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Abstract 
High grade serous ovarian cancer (HGOC) is a major cause of death in women. Early 
detection of HGOC usually leads to a cure, yet it remains a clinical challenge with over 90% 
HGOCs diagnosed at advanced stages. This is mainly because conventional biomarkers are 
not sensitive to detect the microscopic yet metastatic early HGOC lesions. In this study, we 
sequenced the blood T cell receptor (TCR) repertoires of 466 ovarian cancer patients and 
controls, and systematically investigated the immune repertoire signatures in HGOCs. We 
observed quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple 
independent cohorts. Importantly, these changes are stronger during stage I. Using pre-
diagnostic patient blood samples from the Nurses9 Health Study, we confirmed that HGOC 
signals can be detected in the blood TCR repertoire up to 4 years proceeding conventional 
diagnosis. Our findings may provide the basis of an immune-based HGOC early detection 
criterion.  
 
 
 
Statement of significance 
We made an unprecedented discovery that a strong and quantifiable change in the blood TCR 
repertoire occurs 4 to 2 years before high grade ovarian cancers could be diagnosed with 
conventional clinical tests. This finding might be useful to develop novel screening biomarkers 
to detect early-stage ovarian cancers.  
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Introduction 
 
Ovarian cancer accounts for 2.5% of all malignancies seen in women1, while causing 5% of 
cancer-related deaths2. High-grade serous ovarian carcinoma (HGOC), which comprise over 
70% of incident ovarian tumors1, contributes to the high mortality burden of this disease, 
whereas low-grade ovarian tumors are much less lethal3. Stage I high grade serous 
carcinomas are confined within ovaries or fallopian tubes, and are largely curable with 
complete surgical resection and chemotherapy (93% 5-year relative survival)4. In contrast, 
HGOCs diagnosed at advanced stages have a 5-year survival of 31%4. HGOCs are believed 
to arise from a range of epithelial changes with p53 mutations, serous tubal intraepithelial 
carcinoma (STIC) in the fallopian tube and atypical lesions inbetween p53 mutations and 
STIC5. The current paradigms of serous carcinogenesis include a precursor lesion (STIC) with 
gradual progression to cancer and precursor metastasis into the peritoneal cavity6,7. All 
paradigms allude detection or prevention by conventional methods and consequently, HGOCs 
are rarely found at stage I, with over 87% cases diagnosed at stage III or IV1.  
 
Given the apparent clinical benefit of detecting ovarian cancer early, noninvasive assays have 
been evaluated in large-scale, prospective screening trials, largely focusing on serum CA-125 
levels8 and its changes over time9, serum human epididymis protein 4 (HE-4)10,11 and 
transvaginal ultrasound12. However, a recent longitudinal trial of over 200,000 subjects 
followed for more than 18 years showed no mortality benefit for HGOC among women 
routinely tested by one or a combination of these assays13. Studies have demonstrated that 
most conventional biomarkers have limited predictive ability until 6-12 months before 
diagnosis14, possibly because HGOC primarily comprises of microscopic lesions until very late 
in its progression. As such, blood biomarkers or tumor imaging may not be sensitive to detect 
the early-stage ovarian tumors.  
 
Previously, we showed that early-stage cancers induce observable changes in the blood T cell 
receptor (TCR) repertoire, providing an alternative for noninvasive cancer diagnosis15. 
Although it remains unclear what causes these conservative changes in the TCR repertoires of 
patients with diverse genetic backgrounds, the concept of immunoediting16,17 may explain why 
signals can be seen at early stages. Specifically, during the 8Elimination9 phase, exposure to 
early tumor antigens could result in a rapid expansion of cancer-associated T cells18, leading to 
detectable signals in the TCR repertoire in circulating white blood cells. Here, we first 
developed a new method to quantitatively dissect the TCR repertoire data into quantifiable 
functional units. We then collected preoperative blood samples from patients with ovarian 
tumors to identify TCR biomarkers that are enriched in the HGOC patients compared to 
women with benign ovarian tumors. Finally, we measured TCRs in pre-diagnostic blood 
specimens from patients diagnosed with ovarian cancer within 5 year after blood draw using 
samples from a large longitudinal cohort study and matched controls. Our analysis revealed 
transient but significant TCR repertoire changes that occurred up to 4 years prior to 
conventional ovarian cancer diagnosis.  
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Results 
 
