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Abstract 18

Metabarcoding analyses have recently undergone significant development 19

due to the power of this technique in biodiversity monitoring. How- 20

ever, it is still difficult to draw accurate quantitative conclusions about 21

the ecosystems studied, mainly because of biases inherent in the envi- 22

ronmental DNA or introduced during the experimental process. These 23

biases alter the relationship between the amount of DNA observed and 24

the biomass or number of individuals of the species detected. Two of 25

the biases inherent in metabarcoding have been measured: the ratio 26

between total DNA and target DNA concentrations, and the PCR 27

amplification bias. A method for their correction is proposed. All exper- 28

imental tests were performed on mock alpine plant communities using 29

the marker Sper01, which is expected to have low amplification bias 30

due to its highly conserved priming sites. Our approach combines stan- 31

dard quantitative PCR techniques (qPCR and digital droplet PCR) with 32

1
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a realistic stochastic model of PCR dynamics that accounts for PCR 33

saturation. The model was used to estimate PCR efficiencies for each 34

species and to infer the true species proportions of the mock commu- 35

nities from the read relative frequencies. The corrections are easy to 36

implement and can be applied to previously generated DNA metabar- 37

coding data. This work demonstrates the relative importance of the 38

two biases considered and is an open door to quantitative metabar- 39

coding data, although many other biases remain to be considered. 40

Keywords: Amplification bias, droplet digital PCR, PCR model, 41

Quantitative metabarcoding, Taqman qPCR 42

Introduction 43

In the context of mass species extinction (Barnosky et al., 2011), biodiversity 44

assessment is currently a major challenge. Classically, biodiversity inventories 45

consist not only of a list of species occurring at a site, but also of quantitative 46

data assessing the abundance of each species. Traditional approaches based 47

on direct observation by taxonomists may be unrealistic in terms of available 48

skills and costs, given the enormous effort required to conduct such a survey on 49

a global scale and across the tree of life. Therefore, high-throughput methods, 50

including DNA metabarcoding (Taberlet, Coissac, Pompanon, Brochmann, & 51

Willerslev, 2012), are the only chance to achieve such a goal. DNA metabar- 52

coding has been used for more than a decade in many areas of ecology, such 53

as biodiversity monitoring (e.g. Bohmann et al., 2014), detection of invasive 54

species (e.g. Klymus, Marshall, & Stepien, 2017), or tracking animal diets (e.g. 55

Pompanon et al., 2012). It is now part of the basic toolbox of ecologists, if 56

we consider more than a thousand articles published annually based on this 57

technique. While metabarcoding provides a not too much biased overview of 58

biodiversity in terms of species detection (Beng & Corlett, 2020; Ficetola & 59

Taberlet, 2023; Taberlet et al., 2012) with some insight into their relative 60

abundance (Pornon et al., 2016), the quality of quantitative data produced is 61

questionable (Krehenwinkel et al., 2017; Yang et al., 2021). 62

The relationship between the abundance of a species in the field and the 63

number of sequence reads measured in a DNA metabarcoding experiment is far 64

from straightforward. Many reasons can lead to biased abundance estimates. 65

Biases arise from both natural properties and technical issues (Luo, Ji, Warton, 66

& Yu, 2022; van der Loos & Nijland, 2021). At least three natural biases can 67

be considered. First, if the amount of DNA shed into the environment depends 68

on the biomass of individuals (Elbrecht & Leese, 2015; Elbrecht, Peinert, & 69

Leese, 2017; Lamb et al., 2019), it is also a function of shedding rates specific 70

to each DNA source (Wilder, Farrell, & Green, 2023). Second, the relationship 71

between the eDNA sampled, and the DNA actually shed depends on its decay 72

rate, which in turn depends on the ecosystem studied (Andruszkiewicz Allan, 73
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Zhang, Lavery, & Govindarajan, 2021; Krehenwinkel et al., 2018). Third, the 74

number of copies of the DNA marker targeted by metabarcoding per unit of 75

biomass or per individual varies from species to species (Garrido-Sanz, Senar, 76

& Piñol, 2022; Krehenwinkel et al., 2017; Zoschke, Liere, & Börner, 2007), 77

and may also vary among tissues, during development or according to phe- 78

nology. Two main sources can be considered for technical biases. First, the 79

DNA extraction method, whose efficiency depends on the extracted substrate 80

and varies between taxonomic groups (Dopheide, Xie, Buckley, Drummond, 81

& Newcomb, 2019). Second, the PCR amplification, which implies species- 82

specific amplification biases (Pawluczyk et al., 2015) related to the annealing 83

step (Piñol, Mir, Gomez-Polo, & Agust́ı, 2015) or to the PCR extension step, 84

which may depend, among other things, on the GC content of the metabar- 85

codes (Nichols et al., 2018). Thus, the sum of all these biases obscures the 86

relationship between the abundance of the sequenced reads and the abundance 87

of the species in terms of biomass or number of individuals. 88

Metabarcoding thus requires an appropriate pipeline to robustly estimate 89

species abundances (Alberdi & Gilbert, 2019; Mächler, Walser, & Altermatt, 90

2021). For a long time, that quantification problem has been considered. 91

Authors have proposed improvements by optimizing the choice of primers 92

(Krehenwinkel et al., 2017), by varying the number of PCR cycles for differ- 93

ent replicates (Silverman et al., 2021) or by creating mock communities to 94

infer correction factors with one species of interest and one control species 95

(Thomas, Deagle, Eveson, Harsch, & Trites, 2016), with two species of interest 96

