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Summary 

Neural activity spans multiple scales from milliseconds to months. Its evolution can be recorded 

with chronic electrodes, and especially with high-density arrays such as Neuropixels probes, 

which measure each spike at tens of sites and record hundreds of neurons. These arrays often 

record units with consistent spike waveforms over time, but produce vast amounts of data that 

require new approaches for tracking neurons across recordings. To meet this need, we developed 

UnitMatch, an open-access pipeline that operates after spike sorting, based only on each unit9s 
average spike waveform. We tested UnitMatch in Neuropixels recordings from the mouse brain, 

where it tracked neurons across weeks. In visual cortex, a neuron9s selectivity for visual stimuli 

and correlation with other neurons remained stable over days. In striatum, neuronal responses 

changed across days during learning of a task. UnitMatch is thus a promising tool to reveal invar-

iance or plasticity in neural activity across days. 

Introduction 

Neural activity spans a multitude of time scales, 
from the milliseconds that separate spikes to the 
days or months that characterize memory, learn-
ing, or aging. Changes at these longer timescales 
can be studied with two-photon imaging, where 
the same neurons can be visually tracked across 
days1–5. However, imaging methods miss the fast 
timescales and are hard to implement outside of 
cortex or in multiple areas at once. To cover all 
time scales across the brain, the ideal method is 
to use chronic electrodes.  

Recordings with chronic electrodes reveal units 
(putative neurons) with consistent spike wave-
forms across days6–20. This constancy indicates 
that the units track the same neurons over time, 
particularly when the spikes are measured at 
multiple locations with stereotrodes16, tet-
rodes14,15,19,21–26, microwire bundles27,28, silicon 
probes20,29 and Neuropixels probes30.   

In addition to spike waveform, the tracked units 
can maintain distinctive firing properties such as 
inter-spike interval distribution10,11,13,20,27,28, and 
functional properties such as sensory, cognitive, 
or motor correlates11,14–16,23,27,28,30,31. Consistent 

functional properties across days can provide a 
strong indication that a neuron has been tracked, 
but functional properties are not necessarily con-
stant over time, and their variation is often the 
scientific question being investigated6,7,20–
22,24,25,27,31–33.  

Tracking neurons across days has become more 
appealing with high-density arrays such as Neu-
ropixels probes30,34. These probes are readily im-
planted chronically30,35–38, yielding hundreds of 
potentially matchable neurons across days. In ad-
dition, their geometry and density allow for reli-
able correction of electrode drift. All electrodes 
tend to drift relative to the brain, so that recorded 
neurons may appear and disappear, or change 
their apparent spike waveform. With rigid probes 
such as Neuropixels, however, most of the move-
ment is likely to be parallel to the probe, causing 
the spikes to move from some recording sites to 
others. It is possible to compensate for this move-
ment in software, so that neurons can be tracked 
robustly both within and across days30,39. 

However, the current methods for matching neu-
rons across days cannot process the vast 
amounts of data produced by multiple days of 
Neuropixels recordings. For example, one 
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method relies on concatenating two recordings 
and spike sorting the resulting file29,30. This 
method is robust for pairs of recordings but be-
comes unwieldy for longer sequences: it does not 
scale to dozens of recordings obtained across 
weeks or months. 

To solve this problem, we developed a pipeline 
called UnitMatch, which operates after spike sort-
ing: each recording is spike sorted inde-
pendently, without concatenation, with the user9s 
preferred algorithm. UnitMatch then deploys a 
fast and scalable naïve Bayes classifier on the units9 average spatiotemporal waveform in each 
recording, and tracks units across recordings as-
signing a probability to each match.  

We tested UnitMatch in cortical and subcortical 
brain regions and found that it reliably tracked 
neurons across days and weeks. Its performance 
compares well to the concatenated method and 
to manual curation by human experts, while be-
ing both much faster and applicable to larger 
numbers of recordings.  

Because UnitMatch does not rely on any proper-
ties of a unit beyond its spike waveform, it can be 
used to test whether these properties change 
over time. We used it to examine simple distinc-
tive properties of neurons in mouse visual cortex, 
such as the correlation with other neurons or 
with visual stimuli. These properties remained 
remarkably stable, further confirming the ability 
of UnitMatch to track neurons across days. We 
also used UnitMatch to characterize the changes 
of neural representations in striatum neurons 

during learning, showing that UnitMatch can 
track neural dynamics in multiple brain regions 
on both fast and slow time scales. 

Methods and Results 

UnitMatch tracks units across recordings that 
have been individually spike sorted (Figure 1). It 
takes as input the average spatiotemporal spike 
waveform of each unit in each half of each record-
ing (Step 0). It then extracts key parameters from 
this waveform (Step 1) and uses them to compute 
similarity scores for each possible pair of units 
(Step 2). It performs within-day cross-validation 
to identify a similarity score threshold for puta-
tive matches (Step 3). It then corrects for drift 
(Step 4) across recordings and repeats Steps 1-3 
to recompute the putative matches. Finally, it 
builds probability distributions for the similarity 
scores for putative matches and feeds them to a 
classifier to assign a probability to every possible 
match, suggesting unique identities to all units 
across recordings (Step 5).  

Below, we describe these steps and illustrate 
them on a large body of data obtained in our la-
boratory. The description in the text is qualita-
tive, and the equations are provided in Supple-
mentary Information, section Mathematical defi-
nitions. We then assess the quality of matches by 
comparing the results with other approaches, 
and by measuring functional properties of the 
neurons that were remarkably consistent across 
days. Furthermore, we show that UnitMatch can 
track functional properties that change during 
learning.  

 
Figure 1. UnitMatch workflow.  UnitMatch is an algorithm to find matches across multiple recording sessions. It operates after 
spike sorting (step 0), and it comprises of 5 steps done in two iterations.  

Step 0. Spike sorting 

Before using UnitMatch, the users record neural 
activity in multiple sessions, and use their pre-
ferred software to spike sort each recording 

independently.  For each recording, the results 
are put in a directory where each unit contributes 
a file with the average spatiotemporal spike 
waveform in the first and in the second half of the 
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recording. These files have no information on in-
dividual spikes. 

To develop, test, and illustrate UnitMatch, we 
used over 1,500 recording sessions performed 
over multiple days (up to 183) in mice implanted 
with chronic Neuropixels probes30,34,38 in multi-
ple brain regions including cortex, hippocampus, 
striatum, and superior colliculus (Table S1). Each 
recording session was individually spike sorted 
with Kilosort40, which provides drift correction 
within each session30. After spike sorting, we 
used a set of quality measures41 to select 21.9 ± 
11.5% (mean ± s.d. n = 1,514 recording sessions 
across 17 mice) units that were well isolated and 
distinct from noise (Figure S1). 

Step 1: Waveform parameters 

High-density recording arrays such as Neuropix-
els probes (Figure 2A) sample the spikes of an in-
dividual unit at many recording sites, revealing 
the unit9s characteristic spatiotemporal wave-
form (Figure 2B). The amplitude of the waveform 
peaks at a maximum site and decays gradually 
with distance from that site (Figure 2B,C). 
UnitMatch fits this decay with an exponential 
function and obtains the distance þ10 at which the 
amplitude reaches 10% of the maximum (Figure 
2C). In the example recordings, this value ranged 
between 30 and 114 μm (95% confidence inter-
val, Figure 2D). For each unit, UnitMatch consid-
ers the recording sites closer than þ10 (but at 
most 150 μm away) from the maximum site. In 
our data, this typically resulted in 6-24 sites ar-
ranged in two columns (e.g., Figure 2A-B).  