Trimer embedding of T cell receptors and RFU definition 
We first obtained a numeric embedding of the CDR3β region that preserved sequence 
similarity (Figure 1a). In brief, approximately 20 million TCRs from the public domain (Table 
S1) were clustered based on the variable gene (TRBV) and CDR3β sequences (Figure 1b) by 
GIANA19 to construct a trimer substitution matrix (Figure 1c-d). Approximated isometric 
embedding of each trimer was obtained using multidimensional scaling (Figure 1e) and the 
final embedding vector for each CDR3β was calculated by mean pooling of all consecutive 
trimers in the amino acid sequence. We benchmarked this embedding using 1,031 TCRs with 
known specificity to 10 common immunogenic epitopes20 (Table S2). Specifically, we obtained 
the numeric embedding of each TCR and calculated the Euclidean distances for each pair of 
TCRs. This distance was used to predict if the pair of TCRs were specific to the same antigen, 
and reached an Area under the Receiver Operative Characteristic curve (AUC) of 0.64 (Figure 
S1a-b). At a high specificity of 0.95, this method reached a sensitivity of 0.22, comparable to 
the state-of-art methods based on TCR similarity19,21-23. This result indicated that trimer 
embedding method preserves the 8local specificity9 of TCRs, i.e. if the distance of two TCRs 
continuously decreases to 0, the probability that they share antigen-specificity will approach to 
1. This property is guarded by the fact that TCR sequence similarity can be used as a 
surrogate for antigen specificity21.  
 
With this property, we defined the 8neighborhood9 in the TCR space, as local TCR clusters that 
likely recognize the same antigens. Such neighborhoods may carry disease-specific 
information. For example, a simple comparison between a B cell lymphoma sample and 
healthy control24 revealed several TCR neighborhoods enriched or depleted in the lymphoma 
patient, each characterized by conserved CDR3 motifs (Figure S1c-d). Systematic 
investigation by pooling over 1 million TCRs from 120 healthy donors25 revealed conservative 
TCR clusters seen in multiple individuals (Figure S1e). We thus divided the TCR space into 
5,000 groups (Figure 1g), with over 84% of TCRs within 0.018 distance to the centroid, which 
is the cutoff of 90% specificity in the benchmark (Figure S1f). The group centroid was defined 
as a 8Repertoire Functional Unit9, or RFU, which can be viewed as the 8gene9 of a repertoire in 
the sense of antigen recognition. This definition allowed us to transform each TCR repertoire 
sample into a fixed-length numeric vector, i.e. the normalized TCR count of each RFU.  
 
TCR repertoire landscape in high-grade ovarian cancer patients 
We prospectively collected a discovery cohort of preoperative PBMC samples from 213 
women, including 67 patients with high-grade serous, 49 with low-grade carcinomas (can we 
say other histologies?) and 97 with benign ovarian tumors. TCR repertoire sequencing data 
was obtained for each sample. Despite attempt to frequency match on age, cancer patients 
were significantly older than benign controls (Table S3). Therefore, we first investigated the 
impact of age over RFUs in the healthy individuals using publicly available TCR-seq cohorts. 
We first analyzed the Emerson et al. cohort25, which contained blood TCR repertoires of 666 
healthy donors collected before 2017. Our analysis revealed that a subset of RFUs showed 
strong negative correlation with age (Figure S2a), which was further confirmed using another 
cohort26 (Figure S2b). The second cohort was comprised of 1,414 COVID-19+ individuals 
collected in 2020, which were also considered as healthy controls. Importantly, the RFUs with 
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strong age associations in both cohorts were highly reproducible (Figure S2c). These results 
suggested that age-associated RFUs are conserved in the general population, providing the 
rationale to exclude age as a confounder in our downstream analysis.  
 
We then visualized the TCR repertoires of all 213 individuals using the top 1,500 most variable 
RFUs (ranked by standard deviation). Unsupervised hierarchical clustering revealed a 
distinguishable separation between HGOCs and benign samples (Figure 2a), suggesting 
global difference in the immune repertoire between these two conditions. Principal component 
analysis (PCA) of the RFU matrix confirmed that PC1 is driven by disease categories (Figure 
2b-c). In contrast, PC2 is mainly influenced by race, with African American patients showing 
the largest separation from Asian patients (Figure 2d-e). To systematically investigate the 
differences of TCR repertoire between HGOC and benign patients, we performed logistic 
regression adjusted for patient age and race for all 1,500 RFUs and observed significant 
results at FDR>0.2 (Figure 2f). In contrast, comparison between HGOC vs low-grade and low-
grade vs benign yielded no significant RFUs, potentially due to limited sample size (Figure 
S2d). Next, we visualized the CDR3 motifs of the top up-/down- regulated ones in HGOC 
patients (Figure 2g). We noted a conservative <RLAG= pattern at the 6-9th positions of RFU 
1804. CDR3s with this pattern, combined with the use of joining gene TRBJ2-3*01 (DTQYF) 
have been reported to recognize the ELAGIGLTV epitope from melanoma antigen MART-127, 
which is reportedly expressed in ovarian neoplasms28.  
 