in different quantities (Matesanz et al., 2019) or by comparing several mock 97

communities of more complex composition (Krehenwinkel et al., 2017); or to 98

infer PCR efficiencies (Shelton et al., 2022). Internal controls can be used, but 99

these do not allow measuring amplification bias (Smets et al., 2016; Ushio et 100

al., 2018). 101

The present paper examines the biases introduced by the most commonly 102

criticized step of DNA metabarcoding, the PCR amplification. The strength of 103

the amplification bias and its impact on the estimated abundances of metabar- 104

coding are assessed. This study is based on a new mathematical model of 105

PCR amplification that is applicable to the simulation of DNA metabarcod- 106

ing experiments. Several models exist to describe PCR dynamics (e.g. Carr & 107

Moore, 2012; Hayward, 1998; Mehra & Hu, 2005) but have not been linked 108

to metabarcoding. The model developed from existing models considers the 109

amplification bias between species in conjunction with the saturation phase of 110

PCR amplification, with a minimum number of parameters. A usual model in 111

quantitative metabarcoding is the exponential model, also called log-ratio lin- 112

ear model (e.g. Gold et al., 2023; Kelly, Shelton, & Gallego, 2019; Shelton et 113

al., 2022), where the abundance of each species increases geometrically during 114

the PCR. The non-treatment of saturation is not a problem in quantitative 115

real-time PCR (qPCR) because the amplification starts with an exponential 116

phase, but is incompatible with metabarcoding PCR, which relies on the final 117

state of the system. 118
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The impact of low priming site conservation on species detection and quan- 119

tification of COI markers has been widely discussed. These biases are related to 120

the annealing phase of PCR cycles due to primer mismatches (Clarke, Soubrier, 121

Weyrich, & Cooper, 2014; Piñol et al., 2015; Pompanon et al., 2012). To specif- 122

ically target the biases induced by the extension step of PCR, we assessed them 123

on three mock alpine plant communities using the Sper01 marker (Taberlet et 124

al., 2007). This marker is widely used in many ecological studies: soil biodi- 125

versity (Yoccoz et al., 2012), paleoecology based on ancient eDNA (Willerslev 126

et al., 2014) or diet (Valentini et al., 2009). Although there is very little vari- 127

ation at the Sper01 priming sites, no strong annealing bias can be assumed 128

for this marker. However, the length of the metabarcodes and the complexity 129

of its sequence (length and frequency of homopolymers) varies from species 130

to species, making it an appropriate candidate to study extension bias. PCR 131

efficiency for three species was accurately estimated using Taqman qPCR to 132

calibrate our model and then to infer the pre-PCR eDNA proportions of each 133

species. Combined with precise estimates of target DNA concentrations in 134

each species by droplet digital PCR (ddPCR), the results of this experiment 135

demonstrate the benefit of handling PCR extension bias and the variation 136

of target DNA concentration among taxa to correctly estimate taxa abun- 137

dance from DNA metabarcoding results. Although only a single marker was 138

studied here on a limited number of species, the presented protocol is eas- 139

ily generalizable and opens perspectives for quantitative DNA metabarcoding 140

(qMetabarcoding). 141

Material and Methods 142

Metabarcoding experiment 143

Quantification biases were investigated using three mock communities com- 144

posed of thirteen alpine plants belonging to the Spermatophyta clade (Sup- 145

plementary Table 1), using the Sper01 primer (Taberlet, Bonin, Zinger, & 146

Coissac, 2018; Taberlet et al., 2007) targeting the P6 loop of the trnL of the 147

chloroplast genome. Plant species were selected for having no mismatches at 148

their priming sites with the Sper01 primers. 149

Plant sampling 150

Plants leaves were collected in Chartreuse and Belledonne massif in the French 151

Alps during Spring 2021 (Supplementary Table 1). Freshly collected material 152

was stored in silica gel before DNA extraction. 153

DNA Extraction 154

Plant DNA was extracted using the CTAB protocol (Doyle, 1990), except for 155

Carpinus betulus, for which a DNeasy Plant Mini Kit (Qiagen) was used after 156

unsuccessful CTAB extractions. 157
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Quantification of target DNA 158

The total DNA concentration for each plant sample was determined using 159

Qubit (ThermoFisher). The amount of DNA targeted by the Sper01 primer 160

is not proportional to the total DNA concentration, as the number of chloro- 161

plasts per cell is expected to vary between different species and tissues and 162

during plant development (Golczyk et al., 2014; Sakamoto & Takami, 2018; 163

Zoschke et al., 2007). ddPCR was used to provide absolute quantification of the 164

