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Abstract

High grade serous ovarian cancer (HGOC) is a major cause of death in women. Early
detection of HGOC usually leads to a cure, yet it remains a clinical challenge with over 90%
HGOCs diagnosed at advanced stages. This is mainly because conventional biomarkers are
not sensitive to detect the microscopic yet metastatic early HGOC lesions. In this study, we
sequenced the blood T cell receptor (TCR) repertoires of 466 ovarian cancer patients and
controls, and systematically investigated the immune repertoire signatures in HGOCs. We
observed quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple
independent cohorts. Importantly, these changes are stronger during stage |. Using pre-
diagnostic patient blood samples from the Nurses’ Health Study, we confirmed that HGOC
signals can be detected in the blood TCR repertoire up to 4 years proceeding conventional
diagnosis. Our findings may provide the basis of an immune-based HGOC early detection
criterion.

Statement of significance

We made an unprecedented discovery that a strong and quantifiable change in the blood TCR
repertoire occurs 4 to 2 years before high grade ovarian cancers could be diagnosed with
conventional clinical tests. This finding might be useful to develop novel screening biomarkers
to detect early-stage ovarian cancers.
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Introduction

Ovarian cancer accounts for 2.5% of all malignancies seen in women', while causing 5% of
cancer-related deaths?. High-grade serous ovarian carcinoma (HGOC), which comprise over
70% of incident ovarian tumors’, contributes to the high mortality burden of this disease,
whereas low-grade ovarian tumors are much less lethal®. Stage | high grade serous
carcinomas are confined within ovaries or fallopian tubes, and are largely curable with
complete surgical resection and chemotherapy (93% 5-year relative survival)*. In contrast,
HGOCs diagnosed at advanced stages have a 5-year survival of 31%*. HGOCs are believed
to arise from a range of epithelial changes with p53 mutations, serous tubal intraepithelial
carcinoma (STIC) in the fallopian tube and atypical lesions inbetween p53 mutations and
STIC®. The current paradigms of serous carcinogenesis include a precursor lesion (STIC) with
gradual progression to cancer and precursor metastasis into the peritoneal cavity®’. All
paradigms allude detection or prevention by conventional methods and consequently, HGOCs
are rarely found at stage |, with over 87% cases diagnosed at stage Ill or IV'.

Given the apparent clinical benefit of detecting ovarian cancer early, noninvasive assays have
been evaluated in large-scale, prospective screening trials, largely focusing on serum CA-125
levels® and its changes over time?, serum human epididymis protein 4 (HE-4)'%'! and
transvaginal ultrasound'?. However, a recent longitudinal trial of over 200,000 subjects
followed for more than 18 years showed no mortality benefit for HGOC among women
routinely tested by one or a combination of these assays'. Studies have demonstrated that
most conventional biomarkers have limited predictive ability until 6-12 months before
diagnosis'#, possibly because HGOC primarily comprises of microscopic lesions until very late
in its progression. As such, blood biomarkers or tumor imaging may not be sensitive to detect
the early-stage ovarian tumors.

Previously, we showed that early-stage cancers induce observable changes in the blood T cell
receptor (TCR) repertoire, providing an alternative for noninvasive cancer diagnosis™®.
Although it remains unclear what causes these conservative changes in the TCR repertoires of
patients with diverse genetic backgrounds, the concept of immunoediting’®'” may explain why
signals can be seen at early stages. Specifically, during the ‘Elimination’ phase, exposure to
early tumor antigens could result in a rapid expansion of cancer-associated T cells'®, leading to
detectable signals in the TCR repertoire in circulating white blood cells. Here, we first
developed a new method to quantitatively dissect the TCR repertoire data into quantifiable
functional units. We then collected preoperative blood samples from patients with ovarian
tumors to identify TCR biomarkers that are enriched in the HGOC patients compared to
women with benign ovarian tumors. Finally, we measured TCRs in pre-diagnostic blood
specimens from patients diagnosed with ovarian cancer within 5 year after blood draw using
samples from a large longitudinal cohort study and matched controls. Our analysis revealed
transient but significant TCR repertoire changes that occurred up to 4 years prior to
conventional ovarian cancer diagnosis.
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Results

Trimer embedding of T cell receptors and RFU definition

We first obtained a numeric embedding of the CDR3p region that preserved sequence
similarity (Figure 1a). In brief, approximately 20 million TCRs from the public domain (Table
S1) were clustered based on the variable gene (TRBV) and CDR3p sequences (Figure 1b) by
GIANA' to construct a trimer substitution matrix (Figure 1c-d). Approximated isometric
embedding of each trimer was obtained using multidimensional scaling (Figure 1e) and the
final embedding vector for each CDR3[ was calculated by mean pooling of all consecutive
trimers in the amino acid sequence. We benchmarked this embedding using 1,031 TCRs with
known specificity to 10 common immunogenic epitopes? (Table S2). Specifically, we obtained
the numeric embedding of each TCR and calculated the Euclidean distances for each pair of
TCRs. This distance was used to predict if the pair of TCRs were specific to the same antigen,
and reached an Area under the Receiver Operative Characteristic curve (AUC) of 0.64 (Figure
S1a-b). At a high specificity of 0.95, this method reached a sensitivity of 0.22, comparable to
the state-of-art methods based on TCR similarity'%21-23, This result indicated that trimer
embedding method preserves the ‘local specificity’ of TCRs, i.e. if the distance of two TCRs
continuously decreases to 0, the probability that they share antigen-specificity will approach to
1. This property is guarded by the fact that TCR sequence similarity can be used as a
surrogate for antigen specificity?'.

With this property, we defined the ‘neighborhood’ in the TCR space, as local TCR clusters that
likely recognize the same antigens. Such neighborhoods may carry disease-specific
information. For example, a simple comparison between a B cell ymphoma sample and
healthy control?* revealed several TCR neighborhoods enriched or depleted in the lymphoma
patient, each characterized by conserved CDR3 motifs (Figure S1c-d). Systematic
investigation by pooling over 1 million TCRs from 120 healthy donors?® revealed conservative
TCR clusters seen in multiple individuals (Figure S1e). We thus divided the TCR space into
5,000 groups (Figure 1g), with over 84% of TCRs within 0.018 distance to the centroid, which
is the cutoff of 90% specificity in the benchmark (Figure S1f). The group centroid was defined
as a ‘Repertoire Functional Unit’, or RFU, which can be viewed as the ‘gene’ of a repertoire in
the sense of antigen recognition. This definition allowed us to transform each TCR repertoire
sample into a fixed-length numeric vector, i.e. the normalized TCR count of each RFU.

TCR repertoire landscape in high-grade ovarian cancer patients

We prospectively collected a discovery cohort of preoperative PBMC samples from 213
women, including 67 patients with high-grade serous, 49 with low-grade carcinomas (can we
say other histologies?) and 97 with benign ovarian tumors. TCR repertoire sequencing data
was obtained for each sample. Despite attempt to frequency match on age, cancer patients
were significantly older than benign controls (Table S3). Therefore, we first investigated the
impact of age over RFUs in the healthy individuals using publicly available TCR-seq cohorts.
We first analyzed the Emerson et al. cohort?®, which contained blood TCR repertoires of 666
healthy donors collected before 2017. Our analysis revealed that a subset of RFUs showed
strong negative correlation with age (Figure S2a), which was further confirmed using another
cohort?® (Figure S2b). The second cohort was comprised of 1,414 COVID-19+ individuals
collected in 2020, which were also considered as healthy controls. Importantly, the RFUs with
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strong age associations in both cohorts were highly reproducible (Figure S2c). These results
suggested that age-associated RFUs are conserved in the general population, providing the
rationale to exclude age as a confounder in our downstream analysis.

We then visualized the TCR repertoires of all 213 individuals using the top 1,500 most variable
RFUs (ranked by standard deviation). Unsupervised hierarchical clustering revealed a
distinguishable separation between HGOCs and benign samples (Figure 2a), suggesting
global difference in the immune repertoire between these two conditions. Principal component
analysis (PCA) of the RFU matrix confirmed that PC1 is driven by disease categories (Figure
2b-c). In contrast, PC2 is mainly influenced by race, with African American patients showing
the largest separation from Asian patients (Figure 2d-e). To systematically investigate the
differences of TCR repertoire between HGOC and benign patients, we performed logistic
regression adjusted for patient age and race for all 1,500 RFUs and observed significant
results at FDR>0.2 (Figure 2f). In contrast, comparison between HGOC vs low-grade and low-
grade vs benign yielded no significant RFUs, potentially due to limited sample size (Figure
S2d). Next, we visualized the CDR3 motifs of the top up-/down- regulated ones in HGOC
patients (Figure 2g). We noted a conservative “RLAG” pattern at the 6-9t" positions of RFU
1804. CDR3s with this pattern, combined with the use of joining gene TRBJ2-3*01 (DTQYF)
have been reported to recognize the ELAGIGLTV epitope from melanoma antigen MART-1?7,
which is reportedly expressed in ovarian neoplasms?.