RFU as a risk marker for HGOC 
The above results indicated that selected RFUs are significantly altered in the blood repertoire 
of HGOCs compared to benign controls. We therefore proceeded to select a subset of RFUs to 
evaluate the risk of HGOC. First, we observed that although some RFUs reached high odds 
ratios in the logistic regression, there was no difference in the median levels of these RFUs 
between HGOC and benign patients (Figure 3a), suggesting the influence of outliers. After 
removal of such RFUs, we then defined the top 2 up- and down- regulated RFUs based on 
odds ratios, which included RFUs 750, 866, 3808 and 1804. Since none of these RFUs were 
age-related, we no longer considered age as a confounder in the following analysis (Figure 
S3a). We performed a survey of these RFUs across a wide spectrum of human cancers using 
blood repertoire samples (Table S1). Interestingly, in addition to HGOC, RFU 750 was also 
downregulated in melanoma and kidney cancer, where RFU 866 was only downregulated in 
HGOCs (Figure 3b). On the other hand, RFU 1804 is also upregulated in lung cancer, while 
RFU 3808 was higher in head and neck cancer (Figure S3b). Notably, for all four RFUs, 
healthy control samples from both children and adult cohorts had similar distributions as 
benign patients.  
 
We proceeded to test the performance of the 4 RFUs as a potential risk predictor for HGOC 
against benign ovarian tumors. We directly used the sum of downregulated RFUs (750 and 
866) or upregulated RFUs (3808 and 1804) as predictors, and observed moderate predictive 
accuracy with an AUC slightly above 0.7. (Figure 3c-d). We combined the signals by using the 
up- subtracted by the down- regulated RFU sums, as <OV RFU score=. As expected, this score 
is significantly higher in the HGOC versus benign group (Figure 3e), with an improved AUC of 
0.77 (Figure 3f).  
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To evaluate the reproducibility of this RFU score, we collected a validation cohort, which 
included 33 HGOC and 64 benign patients (Figure 3g, Table S3). All blood samples were 
collected before surgery for TCR-seq data generation. OV RFU score was able to separate 
HGOC from benign patients, but the predictive capacity was lower, with an AUC=0.66 (Figure 
3h). However, unlike the discovery cohort, the validation cohort included 5 stage I HGOC 
patient samples (Table S3). We investigated the distributions of RFU scores within stage-I 
tumors and observed significantly higher scores than controls (Figure 3i). As a predictor, RFU 
score reached an AUC of 0.81 for stage-I HGOC vs control (Figure 3j). Interestingly, the 
scores of late stage HGOCs were lower than stage-I tumors, although statistical significance 
was not reached due to small sample size. These results indicated that the adaptive immune 
response may undergo nonlinear dynamic changes that peaks during the early progression of 
ovarian malignancies.  
 
Transient TCR repertoire changes in pre-diagnosis samples from ovarian cancer 
patients 
The above findings hold promise in early ovarian cancer detection, yet further evaluation using 
more HGOC samples is challenging due to the rarity of stage I patients at diagnosis. To 
address this issue, we utilized blood samples collected from the Nurses9 Health Studies 
(NHS/NHSII). These studies, with over 280,000 participants, have collected blood samples 
from over 60,000 women primarily in the 19909s and early 20009s and followed women for 
diagnosis of ovarian cancer within 5 years after blood draw29. A subset of over 34,000 women 
gave two blood draws approximately 10-15 years apart. Among them, we identified 40 ovarian 
cancer patients (33 HGOCs) with two blood draws before diagnosis, one remote (g10 years) 
and one recent (f5 years). We also assayed 38 healthy controls matched on age at first and 
second blood draws (Figure 4a). All 156 NHS samples were sequenced for their TCR 
repertoires using the same commercial platform as the discovery and validation cohorts. We 
confirmed that within-individual dynamics is smaller than cross-individual variation30, with the 
2nd blood draw mostly similar to the 1st draw from the same person (Figure S4). Given the 
higher RFU scores observed in stage I HGOCs (Figure 3i), we hypothesized that a transient 
change may occur in the adaptive immune repertoire within 5 years prior to the conventional 
diagnosis, when the tumor is still at an early stage.  
 
