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Abstract

Metabarcoding analyses have recently undergone significant development
due to the power of this technique in biodiversity monitoring. How-
ever, it is still difficult to draw accurate quantitative conclusions about
the ecosystems studied, mainly because of biases inherent in the envi-
ronmental DNA or introduced during the experimental process. These
biases alter the relationship between the amount of DNA observed and
the biomass or number of individuals of the species detected. Two of
the biases inherent in metabarcoding have been measured: the ratio
between total DNA and target DNA concentrations, and the PCR
amplification bias. A method for their correction is proposed. All exper-
imental tests were performed on mock alpine plant communities using
the marker Sper(01, which is expected to have low amplification bias
due to its highly conserved priming sites. Our approach combines stan-
dard quantitative PCR techniques (qPCR and digital droplet PCR) with
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a realistic stochastic model of PCR dynamics that accounts for PCR
saturation. The model was used to estimate PCR efficiencies for each
species and to infer the true species proportions of the mock commu-
nities from the read relative frequencies. The corrections are easy to
implement and can be applied to previously generated DNA metabar-
coding data. This work demonstrates the relative importance of the
two biases considered and is an open door to quantitative metabar-
coding data, although many other biases remain to be considered.

Keywords: Amplification bias, droplet digital PCR, PCR model,
Quantitative metabarcoding, Tagman qPCR

Introduction

In the context of mass species extinction (Barnosky et al., 2011), biodiversity
assessment is currently a major challenge. Classically, biodiversity inventories
consist not only of a list of species occurring at a site, but also of quantitative
data assessing the abundance of each species. Traditional approaches based
on direct observation by taxonomists may be unrealistic in terms of available
skills and costs, given the enormous effort required to conduct such a survey on
a global scale and across the tree of life. Therefore, high-throughput methods,
including DNA metabarcoding (Taberlet, Coissac, Pompanon, Brochmann, &
Willerslev, 2012), are the only chance to achieve such a goal. DNA metabar-
coding has been used for more than a decade in many areas of ecology, such
as biodiversity monitoring (e.g. Bohmann et al., 2014), detection of invasive
species (e.g. Klymus, Marshall, & Stepien, 2017), or tracking animal diets (e.g.
Pompanon et al., 2012). It is now part of the basic toolbox of ecologists, if
we consider more than a thousand articles published annually based on this
technique. While metabarcoding provides a not too much biased overview of
biodiversity in terms of species detection (Beng & Corlett, 2020; Ficetola &
Taberlet, 2023; Taberlet et al., 2012) with some insight into their relative
abundance (Pornon et al., 2016), the quality of quantitative data produced is
questionable (Krehenwinkel et al., 2017; Yang et al., 2021).

The relationship between the abundance of a species in the field and the
number of sequence reads measured in a DNA metabarcoding experiment is far
from straightforward. Many reasons can lead to biased abundance estimates.
Biases arise from both natural properties and technical issues (Luo, Ji, Warton,
& Yu, 2022; van der Loos & Nijland, 2021). At least three natural biases can
be considered. First, if the amount of DNA shed into the environment depends
on the biomass of individuals (Elbrecht & Leese, 2015; Elbrecht, Peinert, &
Leese, 2017; Lamb et al., 2019), it is also a function of shedding rates specific
to each DNA source (Wilder, Farrell, & Green, 2023). Second, the relationship
between the eDNA sampled, and the DNA actually shed depends on its decay
rate, which in turn depends on the ecosystem studied (Andruszkiewicz Allan,
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Zhang, Lavery, & Govindarajan, 2021; Krehenwinkel et al., 2018). Third, the
number of copies of the DNA marker targeted by metabarcoding per unit of
biomass or per individual varies from species to species (Garrido-Sanz, Senar,
& Pinol, 2022; Krehenwinkel et al., 2017; Zoschke, Liere, & Borner, 2007),
and may also vary among tissues, during development or according to phe-
nology. Two main sources can be considered for technical biases. First, the
DNA extraction method, whose efficiency depends on the extracted substrate
and varies between taxonomic groups (Dopheide, Xie, Buckley, Drummond,
& Newcomb, 2019). Second, the PCR amplification, which implies species-
specific amplification biases (Pawluczyk et al., 2015) related to the annealing
step (Pinol, Mir, Gomez-Polo, & Agusti, 2015) or to the PCR extension step,
which may depend, among other things, on the GC content of the metabar-
codes (Nichols et al., 2018). Thus, the sum of all these biases obscures the
relationship between the abundance of the sequenced reads and the abundance
of the species in terms of biomass or number of individuals.

Metabarcoding thus requires an appropriate pipeline to robustly estimate
species abundances (Alberdi & Gilbert, 2019; Méchler, Walser, & Altermatt,
2021). For a long time, that quantification problem has been considered.
Authors have proposed improvements by optimizing the choice of primers
(Krehenwinkel et al., 2017), by varying the number of PCR cycles for differ-
ent replicates (Silverman et al., 2021) or by creating mock communities to
infer correction factors with one species of interest and one control species
(Thomas, Deagle, Eveson, Harsch, & Trites, 2016), with two species of interest
in different quantities (Matesanz et al., 2019) or by comparing several mock
communities of more complex composition (Krehenwinkel et al., 2017); or to
infer PCR efficiencies (Shelton et al., 2022). Internal controls can be used, but
these do not allow measuring amplification bias (Smets et al., 2016; Ushio et
al., 2018).

The present paper examines the biases introduced by the most commonly
criticized step of DNA metabarcoding, the PCR amplification. The strength of
the amplification bias and its impact on the estimated abundances of metabar-
coding are assessed. This study is based on a new mathematical model of
PCR amplification that is applicable to the simulation of DNA metabarcod-
ing experiments. Several models exist to describe PCR dynamics (e.g. Carr &
Moore, 2012; Hayward, 1998; Mehra & Hu, 2005) but have not been linked
to metabarcoding. The model developed from existing models considers the
amplification bias between species in conjunction with the saturation phase of
PCR amplification, with a minimum number of parameters. A usual model in
quantitative metabarcoding is the exponential model, also called log-ratio lin-
ear model (e.g. Gold et al., 2023; Kelly, Shelton, & Gallego, 2019; Shelton et
al., 2022), where the abundance of each species increases geometrically during
the PCR. The non-treatment of saturation is not a problem in quantitative
real-time PCR (qPCR) because the amplification starts with an exponential
phase, but is incompatible with metabarcoding PCR, which relies on the final
state of the system.
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The impact of low priming site conservation on species detection and quan-
tification of COI markers has been widely discussed. These biases are related to
the annealing phase of PCR cycles due to primer mismatches (Clarke, Soubrier,
Weyrich, & Cooper, 2014; Pifiol et al., 2015; Pompanon et al., 2012). To specif-
ically target the biases induced by the extension step of PCR, we assessed them
on three mock alpine plant communities using the Sper0! marker (Taberlet et
al., 2007). This marker is widely used in many ecological studies: soil biodi-
versity (Yoccoz et al., 2012), paleoecology based on ancient eDNA (Willerslev
et al., 2014) or diet (Valentini et al., 2009). Although there is very little vari-
ation at the Sper01 priming sites, no strong annealing bias can be assumed
for this marker. However, the length of the metabarcodes and the complexity
of its sequence (length and frequency of homopolymers) varies from species
to species, making it an appropriate candidate to study extension bias. PCR
efficiency for three species was accurately estimated using Tagman qPCR to
calibrate our model and then to infer the pre-PCR eDNA proportions of each
species. Combined with precise estimates of target DNA concentrations in
each species by droplet digital PCR (ddPCR), the results of this experiment
demonstrate the benefit of handling PCR extension bias and the variation
of target DNA concentration among taxa to correctly estimate taxa abun-
dance from DNA metabarcoding results. Although only a single marker was
studied here on a limited number of species, the presented protocol is eas-
ily generalizable and opens perspectives for quantitative DNA metabarcoding
(q@Metabarcoding).

Material and Methods

Metabarcoding experiment

Quantification biases were investigated using three mock communities com-
posed of thirteen alpine plants belonging to the Spermatophyta clade (Sup-
plementary Table 1), using the Sper0! primer (Taberlet, Bonin, Zinger, &
Coissac, 2018; Taberlet et al., 2007) targeting the P6 loop of the trnL of the
chloroplast genome. Plant species were selected for having no mismatches at
their priming sites with the Sper0 primers.

Plant sampling

Plants leaves were collected in Chartreuse and Belledonne massif in the French
Alps during Spring 2021 (Supplementary Table 1). Freshly collected material
was stored in silica gel before DNA extraction.

DNA Extraction

Plant DNA was extracted using the CTAB protocol (Doyle, 1990), except for
Carpinus betulus, for which a DNeasy Plant Mini Kit (Qiagen) was used after
unsuccessful CTAB extractions.
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Quantification of target DNA

The total DNA concentration for each plant sample was determined using
Qubit (ThermoFisher). The amount of DNA targeted by the Sper0! primer
is not proportional to the total DNA concentration, as the number of chloro-
plasts per cell is expected to vary between different species and tissues and
during plant development (Golczyk et al., 2014; Sakamoto & Takami, 2018;
Zoschke et al., 2007). ddPCR was used to provide absolute quantification of the
Sper01 target DNA. ddPCR was preferred over qPCR because it is much less
affected by inhibition than qPCR, which varies from sample to sample. (Sid-
stedt, Radstrom, & Hedman, 2020). This quantification was performed using
serial dilutions of total DNA concentrations ranging from 6.25 x 1072 ng/ul
to 6.25 x 1075 ng/ul with one or two replicates for each condition. The reac-
tion mixtures had a total volume of 20 ul (5 ul of DNA solution, 10 ul of
Master Mix EvaGreen, 0.6 ul of primers (forward and reverse) at 10puM, 4.4
wl of milliQ) water). The QX200 Droplet Digital System (Bio-Rad) was used
to generate droplets (QX200 Droplet Generator) and to analyze them after
PCR amplification (QX200 Droplet Reader with the QuantaSoft Software).
Thermocycler conditions with optimized annealing temperature for the Sper01
primer (52°C) were set (30 seconds at 95°C, 30 seconds at 52°C, one minute
at 72°C). Replicates identified as incorrect by the reader and the most diluted
replicate in cases where this concentration was outside the expected detection
range were removed.

The concentration index chosen to compare the samples is the expected
number of target copies per ng of total DNA. It is calculated from each assay
as in the equation 1. The number of copies per pl (in target DNA) is the value
measured by ddPCR. C(Total DNA),_ ;... is the total DNA concentration
of the sample in the reaction mix. The average concentration for each species
is used for the rest of the protocol.

(Copies/ul) gapcr (1)

Concentration(Copies/ng) = C(Total DNA)

replicate

Mock communities

Three mock communities were constructed after the ddPCR assays: (i) a uni-
form community (M) where each plant has the same concentration of target
DNA, (ii) a community where each plant has the same concentration of total
DNA (Mr), and (iii) a community where the concentrations of target DNA
are distributed according to a geometric sequence of common ratio 1/2 (con-
centrations of 1, 1/2, 1/4...) (Mg). The species used are described in Table 1.
The metabarcode sequences are given in the Supplementary Table 1 and the
exact composition of each community is given in the Supplementary Table 2.
The comparison between My and M communities allows to determine the
bias introduced by variation in the number of chloroplast genomes per unit of
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total DNA. The My and Mg comparison allows the estimation of relative
PCR extension step efficiencies.

. GC content Total DNA Rank

Species Short form  Length (%) concentration (ng/ul)  (Mg)
Briza media Bme 53 39.6 183 1
Rosa canina Rca 51 314 50.8 2
Lotus corniculatus Lco 55 38.2 65.2 3
Populus tremula Ptr 68 25.0 31.4 4
Salvia pratensis Spr 46 26.1 24.4 5
Lonicera zylosteum Lxy 46 32.6 45.8 6
Frazxinus excelsior Fex 39 33.3 22.4 7
Acer campestre Aca 56 39.3 12.2 8
Capsella bursa-pastoris Cbp 48 45.8 38.8 9
Geranium robertianum Gro 53 34.0 15.0 10
Carpinus betulus Cbe 61 27.9 9.14 11
Abies alba Aal 47 44.7 3.58 12
Rhododendron ferrugineum Rfe 46 30.4 3.90 13

Table 1: Plants used for the three mock communities and their characteristics
for the Sper01 marker. Total DNA concentrations are assayed in the samples
after extraction by Qubit. Rank stands for decreasing abundance in the Mg
community.

DNA metabarcoding PCR amplification

For each community, 20 replicates (2ul of DNA) and one PCR negative control
(2ul of milliQ water) are made. Three wells are left blank (sequencing controls).
Each well was individually tagged. 40 PCR cycles were run with an optimized
annealing temperature for Sper01 (30 seconds at 95°C, 30 seconds at 52°C,
one minute at 72°C).

Metabarcoding DN A Sequencing

High-throughput sequencing was performed on NextSeq (Illumina) by Fasteris
(Plan-les-Ouates, Switzerland; https://www.fasteris.com/). One library was
constructed per community following the Metafast protocol (as proposed by
Fasteris).

Bioinformatic pipeline

All the bioinformatic work was performed on a laptop MacBook Air
(2017, 2.2 GHz Intel Core i7 Dual Core Processor). The data and analy-
sis scripts are available on the project’s git page, https://github.com/LECA
-MALBIO/metabar-bias. Raw data was processed with OBITools (version
4 aka OBITools4; Boyer et al., 2016, https://metabarcoding.org/obitools4).
Unless otherwise stated, the further analyses were carried out using R.
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A DNA metabarcoding experiment model

The goal of the model is to estimate the initial relative abundances of each
species s, ps, from the number of reads Rs; among the S different species in
the considered environmental sample.

The model integrates the three steps involved in the production of a DNA
metabarcoding result from a DNA extract, as in Gold et al. (2023): i) the
sampling of a portion of the DNA extract, ii) the PCR amplification, iii) the
sampling of a portion of the PCR reaction for sequencing.

Sampling of a portion of the DNA extract

The initial number of molecules in a replicate r, M (r), is modeled by a Pois-
son distribution with expectation m§. It is more realistic to represent this
variability by a negative binomial distribution with a larger variance as the
standard deviation of the final observed proportions is approximately 25 times
larger than in the simulations with the Poisson distribution, but this choice
simplifies the model and the mean value remains unchanged.

Mg ~ Poisson (my) (2)
so that E[MJ] = mg and Var(Mj) = m;

The total number of DNA molecules initially present is needed for the
inference, for technical reasons. It is known in the mock communities thanks to
absolute quantification by ddPCR, but this is not the case in practice. Based
on the ddPCR measurements, the order of magnitude of m§{**® =Y~ _m$ was

set to 10° molecules.

PCR amplification

The used PCR model, here called logistic model, accounts for the different
amplification efficiencies and the saturation phase. It is related to Hayward
(1998) or Carr and Moore (2012) but uses fewer parameters and explic-
itly incorporates different species. Compared with a conventional exponential
model, the logistic model accounts for saturation phase at the end of the PCR
(Figure 1). Both are parametric stochastic models.

The models considered describe the evolution of the number of DNA
molecules of each species cycle by cycle, denoted M} for each species s at
PCR cycle k. Each molecule already present is maintained and has a probabil-
ity A7 of being replicated again, modeled by a binomial distribution (equation
3) depending on the state of the system after cycle & — 1, described by the
filtration Fp_1.

M| Fr—r ~ My + Bin(Mj_1, A}) 3)
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Let X = w be the total number of molecules created prior
to the k cycle divided by a charge capacity K, ie the total number of DNA
molecules that can be created during the amplification. Due to saturation, the
effective PCR efliciency of each species, Af, decreases during the PCR. The
logistic saturation has been chosen for its simple shape (equation 4).

k= (4)

N A (1—Xy) if X <1
0 otherwise

The purely exponential model is a special case with no saturation where
i = A at each cycle k. In this exponential model, the usual quantification
formula (equation 5), is in our framework the expected value of M.

My = Mg(1+ Ay)" (5)

Sampling of a portion of the PCR reaction for sequencing

All the molecules created by the PCR are not sequenced: only a fraction con-
stitutes the observed data, denoted R, for each species s. At the end of n
cycles, the sequencing step is described as a sub-sampling step (equation 6).

MS
R,|M¢ ~ Bin (K.d, Kn) (6)

The sub-sampling factor d = Rt;g"“ is computed from the estimated value

of K and the known value of Rigta1 = 235:1 R,.
A typical result of simulations performed with the two models is shown in
Figure 1.

Measure of the amplification efficiencies
Using Tagman qPCR assay

PCR amplification efficiencies A were measured by qPCR. for three of the plant
species present in our mock communities: Carpinus betulus, Capsella bursa-
pastoris and Frazinus excelsior. These three species were chosen because their
metabarcodes differ widely in sequence length and GC content. This makes
it possible to expect different amplification efficiencies and to design specific
Tagman internal probes that allow individual PCR efficiency measurements
within a mixture of the three plant DNAs. Two different probes were designed
for Carpinus betulus to evaluate the influence of the probe itself on the mea-
surement. The four probes used are described in the Supplementary Table 3.
The assay was performed using Tagman qPCR on a uniform community com-
posed of these three species. A 5-fold serial dilution from 1.05 to 654 copies/ ul
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Fig. 1: Observed qPCR kinetics for a sample of Capsella bursa-pastoris (black
dots) compared to two PCR models fitted to the data. Blue curve: logis-
tic model; red curve: exponential model. An asymmetry of amplification is
observed around the inflection point, which creates here a gap between the
25" cycle and the 40" cycle for the logistic model (Gottschalk & Dunn, 2005).

in the reaction mix (25 pl with 5ul of DNA) was performed for each probe,
with three replicates per concentration. Taqman qPCR was chosen to measure
PCR efficiency because it allows measurement from a mixture of the three
plant DNAs. This ensures the same inhibitory effect for each species. