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Abstract

Background: Processing raw genomic data for downstream applications such as imputation,
association studies, and modeling requires numerous third-party bioinformatics software tools. It
is highly time-consuming and resource-intensive with computational demands and storage
limitations that pose significant challenges that increase cost. The use of software tools
independent of one another, in a disjointed stepwise fashion, increases the difficulty and sets forth
higher error rates because of fragmented job executions in alignment, variant calling, and/or build
conversion complications. As sequencing data availability grows, the ability of biologists to
process it using stable, automated, and reproducible workflows is paramount as it significantly

reduces the time to generate clean and reliable data.

Results: The /liad suite of genomic data workflows was developed to provide users with seamless
file transitions from raw genomic data to a quality-controlled variant call format (VCF) file for

downstream applications. Iliad benefits from the efficiency of the Snakemake best practices
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framework coupled with Singularity and Docker containers for repeatability, portability, and ease
of installation. This feat is accomplished from the onset with download acquisitions of any raw
data type (FASTQ, CRAM, IDAT) straight through to the generation of a clean merged data file
that can combine any user-preferred datasets using robust programs such as BWA, Samtools, and
BCFtools. Users can customize and direct their workflow with one straightforward configuration
file. Iliad is compatible with Linux, MacOS, and Windows platforms and scalable from a local

machine to a high-performance computing cluster.

Conclusion: /liad offers automated workflows with optimized time and resource management that
are comparable to other workflows available but generates analysis-ready VCF files from the most
common datatypes using a single command. The storage footprint challenge of genomic data is
overcome by utilizing temporary intermediate files before the final VCF is generated. This file is
ready for use in imputation, genome-wide association study (GWAS) pipelines, high-throughput
population genetics studies, select gene candidate studies, and more. Iliad was developed to be
portable, compatible, scalable, robust, and repeatable with a simplistic setup, so biologists who are
less familiar with programming can manage their own big data with this open-source suite of

workflows.

Keywords: Genomics, Genetic data, Pipeline, Snakemake, Workflow, Genome mapping, Variant

calling, Iliad

Background

It is estimated that genomics research will produce approximately 40 exabytes of data within

this decade alone [1]. Genomic data processing is paramount to deciphering functional
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information, particularly through the identification of candidate trait and disease-associated
genetic variants within population data that are highly relevant in clinical, forensic, and other
biological fields of research. Genome-wide association (GWA) and candidate gene studies in
particular continue to pave the way toward our understanding of human health and disease [2, 3].
These computational studies require genotypic information derived from a number of platforms
and data types such as microarray and sequence data, but the files obtained from these platforms
require significant computational resources to perform format conversions before analyses can
even take place. For example, when a researcher receives single nucleotide polymorphism (SNP)
array data generated from a commercial platform (i.e., [llumina) each sample’s BeadArray data is
stored in the form of green and red IDAT files. The decryption of the stored summary intensities
for every probe type on an array must be performed using proprietary software, either the Illumina
Array Analysis Platform Genotyping Command Line Interface (IAAP-CLI) or GenomeStudio
programs (Illumina, Inc. San Diego, CA, USA) which can be labor intensive, as processing is
limited to the number of samples in a single sample sheet [4]. Each program introduces steps that
may impede researchers without a computational background from working with their own big

data.

Next-generation sequencing is responsible for another source of genomic data that is on a
larger scale. Sequence data, whether open source or provisional access, has a foray of different file
types including raw sequence FASTQ files and highly compressed alignment (CRAM) files. These
files are unreadable using standard text editors and software and therefore require several
computationally intensive steps including alignment, variant calling, ID tagging, and
sample/dataset file consolidation before investigators can include them in their analyses. At

present, there are several standardized reference population datasets available. A few of the most


https://doi.org/10.1101/2023.10.11.561910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561910; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 4 of 35
popular include 1000 Genomes Project [5], Human Genome Diversity Project [6] (HGDP), and
Simon Genome Diversity Project [7]. Although this sequence data is open source, it requires hours
of processing before use, leading to delays that can impact research. Lower costs in wet laboratory
sequencing consumables and SNP arrays have also opened the door towards in-house data
preparation for researchers interested in using sample sequence information as both a study target
and reference panel resource [8]. This is further supported by the use of imputation software
servers such as the Michigan Imputation Server [9], Sanger Imputation Server [10], and more data
privacy permitting imputation pipelines such as Odyssey [11] to generate even larger amounts of
genetic information than what was originally genotyped. This data shift signals a focal point that
researchers need to overcome, which is the lengthy and arduous task of manual genomic data
handling. For example, a singular sample with paired-end reads approximately 50 gigabytes (GB)
in combined size can lead to manual processing times of up to 48 hours. It can be an extremely
daunting task for the biologist who prepared the sample for sequencing to later process the genetic

output, particularly when it may be thousands of samples.

