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Abstract

Background: Basecalling long DNA sequences is a crucial step in nanopore-
based DNA sequencing protocols. In recent years, the CTC-RNN model has
become the leading basecalling model, supplanting preceding hidden Markov
models (HMMs) that relied on pre-segmenting ion current measurements.
However, the CTC-RNN model operates independently of prior biological and
physical insights.

Results: We present a novel basecaller named Lokatt: explicit duration Markov
model and residual-LSTM network. It leverages an explicit duration HMM
(EDHMM) designed to model the nanopore sequencing processes. Trained on a
newly generated library with methylation-free Ecoli samples and MinlON R9.4.1
chemistry, the Lokatt basecaller achieves basecalling performances with a median
single read identity score of 0.930, a genome coverage ratio of 99.750%, on par
with existing state-of-the-art structure when trained on the same datasets.
Conclusion: Our research underlines the potential of incorporating prior knowl-
edge into the basecalling processes, particularly through integrating HMMSs and
recurrent neural networks. The Lokatt basecaller showcases the efficacy of a
hybrid approach, emphasizing its capacity to achieve high-quality basecalling
performance while accommodating the nuances of nanopore sequencing. These
outcomes pave the way for advanced basecalling methodologies, with potential
implications for enhancing the accuracy and efficiency of nanopore-based DNA
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sequencing protocols.

Supplementary information: Supplementary data are available online.
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1 Introduction

The concept of nanopore-sequencing was first drafted in 1989 as a hand-sketched
illustration by David Deamer on a page of a notebook [1]. 30 years later, the tech-
nology is now commercially available from Oxford Nanopore Technologies (ONT) [2].
Nanopore sequencing works by threading a single-stranded DNA (ssDNA) molecule
through a protein-formed pore in a membrane, where the sequence of nucleotides along
the ssDNA can be indirectly recorded through their effect on an ion current flowing
through the pore. However, transforming the current measurements into a sequence
of nucleotide bases, i.e., basecalling, is challenging for several reasons [3]. Firstly, mul-
tiple nucleotides along the ssDNA, also known as a k-mer where k is the number of
nucleotides, simultaneously affect the noisy current measurements at any given time.
Secondly, the ssDNA’s translocation speed through the pore is fast and unstable,
leading to a random and apriori unknown number of current samples per nucleotide
base in the measurements. Further, the short-term average translocation speed and
the noise level are also variable across a long sequencing run due to measurement
induced changes in the experimental conditions. These challenges made early nanopore
sequencing unusable for most clinical and research applications. Although these prob-
lems have now been mitigated by, e.g., selecting and modifying various protein pores
with narrower constriction, using improved DNA ratcheting enzymes to control the
ssDNA’s translocation speed, and better basecalling algorithms, the technology is still
limited for many applications due to high error rates, amounts of material, and costs
[4-6].

Early basecalling algorithms worked by first segmenting the current measurements
into a sequence of probabilistic events [7]. These events were then treated as obser-
vations in a graphical model, usually as a Hidden Markov model (HMM) with latent
states representing the dominating k-mers [1, 8]. The representation of observation
probabilities in HMMs went from simple Gaussian distributions parameterized by the
mean and variance of the ionic current during an event [9, 10] to more elaborate mod-
els such as hierarchical Dirichlet processes [11]. With the probabilistic model in place,
the final basecalling step could be completed using standard inference algorithms for
HMMs, such as the Viterbi and the beam search (BS) algorithms. However, the per-
formance of the HMM remained severely limited by the quality of the segmentation
step and the choice of features used to model the distribution of the events.

To avoid the limitations of the HMM basecallers, most modern basecallers are based
on end-to-end deep neural networks (DNN), following the pioneering work that led
to the Chiron basecaller [12]. Specifically, Chiron applied a recurrent neural network
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(RNN) to process the current measurements and a connectionist temporal classifica-
tion (CTC) layer from natural language processing (NLP) to replace the event-based
HMM for data alignment. The resulting network was then trained in an end-to-end
manner. The previously used event features have thus been replaced by neural net-
works, which obviate the need for explicit feature engineering, and the HMMs were
replaced by the much simpler CTC structure. The ONT open-source software Bonito
[13], which also uses a CTC-RNN structure and end-to-end training, performs on par
with the current state-of-the-art commercial software Guppy, which presumably also
uses a deep learning solution.

Inspired by these pioneering projects, recent research into basecallers has mainly
explored variations in the neural network structure. Networks with recurrent units
such as long-short term memory (LSTM) networks and RNNs, temporal convolution
networks (TCNs), and attention/transformer networks such as the convolution-
augmented transformer have all showed acceptable basecalling accuracy when com-
bined with a CTC layer [14-16]. The attention structure could also be used without
the CTC layer, which has shown superior performance in NLP applications [17]. Base-
callers built solely with attention have, however, not yet demonstrated higher accuracy
for basecalling [18]. This may be because nanopore signals have more vague transi-
tions between nucleotides than words in NLP tasks, especially within homopolymers
or repeated sequences of purines or pyrimidines.

This said, the lack of linguistic rules for DNA sequences does not mean there is
no prior knowledge about the process that generated the nanopore data. For exam-
ple, some studies model the ratcheting enzyme, e.g., a helicase, as finite state space
machines with well-defined state transition probabilities driven by ATP concentration
[19]. However, it is not straightforward to incorporate such knowledge in basecallers
solely built with deep learning, although we believe that incorporating such prior
knowledge could provide a pledge of in-depth understanding of nanopore sequencing
and a new direction for future developments.

