a
chemoattractant and was recently shown to drive M2 TAM infiltration in
patients with CRC liver metastases [23]. Inhibition of both PD-1 and CXCR4,
which were consistently selected by our method as targets, have already been
shown to increase CD8+ T cell infiltration in both CRC patients and mouse
models [28, 30, 31]. Finally, Figure 4A shows the optimized therapy for a
few patients involve inhibiting IL-10. As evidence in support of this pre-
diction, blockade of IL-10 was recently shown to increase the frequency of
non-exhausted CD8+ T cell in human colorectal cancer liver metastases [32].

The fact that our method discovered two distinct perturbation strategies is
partly a result of variation in liver fat build-up among patients. The first clus-
ter is significantly enriched for patients with fatty liver disease (70% (7/10))
whereas only 22% (2/9) of patients in the second cluster have fatty liver disease
(p = 0.047). Furthermore, Figure 4C shows that CYR61 level is significantly
higher in the first group while having no significant difference in cell type com-
position. Indeed, CYR61 is known to be associated with non-alcoholic fatty
liver disease (NAFLD). However despite patients in cluster 1 having higher
levels of CYR61, it is only for patients in cluster 2 where the optimal strategy
involves blocking CYR61. This result could be due to the fact that removing
CYR61 from patients in cluster 1 is a much stronger perturbation due to their
originally higher concentration. Such a large perturbation will likely push the
tumor profile far out of distribution of the training data, making it an overall
undesirable strategy.

Figure 4D (top) shows a UMAP projection of tumor patches either with
or without T cells, note that in this case the T cell-present region tend to
cluster together but is very low in abundance, suggesting it may be difficult
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to find perturbations that mimic such an environment. On the other hand,
the middle UMAP figures shows that there are many region without tumor
cells but contains T cells. Our optimization procedure appears to prioritize
perturbing cells (green) to the region of space with tumor since the original
images we are trying to optimize contain tumor cells as well, causing the green
points to be most abundant (bottom panel Figure 4D). However, it appears
to be a difficult target to perturb all the original images to, since in somes
cases the algorithm resorted to perturbing images to be more similar to tissue
patches that contain T cells but do not have tumors, as demonstrated by the
presence of the purple and orange points. This results shows that our algorithm
is flexible in that it does not always try to make tumor patches without T cells
look like tumor patches with T cells. When doing so is difficult to achieve it
can find alternative strategies that are also predicted to be effective.

The two therapeutic strategies we discovered generalizes to patients in
our held-out test population. Given that we have two therapeutic strategies,
we simulate in silico both perturbation strategies across all 7 test patients.
Figure 4E (left) shows that for both treatment, CD8+ T cell infiltration level
is predicted to increase significantly for nearly all patients, with the exception
of patient 28. Upon closer inspection of the perturbation effect on each tissue
section, Figure 4E (right) shows the perturbation is predicted to significantly
increase T cell infiltration level for only two out of the five tissue sections from
patient 28. This variability in response between tissue sections from the same
patient is evident in nearly all test patients, suggesting that intra-tumor hetero-
geneity could be a significant issue in the development of personalized cancer
therapy. Furthermore, Figure 4F shows again that combinatorial perturbation
is necessary to drive significant T cell infiltration across multiple patients.

Discussion

Our optimization framework combines deep neural networks with optimization
methods from explainable AI to directly predict therapeutic interventions.

One of the major strength of our model is that it can readily scale to
deal with large diverse sets of patients samples, which will be crucial as more
spatial transcriptomics and proteomics datasets are quickly becoming available
[33]. Larger data sets could allow us to train more complex models such as
vision transformers, capturing long range interactions in tissue profiles that
are may be more predictive of T cell localization. Furthermore, a large set
of diverse patient samples will more accurately capture the extent of tumor
heterogeneity, enabling our optimization framework to discover therapeutic
strategies for different sub-classes of patients.

For future work, we would like to apply our framework to spatial transcrip-
tomics/proteomics data with hundreds to thousands of molecular channels.
Currently, the number of spatial transcriptomics profiles of human tumor tis-
sues is extremely limited, with most public data sets containing single tissue
sections from 1-5 patients which is far too small for our application. However,
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as commercial platforms for spatial transcriptomics start to come online, we
will likely be seeing large scale spatial transcriptomics data sets in the near
future.

In this work, we focused on identifying generalized therapies by pooling
predictions across multiple patient samples, but we can also apply our frame-
work to find personalized therapy for treating individual patients. In both the
melanoma and CRC liver metastases data sets, we see variability in the opti-
mized perturbation between patients (Figure 3A, Figure 4A). Furthermore,
Figure 4E shows that a therapeutic strategy could have highly variable effect
across different tissue samples from the same patient. To generate therapy for
individual patients, we would first obtain a large set of tissue samples from a
patient’s tumor and apply our optimization procedure to a random subset of
the samples (training set), and then test the resulting perturbation strategy
on the remaining samples (testing set) to see how well the strategy is predicted
to perform across the entire tumor.