Sper01 target DNA. ddPCR was preferred over qPCR because it is much less 165

affected by inhibition than qPCR, which varies from sample to sample. (Sid- 166

stedt, R̊adström, & Hedman, 2020). This quantification was performed using 167

serial dilutions of total DNA concentrations ranging from 6.25 × 10−2 ng/µl 168

to 6.25× 10−5 ng/µl with one or two replicates for each condition. The reac- 169

tion mixtures had a total volume of 20 µl (5 µl of DNA solution, 10 µl of 170

Master Mix EvaGreen, 0.6 µl of primers (forward and reverse) at 10µM , 4.4 171

µl of milliQ water). The QX200 Droplet Digital System (Bio-Rad) was used 172

to generate droplets (QX200 Droplet Generator) and to analyze them after 173

PCR amplification (QX200 Droplet Reader with the QuantaSoft Software). 174

Thermocycler conditions with optimized annealing temperature for the Sper01 175

primer (52◦C) were set (30 seconds at 95◦C, 30 seconds at 52◦C, one minute 176

at 72◦C). Replicates identified as incorrect by the reader and the most diluted 177

replicate in cases where this concentration was outside the expected detection 178

range were removed. 179

The concentration index chosen to compare the samples is the expected 180

number of target copies per ng of total DNA. It is calculated from each assay 181

as in the equation 1. The number of copies per µl (in target DNA) is the value 182

measured by ddPCR. C(Total DNA)replicate is the total DNA concentration 183

of the sample in the reaction mix. The average concentration for each species 184

is used for the rest of the protocol. 185

Concentration(Copies/ng) =
(Copies/µl)ddPCR

C(Total DNA)replicate
(1)

Mock communities 186

Three mock communities were constructed after the ddPCR assays: (i) a uni- 187

form community (MU ) where each plant has the same concentration of target 188

DNA, (ii) a community where each plant has the same concentration of total 189

DNA (MT ), and (iii) a community where the concentrations of target DNA 190

are distributed according to a geometric sequence of common ratio 1/2 (con- 191

centrations of 1, 1/2, 1/4...) (MG). The species used are described in Table 1. 192

The metabarcode sequences are given in the Supplementary Table 1 and the 193

exact composition of each community is given in the Supplementary Table 2. 194

The comparison between MU and MT communities allows to determine the 195

bias introduced by variation in the number of chloroplast genomes per unit of 196
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total DNA. The MU and MG comparison allows the estimation of relative 197

PCR extension step efficiencies. 198

Species Short form Length
GC content Total DNA Rank

(%) concentration (ng/µl) (MG)
Briza media Bme 53 39.6 183 1
Rosa canina Rca 51 31.4 50.8 2

Lotus corniculatus Lco 55 38.2 65.2 3
Populus tremula Ptr 68 25.0 31.4 4
Salvia pratensis Spr 46 26.1 24.4 5

Lonicera xylosteum Lxy 46 32.6 45.8 6
Fraxinus excelsior Fex 39 33.3 22.4 7

Acer campestre Aca 56 39.3 12.2 8
Capsella bursa-pastoris Cbp 48 45.8 38.8 9
Geranium robertianum Gro 53 34.0 15.0 10

Carpinus betulus Cbe 61 27.9 9.14 11
Abies alba Aal 47 44.7 3.58 12

Rhododendron ferrugineum Rfe 46 30.4 3.90 13

Table 1: Plants used for the three mock communities and their characteristics
for the Sper01 marker. Total DNA concentrations are assayed in the samples
after extraction by Qubit. Rank stands for decreasing abundance in the MG

community.

DNA metabarcoding PCR amplification 199

For each community, 20 replicates (2µl of DNA) and one PCR negative control 200

(2µl of milliQ water) are made. Three wells are left blank (sequencing controls). 201

Each well was individually tagged. 40 PCR cycles were run with an optimized 202

annealing temperature for Sper01 (30 seconds at 95◦C, 30 seconds at 52◦C, 203

one minute at 72◦C). 204

Metabarcoding DNA Sequencing 205

High-throughput sequencing was performed on NextSeq (Illumina) by Fasteris 206

(Plan-les-Ouates, Switzerland; https://www.fasteris.com/). One library was 207

constructed per community following the Metafast protocol (as proposed by 208

Fasteris). 209

Bioinformatic pipeline 210

All the bioinformatic work was performed on a laptop MacBook Air 211

(2017, 2.2 GHz Intel Core i7 Dual Core Processor). The data and analy- 212

sis scripts are available on the project’s git page, https://github.com/LECA 213

-MALBIO/metabar-bias. Raw data was processed with OBITools (version 214

4 aka OBITools4; Boyer et al., 2016, https://metabarcoding.org/obitools4). 215

Unless otherwise stated, the further analyses were carried out using R. 216

https://github.com/LECA-MALBIO/metabar-bias
https://github.com/LECA-MALBIO/metabar-bias
https://github.com/LECA-MALBIO/metabar-bias
https://metabarcoding.org/obitools4
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A DNA metabarcoding experiment model 217

The goal of the model is to estimate the initial relative abundances of each 218

species s, ps, from the number of reads Rs among the S different species in 219

the considered environmental sample. 220

The model integrates the three steps involved in the production of a DNA 221

metabarcoding result from a DNA extract, as in Gold et al. (2023): i) the 222

sampling of a portion of the DNA extract, ii) the PCR amplification, iii) the 223

sampling of a portion of the PCR reaction for sequencing. 224

Sampling of a portion of the DNA extract 225

The initial number of molecules in a replicate r, Ms
0 (r), is modeled by a Pois- 226

son distribution with expectation ms
0. It is more realistic to represent this 227

variability by a negative binomial distribution with a larger variance as the 228

standard deviation of the final observed proportions is approximately 25 times 229

larger than in the simulations with the Poisson distribution, but this choice 230

simplifies the model and the mean value remains unchanged. 231

Ms
0 ∼ Poisson (ms

0) (2)

so that E[Ms
0 ] = ms

0 and Var(Ms
0 ) = ms

0

The total number of DNA molecules initially present is needed for the 232

inference, for technical reasons. It is known in the mock communities thanks to 233

absolute quantification by ddPCR, but this is not the case in practice. Based 234

on the ddPCR measurements, the order of magnitude of mtotal
0 =

∑
s m

s
0 was 235

set to 105 molecules. 236

PCR amplification 237

The used PCR model, here called logistic model, accounts for the different 238

amplification efficiencies and the saturation phase. It is related to Hayward 239