First, PCA plot of all samples at the first blood draw revealed no difference between cancer 
patients (10-15 years before diagnosis) and healthy control. At the second blood draw, there is 
a slight yet non-significant difference at PC2 (Figure 4b), suggesting that the cancer-induced 
changes were subtle, and may not drive the global alterations in the TCR repertoire. We next 
examined the impacts of known ovarian cancer risk factors31,32 on the immune repertoire. 
There was no difference between cancer patients and controls for menopausal status, tubal 
ligation, parity, or mycoplasma infection (Figure 4c). To avoid potential confounding effects, we 
removed all subjects with a family history of ovarian cancer in the downstream analysis.   
 
We then proceeded to investigate the dynamics of OV RFU scores in the pre-diagnostic 
samples. RFU scores using the 4 RFUs described above were directly calculated for the 37 
passed-filter ovarian cancer patients at the second timepoint. Interestingly, RFU scores 
displayed a significantly nonrandom dynamic curve prior to diagnosis (-5 to 0 years) that 
matched our expectation (Figure 4d). Specifically, the score rapidly increased -5 to -4 years, 
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peaked around -3 years before slowly decreasing until the time of diagnosis. We dissected this 
period into three intervals based on the shape of the curve: uphill (-5 to -4), peak (-4 to -2) and 
downhill (-2 to 0). Direct comparison of the RFU scores of each group with the scores of 
healthy controls revealing that the peak group was significantly higher than both timepoints of 
the control cohort (Figure 4e).  
 
Sampling two timepoints for both cancer and control cohorts allowed us to track the TCR 
repertoire changes over time. The RFU scores of patients within -4 to -2 years window showed 
significant increases when compared to their matched first timepoint, where the RFU scores of 
healthy individuals remained stable (Figure 4f). The increment of RFU scores between the two 
timepoints (Δ) displayed a nonlinear trend (Figure 4g). These results strongly supported our 
hypothesis that transient, but strong immune changes occurred during the early development 
of ovarian cancer. We therefore evaluated OV RFU score as a potential biomarker to detect 
ovarian cancer prior to its conventional diagnosis. If the disease is tracked within the -4 to -2 
year window, the RFU score would reach an AUC of 0.73, with 33% sensitivity at 95% 
specificity (Figure 4h). The increment between timepoints (Δ) performed worse (Figure 4i). 
This is potentially because the random fluctuations in the TCR repertoire over 10 years 
reduced the signal/noise ratio.  
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Discussion 
 
In this work, we analyzed a total of 466 blood TCR-seq samples from ovarian cancer patients 
and healthy/benign controls. The computational analysis is based on a novel TCR embedding 
method specifically designed to quantify TCR repertoires. The RFU markers predicted in the 
discovery cohort were independently validated in two uniformly generated sample cohorts with 
age matched controls, thus avoiding potential batch effects or data leakage. 
 
Mathematical models imply that TP53 mutations occurs several decades prior and precursor 
lesion STIC develops approximately 6 years prior to HGOC. Importantly, only a small fraction 
of  individuals with TP53 mutations will develop HGOC and not all STIC progress to cancer. 
(Emerging evidence indicates that serous tubal intra-epithelial carcinoma (STIC), a putative 
precursor of HGOC, develops ~7-12 years prior to diagnosis)33. Accordingly, the 1st blood draw 
(>10 years) from the NHS cohort behaved similarly to the healthy controls (Figure 4b), while 
the 2nd (<5 years) exhibited significant dynamic changes that strikingly coincides with the 
immunoediting process17. Specifically, during tumor initiation, the immune system functions 
well by priming T cells with tumor antigens, resulting in a rapid expansion of the tumor-reactive 
T cells in the lymphatic system, thus creating the 8uphill9 part of the curve. Once the tumor cells 
reach equilibrium with the immune system, or the antigens have been sufficiently exposed to 
the T cells, a peak in the curve is anticipated. Finally, with tumor progression, 
immunosuppression becomes more dominant. T cell expansion slows down or stops with 
immune exhaustion34, potentially leading to a graduate decrease of tumor-reactive T cells in 
the blood. Despite these matched dynamics, it requires more clinical data to validate the pre-
diagnostic behavior of the immune repertoire in ovarian cancer patients in larger sample 
cohorts and more diverse populations.  
 