For each unit, UnitMatch uses the spatiotemporal 
spike waveform measured at the selected record-
ing sites to extract seven attributes:  

• The spatial decay, i.e., the rate at which am-
plitude decreases with distance from the 
maximum site (Figure 2C, Equation 8).  

• The weighted-average waveform (Figure 2E; 
Equation 9) obtained by averaging 

waveforms across sites, weighted by the max-
imum amplitude of each site.  

• The amplitude of that weighted-average 
waveform (Figure 2E, Equation 10).  

• The average centroid (Figure 2F, Equation 
6), defined as the average position weighted 
by the maximum amplitude on each record-
ing site.  

• The trajectory of the spatial centroid from 
0.2 ms before the peak to 0.5 ms after the 
peak (Figure 2F, Equation 4).  

• The distance travelled at each time point 
(Figure 2F). 

• The travel direction of the spatial centroid at 
each time point (Figure 2F, Equation 5).  

Step 2: Similarity scores 

After extracting the spatiotemporal waveform 
parameters, UnitMatch compares these parame-
ters for every pair of waveforms within and 
across days, computing six similarity scores using 
the extracted parameters: 

• Decay similarity (Ā; Equation 14); spatial de-

cay. 

• Waveform similarity (þ, Equation 18); 
waveform correlation and normalized differ-
ence averaged. 

• Amplitude similarity (�; Equation 13) 

• Centroid similarity (ÿ, Equation 20) 

• Volatility similarity (ý, Equation 23); cap-
tures the stability of the difference between 
centroids over time. 

• Route similarity (ý; Equation 24): captures 
the overall similarity of the trajectory: direc-

tion and distance travelled. 

Each similarity score is scaled between zero and 
one, with one indicating the highest similarity. Fi-
nally, in addition to the six individual scores, we 
also average the scores to compute a total simi-
larity score ÿ.  
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Figure 2 Extracting spike waveform parameters.  
(A) A 4-shank Neuropixels 2.0 probe (left), showing the bottom of one shank (right) and its recording sites (squares).  
(B) Average spike waveform for an example unit, in the 24 recording sites marked in black in A and in 12 adjacent sites (gray).  
(C) Amplitude of the waveform as a function of distance to 8max site9 for the example unit. Using an exponential decay fit (curve), 
we defined the distance d10 at which the amplitude drops to 10% of the maximum. Spatial decay is computed from the slope of 
the amplitude decrease over distance. 
(D) Distribution of d10 for all units in two example recordings, showing the median (dashed red line) and the 95% confidence 
interval (dashed black lines). 
(E) Weighted-average waveform for the example unit in B, C, computed by giving larger weight to sites near the maximum site. 
The unit9s amplitude is taken from this waveform. 
(F) Centroid trajectory of the example waveform from 0.2 ms before the peak (bottom) to 0.5 ms after the peak (top), showing 
the average centroid (circle).  Travel direction and distance are calculated at each time point.  

To gain an intuition for these scores, consider 
their values for two example pairs of units. The 
first example involves two neighboring units rec-
orded on the same day (Figure 3A,B). Because 
they are near each other, they have high centroid 
similarity ÿ. However, their spike waveforms are 
not similar (low value of þ), and so are their spa-
tial decays (low value of Ā) and routes (low value 
of ý). As a result, the total similarity score ÿ is 
well below 1 (Figure 3C). Conversely, in the case 
of a single unit recorded in two different days we 
observed similar waveforms and trajectories 
(Figure 3D,E), with high values of most similarity 
scores and consequently a total similarity score ÿ 
near the maximal value of 1 (Figure 3F). 

Step 3: Putative matches 

We can now measure the total similarity score ÿ 
for each pair of units within and across days. ÿ 
tended to be high when applied to the same unit 
recorded across the two halves of a recording 
(main diagonal in Figure 3G).  

To identify putative matches, we defined a 
threshold as the value of ÿ above which there 

were more pairs of waveforms from the same 
unit (green curve in Figure 3H, top) than pairs of 
waveforms from neighboring units (average cen-
troid distance <50 μm, blue curve in Figure 3H, 
top) (Equation 28).  

The distribution of ÿ across days resembled the 
neighbor distribution measured within days (red 
curve in Figure 3H, bottom), with larger tail above 
the data-driven threshold. We thus select pairs 
with values of ÿ beyond this threshold as putative 
matches across days.  

Step 4: Drift correction 

First, we equalized the means of the distributions 
within and across days, to account for overall 
lower scores across days prior to drift correction. 
Then, we computed the median centroid dis-
placement of the population of the putative 
matches across days. After applying this rigid 
transformation to all parameters affected by po-
sition, we then recalculated all the values com-
puted in the previous three steps, thus finding a 
more robust set of putative matches. Results 
shown in Figure 3 are after this drift correction. 
Note that within-recording drift correction is 
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taken care of by the spike sorting algorithm we 
used. 

Step 5: Match probabilities 

Having used the total similarity score ÿ to iden-
tify putative matches (Figure 3H), UnitMatch 
then goes back to the individual similarity scores 
and uses their distributions to train a classifier. 
The total similarity score identifies putative 
matches (ÿ>threshold) and putative non-

matches (ÿ<threshold, Figure 3H). Plotting the 
distributions of the six similarity scores for these 
pairs reveals major differences (Figure 3I). Based 
on these distributions, we defined a naïve Bayes 
classifier (Equation 29), which takes as input the 
values of the six similarity scores for two spike waveforms and outputs the 8match probability9: 
the posterior probability of the two waveforms 
coming from the same unit. 

 
Figure 3. Computing similarity scores and setting up the classifier.  
(A) Average weighted waveform for the example unit in Figure 2 (black) and for a different unit (the nearest physical neighbor) 
from the same recording (blue).  
(B) Centroid trajectories for the two units.  
(C) The six similarity scores between the two units and their average, the total similarity score ÿ.  
(D-F) Same as (A-C), comparing the example unit (black) with the most similar unit across days (red), which was very likely the 
same neuron.  
(G) Total similarity score for all pairs of units within days (blue squares) and across days (red squares), for an example pair of 
recordings, showing the 1st half of each recording (columns) vs. the second half (rows). 
(H) Top: Distribution of total similarity scores in the two halves of a recording day, showing for the same units the two halves 
(green) and for other neighboring units (blue; centroid <50 μm away). Bottom: same, for units measured across days (red) after 
drift correction. The threshold for putative matching (dashed line) depends on the number of units and of recordings.   
(I) Probability densities of each similarity score, for putative matches (black) and for putative non-matches (gray).  
(J) Match probability computed by the naïve Bayes classifier trained with the probability distributions in (I). Format as in G. 
(K) Top: Distribution of match probabilities within two halves of the same day for same units (green) and neighbors (blue). 
Format as in H. Bottom same, for units recorded across days (red). If probability is >0.5, UnitMatch defines a pair as a match.
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This classifier correctly identified matches within 
a day and indicated that some pairs of units had a 
high probability of match across days. Within a 
day, matching probabilities were close to 1 for 
the same units measured in the first and second 
half of the recording (main diagonal in Figure 3J, 
green curve in Figure 3K, top), and were close to 
zero for neighboring units (blue in Figure 3K, 

top). Across days, most pairs of unit waveforms 
are also expected to come from different neurons, 
which is reflected in a large fraction of matching 
probabilities close to 0 (Figure 3K, bottom). How-
ever, a small proportion of unit pairs across days 
had a matching probability close to 1. These 
matches reflect units tracked across days. 