With this in mind, we wanted to revisit HMMs for basecalling while explicitly
addressing some of the shortcomings of prior HMM basecallers. To this end, we propose
a new hybrid basecaller called Lokatt that uses an explicit duration HMM (EDHMM)
model with an additional duration state that models the dwell time of the dominating
k-mer. The duration state allows the basecaller to be applied directly to the raw
current measurements by circumventing the need to pre-segment the data, which was
problematic in previous HMM basecallers. It also allows us to explicitly model the
probability distribution of k-mer dwell times within the pore, e.g., based on a physical
understanding of the ratcheting enzyme [19]. However, we still use a neural network
to estimate the individual k-mer probabilities, and we train our basecaller using end-
to-end training.

We trained and evaluated the Lokatt model on a methylation-free Ecoli dataset
acquired locally with an ONT MinlON device and Guppy. In order to establish a
comparative baseline with the state-of-the-art architecture, we also trained the Bonito
model from scratch using the identical training dataset. Additionally, to assess the
models’ generalization capability, we extended our evaluation by employing a dataset
from [20] that consists of ten different bacteria. Our benchmarking provides a proof
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of concept indicating that such hybrid models can exhibit comparable performance to
the Bonito model in raw read accuracy and consensus assembly quality when training
on the same dataset while opening up possibilities for engineered structures.

2 The Lokatt Model

An HMM is a generative Bayesian model used to represent the relationship between
a sequence of latent states, which are assumed to be generated according to a Markov
process, and a corresponding sequence of observations. For the basecalling task at hand
we focus on building a hierarchical HMM structure to encode the temporal dependen-
cies between a k-mer sequence of length M, denoted by K = {K;, Ko, ..., K/} where
K., € K2 {1,...,4"} and a current measurement sequence of length N, denoted by
{X1,Xo,..., XN}, where typically M < N.

The duration of any state with a self-transition in a Bayesian state-space model is
always geometrically distributed. This is inconsistent with the dwell times reported for
both polymers and helicases [21, 22], two popular candidates for ratcheting enzymes.
This inconsistency causes basecalling errors in regions rich in homopolymers since
current variations are relatively small here, implying that the basecaller can only
rely on the statistical modeling of the translocation speed. We address this problem
via the introduction of a sequence of M explicit duration variables [23], denoted by
D = {Dy,Ds,...,Dy} where D,, € N. This provides flexibility in terms of assigning
an arbitrary dwell-time distribution. Each pair (K,,, Dy,) for m = 1,..., M thus
encodes the mth k-mer and its dwell time. However, to encode potentially very long
dwell times using a limited number of states, we will also allow self-transitions between
the states encoding the distribution of D,, for m =1,..., M.

In the following two subsections, we formalize the hybrid data model on which
Lokatt is based, beginning with the EDHMM and continuing with the DNN observa-
tion model.

2.1 The EDHMM structure

We consider a hierarchical and generative Bayesian EDHMM for the nanopore data,
constructed as follows. We first draw the number of k-mers, M € N, from some dis-
tribution ¢(M). Then, we draw the first-order Markov sequence of k-mers K starting
with K; from a distribution &y(K;) followed by recursive draws of K, from K, 1
according to a conditional distribution (K, |K,—1) for m = 2,..., M. At the same
time, we draw the sequence of dwell-times D by drawing each D,, independently
from some distribution n(D) for m = 1,..., M. Finally, D,, measurements X,, 4y for
d=1,...,D,, are drawn for each k-mer K,, for m = 1,..., M, from a conditional
distribution (X (;,,q)|Km). Here the state variable d acts as a counter that counts
down to the next draw of a k-mer.
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Fig. 1 Ilustration of EDHMM structure, with example of K3 = {Ki,K2,K3} and X5 =
{X1,..., X5}, hence M =3, D =2 and N = 5. States in the upper half represent (K,,,d = 1) while
states in lower half represent (K, ,d = 2). The blue path goes through five states (K1,d = 2), (K1,d =
1), (K2,d = 2),(K2,d = 1),(K3,d = 1), representing the sequence of pairs (K1, D1 = 2), (K2,D2 =
2),(K3,D3 = 1); The yellow path goes through (Ki,d = 1), (K2,d = 1),(K3,d = 2),(K3,d =
2), (K3,d = 1), representing the sequence of pairs (K1, D1 = 1), (K2, D2 = 1), (K3, D3 = 3).

M M M D,
p(X, K, D) = (M) x& (K1) [] §KmlKm-1)x [[ 2Dm) x [ T] #Xmay|Km)
m=2 m=1 m=1d=1
Transition model Duration model Observation model

(1)
For notational convenience, we let X denote the sequence of measurements in the
order of which they would be obtained, i.e.,

X 2{ X1 ps-s X1y X@.00)s -0 X(M.Dar)s -+ -» X(M1) } s

and use simply X,, forn=1,..., N, where N = 2%21 D,,,, when speaking of the nth
consecutive measurement. The joint probability distribution of the model is given in
Eq. (1).