In this work, we selected four RFUs to construct the OV RFU score. It is unlikely that these 
RFUs encompassed all the TCRs informative to HGOCs. The number of markers discovered 
in this study was limited by the small number of HGOC samples, particularly early stage 
tumors. Further, all the HGOC patients in the discovery cohort were diagnosed at advanced 
stage, which, according to our observations above, may have yielded dampened immune 
response that might reduce statistical power. Although rare, a larger number of stage I HGOC 
samples with age-matched benign controls from future clinical studies will be ideal to uncover 
more informative RFUs and to improve the predictive accuracy. In addition, combining pre-
diagnostic blood samples from multiple large prospective cohort studies could also increase 
power to identify novel early detection markers35. 
 
We anticipate that 5,000 TCR clusters or RFUs do not completely cover the diversity of the 
immune repertoire. The TCRs captured and analyzed in this work are enriched for those with 
shared motifs across multiple individuals. Further, since the RFUs were defined using healthy 
donors, it is possible that disease-specific TCRs are underrepresented. TCR cluster analysis 
could be conducted on cancer patients to potentially identify RFUs that are specific to tumor 
antigens. Regarding ovarian cancer detection, with sufficiently more samples, RFUs can be 
redefined using HGOC patients, or even from ovarian tumor infiltrating T cells. HGOC-defined 
RFUs might further increase the prediction power when applied to prospectively collected 
patient cohorts.  
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Our study revealed interesting findings in the TCR repertoire of early-stage HGOCs, yet this 
work remains exploratory in nature. First, although the pre-diagnostic curve of RFU scores 
matched our findings in the validation cohort of cases and benign controls, there is no 
definitive evidence to support that women with samples collected at the 8peak9 phase had bona 
fide stage I HGOCs. Next, our analysis was performed at the RFU level, where the antigen-
specificity of individual TCRs was not investigated. This is mainly due to the lack of established 
T cell antigens from early-stage HGOCs, which can be improved with future immunogenomic 
research on ovarian cancers. Finally, as a screening biomarker, the sensitivity and specificity 
of the RFU score are far lower than what would be required to reach 10% positive predictive 
value8. As a diagnostic tool, it is less accurate than the established indices, such as ROMA36 
or RMI37. As discussed above, this limitation might be addressed by including more TCR-seq 
samples. Due to the rarity of stage I HGOCs, future emphasis could be given to large clinical 
networks to recruit such patients or that have biobanked such samples38.  
 
Despite these limitations, our analyses support that ovarian tumor progression causes 
observable changes in the blood TCR repertoire, which are stronger at early stage when 
HGOC is immunogenic and more likely to be curable. It further suggests that studies in higher 
stage tumors, where immunosuppression is more common, may not be warranted. In addition, 
our study demonstrates the value of using prospectively collected samples in identifying new 
biomarkers through quantification of these changes in RFUs, which may lead to practical 
solutions for immune-based ovarian cancer early detection. 
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Methods 
 
Description of TCR repertoire samples and preprocessing 
All TCR repertoire sequencing samples that were not produced from this study were accessed 
from the immuneAccess database managed by Adaptive Biotechnology. These samples were 
profiled using the immunoSEQ platform developed by the company. Zip files were directly 
downloaded through the 8Export9 function and selecting 8v29. Accession numbers for each 
cohort are available in Table S1.  For each repertoire sample, sequences with missing variable 
genes or nonproductive CDR3 regions were removed. The top 10,000 TCRs with most 
abundant clonality were selected for RFU calculation. These preprocessing criteria were 
applied to all the TCR-seq samples throughout this study.  
 
Ovarian cancer patient cohorts and Nurses’ Health Study samples 
Women present with ovarian tumors were consented at Parkland Hospital at UT Southwestern 
Medical Center (UTSW) between 2019-2022. No stage-I HGOC patients were collected during 
this period. Blood samples were collected prior to surgeries and stored in EDTA tubes in -80 
degree freezer. Tumor histology, including benign or malignant, was available after 
pathological verification. Sample collection was approved by the Institutional Review Boards 
(IRB) with protocol number STU-2020-442. All samples collected at UTSW were used as the 
discovery cohort. Buffy coat samples of patients in the validation cohort were purchased from 
Accio Biobank Online in 2021.  
 