(1998) or Carr and Moore (2012) but uses fewer parameters and explic- 240

itly incorporates different species. Compared with a conventional exponential 241

model, the logistic model accounts for saturation phase at the end of the PCR 242

(Figure 1). Both are parametric stochastic models. 243

The models considered describe the evolution of the number of DNA 244

molecules of each species cycle by cycle, denoted Ms
k for each species s at 245

PCR cycle k. Each molecule already present is maintained and has a probabil- 246

ity λs
k of being replicated again, modeled by a binomial distribution (equation 247

3) depending on the state of the system after cycle k − 1, described by the 248

filtration Fk−1. 249

Ms
k |Fk−1 ∼ Ms

k−1 +Bin(Ms
k−1, λ

s
k) (3)
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Let Xk =
∑S

s=1(M
t
k−1

−Mt
0)

K be the total number of molecules created prior 250

to the k cycle divided by a charge capacity K, ie the total number of DNA 251

molecules that can be created during the amplification. Due to saturation, the 252

effective PCR efficiency of each species, λs
k, decreases during the PCR. The 253

logistic saturation has been chosen for its simple shape (equation 4). 254

λs
k =

{
Λs (1−Xk) if Xk ≤ 1

0 otherwise
(4)

The purely exponential model is a special case with no saturation where 255

λs
k = Λs at each cycle k. In this exponential model, the usual quantification 256

formula (equation 5), is in our framework the expected value of Ms
n. 257

Ms
n = Ms

0 (1 + Λs)
n (5)

Sampling of a portion of the PCR reaction for sequencing 258

All the molecules created by the PCR are not sequenced: only a fraction con- 259

stitutes the observed data, denoted Rs for each species s. At the end of n 260

cycles, the sequencing step is described as a sub-sampling step (equation 6). 261

Rs|M
s
n ∼ Bin

(
K.d,

Ms
n

K

)
(6)

The sub-sampling factor d = Rtotal

K is computed from the estimated value 262

of K and the known value of Rtotal =
∑S

s=1 Rs. 263

A typical result of simulations performed with the two models is shown in 264

Figure 1. 265

Measure of the amplification efficiencies 266

Using Taqman qPCR assay 267

PCR amplification efficiencies Λs were measured by qPCR for three of the plant 268

species present in our mock communities: Carpinus betulus, Capsella bursa- 269

pastoris and Fraxinus excelsior. These three species were chosen because their 270

metabarcodes differ widely in sequence length and GC content. This makes 271

it possible to expect different amplification efficiencies and to design specific 272

Taqman internal probes that allow individual PCR efficiency measurements 273

within a mixture of the three plant DNAs. Two different probes were designed 274

for Carpinus betulus to evaluate the influence of the probe itself on the mea- 275

surement. The four probes used are described in the Supplementary Table 3. 276

The assay was performed using Taqman qPCR on a uniform community com- 277

posed of these three species. A 5-fold serial dilution from 1.05 to 654 copies/µl 278
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Fig. 1: Observed qPCR kinetics for a sample of Capsella bursa-pastoris (black
dots) compared to two PCR models fitted to the data. Blue curve: logis-
tic model; red curve: exponential model. An asymmetry of amplification is
observed around the inflection point, which creates here a gap between the
25th cycle and the 40th cycle for the logistic model (Gottschalk & Dunn, 2005).

in the reaction mix (25 µl with 5µl of DNA) was performed for each probe, 279

with three replicates per concentration. Taqman qPCR was chosen to measure 280

PCR efficiency because it allows measurement from a mixture of the three 281

plant DNAs. This ensures the same inhibitory effect for each species. Since 282

each individual DNA extract has its own pool of inhibitors that interfere with 283

qPCR assays, independent measurement on pure extract would not be realistic 284

(Svec, Tichopad, Novosadova, Pfaffl, & Kubista, 2015). 285

The exponential model (equation 5), which is valid before the PCR sat- 286

uration phase, can be used to estimate apparent PCR efficiencies. Estimated 287

efficiencies are referred to as apparent efficiencies because inhibition is always 288

present. For this study, however, only the relative values of the efficiencies are 289

important. A commonly used formula (equation 7, Gill, Bleka, & Fonneløp, 290

2022) can be derived from the exponential model to estimate amplification effi- 291

ciencies from a series of qPCRs performed on successive dilutions. However, a 292

major limitation of this formula that has been identified here is that the esti- 293

mation of the slope is very sensitive to small variations in Ct, resulting in a 294

large variance of the estimator. 295

Linear regression: Ct = −
log10(m0)

log10(1 + Λ)
+

log10(MCt
)

log10(1 + Λ)
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= a log10(m0) + b+ ε, ε ∼ N (0, σ2) iid

Λ = 10−1/a − 1

and MCt
= 10−b/a (7)