RFU as a risk marker for HGOC

The above results indicated that selected RFUs are significantly altered in the blood repertoire
of HGOCs compared to benign controls. We therefore proceeded to select a subset of RFUs to
evaluate the risk of HGOC. First, we observed that although some RFUs reached high odds
ratios in the logistic regression, there was no difference in the median levels of these RFUs
between HGOC and benign patients (Figure 3a), suggesting the influence of outliers. After
removal of such RFUs, we then defined the top 2 up- and down- regulated RFUs based on
odds ratios, which included RFUs 750, 866, 3808 and 1804. Since none of these RFUs were
age-related, we no longer considered age as a confounder in the following analysis (Figure
S3a). We performed a survey of these RFUs across a wide spectrum of human cancers using
blood repertoire samples (Table S1). Interestingly, in addition to HGOC, RFU 750 was also
downregulated in melanoma and kidney cancer, where RFU 866 was only downregulated in
HGOCs (Figure 3b). On the other hand, RFU 1804 is also upregulated in lung cancer, while
RFU 3808 was higher in head and neck cancer (Figure S3b). Notably, for all four RFUs,
healthy control samples from both children and adult cohorts had similar distributions as
benign patients.

We proceeded to test the performance of the 4 RFUs as a potential risk predictor for HGOC
against benign ovarian tumors. We directly used the sum of downregulated RFUs (750 and
866) or upregulated RFUs (3808 and 1804) as predictors, and observed moderate predictive
accuracy with an AUC slightly above 0.7. (Figure 3c-d). We combined the signals by using the
up- subtracted by the down- regulated RFU sums, as “OV RFU score”. As expected, this score
is significantly higher in the HGOC versus benign group (Figure 3e), with an improved AUC of
0.77 (Figure 3f).
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To evaluate the reproducibility of this RFU score, we collected a validation cohort, which
included 33 HGOC and 64 benign patients (Figure 3g, Table S3). All blood samples were
collected before surgery for TCR-seq data generation. OV RFU score was able to separate
HGOC from benign patients, but the predictive capacity was lower, with an AUC=0.66 (Figure
3h). However, unlike the discovery cohort, the validation cohort included 5 stage | HGOC
patient samples (Table S3). We investigated the distributions of RFU scores within stage-I
tumors and observed significantly higher scores than controls (Figure 3i). As a predictor, RFU
score reached an AUC of 0.81 for stage-l HGOC vs control (Figure 3j). Interestingly, the
scores of late stage HGOCs were lower than stage-I tumors, although statistical significance
was not reached due to small sample size. These results indicated that the adaptive immune
response may undergo nonlinear dynamic changes that peaks during the early progression of
ovarian malignancies.

Transient TCR repertoire changes in pre-diagnosis samples from ovarian cancer
patients

The above findings hold promise in early ovarian cancer detection, yet further evaluation using
more HGOC samples is challenging due to the rarity of stage | patients at diagnosis. To
address this issue, we utilized blood samples collected from the Nurses’ Health Studies
(NHS/NHSII). These studies, with over 280,000 participants, have collected blood samples
from over 60,000 women primarily in the 1990’s and early 2000’s and followed women for
diagnosis of ovarian cancer within 5 years after blood draw?®. A subset of over 34,000 women
gave two blood draws approximately 10-15 years apart. Among them, we identified 40 ovarian
cancer patients (33 HGOCs) with two blood draws before diagnosis, one remote (=10 years)
and one recent (<5 years). We also assayed 38 healthy controls matched on age at first and
second blood draws (Figure 4a). All 156 NHS samples were sequenced for their TCR
repertoires using the same commercial platform as the discovery and validation cohorts. We
confirmed that within-individual dynamics is smaller than cross-individual variation®°, with the
2" blood draw mostly similar to the 15t draw from the same person (Figure S4). Given the
higher RFU scores observed in stage | HGOCs (Figure 3i), we hypothesized that a transient
change may occur in the adaptive immune repertoire within 5 years prior to the conventional
diagnosis, when the tumor is still at an early stage.

First, PCA plot of all samples at the first blood draw revealed no difference between cancer
patients (10-15 years before diagnosis) and healthy control. At the second blood draw, there is
a slight yet non-significant difference at PC2 (Figure 4b), suggesting that the cancer-induced
changes were subtle, and may not drive the global alterations in the TCR repertoire. We next
examined the impacts of known ovarian cancer risk factors®'3? on the immune repertoire.
There was no difference between cancer patients and controls for menopausal status, tubal
ligation, parity, or mycoplasma infection (Figure 4c). To avoid potential confounding effects, we
removed all subjects with a family history of ovarian cancer in the downstream analysis.