Additional samples were obtained from the Nurses9 Health Studies (NHS/NHSII), two large 
prospective cohorts starting in 1976 (NHS) and 1989 (NHSII), with over 238,000 women. 
Between 1989 and 1990, 32,826 NHS participants donated self-collected blood samples, 
which were shipped on ice via courier where and processed into plasma, red blood cell, and 
white blood cell components; a second collection in 2000-2002 from over 19,000 of these 
women used similar protocols. Similarly, between 1996 and 1999, 29,611 NHSII participants 
donated blood samples; a second collection occurred from 2011-2014. Cases of ovarian 
cancer were identified via self-report on biennial questionnaires, report of family members, or 
via the National Death Index. Medical records or reports from cancer registries were used to 
confirm the diagnosis. Cases were matched to controls were were alive and had at least one 
ovary at the time of the case diagnosis and matched on age, menopausal status, date and 
time of blood collection, fasting status, and hormone therapy use. For this analysis, we 
assayed both the first and second blood draw samples from cases that were diagnosed within 
5 years after the second blood draw and their matched controls. De-identified patient 
information, including age at blood draws, age at diagnosis, tubal ligation status, parity, 
menopausal status, and other ovarian cancer risk factors were provided for the analysis.  
 
 
Genomic DNA isolation and TCR repertoire sequencing 
Genomic DNA was isolated from 200 μl whole blood (from UTSW) or 10 ul buffy coat (from 
Accio Biobank or NHS) using the DNeasy Blood and Tissue Kit (Cat# 69504, Qiagen) following 
the manufacturer9s guidelines. gDNA concentration was measured using a NanoDrop 2000 
Spectrophotometer (Thermo Fisher Scientific). The purity of gDNA was determined by 
measuring the 260-280 nm absorbance ratio. Optimal purity was expected to be in the range of 
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1.7-2.0. The integrity of the gDNA samples was assessed for evidence of degradation using 
agarose gel electrophoresis. Appropriate quality gDNA was expected to migrate predominantly 
above 10 kb on agarose gels. All samples passed DNA purity and integrity quality controls. 
Twenty samples of gDNA were sent to Adaptive Biotechnology for targeted TCR β chain 
repertoire sequencing using immunoSEQ at survey sequencing depth. Raw TCR reads were 
processed with immunoSEQ Analyzer for CDR3 assembly, variable/joining gene calling, and 
clonal frequency estimations.  
 
Repertoire Functional Unit method description 
i) TCR embedding 
We applied GIANA19 to perform clustering of over 20 million TCRs using both the CDR3 
sequences and variable gene alleles obtained from public domain (Figure 1b). These samples 
covered a wide spectrum of disease context, including healthy individuals and patients with 
cancer, autoimmune disorders as well as viral infections (Table S1). Previous work, including 
ours, have demonstrated that TCRs clustered using such strategy are highly specific (g95%) to 
the same antigen epitopes21-23, with smaller (nf5) clusters being more likely to share antigen-
specificity19.  
 
From GIANA output, we identified a total of 821K such clusters. An example of a typical cluster 
of two sequences, CSARQGARTYEQYF and CSARQGAYTYEQYF, bear a mismatch R/Y in 
position 8 (Figure 1c). We considered the amino acids flanking this mismatch and extracted 
the trimer sequences from both TCRs. As the two TCRs likely share antigen-specificity, the 
two trimers, ART and AYT, are thus considered 8replaceable9 in the context of antigen 
recognition. We then traversed all 821K clusters and built the 8,000-by-8,000 trimer-
substitution matrix (TSM) by calculating the number of replacements of each trimer pairs 
(Figure 1d). We calculated the Spearman9s correlation matrix using TSM and converted it into 
a Euclidean distance matrix (EDM). Next, similar as in GIANA, we obtained the isometric 
embedding vector for each of the trimers using multi-dimensional scaling based on the EDM. 
This approach allowed us to use a numeric vector to represent each trimer, with similar trimers 
located closely in the Euclidean space (Figure 1e). The embedding of each CDR3 sequence is 
then calculated as the average of all the vectors from consecutive trimers (Figure 1f). This 
embedding is a continuous representation of TCR similarity.  
 
ii) Benchmark using antigen-specific TCRs 
We benchmarked the trimer-based embedding using 1,031 TCR sequences with known 
antigen-specificity to 9 epitopes (Table S2). This dataset has been used in our previous work 
to benchmark the specificity of TCR clustering23. To avoid bias towards epitope(s) with 
excessive amount of TCRs, we restricted the antigens with <170 TCRs. Coordinates were 
calculated for each CDR3 sequence. For each pair of TCRs, we calculated the Euclidean 
distance as the predictor, with the response being if or not the two TCRs share the same 
antigen. From the total of half million comparisons, we excluded pairs with distances >0.025, 
based on the fact that trimer-based embedding is only powerful to identify shared antigen 
specificity among TCRs with similar sequences. ROC curve was generated with the above 
predictor and response variables, with AUC calculated using the curve. 
 