Several workflows and pipelines have been developed over the years to simplify this task by
integrating third-party bioinformatics software tools and reducing runtimes. These workflows,
however, will often be catered for one data file type [12-14]. A recently developed workflow called
OVarFlow [15] is based on the Snakemake [16] common workflow language for processing
variant data from high-throughput sequencing FASTQ files. It was designed to be customizable
and can be used to analyze a wide range of variant data, including single nucleotide variants
(SNVs), indels, and structural variants (SVs). The pipeline includes a number of different steps
under GATK [17] software for processing and analyzing variant data, including quality control,

alignment, variant calling, annotation, and filtering. There are several manual steps that must be
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performed such as downloading the FASTQ data and reference genome files and updating the
Snakemake version before the workflow can start. Although it is a valuable resource for processing
FASTQ input data, it would benefit greatly from additional modules to accommodate the other

data file types that biologists typically encounter such as CRAM, IDAT, and VCF.

Variant call format (VCF) files are the standard output of processed sequence data and the
prerequisite to many genetic data analysis tool kits. As there is a rise in user-generated data and
collections of populations that are available in varying data formats online, we have the potential
to unite these datasets to develop more globally represented custom reference datasets. This is an
important emerging capability for researchers that are well-equipped with quick and easy data
processing pipelines. It allows them to better represent select populations with improved
imputation accuracies and therefore advance big data genome analyses on a global scale.
Improvements such as increased imputation accuracy have already been noted using these
approaches and methodologies [18]. It is essential therefore to have versatile workflows that can
handle as many raw genomic data formats as possible, from start to finish including an ability to
merge datasets from different genome assembly builds, whether sequence or SNP array generated.
The capability to clean and efficiently combine datasets into singular genetic files in an automated
fashion will make research between groups easier, ultimately increasing power in the detection of
variants in larger association studies. There are workflow languages, such as Snakemake, that
greatly reduce manual processing steps by automating them into a pipeline. It is no longer practical
in genomics for big data processing to rely on segmented data handling scripts and manual
handling of excessive intermediate files. Workflow management systems are highly valuable for

this automation.
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Here we introduce [liad, a suite of Snakemake workflows developed with several modules

for automatic and reliable processing of raw or stored genomic data that lead to the output of ready-
to-use genotypic information necessary to drive downstream applications. Iliad offers a
containerized workflow with optional automatic downloads of desired files from file transfer
protocol (FTP) sites coupled with the use of any genome reference assembly for variant calling
using BCFtools [19]. All dependencies are pre-installed or systematically downloaded and/or built
when invoked to considerably reduce the time and effort required to execute the workflows. At
present we demonstrate usage comparisons with another genetic data processing workflow and
show time-saving improvements as well as increased data input flexibility using human sequence
data only, but also provide instructions on how this pipeline can be adapted to cater for other
genomes. /liad’s minor startup requirements and complementary modules for quality control and
data cleaning support its user-friendly and customizable characteristics. With compatibility for the
major operating systems in mind, /liad offers a scalable solution from local machines to high-

performance computing (HPCs) clusters to address the needs of any genomics researcher.

Implementation

Pipeline architecture and configuration file

Genomic data processing poses a challenge for genetic research studies because it involves
multiple program dependency installations, vast numbers of samples with raw data from various
Next Generation Sequencing (NGS) platforms, and inconsistent genetic variant ID and/or positions
among datasets. The Iliad suite of genomic data workflows automates the central steps in genomic
data processing for several NGS data types with implementation through the Singularity [20]

container system and Snakemake workflow management system. These systems form the basis of
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lliad and account for its ease of distribution, reproducibility, and scalability to ultimately
accommodate users with a simplified and standardized suite of workflows that are easy to

implement.

All but one of the required program dependencies for Iliad are contained within a pre-built
singularity image file available on Sylabs cloud (library://ncherric/iliad/igdp-container:latest) that
is automatically pulled down into the workflow by Snakemake. A Docker container solution is
also provided (https://hub.docker.com/repository/docker/ncherric/iliad/general) with options for
AMD64 or ARM64 architectures. The [llumina IAAP-CLI is not permitted for distribution, so the
download link is accessible to Iliad and users via the configuration file. The Singularity definition
file and Dockerfile used to build the containers are also provided with Iliad on Github and
ReadTheDocs in case there are any user-specific modifications to build a custom version. The
container base system is Ubuntu 20.04 [21] Linux and includes BWA [22] for read mapping,
SAMtools [19] and PicardTools [23] for user-choice of sorting and compressing the alignment
files, BCFtools for variant calling, +gtc2vcf BCFtools plug-in [24] for converting SNP array files,
and miniconda [25] for creating rule-based conda environments as needed. The latest Iliad
container contains up-to-date versions of SAMtools and BCFtools, however, users can download
previous versions if preferred by using a tag that corresponds to the version of software (e.g

library://ncherric/iliad/igdp-container:v1.14).

lliad functions under Snakemake best practices and takes advantage of several useful
features. Iliad works as an inference pipeline where the user can specify the desired endpoint, and
Snakemake will then infer which rules are to be run based on the following user input: the final

invocation of the Snakemake command, existing input/output files in the workflow, and a primary
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configuration file. The desired endpoint is declared as the input to the “rule all” found in each of
the independent workflows’ main Snakefile. This is already pre-set based on the goal of each
workflow. There are certain Snakemake flags that will affect the starting point, such as ‘--forceall’
which triggers all rules to be executed whether there are existing files or not. In a scenario where
Iliad has been invoked and progress was interrupted, the workflow will begin where it left off
saving both time and resources. This offers users a flexible entry point into the workflow, meaning
researchers can begin using Iliad even if they possess data files corresponding to input that is mid-

stream of a workflow.