To estimate efficiencies more precisely, this approach is adapted. Linear 296

regression is used to estimate the constant value MCt
' 1.5 : 1011 (num- 297

ber of molecules present at Ct) by averaging the results for the three species. 298

Then K ' 7.6 : 1012 (equation 8) is inferred from observed relative fluores- 299

cence unit (RFU) values, assuming within-replicate proportionality between 300

RFU and DNA copy number (Gill et al., 2022), although RFU values are not 301

standardized and depend on many experimental factors (Svec et al., 2015). 302

K ' MCt
×

3∑

s=1

RFUEnd

RFUCt

(s) (8)

Then, the efficiencies Λs were estimated for each replicate from this con- 303

stant value of MCt
(equation 9). For subsequent analyses, the average Λs over 304

all replicates is used. 305

MCt
= Ms

0 (1 + Λs)
Ct(s)

so Λs =

(
MCt

Ms
0

)1/Ct(s)

− 1 (9)

The extreme estimates of MCt
vary by a factor of 2.1, which implies a low 306

potential factor, applied equally to all Λs, of the order of 1.03. 307

Using the MU community 308

PCR efficiencies were also inferred by optimizing the logistic PCR model pre- 309

sented above to fit experimental data, using known initial quantities of the 310

MU community. The Fixed Landscape Inference MethOd (flimo, Moinard, 311

Oudet, Piau, Coissac, & Gonindard-Melodelima, 2022) implemented in Julia 312

was used for this purpose. The flimo method minimizes an objective function 313

in the form of a χ2 statistic (equation 10). 314

argmin
m1

0
,...,ms

0
>0

J((ms
0)s)

with J(m1
0, . . . ,m

s
0) =

S∑

s=1

(ps(data)− p̂s)
2

ps(data)
(10)
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where p̂s is the average proportion of species s in a replicate, estimated 315

over nsim = 1900 simulations knowing the (ms
0)s, and ps(data) is the average 316

proportion of species s in the data. 317

However, the inferred efficiencies are relative, as the model can produce 318

similar results for different ranges of Λs. The maximum efficiency value has 319

been set at 1. These efficiencies are then reused to infer the proportions of the 320

thirteen species. 321

Correction of relative abundances of a MOTU 322

Figure 2 summarizes the additional pipeline recommended for correcting 323

amplification bias in a metabarcoding experiment. The PCR amplification effi- 324

ciency of each species is estimated from samples of species characteristic of the 325

ecosystem studied that are assayed by ddPCR. There are two ways of doing 326

this: Taqman qPCR or a mock community study. These efficiencies are then 327

used to infer the initial proportions of each species. 328

Fig. 2: Additional pipeline recommended for correcting amplification bias in
a metabarcoding experiment as presented in this study.
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Using the Ratio method 329

Previous works (e.g. Shelton et al., 2022; Silverman et al., 2021) showed that 330

a reference mock community can be used to correct abundances in another 331

community composed of the same species. Although this was not the main 332

objective of our work, this result was verified using the three communities 333

studied. The MU community was used as a reference to correct abundances 334

in the MT and MG communities. In the MU community, each species had a 335

starting relative frequency of 1/13 ' 7.7%, which should have been observed in 336

the final read proportions in the absence of amplification bias. The correction 337

factor for each species cs is therefore simply the median ratio between the 338

expected and the observed reads frequencies over all replicates in the MU 339

community (equation 11). 340

cs = Median

(
Observed reads frequency

Expected reads frequency
(s)

)
(11)

For the MT and MG communities, this correction factor is applied to 341

estimate the initial proportions p̂s for each species s (equation 12). 342

R′

s =
Reads(s)

cs

p̂s =
R′

s∑
t R

′

t

(12)

Using the estimated amplification efficiencies 343

The inference of the actual proportions of eDNA from the relative read abun- 344

dances (RRA) measured after DNA metabarcoding sequencing is achieved by 345

the same algorithmic method presented above, but this time the Λs efficiencies 346

are assumed to be known. 347

The efficiencies measured by Taqman qPCR or inferred from the model fit 348

for the MU community can be used to infer the initial proportions of MT 349

and MG. 350

An estimate of these proportions can be obtained using the exponential 351

model, but this requires knowledge of the PCR equivalent number of “expo- 352

nential cycles”. The result is then given by the m̂s
0(k) calculated at cycle k 353

with the equation 13. The problem is that the relative frequencies vary by sev- 354

eral points depending on the cycle chosen. This method has not been included 355

in the following. 356

m̂s
0(k) =

K

(1 + Λs)k
×

Rs∑S
t=1 Rt

(13)
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Criteria for measuring quantification errors 357

The distance between the observed or corrected proportions (p̂s)s, median over 358

all the replicates) and the initial theoretical proportions (pths ) is measured by 359

two RMSE (Root-Mean-Square Error) criteria. The error measured is either 360

absolute (equation 14) or relative (normalized by the theoretical proportions, 361

equation 15). 362

Absolute Error: AbsErr((p̂s)s) =

√√√√ 1

S

S∑

s=1

(p̂s − pths )
2

(14)

and

Relative Error: RelErr((p̂s)s) =

√√√√ 1

S

S∑

s=1

(
p̂s − pths

pths

)2

(15)