Incorporating our model in closed loop with experimental data collection
is another promising direction for future work. Data can be collected from
patients or animal models with perturbed/engineered signaling context, and
this data can be easily fed back into the classifier model to refine the model’s
prediction. The perturbation could be based on what the model predicts to
be effective interventions, as is the case with our counterfactual optimization
framework. We can also study the tissue samples on which the model tends
to make the most mistake and train the model specifically using samples from
similar sources, such as the same patient or disease state.

For future work, we also plan to incorporate cell-type specific perturbations
into our framework, which can be done by directly restricting the optimization
to only alter signals within specific cell types. Experimentally, we plan to test
our therapeutic predictions in murine models of melanoma and CRC liver
metastases.

Methods

Data split

For both the Melanoma and Breast tumor dataset, we followed the same data
splitting scheme to divide patients into three different groups (training, vali-
dation, testing) while ensuring similar class balance across the groups, which
in our case means that the proportion of image patches with and without T
cells are roughly equal across the three groups. Specifically, each image within
a dataset was divided into 64µm× 64 µm patches and the number of patches
with and without CD8+ T cells was computed for each image. Next, the
patients are shuffled between the three groups until three criteria are met: 1)
the number of patients across the three groups follow a 65/15/20 ratio, 2) the
difference in class proportion across the three groups is less than 2%, and 3)
the training set contains at least 65% of total image patches.
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Melanoma data set

Melanoma data set from Hoch et al. contains 159 images/cores taken from 69
patients. Table below contains summary statistics for the three groups that
patients were split into.

Group Number of patients Number of patches Proportion of positive patches

Training 102 23741 29.6%
Validation 28 6045 30.3%
Testing 29 5950 30.4%

Table 1 Data split statistic for Melanoma IMC dataset

Breast tumor data set

Breast tumor dataset from Danenberg et al. contains 693 images/cores taken
from 693 patients. Table below contains summary statistics for the three groups
that patients were split into.

Group Number of patients Number of patches Proportion of positive patches

Training 485 41104 23.7%
Validation 113 9015 23.4%
Testing 151 12987 23.8%

Table 2 Data split statistic for breast tumor IMC dataset

CRC liver metastases data set

Breast tumor dataset from Danenberg et al. contains 693 images/cores taken
from 693 patients. Table below contains summary statistics for the three groups
that patients were split into.

Group Number of patients Number of patches Proportion of positive patches

Training 485 41104 23.7%
Validation 113 9015 23.4%
Testing 151 12987 23.8%

Table 3 Data split statistic for breast tumor IMC dataset

Classifier training

In this work, we trained three classes of models to perform our T cell prediction
task. All models presented in this paper were trained with early stopping
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based on the validation Matthews Correlation Coefficient (MCC) for 10-20
epochs. All models were trained on an NVIDIA GeForce RTX 3090 Ti GPU
using PyTorch version 1.13.1 [34]. More details about hyperparameters and
implementations can be found in our Github repository.

T cell masking strategy

The purpose of model training is for the model to learn molecular features
of the CD8+ T cell’s environment that is indicative of its presence, so it is
important for us to remove features of the image that are predictive of CD8+
T cell presence but are not part of the cell’s environment. We devised a non-
trivial cell masking strategy in order to remove T cell-intrinsic features without
introducing new features that are highly predictive of T cell presence but are
not biologically relevant. A simple masking strategy of zeroing out all pixels
belonging to CD8+ T cells will introduce contiguous regions of zeros to image
patches with T cells, which is an artificial feature that is nonetheless highly
predictive of T cell presence and hence will likely be the main feature learned
by a model during training. To circumvent this issue, we first apply a cell
“pixelation” step to the original IMC image where we reduce each cell to a
single pixel positioned at the cell’s centroid. The value of this pixel is the sum
of all pixels originally associated with the cell, representing the total signal
from each channel within the cell. We then mask this “pixelated” image by
zeroing all pixels representing CD8+ T cells. Since there are usually at most
two T cell pixels in an image patch, zeroing them in a 16 × 16 pixel image
where most of the pixels (> 90%) are already zeroes is not likely to introduce a
significant signal that is predictive T cell presence. We show that our strategy
is effective at masking T cells without introducing additional features through
a series of image augmentation experiments.

Logistic regression models

We trained a single-layer neural network on the average intensity values from
each molecular channel to obtain a logistic regression classifier, predicting the
probability of CD8+ T cell presence in the image patch. This model represents
a linear model where only the average intensity of each molecule is used for
prediction instead of their spatial distribution within a patch.

MLP models

Similar to a logistic regression model, the Multilayer Perceptron (MLP) also
uses averaged intensity as input features for prediction but is capable of learn-
ing nonlinear interactions between features. The MLP model consists of two
hidden layers (30 and 10 nodes) with ReLU activation.