All Iliad workflows refer to the primary configuration ‘config.yaml’ file which has
numerous controller variables with clearly denoted purposes. This file is the central point of
customizing user needs. Many of the adjustments are binary conditions that are dependent on files
a user may already possess. The most important configurations can be found at the top of this
primary file. For example, adding the working directory path location of the Iliad directory is
required. Once that single change is made in the configuration file, I/iad will be able to execute a
demo based on tutorial data. This provides users with an instant glimpse into the workflow and
how it works, making it easier to begin working with new data. A thorough how-to guide for each
workflow and a demonstration of the tool is provided on “Read the Docs”

(https://iliad.readthedocs.io/en/latest/).

Modularization

lliad was developed as a suite of workflows using the modularization capabilities of
Snakemake (Figure 1). It includes data-specific pipeline modules that are designed for raw

sequence data (FASTQ), Illumina SNP array data (IDAT), and a common storage format for
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sequence alignment data (CRAM). Each of these data types are common sequence data files. The
user is free to choose which of these data processing modules best suit their needs by executing
the corresponding Snakefile(s). Each of these modules provide flexible start and end points
depending on any pre-existing data files and the Snakemake flags included in the command line
invocation. Additionally, Iliad features independent submodules for lifting over reference
assembly genomic positions (GRCh37 to GRCh38 and vice versa) and merging multiple VCF files
at once. These submodules can be used independently or combined within the raw sequence

processing modules.
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Figure 1 Workflow schematic for each of the modules. A user can run the modules independently
or simultaneously. The sequence data modules, raw FASTQ and stored CRAM, follow the same

base set of rules after variant calling.

Computational specifications

Development and benchmarking took place on Carbonate [26] and Ulysses, respectively.

Carbonate is Indiana University’s large-memory computer cluster designed for data-intensive
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tasks. It is home to a cluster of 72 Lenovo NeXtScale nx360 M5 server compute nodes each with
12-core Intel Xeon E5-2680 v3 CPUs and 256 GB of RAM. There are additionally 8 large-memory
compute nodes containing 512 GB of RAM, but those were not necessary for the purpose of Iliad.
Ulysses is a remote server with more immediate access for the Department of Biology at Indiana
University-Purdue University Indianapolis (IUPUI). Ulysses is comprised of two 16-core Intel
Xeon Gold CPUs. Both Carbonate and Ulysses surpass the hardware necessary to run Iliad. It is
also possible to execute Iliad workflows on a local machine such as a desktop or laptop equipped
with Linux, MacOS, or Windows operating systems (OS) possessing at least 1 core, 16 GB of
RAM, and enough disk space storage to sustain the amount of data needed. We recommend having
as much computational storage as possible for sample processing, but this will vary depending on
the nature of the research. We provide the minimum system requirements necessary to execute the
demo tutorial. RAM and CPU usage metrics were collected using the collectl utility

(http://collectl.sourceforge.net/) and the built-in ‘benchmark’ declarative in Snakemake.

Raw Sequence Read Data Workflow

The raw sequence read data module is comprised of 24 rules (Table S1; Figure S1), not
including the rule ‘all’, which is designated as the driver of the workflow to provide the final
desired output VCF. Each of these rules has been optimized using the “resource” directive,
allotting for a specific time and memory request specific to each rule. Some rules may be branched
into hundreds of jobs based on the number of samples. Job scheduling systems are more likely to
run a queued job with smaller dedicated time and memory requests for smaller tasks. Some of the
rules, such as downloading annotations files, are only necessary to be run once. Iliad will re-use

those general annotation files for later runs and cache them so that the other //iad modules have
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access and can skip redundant downloads. There are instances when input data, such as a reference
genome assembly FASTA file, is already locally available on a system. If so, adding ‘true’ to the
‘lhaveReference’ variable in the configuration file will trigger its automatic use. Similarly with
input FASTQ reads or CRAM alignment files, placing the data into the appropriate directory and
declaring the ‘--ignore-incomplete’ flag in command line invocation is all that is required if a user

does not need the automatic downloading feature.