Performance metrics 

We first evaluated UnitMatch9s performance us-
ing the cross-validation of the units9 waveforms 
within days, and found low percentages of false 
positives and false negatives (Supplementary 
analyses, Figure S3A). From the maximum possi-
ble number of units recorded across two consec-
utive days, UnitMatch found 31.3 ± 11.2% (me-
dian ± m.a.d., n = 446 pairs of days) to be a match. 
Reassuringly, when we applied UnitMatch to 
acute recordings, where the probe was rein-
serted daily and had negligible chance of finding 
the same unit, finding a match was rare (4.0 ± 
2.8%, n = 18 pairs of consecutive days; Wilcoxon 
rank sum comparing chronic and acute: p < 10-10;  
Figure S3B). Note that this was when UnitMatch 
was pushed to find matches by pretending the 
probe was in the same location between the re-
cording sessions.  

Next, we compared the performance of 
UnitMatch to expert manual curation and to spike 
sorting performed on stitched recordings29,30. We 
found that UnitMatch performed more similarly 
to manual curation than to the sorting on stitched 
recordings (Supplementary analysis,  Figure S3C-
D). Sorting the stitched recordings with Kilosort 
tended to overestimate the number of matches 
across recordings, specifically for noisier da-
tasets. The higher similarity between UnitMatch 
and manual curation is reassuring because the 
latter is generally regarded more highly than au-
tomated spike sorting. However, neither can be 
considered ground truth. 

Validation with stable functional proper-

ties  

A more reliable estimate can be found by as-
sessing the stability of the neurons9 functional ac-
tivity. If this activity is found to be distinctive 
across neurons and stable across days, one can 
conclude that the tracking algorithm performed 
well. However, if the activity is found to change 
over days, then one cannot make such an infer-
ence. In our case, we found functional activity to 
be remarkably stable, yet distinctive across neu-
rons, and thus could use this stability to validate 
UnitMatch performance.  

We thus looked for functional 8fingerprints9, i.e., 
patterns of activity that are known to be distinc-
tive and are potentially stable across days. We considered three such fingerprints: a unit9s auto-correlogram (the correlation of the unit9s firing 
rate with its own firing rate at nearby 
times8,10,11,13,20,23,27,28), a unit9s response to a large 
set of visual stimuli (when the unit was in visual 
cortex27,28,30,31), and a unit9s population coupling 
(the correlation of its firing rate with the other 
units recorded at the same time11,23,42,43).  

The autocorrelogram (ACG) of tracked units re-
mained highly consistent across days. It has been 
used as a feature to track units across 
days10,11,13,20,27,28 or as a diagnostic of this track-
ing8,23. Accordingly, the ACGs were typically dif-
ferent for neighboring units but similar for units 
matched across days (Figure 4A), which are two 
properties that are necessary for a good finger-
print. In an example mouse, we observed that the 
distribution of correlation for a pair of ACGs com-
ing from matches across days was high (Figure 
4B), and to the same extent as cross-validated 
within-day comparisons. On the contrary, differ-
ent units had much lower ACG correlations.  

We quantified the separation of the distributions 
of the correlations of matched and non-matched 
pairs by computing the receiver operating char-
acteristic (ROC) curve (Figure 4C) and quantified 
the discriminability index as the area under the 
ROC curve (AUC). The AUC was high for this ex-
ample pair of days (0.76), suggesting that the 
value of the ACGs correlation for a pair was pre-
dictive of whether it was a match or not. This held 
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Figure 4. Validation with stable functional properties.  
(A) Autocorrelogram (ACG) of an example a unit and one of its neighbors (top) or its match on the next day (bottom).   
(B) Distribution of the ACGs correlation for pairs of waveforms coming from the same unit (green) or different units (blue) within 
days and matches across days (red). Data from two consecutive days in an example mouse.  
(C) Receiver operating characteristic (ROC) curves when classifying the ACGs correlations of the same vs. different units within 
days (green) or matching versus non-matching units across days (red). Data from two consecutive days in an example mouse. 
(D) Area under the curve (AUC) for many pairs of days, spaced by different amounts (red dots). The AUC of the same vs. different 
units within recordings is also shown (green). Stability was estimated with a linear fit (curve). The discriminability remained 
highly stable, even across months. Data from an example mouse. 
(E) AUC for many pairs of days, across many mice and recording locations. 
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(F) Comparison of the responses to natural images for a unit and one of its neighbors (top) or its match on the next day (bottom). 
The responses to the images were summarized by averaging over all images to obtain the time course (left) or averaging over 
time to obtain the responses to individual images (right). These two profiles were then concatenated to form a single fingerprint, 
which was compared across units. Images were ordered by decreasing response of the black unit. 
(G-J) Same as (B-E) but using the responses to natural images as a fingerprint. 
(K) Correlation of the firing rate of a unit with other units forming a reference population that was tracked across days using 
UnitMatch. The correlation of a unit (black), one of its neighbors (top, blue) or its match on the next day (bottom, red) is shown. 
The neurons in the reference population were ordered by decreasing correlation with the unit from day 1 (black).  
(L-O) Same as (B-E) but using the correlation with a reference population as a fingerprint. 

true even when increasing the number of days 
between recordings (Figure 4D), and across all 
mice (Figure 4E). On average, the AUC was 0.78 ± 
0.01 across days (0.80 ± 0.01 within days, mean ± 
s.e., n = 17 mice) and decayed slowly with each 
additional day between recordings (-0.003 ± 
0.049, median ± m.a.d., n = 17 mice). For the ex-
ample mouse, the AUC remained at 0.78 after 183 
days. 

Units in visual cortex that were tracked across 
two days also typically showed consistent re-
sponses to visual stimuli. Neurons in mouse vis-
ual cortex give distinctive responses to natural 
images, and these responses are reproduced 
across days27,28,30,31. Consistent with this, a typical <match= returned by UnitMatch across days gave 
similar responses to natural images on each day 
(Figure 4F). This set of responses provides a sig-
nature that was consistent both within and 
across days. In the example mouse, it yielded 
AUCs of 0.94 across days vs. 0.96 within days 
(Figure 4G-H). Similar results were seen across 
mice, with AUCs of 0.86 ± 0.02 vs. 0.90 ± 0.02 
(mean ± s.e., n = 10 mice). This held true even 
with long intervals between recordings (slope of 
-0.002 ± 0.009, median ± m.a.d., n = 10 mice, Fig-
ure 4I-J). For the example mouse, the AUC was 
still 0.70 after 183 days. 