U-Net models

To train networks that can make full use of the spatial information, we used
a fully convolutional neural network with the U-Net architecture. The U-Net
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architecture consists of a contracting path and an expansive path, which gives
it a U-shaped structure [25]. The contracting path consists of four repeated
blocks, each containing a convolutional layer followed by a Rectified Lin-
ear Unit (ReLU) activation and a max pooling layer. The expansive path
mirrors the contracting path, where each block contains a transposed convolu-
tional layer. Skip connections concatenates the up-sampled features with the
corresponding feature maps from the contracting path to include local infor-
mation. The output of the expansive path is then fed to a fully-connected layer
with softmax activation to produce a predicted probability. The model was
trained from scratch using image augmentation to prevent over-fitting, includ-
ing random horizontal/vertical flips and rotations, in addition to standard
channel-wise normalization. We train our U-net classifiers using stochastic gra-
dient descent with momentum and a learning rate of 10−2 on mini-batches of
masked image patches.

Table 4 Performance of different classifier models trained on melanoma, liver tumor, and
breast tumor IMC images to predict the presence of T cells (p = 0.5)

Cancer type Model Accuracy Precision Recall F1 AUC-ROC MCC

Melanoma Linear 0.84 0.83 0.37 0.51 0.67 0.48
MLP 0.85 0.79 0.48 0.59 0.72 0.53
U-Net 0.86 0.71 0.61 0.65 0.77 0.57

Breast Linear 0.82 0.57 0.16 0.24 0.57 0.23
tumor MLP 0.86 0.71 0.42 0.52 0.69 0.47

U-Net 0.87 0.70 0.48 0.56 0.71 0.50
Liver Linear 0.86 0.71 0.19 0.29 0.59 0.31
metastasis MLP 0.88 0.67 0.50 0.57 0.73 0.51

U-Net 0.90 0.68 0.65 0.66 0.80 0.60

Table 5 Performance of different CNN and ViT models trained on IMC image patches of
melanoma

Model Name U-Net ResNet-18 EfficientNet-B0 MedViT

Number of parameters 12.8M 11.2M 4.1M 31.3M
Test accuracy 0.86 0.86 0.851 0.853

Perturbation optimization

Given an IMC patch x(i) without T cells, and a classifier f , our goal is to find
a perturbation δ(i) for the patch such that f classifies the perturbed patch as
having T cells. For CNN models, δ(i) ∈ R

w×l×d is a 3D tensor that describes
changes made for every channel, at each pixel of the patch. For MLP models,
δ(i) ∈ R

d is a vector where each element represents changes to the average
intensity of a channel in patch i. This distinction between the two models
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highlights differences in the type of perturbations that each model can discover.
The MLP model can find region-wide perturbation such as changing the overall
level of an extracellular molecule, whereas the CNN model allows for cell-type
specific perturbations since perturbations are now being computed at the level
of micron-scale pixels.

In our work, we focused on the U-Net (CNN) model for optimization. Given

a U-Net classifier f and a IMC patch i having mean channel intensity x
(i)
0

such that f(x
(i)
0 ) = P(T cells present) < p, where p > 0 is the classification

threshold below which the classifier predicts no T-cell, we aim to obtain a per-

turbation δ(i) such that f(x
(i)
0 +δ(i)) > p, by solving the following optimization

problem adopted from [26],

δ(i) = min
δ

Lpred(x
(i)
0 , δ) + Ldist(δ) + Lproto(x

(i)
0 , δ), (7)

such that

Lpred(x
(i)
0 , δ) = cmax(−f(x

(i)
0 + δ), −p), (8)

Ldist(δ) = β∥δ∥1 + ∥δ∥22, (9)

Lproto(x
(i)
0 , δ) = θ∥x

(i)
0 + δ − proto∥22, (10)

where proto is an instance of the training set classified as having T cells,
defined by first building a k-d tree of training instances classified as having T
cells and setting the k-nearest item in the tree (in terms of euclidean distance

to x
(i)
0 ) as proto. Each of the loss term in Equation 7 corresponds to a desirable

property of the perturbation δ:

1. Lpred encourages f(x
(i)
0 + δ) to become greater than p, meaning we want a

δ that makes the model predict that the perturbed patch has T cells.

2. Ldist minimizes the distance between the original instance x
(i)
0 and the

counterfactual instance x
(i)
cf = x

(i)
0 + δ with elastic net regularization to

generate sparse perturbations
3. Lproto explicitly guides the perturbation towards a counterfactual instance

xcf which falls in the distribution of the class of IMC patches containing T
cells. This loss term helps to generate counterfactual instances that are sim-
ilar to what has already been observed in IMC image of immune-inflamed
tumors.

4. Additional constraint: δ := x0δ, meaning the perturbations only change the
level of existing signals in each image patch by a factor that is constant
across a patch.

Figure 1D illustrates how the optimization algorithm selects the perturba-
tion through a simple schematic. Given the original instance x0 which lacks T
cells, the algorithm obtains xcf by moving for the shortest distance possible, in
the direction of the nearest training instance that is predicted to have T cells.
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Code Availability

Code for model training, perturbation optimization and analysis are publicly
available at https://github.com/neonine2/deepspace.

Data Availability

This study used only published data sets that are publicly available.
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