The main workflow handles raw sequence data which can be used for reference or target
data. The first advantage is a download checkpoint that uses ‘wget’ to acquire the user’s FASTQ
data from the specified URL in the config file. Since many studies include multiplexed sequencing
runs across many lanes, all the files associated with a particular sample name will be downloaded
into a temporary ‘downloads’ folder where they will be accessed for a concatenation rule and
output as one set of unzipped paired-end reads into the ‘fastq’ folder. If the user already has
FASTQ data placed in the ‘fastq’ directory, the checkpoint will be satisfied. Quality control of the
FASTQ data is performed via FASTQC [27], and reports are generated in HTML format which is
a valuable step for users to check the raw sequence quality of downloaded data. Iliad will proceed
with completing other rules based on the input data. Since read mapping is next for FASTQ data,
the rule for obtaining the reference genome indicated in the configuration file will begin to produce
the remaining and necessary input files that the read mapping rule requires. The reference genome
is retrieved using a script modified from the reference wrapper, ‘0.74.0/bio/reference/’, in the “dna-
seq-gatk-variant-calling” workflow found on the Snakemake workflow catalog [28]. With a
specific reference assembly and corresponding index file, Iliad will then begin read mapping using
the burrows-wheeler alignment (BWA) package (v0.7.17). The main workflow, then, pipes the

BWA output (SAM file) to Samtools ‘sort’ and creates a sorted BAM file. Sorting of the file
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through a pipe eliminates the need for a higher storage capacity by reducing intermediate files.
After this step, the main workflow implements the BCFtools variant caller to produce VCFs that
contain the genotypic information. Due to user configuration included in this workflow, variant
calling parameters set for BCFtools can be adjusted if the user wishes to set specific thresholds or
flags for the ‘mpileup’ and ‘call’ algorithms. The same is true if application of the ‘norm’ flag is
desired. This allows Iliad to keep up to date with any new developments in BCFtools variant

calling scripts.

Rather than performing variant discovery and calling all possible variants found in the
alignment file, Iliad utilizes a curated list of variants (n = 120,046,375) from the New York
Genome Center [29] to perform genotyping as this list comprises of stable variants observed across
the 1000 Genomes Project dataset. A rule in the main workflow automatically downloads these
files from the associated FTP site [30]. There is one file per chromosome, 23 in total. The next
rule splits each chromosome into equally divided chromosomal regions to further mitigate the
computational reading and writing time observed when using BCFtools ‘view’ on one
chromosome file in its entirety. The number of chunked region files can be customized in the
configuration file by the user to fit any system-specific requirements. Any ambiguity in
chromosome naming conventions is also handled within this rule. The chunking methodology is
used to drastically increase speed either in series or in parallel, however, using workers in parallel
is the faster approach. We chose BCFtools as our variant calling software because it provides a
wide array of filtering options and useful plugins that maximize user customization and data
flexibility. Within the Iliad workflow this gives users the ability to modify BCFtools commands
as needed, particularly when new versions of the software become available. It has consistently

been one of the preferred performance-evaluated variant calling tools [31-34] for sequencing data
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whilst including a capability for analyzing other data types (i.e., microarray data). Furthermore,
the implementation of BCFtools concatenation and merging features complement the chunking
methodology to optimize VCF generation of multiple samples from whole genome sequence

(WGS) data.

Stored Sequence Read Data Workflow

Sequence alignment files (SAM or BAM), especially for the human genome, create
impending hard disk storage challenges that can become quite costly. Therefore, compressed
sequence alignment (CRAM) files are a very popular storage file format commonly found on
publicly available project FTP sites such as 1000 Genomes Project [5], Human Genome Diversity
Project [6], and Simons Genome Diversity Project [7]. The CRAM file format is continually
undergoing modifications and updates to improve speed and accuracy [35] therefore this workflow
is particularly up to date with developments in data compression. lliad incorporates a stored
sequence read data module that downloads desired open-source CRAM data from a server and
performs the above-mentioned steps for variant calling on the retrieved files, just as it would
perform variant calling on sorted BAM files in the raw sequence module. This is a critical module
that supports in-house development of WGS reference panels and enables a fast and efficient
addition of standard reference data sets that are publicly available. Iliad is one of the first
Snakemake workflows that specifically manages the automation of CRAM to VCF data processing
using BCFtools and user-controlled software flags. It is important to note, especially for new users,
the exact same genome reference assembly that was used by the research group that generated the
CRAM data is required. Iliad’s configuration file provides a binary variable to declare which

reference genome assembly must be used and the reference genome file path if it must be supplied
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by the user. For example, variant calling CRAM files from HGDP [6] require the

‘GRCh38 full analysis set plus decoy hla.fa’ reference genome.