Ecological conclusions: biodiversity indices 363

To compare theoretical, observed and inferred compositions, biodiversity 364

indices were computed for MT and MG. Hill numbers (Hill, 1973) (equation 365

16), interpretable as an effective number of species in the community, were cho- 366

sen with q = 1 (linked to Shannon entropy) and q = 2 (linked to Gini-Simpson 367

index). 368

qD =

(
S∑

s=1

pqs

) 1

1−q

(16)

Results 369

ddPCR assay 370

The concentrations of each plant sample measured by ddPCR are shown in 371

Figure 3. For the same total DNA concentration, there was a wide variabil- 372

ity in average target concentration, ranging from 3.7 × 104 copies per ng for 373

Rhododendron ferrugineum to 2.5×105 copies per ng for Populus tremula with 374

an average of 1.1 × 105 copies per ng among the thirteen species. The factor 375

between the extremes is thus 6.6. 376

Metabarcoding experiment 377

Raw sequencing data 378

After processing with the OBITools, an average of 37,000 reads per non- 379

negative replicate was obtained with a standard deviation of 27,000 reads (first 380
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Fig. 3: Number of target DNA molecules (thousands) per ng of total DNA for
thirteen alpine plants, computed with the index used in equation 1. Each black
dot is a replicate, for different total DNA concentrations. The red diamonds
correspond to the mean for each species.

and third quartiles : 14,000 and 56,000 reads). Negative controls showed neg- 381

ligible contamination. For each community out of the 20 PCR replicates, one 382

replicate with fewer than 5,000 reads was discarded from further analysis. 383

Reads proportions 384

The comparison of observed and expected read proportions is shown in Figure 385

4. Significant differences can be observed: at most, between the observed and 386

expected proportions, there is a factor of 3.0 for Geranium robertianum in the 387

MU community, 4.2 for Abies alba in MT and 9.0 for Abies alba in MG. 388

Comparing the observed proportions with the expected proportions allows 389

to visualize the two biases under study. For example, Rosa canina species has 390

both good efficiency and a high target concentration: the two biases add up. 391

Conversely,Geranium robertianum is penalized by both biases. Salvia pratensis 392

has a higher-than-average concentration, but poor efficiency. Capsella bursa- 393

pastoris is well amplified, but its target concentration is low. 394

The joint effect of the double bias is visible for MT , with median pro- 395

portions comprised between 1.5% and 26%, and between 2.6% and 17% for 396

MU . 397

Inter-replicate variability is significant in some species, such as Populus 398

tremula (inMU : mean proportion : 8.6%, varying from 3.3% to 14%, standard 399

deviation of 2.7%). 400
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Fig. 4: Observed relative proportions of reads of thirteen plant species for the
mock communities MU and MT . Gold lines indicate proportions expected
in the absence of target concentration and amplification bias. Gold diamonds
are the proportions expected in the absence of amplification bias. For the
MU community, the deviation of the boxplots from the diamonds shows the
amplification bias alone. For the MT community, both biases are present.
Concentration bias is visible as the difference between the diamond and the
line.

Inferring PCR efficiencies and abundances 401

The apparent PCR efficiencies for the three species tested (Fex, Cbe, Cbp) 402

measured using the Taqman qPCR method for the four probes have a relative 403
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differences of the order of 5%. That can be considered low, but due to the 404

exponential nature of PCR, it has a real impact on the final proportions in the 405

community due to the exponential nature of PCR amplification. 406

Table 2 shows the abundances in the reference mock community MU and 407

the efficiencies inferred from the Taqman qPCR assay and from the model fit 408

to the MU community, with the flimo method (around 100 seconds for the 409

thirteen species). The lowest efficiency is around 15% lower than the maxi- 410

mum. The absolute values determined by Taqman qPCR are overestimated in 411

relation to these values, but once normalized, they are broadly similar, even 412

though more values would be required for a rigorous comparison. Because of 413

this similarity and the fact that the assay involves only three species, the 414

results are based on efficiencies measured in MU . 415

Species
Average proportion in MU (%) PCR Efficiency inferred from
Theoretical Observed Taqman MU

Bme 7.7 6.1 0.922
Rca 7.7 17 1.00
Lco 7.7 8.0 0.942
Ptr 7.7 8.6 0.948
Spr 7.7 2.7 0.862
Lxy 7.7 5.5 0.915
Fex 7.7 6.3 0.924 0.924
Aca 7.7 8.3 0.945
Cbp 7.7 11 0.973 0.964
Gro 7.7 2.4 0.855

Cbe 7.7 8.1
0.956 (CbeA)

0.943
0.931 (CbeB)

Aal 7.7 5.8 0.918
Rfe 7.7 10 0.960

Table 2: Proportions in MU and relative PCR amplifica-
tion efficiencies measured for the four Taqman qPCR probes
and inferred from the MU community. The maximum effi-
ciency was set at 1 for Rosa canina. Efficiencies inferred were
normalized so that Fex has the same efficiencies with both
methods.