iii) Definition of Repertoire Functional Units (RFU) 
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We pooled 1.2 million TCRs from 120 healthy donors from a previous study25, and projected 
them onto the Euclidean space with trimer-based embedding. We divided the TCR sequences 
in this space into 5,000 groups with the k-means method. We referred the centroid of each 
group as a 8Repertoire Functional Unit9, or RFU. To calculate the RFU vector of a new TCR 
repertoire sample, we first select the top 10,000 most abundant TCRs based on clonal 
frequencies. For each TCR, we calculate the embedding vector and assign it to the closest 
centroid from 5,000 RFUs. The value of each RFU is determined by the number of TCRs 
assigned to its centroid. We chose 5,000 as the group number so that the expected count for 
each RFU is 2.  
 
Statistical Analysis 
Computational and statistical analyses in this work were performed using the R programming 
language v4.3.0. Logistic regression adjusted for patient age and race (Figure 2) was 
implemented using the glm function. FDR control was using the Benjamini-Hochberg method. 
Sequence logos were generated using package ggseqlogo (v0.1), by performing multiple 
sequence alignment (msa, v1.32.0) using CDR3s with length 16. Donut plot (Figure 3) was 
generated using package webr (v0.1.5). ROC curves with 95 confidence intervals and AUC 
values were generated using package pROC (v1.18.2). Neighbor joining trees were calculated 
and visualized using R package ape (v5.7-1). Subpanels of main figures were produced using 
ggplot2 (v3.4.2). Permutation test in Figure 4d was performed as follows: with the goal of 
testing how significant the peak-like dynamics of prediagnostic curve, we randomly permuted 
the RFU scores for 1,000 times and recalculated the Loess smooth curve with default 
parameters (R function loess). For each permutation, we calculated the range of the curve 
(max - min), denoted as Dr. The range of the unshuffled curve is denoted as D0. p value was 
estimated as the number of permutations with Dr greater than D0 divided by 1,000.  
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Figure Legends: 
Figure 1. Trimer-guided embedding for TCRs and derivation of Repertoire Functional 
Units (RFU). a) Method workflow. The first 3 steps describe the trimer-embedding Euclidean 
space and last two steps describe how RFUs are defined. b) Massive clustering of TCRs from 
patients with diverse health conditions based on CDR3 amino acid sequence similarity. c) 
Illustration of replaceable trimers from small TCR clusters. d) Illustration of the trimer 
substitution matrix with each number represent the times a row trimer is replaced by the 
column trimer in a TCR cluster. e) Derivation of approximately isometric embedding for each 
trimer based on multidimensional scaling from the trimer substitution matrix in d). f) 
Representation of each CDR3 sequence in the high-dimensional Euclidean space by 
averaging all the consecutive trimers. g) RFU definition by pooling 1.2 million TCRs from 120 
individuals shown as t-SNE plot. Colors denote distinct clusters with cluster centroids assigned 
by k-means.  
 
Figure 2. Characterization of TCR repertoire landscape in ovarian cancer patients. a) 
Heatmap showing the distribution of the top 1,500 most variable RFUs of high-grade, low-
grade and benign patients. b) Distribution of ovarian cancer and benign patients on the PCA 
plot calculated from the RFU-by-patient matrix. c) Violin plot showing the differences of PC1 
across disease categories. Statistical significance was evaluated using one-way ANOVA. d) 
Distribution of patient races on the PCA plot. e) Violin plot showing the differences of PC2 
across patient races. Statistical significance was evaluated using one-way ANOVA. f) Volcano 
plot showing the log odds ratio vs FDR adjusted by Benjamini-Hochberg method. Odds ratio is 
estimated from logistic regression with disease status as a binary outcome, with each RFU 
being the covariate and adjusted for age and race. Blue: downregulated; Red: upregulated. g) 
Sequence logo analysis of selected top up-/down- regulated RFUs.  
 