SNP Array Data Workflow

An important feature of this pipeline is the ability to integrate the processing of SNP array
data from its raw IDAT form. Typically for Illumina-specific SNP array files, the data must either
be uploaded to a Windows only software (GenomeStudio) or utilize numerous command line
applications. To simplify this entire process and seamlessly integrate Illumina SNP array data
processing into our workflows, we containerized the open-source programs and included

download steps for programs with end user license agreements, such as TAAP-CLIL

With the proper tools in the workflow environment, the procedure to obtain a VCF is
facilitated by passing the raw data through the appropriate conversion steps. Initially, the data must
be physically located in the “./Iliad/data/snp array/idat/” directory, so that the IDAT files can be
converted to GTC files using IAAP-CLI ‘gencall’. There are product and support files that assist
this conversion which include manifest and cluster files. It is imperative that the user knows which
reference assembly their study will need and to indicate as such in the configuration file for their
automatic retrieval. The Infinium Multi-Ethnic Global-8 v1.0 microarray web links for product
and support files corresponding to Homo sapiens GRCh37 and GRCh38 reference assemblies are
included and may provide assistance to users locating their specific array support documentation.
The correct product and support files will be used as input for follow-up third party tools to

continue the conversion.
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A BCFtools plugin, ‘+gtc2vct’ is included in the singularity container and is called to convert

all sample GTC files into one VCF file located in the same directory (“./Iliad/data/snp array/gtc/”).
[lumina support files, acquired automatically, update obscure loci names to widely accepted rsIDs.
Although this may be a sufficient endpoint for some analyses, we include a filtering step that will
find overlapping rsIDs from the dbSNP annotation VCF from NCBI [36]. Users can configure
which dbSNP file corresponds with your desired genome reference assembly to produce a quality
VCEF that can be easily joined with other genomic data using standard rsIDs. Finally, raw IDAT
files provide metadata for GenTrain and ClusterSep scores for every variant and can be used to
filter out calls of poor quality. At present, there are default upper and lower thresholds for GenTrain
(0.7 and 0.67) and ClusterSep (0.45 and 0.4) built into the workflow, but these can be adjusted
according to user preference. Final outputs include a summary graph and a quality controlled VCF

file.

Submodules for additional VCF optimization

To best serve additional data processing applications, /liad features several submodules that
assist with build conversions and the merging of VCF files with other datasets available to the user
e.g., reference data. Variant genomic positions largely depend on the reference assembly used for
alignment, therefore datasets from different sources may have varying VCF ‘POS’ fields that
inevitably represent the same SNP but cannot be merged correctly. The most comprehensive
submodule functions as an automatic Lift-over and Merge task (Figure 2). Users simply “drag and
drop” their datasets into the directory (‘./Iliad/data/vef Lift-and-Merge’), provide a project name
and reference assembly preference in the configuration file, and list the files to merge in the text

file (*./Iliad/config/mergeTheseVCFs.txt’). Doing so results in a tidy project space dedicated to a


https://doi.org/10.1101/2023.10.11.561910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561910; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 17 of 35
specific project and build conversion. The submodule enables users to perform multi-VCF merges
on compressed or decompressed data represented by Homo sapiens GRCh37 or GRCh38 positions.
Once configuration variables have been set and the ‘Lift-and-Merge Snakefile’ executed, the
pipeline detects and updates genomic positions, naming conventions, and initiates the merge of
autosomes and the X chromosome using BCFtools. The submodule also automatically detects
which version (GRCh37 or GRCh38) each VCEF file is before passing it to the correct processing
channel for generation of the final build expressed by the user. Processes to filter the independent
VCFs and quality check the final merged VCF then occurs, also based on user configuration

(maximum SNP and individual missingness).

The Lift-over and Merge options also have split submodules for ease of use. There are two
independent lift-over options that convert Homo sapiens GRCh37 positions to Homo sapiens
GRCh38 positions and vice versa. The ‘liftoverTo37 Snakefile’ or ‘liftoverTo38 Snakefile’ must
be passed to your Snakemake command and VCF files migrated to the ‘./Iliad/data/liftover’
directory. These perform a lift-over on VCF(s) but do not merge them. The data merging
submodule can be performed on its own or with integration in the main sequence and SNP array
modules with the execution of the ‘targetRefMerge Snakefile’. This is especially useful when

processing both reference and target data for a particular analysis.


https://doi.org/10.1101/2023.10.11.561910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561910; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 18 of 35

[ Lift and Merge ]
b

[ Input VCF or VCF.gz ]
N

Datal

Download dbSNP
annotation and
genome reference files

D

[ J

vef
{version 37)

Data3.vcf
(version 38)

Data2.vcf.gz
Data2.vcf.gz.thi
(version 37)

N A
[ Rename Chrs J

chrl--=>1

Download dbSNP
annotation and
genome reference files

D

[ Check assembly build ]

J

Vs
dbSNP37

Data3
Vs
dbSNP37

R

Data2
Vs
dbSNP37

V37 SNP rsID
annotation

[ V38 validation J

)

Ay

KK

Data3
Vs

v

dbSNP38

rs75962902 V38 SNP rsID
[ Overlapping J annotation
dbSNP37 IDs A
S \/ T ey,
+fixref with M :_/
genomeRef37 v I
NA Datal23.vef.gz N rs75902902
v Data123.vcf gz.tbi Overlapping
(version 38) dbSNP38 IDs
N4 N
( Lift over variant positions +fixref with J
v37 lift to v38 genomeRef38

Merge and
Initial QC

2

Figure 2 Workflow schematic for the Lift and Merge submodule. VCF data files from independent

datasets with genomic positions that

reflect either the Homo sapiens GRCh37 or GRCh38 genome

reference assemblies can be merged. This workflow is specifically for a final merged VCF file
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configured to have genomic positions in GRCh38. The orange denoted pathway represents

GRCh37 data input and the blue denoted pathway represents GRCh38 data input.