Finally, the population coupling of tracked units 
was also highly consistent across days. The pop-
ulation coupling is the instantaneous correlation of a unit9s activity with the activity of other neu-
rons in the population11,23,42,43. The cross-correla-
tion of spikes of a unit to a population of refer-
ence units (tracked across the two days) was 
highly consistent across days (Figure 4K). This 
cross-correlation with a reference population provided a distinctive 8fingerprint9 that was 
highly correlated both within and across days 
(Figure 4L), and not for neighboring units. The 
discriminability of this measure was particularly 

high, with AUC indices close to 1 (0.96 across 
days vs. 0.98 within days), indicating that the 
pairs found by UnitMatch were indeed highly 
likely to be the same across days (Figure 4M). 
Again, this held true across mice (0.92 ± 0.01 vs. 
0.96 ± 0.01 across mice, mean ± s.e., n = 17 mice) 
and even across weeks and months (-0.006 ± 
0.030, median ± m.a.d., n = 17 mice), suggesting 
that the correlation patterns of the population of 
neurons were highly stable over time (Figure 
4N,O). For the example mouse, the AUC was still 
0.80 after 183 days. This fingerprint, along with 
the ACG, can be used in any region of the brain since it does not depend on the area9s responses 
to external stimuli. 

Using the stability of functional properties, we 
once more compared the performance of 
UnitMatch to running our spike sorting algorithm 
on stitched recordings. This time we ran both al-
gorithms on four concatenated recording ses-
sions and evaluated their accuracy using func-
tional measures. In line with the earlier curation 
results, there was a larger overlap between func-
tional response stability and UnitMatch than with 
spike sorting the concatenated data. This was es-
pecially the case with recording sessions further 
apart (Figure S3E-F).   

Tracking units across learning 

We have shown that UnitMatch can be used to 
track units across days, and this can be validated 
by stable functional scores. An important applica-
tion of this algorithm is to track units as their 
functional responses evolve over time, particu-
larly as a result of learning. To illustrate its poten-
tial, we applied UnitMatch to an exploratory da-
taset captured during a learning process. 

We trained a mouse (Table S1) in a visuomotor 
operant task and recorded neural activity in the 
dorsomedial striatum using a chronically im-
planted Neuropixels probe. After implantation, 
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the mouse was water-restricted and head-fixed 
in front of three screens with its forelimbs resting 
on a steering wheel. When the stimulus appeared 
on the left screen, moving the wheel clockwise 
moved the stimulus to the center, resulting in a 

sucrose water reward (Figure 5A). After each 
training day, we recorded passive responses to 
the presentation of the center stimulus. The 
mouse learned to correctly move the wheel over 
a two-day training period (Figure 5B). 

 

Figure 5 Tracking units across learning.  

(A) Task trial structure.  
(B) Fraction of correct trials as a function of training day (n=1 mouse).  
(C) Average baseline (-0.2-0 s before stimulus onset) normalized firing rate (dR/R) aligned to stimulus onset during passive 
viewing, sorted by training day (left: day 0, middle: day 1, right: day 2) for average population. Red line indicates stimulus onset.  
(D) Mean raw waveform for each training day for 3 example units (top: unit 1, middle: unit 2, and bottom: unit 3).  
(E) Same as C) but for three example units tracked across days by UnitMatch.  

We analyzed data recorded during passive view-
ing of the same set of stimuli on day 0 (pre-train-
ing), day 1 (after the first training session), and 
day 2 (after the second training session). Without 
tracking neurons, it is possible to demonstrate 
that responses to the target stimulus increase 
over learning (Figure 5C). However, using the 
UnitMatch pipeline as described here, we were 
able to track individual units over multiple re-
cording days (example units in Figure 5D). We 
found that responses of individual units to the 
target stimulus were highly variable. For 

example, some units (e.g., units 1 and 2) would 
not respond to the target stimulus prior to train-
ing, but developed a visual response with learn-
ing, either gradually (unit 1), or abruptly (unit 2). 
Conversely, other units (e.g., unit 3) initially had 
a strong visual response to the target, which de-
creased with learning.  

This proof of concept shows that UnitMatch is a 
promising tool to reveal invariance or plasticity 
in neural activity across days. 
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Discussion 

We have shown that UnitMatch can track popula-
tions of neurons across days in data obtained 
with high-density arrays such as Neuropixels 
probes. UnitMatch is highly scalable because it 
operates after spike sorting, and because it makes 
few assumptions: it uses only the average spike 
waveform of each unit, without knowledge of its 
spike train. Additionally, rather than giving a bi-
nary output, UnitMatch provides a matching 
probability. Our tests with Neuropixels record-
ings from various mouse brain regions indicate 
that it successfully tracks neurons across weeks, 
and that it compares favorably to manual cura-
tion and to spike sorting on concatenated ses-
sions.  

UnitMatch revealed that distinctive functional 
properties of each neuron – autocorrelation, re-
sponses to visual stimuli, and population cou-
pling – remain remarkably stable over days. Be-
cause these properties are highly distinctive 
across neurons, their stability is not only of inter-
est by itself, but also indicates that UnitMatch in-
deed finds the same neurons across days. The 
population coupling fingerprint, especially, was 
highly accurate and could be used across various 
brain areas, without the need of any external 
stimuli. Using these functional metrics, we 
showed that UnitMatch performed better than 
spike sorting on concatenated recordings on long 
time scales.  

Since functional properties of neurons are so sta-
ble over time, it is tempting to use functional 
properties themselves to track neurons. How-
ever, this would prevent any evaluation of the 
variation in functional properties across time, 
and such a variation has been documented4,5,20. 
For example, the slow decrease in AUC values 
that we observed across days could be explained 
either by a decrease in the quality of matching, or 
changes in functional properties of the units. 
Therefore, unless there is reason to believe that 
the functional properties are constant9,17,31, it is 
prudent to exclude these properties from the cri-
teria that determine the tracking of units, and 
only consider them as a possible valida-
tion11,15,16,19,30 or as a separate ques-
tion6,7,21,22,25,31,32. UnitMatch operates exclusively 

on the units9 waveforms and thus avoids circular-
ity when addressing such questions. To illustrate 
this, we also tracked units that changed their 
functional responses over learning. 

Though UnitMatch could track the same units 
over months, the number of units that were 
tracked declined with time. This decline could de-
rive from numerous sources independent of the 
algorithm, such as a decline in recording quality, 
accumulation of uncorrected drift across record-
ings, neurons becoming silent or dying, or 
changes in waveform properties. Indeed, tracking 
of units was more stable when recordings were 
more stable, suggesting recording quality and 
drift are partially responsible (Figure S5). Ideally, 
further work will reveal the contribution of each 
of these factors to the quality of the tracking. 

Taken together, these findings show that chronic 
high-density recordings and UnitMatch com-
bined are a powerful tool to characterize neural 
activity spanning a multitude of brain regions and 
time scales, such as memory, learning, and aging.  
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Experimental methods 

Experimental procedures were conducted at UCL according to the UK Animals Scientific Procedures Act 
(1986) and under personal and project licenses released by the Home Office following appropriate ethics 
review. 

Mice 

We analyzed the data from 18 chronically implanted mice. During the experiments, mice were typically 
head fixed and exposed to sensory stimuli, engaged in a task, or resting. The mice were recorded from 
different experimental rigs, implanted, and recorded by different experimenters using different devices 
(Table S1).  

Surgeries and implants 
Headplate surgery 
A brief (around 1 h) initial surgery was performed under isoflurane (1–3% in O2) anesthesia to implant 
either a titanium headplate (~ 25 × 3 × 0.5 mm, 0.2 g in the case of the Apollo implant) or a steel headplate 
(~ 25 × 5 × 1 mm, xx g in the case of the Ultralight and Cemented implants). In brief, the dorsal surface of 
the skull was cleared of skin and periosteum. A thin layer of cyanoacrylate was applied to the skull and 
allowed to dry. Thin layers of UV-curing optical glue (Norland Optical Adhesives #81, Norland Products) 
were applied and cured until the exposed skull was covered. The head plate was attached to the skull 
over the interparietal bone with Super-Bond polymer. In one mouse (ID 2/19), a silver wire was im-planted in the mouse9s skull in order to ground the mouse during recordings. After recovery, mice were 
treated with carprofen or meloxicam for three days, then acclimated to handling and head-fixation. Mice 
were then implanted with either a modular recoverable38, Ultralight or cemented implant (see below). 
Briefly, craniotomies were performed on the day of the implantation, under isoflurane (1–3% in O2) an-
esthesia, and after injection of Colvasone and Rimadyl. The UV glue was removed, and the skull cleaned 
and scarred for best adhesion of the cement. The skull was levelled, before opening the craniotomies 
using a drill or a biopsy punch. Once exposed, the brain was then covered with Dura-Gel (Cambridge 
Neurotech).   
 
Cemented implant 

The data from four animals was already published30. In short, these four animals were implanted by hold-
ing and inserting the probes using a cemented dovetail and applying dental cement to encase the probe 
PCB and reliably attach it to the skull. The recordings were made in external reference mode, using the 
Ag wire or the headplate as the reference signal. 
 
Recoverable modular implants 
Three different recoverable, modular implants were used. The methods for the Apollo implant38 and the 8Haesler9 implant30,37 have been described in their respective papers. The third implant (8Isogai9 implant) 
is conceptually similar. In short, the implant was held using the 3D-printed payload holder and positioned 
using a micromanipulator (Sensapex). After carefully positioning of the shanks at the surface of the brain, 
avoiding blood vessels, probes were inserted at slow speed (3-5 µm/s). Prior to surgery, the probes were 
coated with DiI by either manually brushing each probe with a droplet of DiI or dipping them in directly 
in DiI, for histological reconstruction. Once the desired depth was reached (optimally just before the 
docking module touched the skull), the implant was sealed using UV glue, then covered with Super-Bond 
polymer, ensuring that only the docking module was cemented. After finishing all recording sessions, the 
probes were explanted and cleaned before reusing. The recordings were made in external or internal 
reference mode, using the headplate as the reference signal. 
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Ultralight implant 

To record chronically while a mouse (ID 19) learned a task and up to 3 probes simultaneously, we devel-
oped an ultralight implant (https://github.com/Julie-Fabre/ultralight_implant). Briefly, an implant was 
constructed using between 1 to 3 Neuropixels probes encased in rigid-resin K custom-made 3D printed 
parts. A thin square of sorbuthane sheet was added to the front of the implant. Special care was taken to 
ensure all shanks were parallel to each other and to the implant. This implant was then slowly lowered 
into the brain. At the target depth, the implant base was covered in vaseline to protect the shanks from 
subsequent cement applications. We then applied cement to the implant and mouse skull. To explant, we 
carefully drilled the implant out in the areas where Vaseline had been applied.  

Data processing 

Electrophysiology data were acquired using SpikeGLX (https://billkarsh.github.io/SpikeGLX/) and each 
session was spike sorted with Kilosort40 (Table S1). Data were preprocessed using 8ExtractKi-

losortData.m9, meaning that all relevant information was extracted (e.g., positions of recording sites, in-
formation on extracted clusters and their spike times) and common noise was removed. Well-isolated 
units were selected using Bombcell (https://github.com/Julie-Fabre/bombcell, using parameters defined 
in bc_qualityParamValuesForUnitMatch.m). For each session the average waveform on every recording site for each unit was extracted, either through Bombcell or through Unitmatch9s 8ExtractAndSaveAver-
ageWaveforms.m9.   

Input to the core of UnitMatch, which is matching units purely based on waveforms, was information on 
the clusters, at least 1) cluster identity, 2) a Boolean on which clusters to include – typically well isolated 
units, 3) which recording session it was recorded in, and 4) on which probe it was recorded. Additionally, 
it requires parameters (we used default parameters available using 8DefaultParametersUnitMatch.m9), 
containing information on where to find the raw waveforms.    

Example analysis pipelines from raw electrophysiology recorded using SpikeGLX all the way to using and 
validating UnitMatch are provided in the UnitMatch repository. A minimal use case scenario is also pro-
vided in 8DEMO_UNITMATCH.m9, which is also useful for electrophysiological data recorded and prepro-
cessed using other probes and software.   

Supplementary Information 

Mathematical definitions 

We consider recordings made in a probe with þ sites, and we denote with �ý the position of site s (a 
vector with the x,y coordinates). For every neuron ÿ we denote the spike waveform at site ý and at time þ 
as Āý,þ,ÿ (averaged across n spikes of that neuron). 

Step 1: Waveform parameters 

Some useful summaries of the spike waveform include the spatial footprint: Āý,ÿ∗ = maxþ (|Āý,þ,ÿ|) Equation 1 

and the maximum site ýÿ∗  where the voltage has maximum amplitude: ýÿ∗ = argmaxý (Āý,ÿ∗ ) Equation 2 

Most analyses are performed in a time window of size ÿ samples starting 0.23 ms before the waveform 
reaches its peak and ending 0.50 ms after the peak. To establish a baseline noise level, we used a window 
of same duration starting 1.33 ms before waveform onset.  
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The spatial decay of the waveform is the degree to which the waveform9s maximum amplitude at site ý 
decreases as a function of distance from the peak site, |ý 2 ýÿ∗|. To describe it, we fit an exponential decay 
function (Figure 1C) with scale �ÿ such that: Āý,ÿ∗ ≈  �ÿ exp(2�|�ý 2 �ýÿ∗|) Equation 3 

and we use this fit to obtain the distance at which the amplitude drops to 10% of maximal value, þ10 =log(10) /�. For further analysis we only take recording sites into account with distance to ýÿ∗ < þ10. 

The centroid trajectory of neuron ÿ is (Figure 1F): 

�þ,ÿ = 3 Āý,þ,ÿ�ýý3 Āý,þ,ÿý  
Equation 4 

and its travel direction at each time t is: 

�þ,ÿ =  tan21 |āþ,ÿ 2 āþ+1,ÿ||Ăþ,ÿ 2 Ăþ+1,ÿ| Equation 5 

xt,i and yt,i being the components of �þ,ÿ.  

The neuron9s average centroid (Figure 1F) is: 

�ÿ∗ = 3 Āý,ÿ∗  �ýý3 Āý,ÿ∗  ý  
Equation 6 

To calculate a neuron9s average waveform, we start by computing the proximity �ý,ÿ of each site ý to the 

centroid of the neuron �ÿ∗ 

�ý,ÿ  = 1 2  |�� 2 �ÿ∗|þ10  
Equation 7 

where þ10 is the distance where amplitude drops to 10% (or 150 μm if that distance is larger). At sites 
that are further away (were �ý,ÿ would be negative) we set �ý,ÿ = 0. We then calculate the unit9s spatial decay as the average decrease in amplitude divided by increase in 
distance for all sites closer than þ10 (Figure 2) 

þÿ = 1þ ∑ Āýÿ∗,ÿ∗ 2 Āý,ÿ∗|��ÿ∗ 2 �ý|ý≠ýÿ∗  
Equation 8 

We then compute the neuron9s weighted-average waveform Ā̅þ,ÿ (Figure 2E) as  

Ā̅þ,ÿ = 3 �ý,ÿ ý Āý,þ,ÿ3  �ý,ÿ ý  
Equation 9 

We use this waveform to compute the weighted amplitude of the neuron9s spike: þÿ = maxþ (|Ā̅þ,ÿ|) Equation 10 

When comparing waveforms between units we normalize Ā̅ to obtain 

Ā̂þ,ÿ =  Ā̅þ,ÿ 2 minþ Ā̅þ,ÿmaxþ Ā̅þ,ÿ 2 minĀ̅þ,ÿþ  
Equation 11 
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Step 2: Similarity scores 

Based on these parameters, we next compute similarity scores for each pair of units ÿ and Ā. These scores 
are scaled between 0 and 1, with 1 being the most similar. For most similarity scores, we do <0-99 scal-ing=: we rescale the similarity scores so that the minimum is 0 and the 99th percentile is 1. If ÿÿ,Ā is the 

similarity score between units ÿ and Ā, its 0-99 scaling is: 

|ÿÿ,Ā|99 =  �99(ÿ) 2 ÿÿ,Ā�99(ÿ) 2  �0(ÿ) 
Equation 12 

where ��(ÿ) is the K-th percentile of X. For similarity scores above the 99th percentile, we clip the score 
to 1.  

We used two types of similarity scores: those based waveform timecourses and those based on waveform 
trajectories.  

Amplitude similarity 

We compute the difference in maximum amplitude between each unit ÿ and Ā, and we apply 0-99 scaling 
to its square root: �ÿ,Ā = |√|þÿ 2 þĀ||99 Equation 13 

Decay similarity 

We compute the difference in spatial decay and we apply 0-99 scaling to it: Āÿ,Ā = ||þÿ 2  þĀ||99 Equation 14 

Waveform similarity 

We compute the Euclidean distance between the waveforms, and we apply 0-99 scaling to it: āÿ,Ā =  |+(Ā̂þ,ÿ 2 Ā̂þ,Ā)2,þ1/2|99 Equation 15 

We also compute the correlation between the waveforms and apply Fisher9s z-transformation and 0-99 
scaling to it: ÿþ,ÿ = Ā̅þ,ÿ 2 +Ā̅þ,ÿ,þ  �ÿ,Ā = +ÿþ,ÿ  ÿþ,Ā,þ:+ÿþ,ÿ2 ,þ +ÿþ,Ā2 ,þ 

Equation 16 

ýÿ,Ā = |1 2 log ( 1 + �ÿ,Ā1 2  �ÿ,Ā)|99 
Equation 17 

Empirically, we found both measures (distance and correlation) to be informative. Of course, they are 
also highly correlated with each other (Figure S2B). This correlation poses problems for a naïve Bayes 
decoder. To take them both into consideration, we defined 8waveform similarity9 as their average.  þÿ,Ā = (āÿ,Ā  +  ýÿ,Ā)/2 Equation 18 

Centroid similarity 

We compute the mean absolute distance between two centroids and then we rescale it to obtain a meas-
ure of proximity that is 1 if centroids are identical and 0 if they are further than þÿ�� = 100 μm: þÿ,Ā =  +|�þ,ÿ 2  �þ,Ā|,þ Equation 19 
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ÿÿ,Ā =  [ þÿ�� 2  þÿ,Ā þÿ�� 2  minÿĀ þ]+ 

Equation 20 

Units that are further apart than ýþÿ�� are unlikely to be a match, even when considering drift between 
recordings.        

Volatility similarity 

If some of the drift remains uncorrected, a unit that appears in two recordings may have centroid trajec-
tories that are identical but displaced by a constant shift. To correct for this, we subtracted the average 
centroid (Equation 6) from the centroid trajectory (Equation 4) for each unit and computed their simi-
larity Ăÿ,Ā across units as in Equation 19 and Equation 20. Ăÿ,Ā = |+|(�þ,ÿ 2 �ÿ∗ ) 2 (�þ,Ā 2 �Ā∗)|,þ|99 Equation 21 

We also compute the standard deviation in Euclidean distance between centroids, and apply 0-99 scaling 
to it: þÿ,Ā = | +(|�þ,ÿ 2  �þ,Ā| 2 þÿ,Ā)2, þ1/2|99  Equation 22 

Since Ăÿ,Ā and Sÿ,Ā are highly correlated (Figure S2B), we averaged these two scorers to  

centroid 8volatility9 similarity: ýÿ,Ā = (Ăÿ,Ā  +  Sÿ,Ā)/2 Equation 23 

Route similarity 

We compute the summed difference in direction (angle) of the centroid trajectory, and apply 0-99 scaling 
to it: �ÿ,Ā = |+�þ,ÿ 2 �þ,Ā,þ|99 Equation 24 

Additionally, we compute the distance travelled by the centroid between each time point of the trajectory 
and compare the differences between each pair of units ÿ and Ā, and apply 0-99 scaling. 

�̂ÿ,Ā = |:∑ ||�þ+1,ÿ 2  �þ,ÿ| 2 |�þ+1,Ā 2  �þ,Ā||þ∈� |99 

Equation 25 

The final route similarity  ýÿ,Ā = (�ÿ,Ā + �ÿ,Ā)/2 

 

Equation 26 

Default similarity scores 

Before settling on this set of default similarity scores, we evaluated the performance of other scores (Fig-
ure S2). For each set of scores, we computed the AUC value in classifying whether two waveforms came 
from the same unit or not (Figure S2A). This process led us to consolidate similarity scores that were 
highly correlated with each other (Figure S2B). Note that, based on within day cross-validated perfor-
mance, a user of UnitMatch will be advised what similarity scores to use for every individual dataset. In 
this paper, we only used default parameters and scores. 
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Step 3 and 5: Identifying matches 

Having defined these six similarity scores for each pair of units ÿ and Ā, we averaged them to obtain a total 
score: ÿÿ,Ā = (�ÿ,Ā + ýÿ,Ā + þÿ,Ā + ÿÿ,Ā + Āÿ,Ā + ýÿ,Ā)/6 Equation 27 

We define preliminary class (ý) between two units as: 

{ý = 1 if ÿÿ,Ā > ÿP(�ÿ,Ā=0)else ý = 0  
Equation 28 

In which ÿP(�ÿ,Ā=0) is defined by finding where the probability distributions of ÿÿ,ÿ and ÿÿ≠Ā (neighbors 

within days) cross. In the case of overall lower scores across days (e.g. due to uncorrected drift) we low-
ered the threshold by the difference in means (by fitting a normal distribution) for the within day distri-
bution (blue and green curves combined in Figure 3H, top) and the across days distribution (red curve in 
Figure 3H, bottom). 

We use the preliminary class labels to build the probability distributions for the similarity scores as de-
fined above, and use these to compute the probability of a match between units i and j as 

�(ýÿ,Ā = 1|�ÿĀ) =  
P(ýÿ,Ā = 1) / P(ā�|ýÿ,Ā = 1)Ā�=13 P(ýÿ,Ā = ā) / P(ā�|ýÿ,Ā = ā)Ā�=1ā  

Equation 29 

Functional scores 

To evaluate UnitMatch performance, we determined various functional scores of neuronal activity.  

Autocorrelogram fingerprint 

For each neuron ÿ with spike train ÿÿ,þ we compute the autocorrelogram �ÿ  of elements þÿ,ý as the average 

number of spikes/seconds around a spike at defined time intervals � (1ms bins, 1 second duration cen-
tered on the spike).   þÿ,ý =  +ÿÿ,þÿÿ,þ+�,þ/� Equation 30 

The autocorrelogram �ÿ  was then use as the first functional fingerprint.  

Natural image responses fingerprint 

To characterize the functional responses of the neurons in visual cortex, we showed 112 natural images, 
each presented 5 times in a random order, to the head-fixed mice 30. Two versions of the protocol were 
used, one long (1s-stimulus, 2s-intertrial interval), and one short (0.5s, 0.8s), without affecting the overall 
reliability of the fingerprints. To define the fingerprint, we computed the responses as the peristimulus 
histograms locked on the image onset (0.3s before and 0.5s after) and the image offset (from 0 to 0.5s 
after), using 5ms bins. The response ýÿ,þ,ý for each unit ÿ and stimulus ý were then defined as the concat-

enation of the onset and offset matrices along their temporal dimensions. Finally, two fingerprints were 
obtained by looking both at the average time course: �ÿ,þ =  +ýÿ,þ,ý,ý 

 

Equation 31 

And the average response to each image: �ÿ,ý =  +ýÿ,þ,ý,þ Equation 32 

We then concatenated the vectors of elements �ÿ,þ and �ÿ,ý for each unit ÿ to obtain its second functional 

fingerprint. 
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Cross-correlation fingerprint 

We finally computed the correlation of each unit with a reference population of units that was tracked 
across days. For each day þ, we first binned the spiking activity of each unit across each half of the session 
using bins of 10 ms. Then, we computed the cross-correlation of each unit with every unit that was found 
to be tracked across days, yielding vectors ÿÿof elements ýÿ,Ā  corresponding to the instantaneous correla-

tion coefficient of unit ÿ with unit Ā. The value of the correlation of one unit with itself if the unit was part 
of the reference population was set to NaN. These vectors ÿÿ were finally used as the third functional 
fingerprint. 

Fingerprint stability 

The assess the similarity þÿ,Ā,�1,�2  of the fingerprints of the units i and j across two days þ1 and þ2, we first 

computed the fingerprints separately for both halves of the recording sessions, yielding two fingerprints �ÿ,�1,1 and �ÿ,�1,2 for each unit. Then, we computed the correlation of the fingerprint of units ÿ and j across 

the two days and using different halves: þÿ,Ā,�1,�2 =  corr(�ÿ,�1,1, �Ā,�2,2) Equation 33 Using two different halves allowed use to compute the fingerprint9s reliability when þ1 = þ2. 
ROC and AUC 

To quantify the amount of information present in the distributions of the correlations of the fingerprints, 
we computed the Receiver Operating Characteristic (ROC) curve for different populations of pairs: pairs 
coming from the same units, or different units within days, or pairs coming from putative matched units, 
or non-matched units, across days. We then computed the area under the ROC curve (AUC) to quantify 
this difference between distributions.  

Only sessions with at least 20 matched units were taken into consideration. Moreover, in the case of the 
natural images responses fingerprint, these 20 units had to be reliable on the first day (test-retest relia-
bility of the fingerprint > 0.2). For each mouse, the AUCs were then averaged across recordings locations. 
Similarly, the slope of AUC vs. days was computed for each recording location, and all slopes for each 
mouse were then averaged. Statistics were performed across animals. 

Supplementary analyses 

Validation using alternative approaches 

As a sanity check, we asked how UnitMatch performed in matching units recorded in two halves of a 
single recording session. These are units that were assessed to be the same across the two halves by the 
spike sorting algorithm (in our case, Kilosort). Consistent with the way the classifier was trained, 
UnitMatch tended to agree with the algorithm on these within-day matches (Figure S3A). Indeed, disa-
greements were rare: in 10 recordings spike-sorted individually, UnitMatch found 0.3±0.3% unexpected 
matches and 3.7±1.5% unexpected non-matches (Figure S3A). These might represent false positives and 
false negatives by UnitMatch, but they may also indicate mistakes by the spike sorting algorithm, which 
might have split a single unit in two, or misidentified a noisy trace or multiunit activity as a single unit. To evaluate UnitMatch9s performance across days, we compared its output to a standard approach: run-
ning the spike sorter on the concatenated recordings29,30. We then ran UnitMatch directly on Kilosort9s 
output and compared the decisions of the spike sorter vs. UnitMatch. Running UnitMatch on the output 
of concatenated Kilosort yielded similar levels of unexpected matches (0.4±0.4%, N=5 mice, each two 
recordings) and non-matches (5.8±3.3%) within days as when the recordings were sorted separately 
(Figure S3A). Across days, 34.4±22.7% of units that were identified as the same unit by Kilosort were not 
identified as matches by UnitMatch. This is a substantial difference, but it bears remembering that spike 
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sorting algorithms have their own biases. We thus next asked whether UnitMatch agrees with human 
curation.  

We compared results from UnitMatch to the judgment of five expert curators. These curators were asked 
to judge whether pairs of waveforms belonged to the same unit (Figure S4). The pairs were shown in 
random order, drawn from two sets: matching pairs (as identified by UnitMatch or by the spike sorting 
algorithm) within and across days and an equal number of non-matching pairs. The curator was not told 
the identity of the pair and was not given feedback. The results show that human curators performed 
similarly to UnitMatch (Figure S3C-D). Both the curators and UnitMatch were generally more conserva-
tive than Kilosort (run on concatenated files) in calling a pair a match. In line with this, there was a larger 
overlap between matches made by UnitMatch, and pairs with stable functional scores. Especially with 
larger gaps between recordings, the stitched Kilosort method would overestimate the number of matched 
units between recordings compared to UnitMatch and stable functional scores (Figure S3E-F). 

Matching success depends on unit 8quality9 
There was quite a large variability in matching success across days, and we wanted to know to what 
extent this could be explained by other variables than the validity of UnitMatch. Our suspicion was that 
the quality of the data would be an important predictor on the number of matches. We therefore looked 
at the predictive value of different quality measures (Bombcell output;  Fabre et al., 2023) on whether a 
match could be found for units included in our analysis. Area under the curve (AUC) of a receiver operat-
ing characteristic (ROC) analysis showed that indeed matching success depends on quality of the units, 
such as the number of (missing) spikes (Figure S5A-C), refractory period violations (Figure S5D), baseline 8flatness9 (Figure S5E), peak amplitude (Figure S5F), and the amount of drift (Figure S5G) (AUC distribu-
tion significantly different from 0.5, t-tests, p<0.01). Surprisingly, matching success also depends on 
waveform duration (Figure S5H) and the number of peaks (Figure S5I), giving us direction in how to 
improve UnitMatch further in the future. Other quality measures, such as (Figure S5J-K) did not play a 
significant role (AUC not significantly different from 0.5). 
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Supplementary Figures 

 
Figure S1. Bombcell output distributions for an example dataset. 

(A-L) For all the units in an example dataset (Mouse ID 1, Table S1) we measured 12 parameters. Each panel shows the number 
of units that passed (green section of the abscissa) or did not pass (red section) the selection based on that parameter.  The 
parameters are: (A) Number of detected peaks. (B) Number of detected throughs. (C) Somatic waveform. (D) Estimated percent-
age of refractory period violations. (E) Estimated percentage of spikes below the spike sorting algorithm's detection threshold, 
assuming a Gaussian distribution of spike amplitudes. (F) Total number of spikes. (G) Mean raw absolute waveform amplitude 
(μV). (H) Spatial decay slope (fit). (I) Waveform duration (µs). (J) Waveform baseline 8flatness9, defined as the ratio between the 
maximum value in the waveform baseline and the maximum value in the waveform. (K) Presence ratio (of total recording time), 
defined as the fraction of bins that contain at least one spike. (L) Signal-to-noise ratio.  
(M) Waveforms of units that survived all quality metrics thresholds.  
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Figure S2. Similarity scores.  
(A) Area under the curve (AUC) for a receiver operating characteristic (ROC) classifying same units versus neighboring units. 
Large AUC values indicate that the similarity score is very informative in telling whether two waveforms come from the same 
unit versus whether that is not the case.  
(B) Cross-correlation between each pair of similarity scores. The diagonal shows histograms for the individual scores. When two 
parameters were very informative (large AUC scores) but correlated, we averaged them together (e.g., waveform similarity is 
the average of waveform MSE and waveform correlations).  
(C) Individual similarity scores (thresholded at same prior as total score).  
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Figure S3. UnitMatch performance. 

(A) Left: Zoom in on Figure 2J on some units along the main diagonal. On the diagonal we expect p(match) to be close to 1, off 
diagonal we expect p(match) to be close to 0.  Right: Unexpected matches (%) and nonmatches (%) by UnitMatch relative to 
units that were defined as good single units within a day by Kilosort. UnitMatch was either run on individually sorted data (cir-

cles), or on concatenated data (squares). Colors depict individual mice, and refer to colors in (C).  
(B) Pairs of consecutive recording days (%) for acute (gray) and chronic (black) recordings as a function of the percentage of 
tracked units. The percentage of tracked units is defined as the number of matched units between two consecutive recording 
days divided by the number of units on the recording day with the least recorded units.  
(C) Venn diagrams for five individual mice illustrating the overlapping pairs of units assigned as 9match9. For some data sets all 
three methods (Kilosort, UnitMatch, and curation) largely agreed, whereas for other datasets the three methods did not agree. 
In that case, Kilosort typically assigned more pairs as a match than the other two methods.  
(D) Units matched within or across two (concatenated) consecutive days by UnitMatch (left) and Kilosort (right) for five mice. 
Dark parts of the bars show the overlap with curated matches, light parts of the bar the matches additionally made by the re-
spective algorithm.  
(E) Number of units matched across many (concatenated) days (x-axis) by UnitMatch (left) and Kilosort (right). The overlap with 
stable reference population correlations is shown (most stable pairs only). Four recordings were stitched together for one mouse 
(ID 1).  
(F) same as (E) but showing the overlap with stable natural image responses (most stable pairs only). 
Note that in (E) and (F) the criteria for a unit to be labeled as <stable= are highly stringent (a unit9s fingerprint on day 1 must be 
best correlated with its fingerprint on day n, above all other units).  
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Figure S4. Expert curation.  
Five expert curators were asked to judge whether two waveforms came from the same unit using a figure like this. Example 
BlindID 12: 8black9 and 8gray9 unit.  
(A) Average waveform across recording sites.  
(B) Maximum recording site indicated (note, they overlap) on a 4-shank Neuropixels.  
(C) Centroid trajectories.  
(D) Average waveforms.  
(E) Normalized waveforms (peak to base stretching).  
(F) Same as (C) but shown next to each other for blue and cyan unit.  
(G) Spike times (x-axis) versus amplitude (y-axis), with the amplitude distribution next to it. Note that the amplitudes for 8gray9 
are drawn above 8black9 for visibility.  
(H) Autocorrelogram.  
(I) Inter spike interval distribution.  
(J) Reference population cross-correlation, which was 1 for this specific pair.  
(K) reference population cross-correlation values between this pair of units (black line), relative to other possible pairs of units 
(distribution). Rank 2 means this cross-correlation value is the second highest of all possible pairs.  
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Figure S5. Quality metrics significantly predict whether UnitMatch can find a match for a unit.  

An AUC can be computed for each quality metric to quantify whether this metric differs across matches and non-matches. Each 
plot shows the distribution of AUC values and the median AUC value, across all datasets. (A) spikes missing, (B) number of spikes, 
(C) presence ratio, (D) number of refractory period violations, (E) baseline 8flatness9, (F) peak amplitude, (G) amount of drift, (H) 
waveform duration, (I) number of peaks, (J) spatial decay slope, and (K) signal-to-noise ratio. Distributions for A-I were signifi-
cantly different from 0.5 (t-test, p<0.01), suggesting these quality metrics have predictive power on whether a unit is likely to be 
matched with another unit. Distributions for J and K were not significantly different from 0.5.  
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ID IMPLANT  PROBE TYPE REGIONS KILOSORT EX.  FIG 4E,O FIG 4J FIG 5 S3 

1 Cemented Npx 2.0 (4s) V1, HC pyKS x x x 
 

x 

2 Ultralight Npx 1.0 DMS pyKS 
    

x 

3 Apollo Npx 2.0 (4s) x2 RSP, SC pyKS 
 

x 
  

x 

4 Apollo Npx 2.0 (4s) V1, HC, THAL pyKS 
 

x 
  

x 

5 Apollo Npx 2.0 (4s) V1, HC pyKS 
 

x x 
 

x 

6 Cemented Npx 1.0 V1, HC pyKS 
 

x x 
  

7 Cemented Npx 2.0 (1s) V1, HC pyKS 
 

x 
   

8 Cemented Npx 2.0 (4s) V1, HC pyKS 
 

x x 
  

9 Apollo Npx 2.0 (4s) x2 FR, STR pyKS 
 

x 
   

10 Apollo Npx 2.0 (4s) x2 FR, STR pyKS 
 

x 
   

11 Isogai Npx 1.0 V1, HC pyKS 
 

x x 
  

12 Isogai Npx 1.0 V1, HC pyKS 
 

x x 
  

13 Isogai Npx 1.0 V1, HC pyKS 
 

x 
   

14 Haesler Npx 1.0 V1, HC pyKS 
 

x x 
  

15 Apollo Npx 2.0 (4s) V1, HC pyKS 
 

x x 
  

16 Apollo Npx 2.0 (4s) V1, HC pyKS 
 

x x 
  

17 Apollo Npx 2.0 (4s) V1, HC pyKS 
 

x 
   

18 Apollo Npx 2.0 (4s) V1, HC pyKS 
 

x x 
  

19 Ultralight  Npx 1.0 DMS KS2 
  

x 
 

Table S1. Information on animals, implants, and software used. For every animal (ID) we specify what type of implant was 
used, what probe type of Neuropixels (Npx) probe was used and how many, and which areas the implant reached. We also 
specify the Kilosort algorithm used for preprocessing.  
pyKS: https://github.com/MouseLand/pykilosort. We used the 8develop9 branch.   
KS2: https://github.com/MouseLand/Kilosort/releases/tag/v2.0, which was first preprocessed using CatGT: 
https://github.com/billkarsh/CatGT.  
Abbreviations: V1: primary visual cortex, HC: hippocampus, DMS: dorsomedial striatum, RSP: retrosplenial cortex, SC: superior 
colliculus, THAL: thalamus, FC: frontal cortex, STR: striatum. Mouse ID 1 was used for all example figures (Ex.) including Fig. 
4A-D,F-I,K-N. All mice in Fig. 4E,O were also used in figure S5. Note: mouse 2 and 19 are the same mouse, preprocessed differ-
ently.  
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