To allow for computationally efficient inference using the model, we make two
additional assumptions on the model: First, we assume that the sequence length is
geometrically distributed such that ¢((M) = (1 — a)a™ for some a € [0,1); Second,
we assume the duration distribution has a geometric tail such that n(D + 1) = yn(D)
for all D > D for some v € [0,1) and some maximum explicit duration constant
D € N. The value of these assumptions is that they are inherently encoded in a
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finite state-space model using self-transitions between states. The generative model
can, with these assumptions, be encoded as a state model with a start state A, an
end state B, and |K| x D intermediate state pairs (K,d) representing joint k-mer
and duration states. The intermediate states are stochastically reset according to the
explicit duration probability n upon drawing new k-mers. The set of paths from A to
B is isomorphic with the set of pairs (K, D), and a pair can be drawn from p(K, D)
by a random walk from A to B with the following state transition rules:

1. State A transitions into state (Ki,d) with probability a&o(K71)n(D = d) for any
d=1,...,D — 1, into state (K;, D) with probability a(1 — )~ (K;)n(D), and
directly into state B with probability 1 — a.

2. State (K,,,d) deterministically transitions into state (K,,,d — 1) with the same
k-mer for any K,, € K,d=2,...,D —1, and m > 1.

3. State (K,,, D) self transition into state (K,,, D) with the same k-mer with proba-
bility v for any K,, € K, and transitions into state (K,,, D — 1) with probability
1—7.

4. State (K,,—1,1) transitions into state (K,,,d) with new drawn k-mer with prob-
ability a&(Kp|Km_1)n(d) for any (K,,—1,K,) € KxKandd=1,...,D —1,

transitions into state (K,,, D) with probability a(1 — )& (K| Km—1)n(D), and
transitions into state B with probability 1 — «.

The state-space model is a standard implementation of an EDHMM [23]. The mth
time the process returns to a state of the form (K,,, 1) for K,, € K marks the end of
k-mer K, in the data. Each measurement, X, = X, 4y, can also be drawn directly
based on the value of state (K,,,d), although we, in our particular implementation,
assume that the observations are independent of d.

The value of the state-space representation is that it allows for efficient infer-
ence while maintaining model interpretability [24]. From the specific model presented
above, the EDHMM can be constructed into a graph with size (M x D) x N, as illus-
trated in Figure 1. The joint data likelihood and k-mer sequence p(K,X) can, using
this graph, be efficiently computed with Eq. (1) by applying the forward algorithm
[25, 26]. The data likelihood p(X) can, similarly, be efficiently computed by applying
the forward algorithm to a slightly altered graph, where K,, € K can be arbitrary.
The two graphs are sometimes referred to as the clamped and free-running models,
respectively [25, 26], and allow us to efficiently compute the posterior sequence like-
lihood as p(K|X) = p(K, X)/p(X). The conditionally most likely sequence of states
and dwell-times (K, D) can be computed using the Viterbi algorithm, and the condi-
tionally most likely sequence of states K can be approximately obtained using any of
our recently introduced greedy marginalized BS (GMBS) algorithms [27].

Choosing the exact distributions in the model are also rather straightforward. The
k-mer transition probabilities &(K,,|K,—1) can, for example, be estimated with a
maximum likelihood (frequency counting) estimator from a reference genome; or by
using uniform probabilities for k-mers K,, that originate from K,,_1, e.g., set to %
for each possible one-base transition and zero for any other combination, in order not
to bias the model towards any particular genome. The value of « needs to be set
very close to 1 for the model to plausibly generate reads on the order of hundreds
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of thousands of bases, and for all intents and purposes, one can set « = 1 in the
implementation of the inference algorithms which we also do, although this does,
strictly speaking, lead to an ill-defined prior distribution. The dwell-time distribution
7(Dm) can be estimated from sequences realigned at the sample-to-k-mer level. In
the particular realization of Lokatt studied herein, we use a log-logistic distribution
for n with parameters estimated using linear regression from the average number of
large changes in the signal amplitude per sample. At the same time, we choose the tail
factor « so that n(D) provides a representative mean dwell time. We also perform a
read-specific duration estimation during training and inference in our implementation
since the average duration is longer for reads obtained later during the sequencing run
due to ATP depletion. Finally, we replaced (X, q)|Km) with scores obtained from
a match network gpr’K(X), where K € K, n =1,..., N and where 6 are the trainable
weights of the (match) DNN described next.

2.2 The DNN structure

Lokatt relies on a neural network to dynamically extract the features from the current
signal, then map them into scores associated with each k-mer, i.e., gofL’K(X). As we
want the basecaller to be capable of handling various lengths of inputs, we construct a
network with convolution kernels and recurrent units. In particular, we use two types
of blocks: i) two residual-convolution blocks consisting of three convolution layers, with
32,64, 32 features respectively, and a skip connection [28]; and ii) two bi-directional
LSTM blocks [29], with 256 features in the first block on each direction and 1024 for the
second block. In the end, a dense layer is applied to map the 2 x 1024 = 2048 features
into |K| = 4% dimensions, which in Lokatt is 1024 with k = 5. Lokatt contains two
of each block type, resulting in a total of 15.3 million weights. The complete network
is shown in Figure 2 with a decomposition of the residual-convolution block and the
bi-directional LSTM block. We used Swish activation, which nonlinearly interpolates
between a linear function and the ReLU function [30, 31] between each layer in the
network.