Figure 3. Selected RFUs as biomarker to distinguish HGOCs from benign ovarian 
lesions. a) Selection criteria for the top informative RFUs. Odds ratios and ratio of medians 
were described in Results. Blue color indicates ratio median <0.7 or >1.3. b) Boxplot showing 
the distributions of selected RFUs across multiple cancer types. All analysis was performed 
using blood TCR repertoire samples from the public domain. c-d) ROC curves showing the 
prediction accuracy of up- or down- regulated RFUs to predict HGOCs from benign patients. e) 
Combination of up- and down- regulated RFUs as a joint biomarker, OV RFU score. Statistical 
significance was evaluated using two-sided Wilcoxon test. g) Donut plot showing the sample 
composition in the validation cohort, with total N=97. h) Performance of OV RFU score in the 
validation cohort. i) Violin plot showing the distributions of OV RFU scores across benign, 
stage-I HGOC and advanced HGOCs. Statistical significance was evaluated using Wilcoxon 
test. j) ROC curve for OV RFU score as a predictive biomarker for stage-I HGOC vs benign 
patients.  
 
Figure 4. Dynamic changes of blood TCR repertoire prior to conventional ovarian 
cancer diagnosis. a) Diagram illustration of blood samples collected at first and second time 
point for both cancer and control subjects. b) PCA analysis of samples at first or second blood 
draws. c) Violin plot showing the distribution of PC1 or PC2 scores across putative ovarian risk 
factors. Statistical significance was evaluated using two-sided Wilcoxon test. d) Scatter plot 
showing the prediagnostic dynamics of OV RFU scores up to 5 years before conventional 
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diagnosis. Loess smooth line was performed using only HGOC samples. Statistical 
significance was evaluated using permutation test. e) Boxplot showing the distributions of OV 
RFU scores in healthy controls and prediagnostic patients. Statistical significance was 
evaluated using two-sided Wilcoxon test. f) Paired boxplots showing the increments of OV 
RFU scores (2nd timepoint – 1st timepoint) in both patient and control samples. Statistical 
significance was evaluated using paired two-sample Wilcoxon test. g) Scatter plot showing the 
prediagnostic dynamics of incremental OV RFU scores. h-i) Prediction accuracy of OV RFU 
scores or increment scores for prediagnostic HGOC patients against healthy controls 
illustrated by ROC curves.  
 
Supplementary Figure Legends: 
Figure S1. Benchmark of trimer-based embedding and repertoire functional units. a) 
Boxplot showing the distributions of Euclidean distances between a pair of TCRs with known 
antigen specificities in the benchmark dataset. b) Prediction accuracy of Euclidean distance on 
if or not the pair of TCRs sharing specificity by ROC curve. c) 2-D density plot showing TCR 
distributions in a healthy control and a Hodgkin lymphoma patient. d) Density difference from 
c) showing the enriched or depleted regions in the TCR embedding space. Selected TCR 
motifs were associated with these regions. e) Same t-SNE plot as in Figure 1g, except colored 
by different individuals. f) Distribution of Euclidean distance between any TCR to its assigned 
k-means cluster centroid. 90% specificity cutoff was determined by the ROC curve in b).  
 
Figure S2. Additional analysis related to ovarian cancer samples collected in the 
discovery cohort. a-b) Ordered Spearman9s correlations of age and each of the 5,000 RFUs 
with dashed red lines marking FDR<0.01. c) Scatter plot showing the relationships of age 
associations for each RFU between the two large healthy donor cohorts in a-b). d) Volcano 
plots showing the output of the same analysis as in Figure 2f for the other disease categories 
in the discovery cohort.  
 
Figure S3. Distribution of selected RFUs across age or in the TCR repertoires of 
multiple cancers. a) Age association of selected RFUs in Figure 3a. Loess smooth curve was 
shown as red line in each panel. Spearman9s correlation test was used to evaluate statistical 
significance and FDR was adjusted using the Bejamini-Hochberg method across all 5,000 
RFUs. b) Same analysis as in Figure 3b showing the distributions of the upregulated RFUs in 
the top list.  
 
Figure S4. Neighbor-joining tree of TCR repertoire samples from NHS cohort. Distance 
matrix was calculated as squared root of 1- Spearman9s correlation for the patient (left) and 
donor (right) samples separately. Neighbor joining trees were generated using the distance 
matrices. The second timepoints were marked with 829 at the end of the label.  
 
Supplementary Table Legends: 
Table S1. TCR repertoire sample cohorts used to generate the clusters for trimer substitution 
matrix.  
Table S2. Benchmark data set of TCR sequences with known antigen epitopes.  
Table S3. Summary of ovarian cancer samples collected in the discovery and validation 
cohorts.  
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Table S4. Demographic information of samples in the NHS cohort with RFU scores included.  
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