Results and Discussion

lliad was designed to simplify the arduous task of downloading and converting raw sequence
data from thousands of individuals for both WGS and SNP array data into a single optimized and
clean VCF for downstream applications using an all-in-one suite of workflows customizable for
the wuser. A greater in-depth how-to guide hosted by “Read the Docs”
(https://iliad.readthedocs.io/en/latest/) makes the process extremely simplified for biologists who
may not be as comfortable working with the large datasets they may generate. Baseline estimates
of time, computational resources, and storage required for the three main /liad modules are
provided in Tables S1-3 (see Additional File 1). Additional testing occurred on a number of
platforms including Google Cloud Platform (GCP), Windows, and MacOS. Summarized
evaluation metrics (Table 1) illustrate the resource and time estimates a user will need. One must
be prepared with ample disk space when working with big data genomics, however, Iliad mitigates
storage challenges by eliminating unnecessary intermediate files. After running through the
tutorial data in the raw sequence module, roughly 33 GB is stored. Approximately 28 GB includes
the reference genome assembly and annotation files, while the remaining 5 GB is the resulting
VCF data footprint for the tutorial data of a single sample (paired-end reads; FASTQ). Tests with
1 to 5 CRAM samples from 1000 Genomes Project resulted in a 14.3 to 21.6 GB VCEF file. An
example run of the SNP array module generated a VCF of 17.2 GB for 190 in-house samples typed
using the Illumina MEGA array (n = 1,686,450 SNPs). These 190 in-house samples are not

provided in our demo due to Institutional Review Board (IRB) restrictions. Ultimately, Iliad’s
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novelty is established as an all-in-one suite that is managed by a single configuration file with the
ability of the workflow to flexibly commence at any phase of data processing due to the Snakemake
framework. Many annotation files will be reused by other processes, so they are conveniently

cached and available to any and all of the workflows within //iad, including the submodules.

Tutorial Maximum Disk

Workflow Ini:ialefile ’l;:::l)rilael sample RAM space Cores (IT;EI:;)
P P size (GB)  (GB) (GB)
Raw
Sequence FASTQ  KPGP- 475 10 33 32 7.6
00127*
(~12x)
Stored
Sequence CRAM NAI12718* 14.3 0.5 34 32 37.3
(~30x)
190 In-
SNP IDAT  house 10.6 3 452 16 34
Array
samples

Table 1 Computational resources and time necessary to perform each of the main workflows with
the described sample data. These benchmarks were recorded from the Ulysses HPC and run
without a job scheduler. *Provided tutorial data as an auto-download for demonstration purposes

when [liad is retrieved.

With regards optimal memory and timesaving performance as well as storage outcomes, a
comparison of Iliad’s Raw Sequence module and OVarFlow [15] was also conducted (Figure 3).
It is important to note that OVarFlow’s main purpose is variant discovery which would require
additional processing and filtering steps over Iliad’s selective variant genotyping, and this was the

closest workflow comparison available to record the time elapsed while processing raw sequence
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reads to obtain a clean, ID-annotated VCF file in an automated fashion. For OVarFlow’s
installation and ease of use, the Conda environment required a Snakemake version update from
5.26.1 to 7.8.5 in order for it to begin the run. It also required the user to manually download the
reference genome; a GFF file - if not present with the reference genome, and input FASTQ data.
These extra manual preparation steps required more user intervention than /liad, typically adding

at least 60 minutes of computational task time.

- Time and Storage Comparisons for 1 WGS sample

Time
—&— lliad - 4 cores
—& =~ lliad - 32 cores
351 —#— OVarFlow - 4 cores
OVarFlow - 32 cores
—— Manual Preparation

F120

30 1 L 100

25 4
I 80

Storage
lliad
OVarFlow

Time (Hours)
N
o
Storage (GB)

F 60

15 A

40

10 A

- 20

f T T 0
Start Data Preparation Genotype Calls VCF Data Final VCF Data
Steps Completed

Figure 3 Time and storage comparisons between Iliad’s Raw Sequence Read Data module and
OVarFlow. The left Y-axis represents the time elapsed in hours for the selected steps completed
(X-axis) by each of the workflows at 4 and 32 cores. The right Y-axis and shaded area of the graph
represent the amount of cumulative storage in gigabytes (GB) for the selected steps completed (X-
axis) by each of the workflows, regardless of the number of cores. The Genotype Calls VCF Data

and the Final VCF Data are the same for Iliad’s Raw Sequence Read Data workflow.
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Overall, the two pipelines were completed within 0.5 hours of each other for paired-end

reads of one sample from the open-source Korea Personal Genome Project [37, 38] (KPGP) using
4 cores for 4 jobs in parallel. Within this figure, we also provide information on the time it took
for OVarFlow to generate a combined VCF for all variant calls (labeled ‘Genotype Calls VCF
Data’) before pipeline completion, to show OVarFlows performance prior to unique variant

filtering. This gave a difference of 1.9 hours between both pipelines.