Table 3 shows the proportions in the MT and MG communities, as well 416

as the errors compared to the theoretical proportions and the biodiversity 417

indices. The results of the two corrections are comparable and both improve 418

the RMSE criteria, as expected. The corrected biodiversity indices also seem 419

to better approximate the real biodiversity than the observed values. 420

PCR bias importance: comparison of model simulations 421

and observed data 422

To illustrate the effect of small differences in efficiency, PCR kinetics was 423

simulated for two species with equal initial quantities. Figure 5 shows the 424

final proportions of the two species according to the difference in PCR effi- 425

ciency. These simulations are compared with the proportions observed in the 426
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Species
Average proportion in MT (%) Average proportion in MG (%)

Theoretical Observed
Inferred Inferred

Theoretical Observed
Inferred Inferred

with MU with Λs with MU with Λs

Bme 8.5 6.2 8.4 8.3 50 36 54 54
Rca 14 26 12 12 25 40 20 19
Lco 9.5 11 11 12 13 15 16 16
Ptr 17 21 20 20 6.3 5.2 5.5 5.5
Spr 10 3.9 12 12 3.1 0.63 2.0 2.2
Lxy 5.0 2.7 3.8 3.9 1.6 0.94 1.5 1.6
Fex 5.9 4.3 5.7 5.6 0.78 0.68 0.96 0.96
Aca 9.1 7.9 7.8 8.1 0.39 0.16 0.17 0.17
Cbp 2.6 3.2 2.4 2.4 0.20 0.19 0.15 0.15
Gro 5.6 2.1 6.5 7.4 0.098 0.019 0.064 0.091
Cbe 3.6 2.8 2.6 2.7 0.049 0.030 0.031 0.032
Aal 6.1 1.5 2.3 2.1 0.024 0.0045 0.0072 0.0045
Rfe 2.5 5.1 3.7 3.8 0.012 0.014 0.012 0.015

AbsErr 0.045 0.017 0.019 0.057 0.020 0.022
RelErr 0.53 0.26 0.28 0.50 0.34 0.34

1D 11 9.8 11 11 4.0 3.7 3.7 3.8
2D 10 6.7 9.1 9.1 3.0 3.1 2.8 2.8

Table 3: Proportions of species in MT and MG. Inferred with MU means
corrected by the ratios. Proportions inferred with Λs are obtained by fitting
the PCR model using the efficiencies inferred previously.

MU community when comparing Rosa canina (the most efficiently amplified 427

species) and the other species individually. These two proportion series are 428

very close to each other. 429
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Fig. 5: Relative abundances in a mock community of two initially evenly
distributed species simulated with the logistic model (lines) and observed in
the MU community (dots) considering only Rosa canina and the other species
individually. The first species has an efficiency of Λ1 = 1. The second has a
variable efficiency, of value Λ2 = Λ1(1− x) along the x-axis (Λ2 ∈ [0.85, 1.0]).
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Discussion 430

The quantitative aspect of DNA metabarcoding is regularly questioned by 431

ecologists. Here, two potential biases were considered and their relative effects 432

quantified. 433

The first is well known. It has long been discussed by microbial ecologists 434

(Kembel, Wu, Eisen, & Green, 2012; Milivojević et al., 2021) and has been 435

identified for macroorganisms (Garrido-Sanz et al., 2022; Krehenwinkel et al., 436

2017). It can be summarized by a simple question: how many copies of the 437

target gene marker are present per genome in each species under considera- 438

tion? In macro-organisms such as plants and animals, most of the targeted 439

markers are carried by the chloroplast or mitochondrial genome, but the 440

same question remains: how many copies of the organelle genome are there 441

per cell? When the genome size of a species is unknown, the best proxy of 442

this number of copies is the number of marker copies per weight unit of 443

total DNA. This amount can be estimated by ddPCR. Among the 13 plants 444

tested, the one more concentrated in chloroplast DNA, Populus tremula (Ptr), 445

has 6.6 times more copies per unit of nuclear DNA than the one less con- 446

centrated, Rhododendron ferrugineum (Rfe). According to the Kew C-value 447

database (https://cvalues.science.kew.org/), the 1C value of Ptr is 0.45 pg 448

(Siljak-Yakovlev et al., 2010) and that of Rhododendron ponticum, the only 449

Rhododendron measured, is 0.74 pg (Bou Dagher-Kharrat et al., 2013). Both 450

together allow to estimate that the bias in chloroplast abundance (in copies 451

per genome) can lead to a 4-fold overestimation of Ptr abundances relative to 452

Rfe. 453

The second type of bias is an amplification bias, which has never been 454

quantified. The amplification efficiency of a marker for the species s (Λs) 455

is an intrinsic property of the sequence. It does not depend on co-amplified 456

sequences. It can be measured by either of the two methods proposed in this 457

study. Both methods provide similar values, and the choice between them 458

depends on practical convenience. The values obtained can be used to cor- 459

rect the composition of any community, as long as differences in amplifiability 460

between the species present do not cause one or more to disappear. The pro- 461

posed correction method combines the generation of a reference base for the 462

amplifiability and a mathematical model of the PCR. It does not require any 463

modification of the metabarcoding protocol. Therefore, it can be applied to 464

already generated results and is easy to implement. 465

The amplification bias is accumulated over each PCR cycle. Thus, the final 466

bias on the observed read relative frequencies is a function of the amplifiability 467

per cycle and the number of amplification cycles. In PCR, the actual number 468

of amplification cycles is not necessarily the number of cycles programmed into 469

the PCR instrument. This number may be lower because the total amount of 470

DNA that can be synthesized is limited by the nucleotide concentration. It 471

is therefore possible that the plateau will be reached before the programmed 472

number of cycles has been reached, with the last cycles not corresponding 473

to any amplification (Figure 1). Correcting for bias using the ratio method 474
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(e.g. Shelton et al., 2022; Silverman et al., 2021) requires that each sample, 475

including the reference mock community used to estimate it, be amplified 476

with the same effective number of PCR cycles. This means that each sample 477

must contain the same total number of target DNA molecules at the start of 478

the PCR. In our study, each mock community was prepared with close total 479

amounts of target DNA, thus respecting the ideal condition for using the ratio 480

method. Therefore, as shown in Table 3, the corrections made by the ratio 481

method and our PCR model-based approach are strictly equivalent. When 482

samples contain different amounts of target DNA, the efficiency of the ratio 483

method should decrease because the number of effective PCR cycles varies 484

from sample to sample. Fortunately, our PCR model-based correction method 485

allows us to estimate the effective number of PCR cycles for each sample, 486

thereby accounting for sample heterogeneity. Without performing ddPCR on 487

each sample and diluting to equilibrate the amount of target DNA between 488

samples, our model-based method results in a correction that is more robust 489

to expected inter-sample variability than the ratio method. 490

When the two species with the most different amplifiability, Rosa canina 491

(ΛRca = 1.000) and Geranium robertianum (ΛGro = 0.855) are co-amplified, 492

with equal amounts of initial target DNA in the extract, the ratio between 493

the RRA observed after sequencing can be up to 6.7 (Figure 5), leading to a 494

strong overestimation of Rca abundance relative to Gro. This initial assess- 495

ment shows that due to the exponential nature of PCR, even a small difference 496

in amplifiability, as little as 15% between Rca and Gro, the two extreme 497

species tested, can have as strong an effect on the observed RRA as the bias 498

observed due to chloroplast richness. Sometimes the two biases studied push 499

in the same direction, as in Populus tremula (Ptr), which has a high chloro- 500

plast concentration and a high amplifiability, or Capsella bursa-pastoris (Cbe), 501

which combines both a low chloroplast concentration and a low amplifiability 502

(Fig. 4). Sometimes, by chance, both biases partially compensate, as in Salvia 503

pratensis (Spr). 504

Even if the abundances observed by traditional surveys and those of 505

metabarcoding reads are correlated (Yoccoz et al., 2012), it is necessary to 506

be cautious when analyzing DNA metabarcoding data in terms of quanti- 507

tative information. If we consider the estimation of biodiversity indices, the 508

worst situation is the estimation of α-diversity. Because of all the biases 509

acting simultaneously on DNA metabarcoding measures, but their good repro- 510

ducibility, the information they provide is inherently relative. Relative in 511

terms of abundances, DNA metabarcoding can at best provide relative abun- 512

dances, but also relative because the values provided are biased. Therefore, 513

only changes between measures are truly meaningful. Although it has been 514

shown that α-diversity of plant communities can be correctly estimated from 515

DNA metabarcoding data (Calderón-Sanou, Münkemüller, Boyer, Zinger, & 516

Thuiller, 2020), the limited condition under which this is true, Hill numbers 517

computed for q = 1, indicates that this is because at this level of weighting of 518

rare versus abundant species by chance most of the biases are compensated. 519
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This phenomenon can also be observed in our results (Table 3), where 1D and 520

2D values estimated from raw RRA and corrected abundances do not strongly 521

differ, while the error between RRA and theoretical composition decreases by 522

a factor of two when using corrected abundances. This discrepancy between 523

the decrease in error due to the correction and the not so good increase in 524

the quality of the α-diversity estimates can be at least partially explained in 525

MG by the abundances of the two most abundant species, Briza media (Bme) 526

and Rosa canina (Rca), which have inverted abundances when estimated from 527

RRA. For any study analyzing changes in diversity across time or ecologi- 528

cal gradients, because metabarcoding measures are biased but accurate, the 529

true β-diversity patterns can be easily detected using metabarcoding. In fact, 530

because the biases are repeatable between measures, they often amplify the 531

pattern because the errors correlate with the ecological signal. The problem 532

of all these biases only arises when trying to disentangle the observed pat- 533

tern from changes in specific species. Therefore, we can strongly encourage 534

people to be very cautious when interpreting the observed pattern, and to be 535

careful not to over-interpret changes in the abundance of a few species in the 536

community as an ecological cause. 537

Conclusion 538

We investigated two of the biases that prevent proper quantification of rela- 539

tive eDNA abundances in metabarcoding data. Despite their importance, these 540

biases are far from being corrected or even considered in most current stud- 541

ies. In this study, we measure the two studied biases and propose a simple 542

method to correct the amplification biases in the limit of extreme cases where 543

some species are so strongly disadvantaged that they disappear from the raw 544

results. The advantage of our method compared to the previous ones is that 545

it is more robust to sample variability, while compared to the spiking-based 546

method it does not require any change in metabarcoding protocols. This also 547

allows the reanalysis of previously obtained results, providing the opportunity 548

for a better ecological interpretation of them. By combining relative abundance 549

correction and ddPCR to estimate the amount of target DNA in each sample, 550

we can even consider the possibility of having access to an absolute quantifi- 551

cation of DNA in the analyzed DNA extracts for each species instead of only 552

relative abundances. This opens the possibility to increase the robustness of 553

the quantitative interpretation of DNA metabarcoding results, although other 554

biases still need to be assessed and modeled in a similar way to fully achieve 555

the goal of truly quantitative metabarcoding. 556
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