We then proceeded to investigate the dynamics of OV RFU scores in the pre-diagnostic
samples. RFU scores using the 4 RFUs described above were directly calculated for the 37
passed-filter ovarian cancer patients at the second timepoint. Interestingly, RFU scores
displayed a significantly nonrandom dynamic curve prior to diagnosis (-5 to 0 years) that
matched our expectation (Figure 4d). Specifically, the score rapidly increased -5 to -4 years,
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peaked around -3 years before slowly decreasing until the time of diagnosis. We dissected this
period into three intervals based on the shape of the curve: uphill (-5 to -4), peak (-4 to -2) and
downhill (-2 to 0). Direct comparison of the RFU scores of each group with the scores of
healthy controls revealing that the peak group was significantly higher than both timepoints of
the control cohort (Figure 4e).

Sampling two timepoints for both cancer and control cohorts allowed us to track the TCR
repertoire changes over time. The RFU scores of patients within -4 to -2 years window showed
significant increases when compared to their matched first timepoint, where the RFU scores of
healthy individuals remained stable (Figure 4f). The increment of RFU scores between the two
timepoints (A) displayed a nonlinear trend (Figure 4g). These results strongly supported our
hypothesis that transient, but strong immune changes occurred during the early development
of ovarian cancer. We therefore evaluated OV RFU score as a potential biomarker to detect
ovarian cancer prior to its conventional diagnosis. If the disease is tracked within the -4 to -2
year window, the RFU score would reach an AUC of 0.73, with 33% sensitivity at 95%
specificity (Figure 4h). The increment between timepoints (A) performed worse (Figure 4i).
This is potentially because the random fluctuations in the TCR repertoire over 10 years
reduced the signal/noise ratio.
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Discussion

In this work, we analyzed a total of 466 blood TCR-seq samples from ovarian cancer patients
and healthy/benign controls. The computational analysis is based on a novel TCR embedding
method specifically designed to quantify TCR repertoires. The RFU markers predicted in the
discovery cohort were independently validated in two uniformly generated sample cohorts with
age matched controls, thus avoiding potential batch effects or data leakage.

Mathematical models imply that TP53 mutations occurs several decades prior and precursor
lesion STIC develops approximately 6 years prior to HGOC. Importantly, only a small fraction
of individuals with TP53 mutations will develop HGOC and not all STIC progress to cancer.
(Emerging evidence indicates that serous tubal intra-epithelial carcinoma (STIC), a putative
precursor of HGOC, develops ~7-12 years prior to diagnosis)33. Accordingly, the 15t blood draw
(>10 years) from the NHS cohort behaved similarly to the healthy controls (Figure 4b), while
the 2" (<5 years) exhibited significant dynamic changes that strikingly coincides with the
immunoediting process'’. Specifically, during tumor initiation, the immune system functions
well by priming T cells with tumor antigens, resulting in a rapid expansion of the tumor-reactive
T cells in the lymphatic system, thus creating the ‘uphill’ part of the curve. Once the tumor cells
reach equilibrium with the immune system, or the antigens have been sufficiently exposed to
the T cells, a peak in the curve is anticipated. Finally, with tumor progression,
immunosuppression becomes more dominant. T cell expansion slows down or stops with
immune exhaustion®*, potentially leading to a graduate decrease of tumor-reactive T cells in
the blood. Despite these matched dynamics, it requires more clinical data to validate the pre-
diagnostic behavior of the immune repertoire in ovarian cancer patients in larger sample
cohorts and more diverse populations.

In this work, we selected four RFUs to construct the OV RFU score. It is unlikely that these
RFUs encompassed all the TCRs informative to HGOCs. The number of markers discovered
in this study was limited by the small number of HGOC samples, particularly early stage
tumors. Further, all the HGOC patients in the discovery cohort were diagnosed at advanced
stage, which, according to our observations above, may have yielded dampened immune
response that might reduce statistical power. Although rare, a larger number of stage | HGOC
samples with age-matched benign controls from future clinical studies will be ideal to uncover
more informative RFUs and to improve the predictive accuracy. In addition, combining pre-
diagnostic blood samples from multiple large prospective cohort studies could also increase
power to identify novel early detection markers®.