2.3 Model training

The weights in Lokatt’s DNN are trained end-to-end with (semi)-supervised learn-
ing using a modified conditional maximum likelihood (CML) approach. The vanilla
CML objective maximizes the conditional log-likelihood, i.e. log p(K|X), which is often
decomposed as log p(K|X) = log p(K, X) —log p(X). The clamped state-space model is
used to compute log p(K, X) and the free-running model is used to compute log p(X),
respectively, the former with latent states representing the particular target k-mer
sequence and the latter with latent state from K representing all possible sequences.
Through the two graphs, the gradients can be computed with respect to gafh x(X) and
passed down to update the weights in the DNN with back-propagation [26].

During the training of Lokatt, we realized that this strategy led to a network that
did not generalize well and gave low final scores. In a sense, the model learned to
maximize log p(K|X) by minimizing log p(X) and hence did not provide a very good
model of the data. This leads the neural network to output low values of the score
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<pf; «(X) overall. Therefore, we instead adopted a modified CML training strategy,
where we maximized a weighted linear combination of log p(K|X) and logp(X) to
regularize the model to provide a balance between posterior decisions and modeling
of the data. In particular, we explicitly used

log p(K|X) + Alog p(X) = log p(K, X) — (1 — A)log p(X)

with regularization factor A = % as the overall cost function. We also trained the

network with a cost function where p(X) was replaced by p(Kgs, X), i.e, with
logp(Ka X) - (1 - >\) 1ng(KBSa X) ) (2)

again with A = %, but where Kgg is the output sequence of k-mers from the GMBS
decoder presented in Section 3.3 and discussed in detail in [27]. The intuition behind
Eq. (2) is to make the training focus more on segments of the data where Kgg differ
from the (correct) reference sequence K. The model trained with this approach showed
higher final basecalling accuracy. Therefore, it was used to benchmark Lokatt with
the other basecallers.

3 Methods

3.1 Data generation

To evaluate Lokatt, we performed ONT MinION sequencing on non-methylated E.coli
genomic DNA (D5016, Zymo Research) in two repeated runs. The choice of this DNA
type stemmed from an initial assumption regarding the potential significance of DNA
methylation in basecalling. The sequencing libraries were prepared by fragmenting the
genomic DNA using Covaris g-TUBE and a Ligation sequencing kit (SQK-LSK109,
Oxford Nanopore). The first sequencing run, conducted in December 2019, used Flow
Cell chemistry R9.4.1 and was basecalled with Guppy 3.2.2. The second sequencing
run took place in November 2021 with Flow Cell chemistry R9.4.1 and Guppy 5.0,
aimed at obtaining a recent comparison with state-of-the-art software and generating
distinct datasets for training and evaluation purposes.

Furthermore, short-read Illumina sequencing was performed using TruSeq PCR-
free library preparation on the MiSeq sequencing platform (Illumina, USA). A draft
assembly was constructed from the Illumina data using SPAdes v3.6.0 [32], serving
as the reference genome. The ground-truth nucleotide sequence for each raw read
was obtained by mapping its tentative sequence, provided by Guppy, to the reference
genome using the aligner program Minimap?2 [33].

The data were divided into batches based on their position on the genome. We
divided the data from the 2019 sequencing run into batch 1.A and batch 1.B, by
separating reads corresponding to the first and second half of the reference genome,
respectively. The 2021 sequencing run was similarly divided into batch 2.A and batch
2.B. The data in batch 1.A was used as training data for the model, while the remaining
batches were used for validation and performance evaluations. This allowed us to
ensure that the model was not over-fitted to the underlying genome by comparing the
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Fig. 2 The overall structure of the Basecaller: A. The main components of Lokatt, from the bottom
up, are normalized input, the neural network, the EDHMM layer, and output. The neural network is
expanded into main component layer blocks on the right side: two residual blocks, two bi-directional
LSTM clocks, and a dense layer. B. The inner structure of the residual block consists of three layers
of 1D convolution, followed by layer-normalization, and the Swish activation, of which the outputs
are taken and added with the inputs of the residual block followed by cross-layer normalization. C.
The inner structure of the bi-directional LSTM layer consists of two independent LSTM layers, one in
the forward direction and the other in the backward direction. The outputs of the two LSTM layers
are then concatenated along the feature dimension, making the output sequence the same length as
the inputs.

performance on batch 2.A, where an obvious homology exists, with the performance
on batch 1.B and 2.B where no clear homology between the training and test data
should exist. Similar data division strategies have been used for human genome data
sets, where the training and testing were based on different chromosomes [18].

For further assessment of the decoding efficacy and model generalization capabil-
ities, we employed the test dataset established in [20], referred to as data batch 3.
This dataset encompasses a diverse spectrum of microbial species, including four dis-
tinct variants of Klebsiella pneumoniae, along with six other bacterial entities, namely
Acinetobacter pittii, Haemophilus haemolyticus, Serratia marcescens, Shigella sonnei,
Staphylococcus aureus and Stenotrophomonas maltophilia. Notably, these samples
comprise methylated sequences and underwent sequencing utilizing both R9.4 and
R9.4.1 chemistries during the temporal interval spanning the years 2017 to 2018.


https://doi.org/10.1101/2022.07.13.499873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499873; this version posted October 16, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

3.2 End-to-end training

Before end-to-end training, we pre-trained the DNN structure on a subset of re-aligned
training data to expedite the subsequent computationally intensive modified CML
training. Alignment was achieved using the EDHMM structure of the Lokatt base-
caller, of which the observation probability table is obtained from the Baum-Welch
algorithm [25, 26]. This alignment step could also be facilitated using the complete
Lokatt model, which inherently incorporates alignment information. Based on the
alignment, we segmented the long raw reads into 4096-sample segments aligned with
reference sequences to enable GPU-based parallel computation. The DNN was then
pre-trained to predict k-mer probabilities per sample using the cross-entropy loss. The
pre-training on one epoch of the re-aligned data took 1.5 GPU hour.

As described in section 2.3, training with the regularized CML loss from Eq. (2)
requires two graphs representing p(K,X) and p(Kgg, X) to compute the gradients
with respect to the output of the DNN, i.e., apzﬁK(X), for n = 1,...,N. Note here
that while p(X) is usually computed using the free running mode, we use the clamped
model for both p(K,X) and p(Kgs, X). In our implementation, the size of the two
graphs are D x M x 4096 and D x Mpg x 4096, where the lengths of K and Kgg,
i.e., M and Mpgg, are on the order of a few hundred bases of overlapping k-mers.
To manage the complexity of the inference on these graphs, we rely on custom GPU
implementations that can efficiently utilize the sparsity of the graphs. In particular,
we implemented the gradient calculation for the EDHMM as custom CUDA kernels
[34] and registered them as customized operations in Tensorflow2 [35]. The gradients
were then back-propagated to the DNN to calculate weight updates using a standard
batch-based Adam optimizer [36] from Tensorflow. We trained the whole DNN on the
NSC Berzelius compute cluster using 8 Nvidia A100 GPUs !, for which training on
one epoch of data took 576 GPU hours. The CUDA kernel code is available in the
Lokatt repository: https://github.com/chunxxc/lokatt.

3.3 Decoding with the GMBS

In the final stage of basecalling, often referred to as decoding, the objective is to find the
sequence of k-mer with the highest posterior probability, i.e. K = arg maxk p(K|X).
The optimal solution to this problem is intractable due to the exponential growth of the
search space as read length increases. This necessitates an exhaustive search across all
possible k-mer sequences with lengths M that not exceeds IN. An alternative involves
utilizing the Viterbi algorithm, noted for its computational efficiency, to approximate
the optimal solution by identifying the jointly optimal sequence (K, D) that maximizes
p(K,DI|X). Nonetheless, this approach lacks a solid theoretical guarantee regarding
estimation quality. Moreover, the accurate decoding of the optimal k-mer sequence
requires the marginalization of duration states on the EDHMM graph, a challenge for
which the Viterbi algorithm lacks a dedicated strategy.

We instead rely on our newly proposed GMBS algorithms [27], which approximates
the maximum a posteriori solution by recursively searching and maintaining a fixed-
size list of k-mer sub-sequences K,,, = (K1,..., K,,), i.e., beams, with high posterior

1Berzelius: https://www.nsc.liu.se/support /systems/berzelius-getting-started /
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probability p(K,,|X,,) for X,, £ (X1, ..., X,,) and m < n. Each beam also keeps track
of the probability of p(K,,, Dy | X)) from which it can compute the probability of new
beams and marginalize over D,, as needed. The empirical experience in [27] has shown
that the GMBS algorithm performs better than the Viterbi algorithm on decoding the
EDHMM graph when we use 512 beams, with a significantly lower memory footprint.
The GMBS performances can be improved by increasing the number of beams at the
cost of slower pruning operations due to the sorting complexity increase. Specifically,
the parallel sorting algorithms implemented in the GMBS scale, for a beam list size
of B, as O(log®B) [37].

In implementing the GMBS algorithm, we use a tree structure to store K,, in
memory, where common ancestry represents common initial sub-strings of K,,,. Since
this tree has at most N x B nodes, it can be efficiently implemented on the GPUs
without needing dynamic memory allocation. Finally, to extract the final approximate
maximum a posteriori k-mer sequence K = K, we can read this tree backwards from
the highest-scoring leaf node to the root in a fashion similar to the backtracking step
of the Viterbi algorithm. A detailed explanation of the LFBS algorithm is provided in
[27].

When basecalling with Lokatt, we divide each raw read into segments of length
4096 with an overlap of 296 measurements, and these segments were individually
basecalled. The uniform length of input sequences facilitates efficient parallel imple-
mentations of Lokatt without harming the basecalling performance. The resulting
output sequences were subsequently assembled by aligning the beginning and ending
portions of consecutive pairs.

4 Results

4.1 Benchmarking

We benchmark the Lokatt model with the Bonito model over all three data batches.
Bonito [13] is an open-source research tool released by ONT that harnesses the
state-of-the-art CTC-RNN model. To investigate the impact of the model archi-
tecture, we independently trained a Bonito model, referred to as Bonito Local,
from scratch with the same training data used in training the Lokatt basecaller.
Additionally, we included the performance from the fine-tuned Bonito basecaller
dna_r9.4.1_e8_sup@u3.3, denoted as ‘Bonito Sup’, which yields to give ‘super accuracy’
and is presumably trained on a more extensive data set. For data batches 2.A and 2.B,
we also incorporated results obtained from ONT’s Guppy 5.0, which is ONT’s com-
mercial basecaller. The data batches 1.A and 1.B were sequenced with earlier version
of Guppy 3.2.2, whose performance is 2% — 5% lower than Guppy 5.0 and therefore
excluded in the benchmark as it no longer represents state-of-the-art. In the follow-
ing sections, we will discuss the basecalling quality in terms of raw read accuracy and
assembly accuracy.
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4.2 Raw read accuracy

To access the raw read accuracy, we measured the shortest Levenshtein distance
between the basecalled sequences from Lokatt, Bonito Local and Bonito Sup and the
reference genome and generated their pair-wise alignments. This entails determining
the minimal number of single-state edits, such as insertions, deletions or substitu-
tions, needed to convert the basecalled sequence into the Illumina-generated reference
genome [38], which can be obtained using Minimap2 v.2.17-r941 with the default
parameters. The alignments are then quantified and reported as the sequence accuracy
metrics, including the identity, mismatch, insertion and substitution scores. Specif-
ically, the identity score is formulated as the ratio of matched bases to the total
alignment columns as follows:

matches

identity = matches + mismatches -+ insertions + deletions

Similarly, the error scores, including mismatch, insertion and substitution, are cal-
culated as the ratios of their individual count to the overall alignment columns. In
addition, we also presented measurements of matched base length per read (read
length), counts of matched read entries (entry counts) and the cumulative number
of matched bases. It is important to note that both mean and median values were
reported for accuracy metrics and read length. However, for our analysis, the focus
was directed towards median values. This choice is attributed to the significant data
variance, wherein reads with low accuracy are too noisy for Minimap2 to recognize
1720]

The outcomes of the benchmarking experiments are presented in Tables 1 to 5,
each highlighting the basecaller performances across different data batches.

Table. 1 displays the training performance on data batch 1.A. Lokatt achieves a
median identity score of 0.926, surpassing Bonito Local by 0.012 but falling 0.028
behind Bonito Sup, with corresponding lower error rates than Bonito Local and higher
error rates than Bonito Sup. Regarding median read length, Lokatt records the longest
matched length of 2807, compared to both Bonito models’ 2731. However, for recogniz-
able read entries based on Minimap2, Lokatt processes 565393 entries. This number is
greater than Bonito Local’s 562838, yet less than Bonito Sup’s 583471. Consequently,
Lokatt demonstrates 3% fewer total matched bases than Bonito Sup, but 3% more
than Bonito Local.

Table 2 provides the test performance of data batch 1.B, which corresponds to reads
aligned with the second half of the E.coli genome. The results indicate the median
identity scores are within £0.001 difference from the training scores shown in Table 1,
with error rates exhibiting a similar +0.002 difference. This minimal variation between
batch 1.A and 1.B suggests that overfitting of the models is unlikely. Notably, Lokatt
continues to exhibit the longest read length, while Bonito Sup maintains the highest
entry count. This also contributes to Lokatt reporting 3% fewer matched bases than
Bonito Sup, but 3% more than Bonito Local.

Tables 3 and 4 display the testing result from data batch 2.A and 2.B, which were
generated from the same E.coli samples used in data 1 but more recently. Compared to
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results from data batch 1.A and 1.B, all basecaller exhibit identity score 0.007-0.014
higher and, at most, error score 0.008 lower. Regarding the read length, Bonito Local
shows an increase of 5%, while both Lokatt and Bonito Sup demonstrate an increase of
14% and 13%, respectively. The substantial increase in entry counts and total matched
bases is because data batch 2 sequenced 3-4 times more samples, which makes the
comparison trivial. Nonetheless, when comparing among basecallers on data batch 2,
Lokatt demonstrates identity scores 0.006 and 0.007 higher than Bonito Local data
2.A and 2.B respectively and 0.033 lower than Bonito Sup, while output 5% fewer
matched bases than Bonito Sup with 7% more than Bonito Local in total.

Additional results from Guppy 5.0, ONT’s commercial software at the experiment’s
time, are also reported in Tables 3 and 4. Guppy’s overall performance closely aligns
with Lokatt’s; Guppy exhibits a 0.003 higher identity score and basecalled only 0.25%
more total bases.

Table 5 presents the testing performance on data batch 3 with diverse species
sequenced at an earlier period. Table 5 only contains identity score and total base
counts due to space limit; however, a comprehensive performance table is available
in Table S1, Additional file 1. Notably, all basecaller exhibit reduced identity scores
for all species except Staphylococcus aureus, most recently sequenced among data 3
and utilizing the updated chemistry R9.4.1. Overall, Lokatt demonstrates an average
identity score of 0.904, which declined by 0.029 on average and 0.049 on maximum,
compared with data 2; Bonito Local shows an average identity score of 0.880, with a
decline of 0.046 and maximum decline of 0.079; Bonito Sup has an average 0.947 with
a decline of 0.019 on average and 0.031 in maximum. For total matched bases, Lokatt
holds 6% more than Bonito Local but 7% fewer than Bonito Sup and 0.3% fewer than

Guppy.

Table 1 Training performances on data batch 1.A

Basecaller identity insertion deletions substitution  base per read  entry counts bases (109)
Lokatt 0.912/0.926  0.018/0.016  0.045/0.034  0.025/0.020  4803/2937 565393 2.600
Bonito Local  0.900/0.914 0.019/0.017 0.051/0.038  0.030/0.026  4724/2885 562838 2.524
Bonito Sup 0.936/0.954  0.013/0.010  0.030/0.018 0.021/0.015  4757/2829 583471 2.686

*first five entries are listed as ‘mean/median’.

Table 2 Testing performances on data batch 1.B

Basecaller identity insertion deletions substitution read length  entry counts bases (10)
Lokatt 0.912/0.926  0.018/0.016  0.046/0.035 0.024/0.020  4852/2961 523191 2.432
Bonito Local  0.899/0.913  0.020/0.018  0.052/0.040  0.030/0.026 ~ 4770/2917 521186 2.362
Bonito Sup 0.937/0.955  0.012/0.009 0.031/0.018 0.020/0.015  4799/2916 540834 2.513

*first five entries are listed as ‘mean/median’.
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Table 3 Testing performances on data batch 2.A

Basecaller identity insertion deletions substitution read length  entry counts bases (109)
Lokatt 0.903/0.933  0.016/0.013  0.051/0.033  0.029/0.020  5600/3398 1519444 8.132
Bonito Local  0.903/0.927  0.016/0.014  0.050/0.033  0.030/0.024  5392/3063 1467918 7.556
Bonito Sup 0.929/0.966  0.013/0.008  0.033/0.013  0.024/0.013  5588/3304 1579899 8.522
Guppy 5.0 0.907/0.936  0.019/0.015 0.042/0.027  0.031/0.021  5637/3391 1522808 8.153

*first five entries are listed as ‘mean/median’.

Table 4 Testing performances on data batch 2.B

Basecaller identity insertion deletions substitution read length  entry counts bases (109)
Lokatt 0.904/0.933  0.016/0.013  0.052/0.034 0.028/0.020  5685/3494 1400186 7.612
Bonito Local  0.902/0.926 0.016/0.014  0.052/0.034  0.030/0.024  5473/3124 1353165 7.073
Bonito Sup 0.930/0.966  0.013/0.007 0.034/0.013  0.023/0.013  5660/3371 1459829 7.980
Guppy 5.0 0.907/0.935  0.020/0.015  0.043/0.027 0.030/0.021  5720/3480 1403826 7.631

*first five entries are listed as ‘mean/median’.

Table 5 Testing performances on data batch 3

Lokatt Bonito Local Bonito Sup
Species identity bases(109) identity bases(109) identity bases(109)
A. pittii 0.897/0.914 105 0.873/0.899 101 0.936/0.957 109
H. haemolyticus 0.854,/0.884 41 0.842/0.871 39 0.932/0.957 53
K. pneumonia(INF032) 0.887/0.900 506 0.845/0.873 480 0.925/0.938 526
K. pneumonia(INF042) 0.874/0.897 487 0.814/0.847 448 0.916/0.937 515
K. pneumonia(KSB2_1B)  0.874/0.895 356 0.827/0.860 324 0.912/0.935 378
K. pneumoniae(NUH29) 0.879/0.901 217 0.846/0.883 201 0.914/0.939 225
Ser. marcescens 0.894/0.910 118 0.877/0.898 113 0.933/0.952 123
Shi. sonnei 0.887/0.907 434 0.841/0.876 397 0.923/0.944 453
Sta. aureus 0.924/0.935 228 0.900/0.921 221 0.961/0.973 236
Ste. maltophilia 0.882/0.899 450 0.836,/0.870 419 0.919/0.938 466

*identity scores are listed as ‘mean/median’.

4.3 Basecaller complexity

Incorporating a DNN structure, both Lokatt and Bonito introduce computational
demands that can potentially restrict their applicability. Bonito 0.5.0 utilizes the CTC-
Conditional Random Field [39] top layer, integrated with convolution layers followed
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Fig. 3 Performance plots for basecallers: A. Genome coverage ratios. B. The number of windows
for each GC percentage. C. NGAx plots for the different assemblies showing the aligned contig
length distribution against the reference genome. D. The NGAS50 plot. E. The misassemblies. F. The
mismatches per 100 kbp.

by LSTM layers in alternating forward and reverse directions, totalling 26.9 million
parameters. In contrast, Lokatt adopts residual blocks comprising convolution layers,
followed by bi-directional LSTM layers and an EDHMM layer on top, collectively hav-
ing 15.3 million parameters. It is noteworthy that Bonito’s employment of a stride
of 5 in its convolution layer has effectively reduced the computationally expensive
recurrent calculations within the LSTM layer by a factor of 5. Consequently, despite
being nearly twice large as Lokatt, Bonito (50k base pair per second) achieves approx-
imately a 5-fold speed enhancement compared to Lokatt (8k base pair per second)
when executed on the Nvidia V100 GPU.

4.4 Consensus evaluation

The basecalled read sequences on data batch 2 from Lokatt, Bonito Local, Bonito
Sup and Guppy 5.0 were assembled, respectively. De novo genome assemblies were
generated using Flye [40], resulting in four distinct draft genome assemblies. The eval-
uation of these assemblies against the reference Illumina F.coli genome was executed
with Quast [41]. The assessment, as depicted in Figure 3a, reveals a genome coverage
of 99.750% for Lokatt, while the remaining three basecallers exhibit a slightly higher
coverage of 99.757%. The proportions of GC content remain comparably consistent
among the four basecallers: Lokatt at 50.88%, Bonito Local at 50.84%, Bonito Sup at
50.82%, and Guppy 5.0 at 50.83%, in contrast to the reference genome’s 50.77%, as
illustrated in Figure 3b. The same contig length distribution and contig connectivity
are shared among all basecaller’s assemblies, reflected in the NGAx plot in Figure 3c.
The NGAS50 values, specified in Figure 3d, exhibit marginal disparities: 106101 for
Lokatt, 106277 for Bonito Local, 106360 for Bonito Sup, and 106293 for Guppy 5.0.
Notably, Lokatt shows the least number of misassemblies at 202, compared to 204 for
both Bonito basecallers and 203 from Guppy, as depicted in Figure 3e. Furthermore,
the assessment of mismatches per 100k base pairs, illustrated in Figure 3f, highlights

15


https://doi.org/10.1101/2022.07.13.499873
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.13.499873; this version posted October 16, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lokatt’s score of 8.22k, which is notably lower than Bonito Local’s 9.9 and Bonito Sup’s
9.69, and approaches the minimum value of 8.14 attained by Guppy. The complete
assemblies report is available in Table S2, Additional file 1.

5 Discussion

The evaluation of basecallers, Lokatt, Bonito Local, Bonito Sup, and Guppy 5.0, on
various datasets yielded insights into their performances and limitations. Analyzing
raw read accuracy in E.coli datasets 1 and 2, Lokatt’s performance emerged as com-
petitive with the Bonito basecallers. Lokatt achieved a slightly higher median identity
score than Bonito Local by 0.01, while falling slightly behind Bonito Sup by 0.033. The
assessment of generalization capabilities on the extra data batch 3 showed a decrease
in performance for both Lokatt and Bonito Local, with the latter experiencing a more
notable decline. This drop could be attributed to a mixture of the samples covering
various genomes, as well as using old chemistry at earlier dates since Bonito Sup also
showed a performance drop. Nevertheless, Bonito Sup exhibited superior accuracy,
although limited information was available regarding its training data and methodol-
ogy. Notably, the study underscored the Lokatt model’s capability to effectively handle
small-genome species sequencing data at a level comparable to the Bonito model.

The assembly analysis introduced a noteworthy observation: the correlation
between genome coverage and raw read accuracy across basecallers isn’t always
straightforward. Specifically, Lokatt, despite having cumulatively 7% more matched
bases than Bonito Local and a close number to Guppy, exhibited marginally 0.007%
lower genome coverage on the E.coli genome. However, Lokatt maintained the least
misassemblies and relatively low mismatches per 100kbp. Bonito Local on the other
hand, having the lowest identity score and fewest base counts, achieves the same
genome coverage as Bonito Sup, which shares an identical model architecture with
Bonito Local but with different weights. This discrepancy might arise from differ-
ences in error-handling strategies among basecallers, potentially indicating that Lokatt
excels in specific genomic regions but faces challenges in others. Alternatively, this
could be attributed to Lokatt’s current lack of quality scores associated with base-
called nucleotides, which play a crucial role in the assembly process and subsequent
analyses. Furthermore, it’s important to note that the evaluation primarily focused on
E.coli data, which may not fully capture the challenges posed by diverse species and
complex genomic regions.

The study also highlighted the distinct design and training strategies of Lokatt.
Bonito utilizes the CTC loss, where a blank state is manually inserted between every
nucleotide. The CTC loss typically leads to a dominance of blank predictions in the
output of the CTC-trained RNN [12], prompts presumably a less complicated task
where the RNN has learned to detect the transition moment of the nucleotides and
treat everything else as blank. However, it also potentially limits model flexibility.
In contrast, Lokatt integrates an EDHMM modelling the dynamic of the ratcheting
enzyme, and is tasked to learn the complete characteristics of the ion current mea-
surements. We have separated the complicated task into the pre-trained stage and the
subsequent end-to-end training. We observed that the pre-trained neural network could
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achieve a median basecalling accuracy of around 0.905 on data batches 1 and 2. The
subsequent CML training further refined Lokatt’s accuracy by around 0.02—0.03. In
light of this, although HMMs are capable and comparable in various respects, achiev-
ing fully interpretable parametric models remains a challenge, leading to limitations
in Lokatt’s performance.

6 Conclusion

This research project has culminated in the development, training, and evaluation of
Lokatt, a novel hybrid basecaller. The raw read performance of the Lokatt model was
better than the CTC-CRF structured Bonito model if trained on the same dataset, and
was comparable to ONT-trained Bonito and Guppy basecallers. Lokatt’s evaluation
metrics for consensus sequencing resembled those of the other basecallers. Notably,
Lokatt demonstrated fewer misassemblies and mismatches per 100kbp, despite having
a lower overall genome coverage ratio. This scenario highlights the complex trade-
offs that basecallers need to make between accuracy, coverage, and the nature of the
underlying genomic sequences. Different basecallers may excel in different contexts,
and the choice of which to use depends on the specific goals of an analysis, such as
accurate assembly of specific regions versus comprehensive genome coverage.

Both Lokatt’s and Bonito’s architectures leverage DNN structures enhanced with
dynamic models to bridge the gap between input current measurements and output
bases and enable end-to-end training. However, Lokatt’s unique integration of an HMM
layer introduces a novel dimension of comprehension into the sequencing dynamics,
thereby creating opportunities for future refinements. Future versions of Lokatt could
potentially exploit a more sophisticated dynamic structure, informed by a deeper
understanding of the sequencing device and chemistry process. This study contributes
to the field by introducing an innovative basecaller model and insights into basecaller
performance.
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