However, Iliad quickly gained time improvements with increasing processing power and at
32 cores it finished nearly 3 times faster for 32 jobs in parallel at 7.62 hours compared to
OVarFlow’s 21.4 hours. This is due in part to the default processing power settings of OVarFlow
that is set to 6 cores and Iliad which is set to 12 cores. Iliad capitalizes on more cores because of
the flexibility in adding more chromosome splits for variant calling using BCFtools. Several other
factors may also contribute to these time differences such as the subtle differences in variant calling
between BCFtools and GATK. Worthy to note, however, is the difference in storage observed after
pipeline completion. /liad contains many clean-up steps that are intrinsic to the workflow that
reduce the storage footprint for raw sequence data processing by a factor of 4 when compared to

OVarFlow, which can aid users if they are processing hundreds of samples at once.

The time expenditures for Iliad when job sizes were scaled to 5 and 10 samples were
recorded at 17.5 hours and 31 hours, respectively, when using 32 cores for 32 jobs in parallel.
Time and resource usage of the chromosome splitting methodology was recorded across multiple
combinations of splits and cores allocated (Figure S4). Chromosome 22 from sample KPGP-00127
from the open-source KPGP repository was used for testing. The limiting factor of Iliad’s speed

was simply the supplied number of cores. Significant advantages lie in the reuse of commonly
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used files, such as annotation files and genome reference assemblies. For instance, rerunning Iliad
to retrieve and process new samples amounted to decreased run times in comparison to a clean
install simply due to file download limitations from the human genome servers [39], thus
reaffirming its efficiency. Although we were unable to directly compare our other main modules
as we could not find any other comparable pipeline that focuses on CRAM files and IDAT files,

we do offer benchmark results in Tables S2 and S3 for future comparisons.

In sum, although time assessments are quite comparable given the number of variant calls
generated in both VCFs using WGS data (Table 2), the main difference between the pipelines is
in their utility for downstream applications. Iliad performs variant calling on specific genomic
positions detailed in a region file in an effort to combine and clean datasets of multiple builds,
cohorts and datatypes, whereas OVarFlow utilizes genotyping for more stringent variant discovery
on a single dataset. Iliad has been designed to facilitate data generation for downstream GWAS
and candidate association studies that require large numbers of individuals for increased power. It
offers a general easy-to-use genomic data processing workflow that provides human genetic
researchers greater accessibility to a set of variants across the genome as opposed to variant
discovery. However, if researchers choose and wish to alter BCFtools commands (as provided in
this pipeline), they may opt to exclude region files and perform exhaustive variant calling on the
entire available sequence information, thus facilitating the capture of additional alternative variant

calls found in the datasets.


https://doi.org/10.1101/2023.10.11.561910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561910; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 24 of 35
Genotype
Workflow Final VCF SNPs INDELSs
Calls VCF
lliad’s Raw Sequence Module - 119,960,362 9,520,169 498,893
OVarFlow 610,405,020 4,034,429 3,623,864 411,214

Table 2 Comparison of genotype and variant data type between Iliad and OvarFlow calculated
with BCFtools ‘stats’ flag. The ‘Genotype Calls VCF’ represents the count of records in Step
“06_combined_calls” within OVarFlow. The ‘Final VCF’ (records) generated from OVarFlow’s
pipeline is the reduced variant-only file. lliad produces a singular final VCF within its pipeline
that calls a specific set of annotated genomic positions from NYGC [30]. A breakdown of the
number of SNPs and INDELSs within the VCF is reflective of the pipelines’ respective variant

callers.

lliad submodule workflows may prove the most useful to researchers with multiple VCF
files that normally require meticulous data wrangling prior to merging. For biologists who do not
have the time to conduct repetitive tasks and troubleshoot small data discrepancies on multiple
datasets, the submodules built into /liad are of extreme value due to their simplistic and timesaving
properties. File aggregation across all data types and projects using a singular pipeline is a prime
example of this. Users can simply ‘drop and run’ by putting several VCF files into one folder to
merge them into a single VCF regardless of compression, genome build, ’CHR’ naming
conventions, file size, and number of SNPs or samples. This capability is available for all

researchers but may be of particular interest for those that want to merge tens to hundreds of data
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files (VCF) that they may have at their disposal; a time-consuming and confusing task is now made
very easy and efficient. The final steps in the merger also include quality control measures which
are specified by the user and sum up an extremely beneficial and time efficient module. Demo data
[40-42] was not provided with Iliad for this submodule, although, example data can be freely

obtained from the Estonian Biocentre (https://evolbio.ut.ee/). Example datafiles from published

literature [40-42] were downloaded in Bed, Bim, and Fam Plink [43, 44] formats from this site and
converted into VCF files using Plink2 [43, 44]. Benchmarks are provided using this demo data
(Table 3) to give users an insight into the resources required, and replication if needed. Manual
dataset compilation is a demanding process whether the data consists of a small number of
genotypes or WGS information. The Demo data consisted of genome-wide microarray data (n =
1,286,187 SNPs). The ability to generate a single quality controlled VCF from multiple files is an
attractive workflow on its own, but combined with its ability to automatically detect which build

and how to process the files greatly enhances the scope of Iliad’s suite of workflows.

Initial Existing Demo Maximum Final Final variant Final .
file type sample* VCF Time
and resource size RAM size count sample Cores (hours)
version files (GB) (GB) (MB) preQC(postQC) count
2- VCFs 316,897
37) Yes 0.78 3 18.1 (18.615) 144 4 1.7
3- VCFs
(v37 and No 1.05 3 30 333,649 193 4 2.1
v38) (18,105)

Table 3 Computational resources and time necessary to perform the lift over and merge submodule
on demonstration data [40-42] without any genome build information given. The data can be

accessed from the Estonian Biocentre (https://evolbio.ut.ee/) or from data availability instructions
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associated with each study. The default Quality Control (QC) was set to remove variants and

individuals with > 5% missingness.

As for the future development of Iliad, it will be expanded to include other data file types
such as Affymetrix’s CEL SNP array file types (Affymetrix, Inc. Santa Clara, CA, USA) in
addition to the inclusion of other variant callers such as GATK or FreeBayes [45] should the user
have specific needs. Additionally, human genomic data was used in the development, testing, and
benchmarking of this study, however, it will also be possible to process genomic data from other
model organisms using Iliad if the necessary genome reference was specified and certain features

adapted. Future versions of Iliad aim to accommodate users with these enhancements.

Conclusion

The need for genomic data processing is expected to vastly increase based on continual NGS
cost efficacy. Variant data files are a standardized solution for genotypic information derived from
raw sequence data in a controlled and reduced format, but its generation is complicated by
numerous software installations and program versions, disjointed file formats, and a lack of
workflow consistency among researchers. Iliad standardizes this process by containerizing the
required software tools and streamlining the entire workflow, whilst also leaving room for user
quality control preferences. Accompanied by visual outputs of raw data quality, Iliad is the first
workflow suite of its kind to simplify and automate the management of genomic data processing

that will highly benefit biologists newer to the bioinformatics field.

Availability and Implementation
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The Iliad genomic data pipeline is open source and can be found on GitHub

(https://www.github.com/ncherric/Iliad). It is easy and straightforward to setup on several

operating systems using containers and is considered an ‘out-of-the-box’ suite of workflows thanks

to the thorough documentation and visual how-to guides that complement Iliad

(https://iliad.readthedocs.io/ ). Program dependencies and external downloads of supplementary
files are automatically facilitated by Iliad. This suite of genomic data processing pipelines was
tested using Windows, MacOS, and HPC Linux systems using both Singularity and Docker

containers.


https://www.github.com/ncherric/Iliad
https://iliad.readthedocs.io/en/latest/index.html
https://doi.org/10.1101/2023.10.11.561910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.11.561910; this version posted October 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 28 of 35

Project Name

ILIAD

Project home page:

- GitHub

- Read the Docs

- Sylabs Cloud (Singularity)

- Dockerhub

Operating system(s):

Programming language:

Other requirements:

License

Documentation

Any restrictions to use by non-

academics:

https://github.com/ncherric/Iliad

https://iliad.readthedocs.io/

https://cloud.sylabs.io/library/ncherric/iliad/igdp-container

https://hub.docker.com/repository/docker/ncherric/iliad/general

Linux, Windows, and/or MacOS

Snakemake, Python, and Bash

Singularity 3.6.4 or higher, Conda 4.13.0 or higher

The MIT License

Creative Commons license CC-BY SA 3.0

None

List of abbreviations

GWAS: Genome-wide association study; SNP: Single nucleotide polymorphism; IAAP-CLI:

[Mlumina Array Analysis Platform Genotyping Command Line Interface; CRAM: Compressed

Reference-oriented Alignment Map; HGDP: Human Genome Diversity Project; GB: gigabyte;

SNV: Single nucleotide variant; SV: Structural variant; VCF: Variant call format; FTP: File

transfer protocol; HPC: high performance clusters; NGS: Next-generation sequencing; rsID:
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Reference SNP cluster identifier; FASTA: Sequence data file format; FASTQ: extension of
FASTA to include sequence quality data along with sequence data; IDAT: Intensity data; [UPUI:
Indiana University-Purdue University Indianapolis; BAM: Binary alignment map; Sequence
alignment map; WGS: Whole genome sequence; BWA: Burrows-Wheeler aligner; IRB:
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