We anticipate that 5,000 TCR clusters or RFUs do not completely cover the diversity of the
immune repertoire. The TCRs captured and analyzed in this work are enriched for those with
shared motifs across multiple individuals. Further, since the RFUs were defined using healthy
donors, it is possible that disease-specific TCRs are underrepresented. TCR cluster analysis
could be conducted on cancer patients to potentially identify RFUs that are specific to tumor
antigens. Regarding ovarian cancer detection, with sufficiently more samples, RFUs can be
redefined using HGOC patients, or even from ovarian tumor infiltrating T cells. HGOC-defined
RFUs might further increase the prediction power when applied to prospectively collected
patient cohorts.
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Our study revealed interesting findings in the TCR repertoire of early-stage HGOCs, yet this
work remains exploratory in nature. First, although the pre-diagnostic curve of RFU scores
matched our findings in the validation cohort of cases and benign controls, there is no
definitive evidence to support that women with samples collected at the ‘peak’ phase had bona
fide stage | HGOCs. Next, our analysis was performed at the RFU level, where the antigen-
specificity of individual TCRs was not investigated. This is mainly due to the lack of established
T cell antigens from early-stage HGOCs, which can be improved with future immunogenomic
research on ovarian cancers. Finally, as a screening biomarker, the sensitivity and specificity
of the RFU score are far lower than what would be required to reach 10% positive predictive
valued. As a diagnostic tool, it is less accurate than the established indices, such as ROMA36
or RMI¥’. As discussed above, this limitation might be addressed by including more TCR-seq
samples. Due to the rarity of stage | HGOCs, future emphasis could be given to large clinical
networks to recruit such patients or that have biobanked such samples®8.

Despite these limitations, our analyses support that ovarian tumor progression causes
observable changes in the blood TCR repertoire, which are stronger at early stage when
HGOC is immunogenic and more likely to be curable. It further suggests that studies in higher
stage tumors, where immunosuppression is more common, may not be warranted. In addition,
our study demonstrates the value of using prospectively collected samples in identifying new
biomarkers through quantification of these changes in RFUs, which may lead to practical
solutions for immune-based ovarian cancer early detection.
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Methods

Description of TCR repertoire samples and preprocessing

All TCR repertoire sequencing samples that were not produced from this study were accessed
from the immuneAccess database managed by Adaptive Biotechnology. These samples were
profiled using the immunoSEQ platform developed by the company. Zip files were directly
downloaded through the ‘Export’ function and selecting ‘v2’. Accession numbers for each
cohort are available in Table S1. For each repertoire sample, sequences with missing variable
genes or nonproductive CDRS3 regions were removed. The top 10,000 TCRs with most
abundant clonality were selected for RFU calculation. These preprocessing criteria were
applied to all the TCR-seq samples throughout this study.

Ovarian cancer patient cohorts and Nurses’ Health Study samples

Women present with ovarian tumors were consented at Parkland Hospital at UT Southwestern
Medical Center (UTSW) between 2019-2022. No stage-l HGOC patients were collected during
this period. Blood samples were collected prior to surgeries and stored in EDTA tubes in -80
degree freezer. Tumor histology, including benign or malignant, was available after
pathological verification. Sample collection was approved by the Institutional Review Boards
(IRB) with protocol number STU-2020-442. All samples collected at UTSW were used as the
discovery cohort. Buffy coat samples of patients in the validation cohort were purchased from
Accio Biobank Online in 2021.

Additional samples were obtained from the Nurses’ Health Studies (NHS/NHSII), two large
prospective cohorts starting in 1976 (NHS) and 1989 (NHSII), with over 238,000 women.
Between 1989 and 1990, 32,826 NHS participants donated self-collected blood samples,
which were shipped on ice via courier where and processed into plasma, red blood cell, and
white blood cell components; a second collection in 2000-2002 from over 19,000 of these
women used similar protocols. Similarly, between 1996 and 1999, 29,611 NHSII participants
donated blood samples; a second collection occurred from 2011-2014. Cases of ovarian
cancer were identified via self-report on biennial questionnaires, report of family members, or
via the National Death Index. Medical records or reports from cancer registries were used to
confirm the diagnosis. Cases were matched to controls were were alive and had at least one
ovary at the time of the case diagnosis and matched on age, menopausal status, date and
time of blood collection, fasting status, and hormone therapy use. For this analysis, we
assayed both the first and second blood draw samples from cases that were diagnosed within
5 years after the second blood draw and their matched controls. De-identified patient
information, including age at blood draws, age at diagnosis, tubal ligation status, parity,
menopausal status, and other ovarian cancer risk factors were provided for the analysis.

Genomic DNA isolation and TCR repertoire sequencing

Genomic DNA was isolated from 200 ul whole blood (from UTSW) or 10 ul buffy coat (from
Accio Biobank or NHS) using the DNeasy Blood and Tissue Kit (Cat# 69504, Qiagen) following
the manufacturer’s guidelines. gDNA concentration was measured using a NanoDrop 2000
Spectrophotometer (Thermo Fisher Scientific). The purity of gDNA was determined by
measuring the 260-280 nm absorbance ratio. Optimal purity was expected to be in the range of
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1.7-2.0. The integrity of the gDNA samples was assessed for evidence of degradation using
agarose gel electrophoresis. Appropriate quality gDNA was expected to migrate predominantly
above 10 kb on agarose gels. All samples passed DNA purity and integrity quality controls.
Twenty samples of gDNA were sent to Adaptive Biotechnology for targeted TCR 8 chain
repertoire sequencing using immunoSEQ at survey sequencing depth. Raw TCR reads were
processed with immunoSEQ Analyzer for CDR3 assembly, variable/joining gene calling, and
clonal frequency estimations.

Repertoire Functional Unit method description

i) TCR embedding

We applied GIANA™® to perform clustering of over 20 million TCRs using both the CDR3
sequences and variable gene alleles obtained from public domain (Figure 1b). These samples
covered a wide spectrum of disease context, including healthy individuals and patients with
cancer, autoimmune disorders as well as viral infections (Table S1). Previous work, including
ours, have demonstrated that TCRs clustered using such strategy are highly specific (295%) to
the same antigen epitopes?'-23, with smaller (n<5) clusters being more likely to share antigen-
specificity'°.

From GIANA output, we identified a total of 821K such clusters. An example of a typical cluster
of two sequences, CSARQGARTYEQYF and CSARQGAY TYEQYF, bear a mismatch R/Y in
position 8 (Figure 1c¢). We considered the amino acids flanking this mismatch and extracted
the trimer sequences from both TCRs. As the two TCRs likely share antigen-specificity, the
two trimers, ART and AYT, are thus considered ‘replaceable’ in the context of antigen
recognition. We then traversed all 821K clusters and built the 8,000-by-8,000 trimer-
substitution matrix (TSM) by calculating the number of replacements of each trimer pairs
(Figure 1d). We calculated the Spearman’s correlation matrix using TSM and converted it into
a Euclidean distance matrix (EDM). Next, similar as in GIANA, we obtained the isometric
embedding vector for each of the trimers using multi-dimensional scaling based on the EDM.
This approach allowed us to use a numeric vector to represent each trimer, with similar trimers
located closely in the Euclidean space (Figure 1e). The embedding of each CDR3 sequence is
then calculated as the average of all the vectors from consecutive trimers (Figure 1f). This
embedding is a continuous representation of TCR similarity.

ii) Benchmark using antigen-specific TCRs

We benchmarked the trimer-based embedding using 1,031 TCR sequences with known
antigen-specificity to 9 epitopes (Table S2). This dataset has been used in our previous work
to benchmark the specificity of TCR clustering?®. To avoid bias towards epitope(s) with
excessive amount of TCRs, we restricted the antigens with <170 TCRs. Coordinates were
calculated for each CDR3 sequence. For each pair of TCRs, we calculated the Euclidean
distance as the predictor, with the response being if or not the two TCRs share the same
antigen. From the total of half million comparisons, we excluded pairs with distances >0.025,
based on the fact that trimer-based embedding is only powerful to identify shared antigen
specificity among TCRs with similar sequences. ROC curve was generated with the above
predictor and response variables, with AUC calculated using the curve.

iii) Definition of Repertoire Functional Units (RFU)
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We pooled 1.2 million TCRs from 120 healthy donors from a previous study?%, and projected
them onto the Euclidean space with trimer-based embedding. We divided the TCR sequences
in this space into 5,000 groups with the k-means method. We referred the centroid of each
group as a ‘Repertoire Functional Unit’, or RFU. To calculate the RFU vector of a new TCR
repertoire sample, we first select the top 10,000 most abundant TCRs based on clonal
frequencies. For each TCR, we calculate the embedding vector and assign it to the closest
centroid from 5,000 RFUs. The value of each RFU is determined by the number of TCRs
assigned to its centroid. We chose 5,000 as the group number so that the expected count for
each RFU is 2.

Statistical Analysis

Computational and statistical analyses in this work were performed using the R programming
language v4.3.0. Logistic regression adjusted for patient age and race (Figure 2) was
implemented using the g/m function. FDR control was using the Benjamini-Hochberg method.
Sequence logos were generated using package ggseglogo (v0.1), by performing multiple
sequence alignment (msa, v1.32.0) using CDR3s with length 16. Donut plot (Figure 3) was
generated using package webr (v0.1.5). ROC curves with 95 confidence intervals and AUC
values were generated using package pROC (v1.18.2). Neighbor joining trees were calculated
and visualized using R package ape (v5.7-1). Subpanels of main figures were produced using
ggplot2 (v3.4.2). Permutation test in Figure 4d was performed as follows: with the goal of
testing how significant the peak-like dynamics of prediagnostic curve, we randomly permuted
the RFU scores for 1,000 times and recalculated the Loess smooth curve with default
parameters (R function loess). For each permutation, we calculated the range of the curve
(max - min), denoted as D.. The range of the unshuffled curve is denoted as Do. p value was
estimated as the number of permutations with Dr greater than Do divided by 1,000.
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Figure Legends:

Figure 1. Trimer-guided embedding for TCRs and derivation of Repertoire Functional
Units (RFU). a) Method workflow. The first 3 steps describe the trimer-embedding Euclidean
space and last two steps describe how RFUs are defined. b) Massive clustering of TCRs from
patients with diverse health conditions based on CDR3 amino acid sequence similarity. c)
lllustration of replaceable trimers from small TCR clusters. d) lllustration of the trimer
substitution matrix with each number represent the times a row trimer is replaced by the
column trimer in a TCR cluster. e) Derivation of approximately isometric embedding for each
trimer based on multidimensional scaling from the trimer substitution matrix in d). f)
Representation of each CDR3 sequence in the high-dimensional Euclidean space by
averaging all the consecutive trimers. g) RFU definition by pooling 1.2 million TCRs from 120
individuals shown as t-SNE plot. Colors denote distinct clusters with cluster centroids assigned
by k-means.

Figure 2. Characterization of TCR repertoire landscape in ovarian cancer patients. a)
Heatmap showing the distribution of the top 1,500 most variable RFUs of high-grade, low-
grade and benign patients. b) Distribution of ovarian cancer and benign patients on the PCA
plot calculated from the RFU-by-patient matrix. ¢) Violin plot showing the differences of PC1
across disease categories. Statistical significance was evaluated using one-way ANOVA. d)
Distribution of patient races on the PCA plot. e) Violin plot showing the differences of PC2
across patient races. Statistical significance was evaluated using one-way ANOVA. f) Volcano
plot showing the log odds ratio vs FDR adjusted by Benjamini-Hochberg method. Odds ratio is
estimated from logistic regression with disease status as a binary outcome, with each RFU
being the covariate and adjusted for age and race. Blue: downregulated; Red: upregulated. g)
Sequence logo analysis of selected top up-/down- regulated RFUs.

Figure 3. Selected RFUs as biomarker to distinguish HGOCs from benign ovarian
lesions. a) Selection criteria for the top informative RFUs. Odds ratios and ratio of medians
were described in Results. Blue color indicates ratio median <0.7 or >1.3. b) Boxplot showing
the distributions of selected RFUs across multiple cancer types. All analysis was performed
using blood TCR repertoire samples from the public domain. ¢c-d) ROC curves showing the
prediction accuracy of up- or down- regulated RFUs to predict HGOCs from benign patients. e)
Combination of up- and down- regulated RFUs as a joint biomarker, OV RFU score. Statistical
significance was evaluated using two-sided Wilcoxon test. g) Donut plot showing the sample
composition in the validation cohort, with total N=97. h) Performance of OV RFU score in the
validation cohort. i) Violin plot showing the distributions of OV RFU scores across benign,
stage-l HGOC and advanced HGOCs. Statistical significance was evaluated using Wilcoxon
test. j) ROC curve for OV RFU score as a predictive biomarker for stage-I HGOC vs benign
patients.

Figure 4. Dynamic changes of blood TCR repertoire prior to conventional ovarian
cancer diagnosis. a) Diagram illustration of blood samples collected at first and second time
point for both cancer and control subjects. b) PCA analysis of samples at first or second blood
draws. c) Violin plot showing the distribution of PC1 or PC2 scores across putative ovarian risk
factors. Statistical significance was evaluated using two-sided Wilcoxon test. d) Scatter plot
showing the prediagnostic dynamics of OV RFU scores up to 5 years before conventional
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diagnosis. Loess smooth line was performed using only HGOC samples. Statistical
significance was evaluated using permutation test. e) Boxplot showing the distributions of OV
RFU scores in healthy controls and prediagnostic patients. Statistical significance was
evaluated using two-sided Wilcoxon test. f) Paired boxplots showing the increments of OV
RFU scores (2" timepoint — 15t timepoint) in both patient and control samples. Statistical
significance was evaluated using paired two-sample Wilcoxon test. g) Scatter plot showing the
prediagnostic dynamics of incremental OV RFU scores. h-i) Prediction accuracy of OV RFU
scores or increment scores for prediagnostic HGOC patients against healthy controls
illustrated by ROC curves.

Supplementary Figure Legends:

Figure S1. Benchmark of trimer-based embedding and repertoire functional units. a)
Boxplot showing the distributions of Euclidean distances between a pair of TCRs with known
antigen specificities in the benchmark dataset. b) Prediction accuracy of Euclidean distance on
if or not the pair of TCRs sharing specificity by ROC curve. c) 2-D density plot showing TCR
distributions in a healthy control and a Hodgkin lymphoma patient. d) Density difference from
c) showing the enriched or depleted regions in the TCR embedding space. Selected TCR
motifs were associated with these regions. e) Same t-SNE plot as in Figure 1g, except colored
by different individuals. f) Distribution of Euclidean distance between any TCR to its assigned
k-means cluster centroid. 90% specificity cutoff was determined by the ROC curve in b).

Figure S2. Additional analysis related to ovarian cancer samples collected in the
discovery cohort. a-b) Ordered Spearman’s correlations of age and each of the 5,000 RFUs
with dashed red lines marking FDR<0.01. c) Scatter plot showing the relationships of age
associations for each RFU between the two large healthy donor cohorts in a-b). d) Volcano
plots showing the output of the same analysis as in Figure 2f for the other disease categories
in the discovery cohort.

Figure S3. Distribution of selected RFUs across age or in the TCR repertoires of
multiple cancers. a) Age association of selected RFUs in Figure 3a. Loess smooth curve was
shown as red line in each panel. Spearman’s correlation test was used to evaluate statistical
significance and FDR was adjusted using the Bejamini-Hochberg method across all 5,000
RFUs. b) Same analysis as in Figure 3b showing the distributions of the upregulated RFUs in
the top list.

Figure S4. Neighbor-joining tree of TCR repertoire samples from NHS cohort. Distance
matrix was calculated as squared root of 1- Spearman’s correlation for the patient (left) and
donor (right) samples separately. Neighbor joining trees were generated using the distance
matrices. The second timepoints were marked with 2’ at the end of the label.

Supplementary Table Legends:

Table S1. TCR repertoire sample cohorts used to generate the clusters for trimer substitution
matrix.

Table S2. Benchmark data set of TCR sequences with known antigen epitopes.

Table S3. Summary of ovarian cancer samples collected in the discovery and validation
cohorts.
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Table S4. Demographic information of samples in the NHS cohort with RFU scores included.
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Figure 1: Trimer-guided embedding for TCRs and derivation of Repertoire Functional Units (RFU).
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Figure 2: Characterization of the TCR repertoire landscape in ovarian cancer patients.

a b d
§ Te Benign * :\; e Asian *
™ Q¢ LowGrade’ o s ™~ g eBlack ° o ]
~— ® N L
_N_, ° H|gh:3rip; ooty %@. ‘N-‘ e Whlte. ’; '"“ o X
c ° . c
2ol A0, 2ol o dnden
AN ¢ - N A IS o )
Sl ™ISAREs TI8e] iR sl U
© w ¢ % o2 e :‘ . © = P .’ . . : "‘ °
=% 8 O°TSOP e, o @ e o 0P o, o ‘
(5] 7 LR & é* S - e o . P
< o LT ° e £ o % . e
o @ - e e © a @ ° ce ©
T T T T T T T T T T T
60 40 -20 0 20 40 60 -40 -20 0 20 40
c Principal Component 1 (3.9%) ® Principal Component 1 (3.9%)
£ oo
’ 8 p=0.00028 g | —3.3x107
- 8 N ]
"9 4 6
g: ]
© a>°' S & & v;\\‘
& & o ) 8
f High Grade vs Benign
T =8
= -4135 -2936 - -
— n £ 075 (227) ([T RE:
| E 69 @ ) L) )
K] i -2671 5
014091625 =% GE) 1071
°
J§ 0.254
Il High Grade g
< 0.00+
[ Low Grade 10 05 10
[ Benign o ’
.Downregulated RFU 2856
CA gsNGY IF CAS TOTQYF
0] ulated
W RFGs \ .E%_Gfszq* $§ PLiges

23456 7 8 9 10111213141516 1234567 8 9 10111213141516

Ao ICYTF Chct,....cn NEQFF

23456 8 910111213141516 123 456 7 8 910111213141516

(A oo pNSPLHF CASS-uas.cDTOF

1234567 8910111213141516 1 2 3 4 56 7 8 910111213141516



https://doi.org/10.1101/2023.10.12.562056
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.12.562056; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3: Selected RFU markers are predictive of high-grade ovarian cancer.
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Figure 4: Dynamic changes of blood TCR repertoire prior to conventional ovarian cancer diagnosis.
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Figure S1. Benchmark of trimer-based embedding and repertoire functional units.
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Figure S2. Additional analysis related to ovarian cancer samples collected in the discovery cohort.
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Figure S3: Distribution of selected RFUs across age or in the TCR repertoires of multiple cancers.
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Figure S4. Neighbor-joining tree of TCR repertoire samples from NHS cohort.
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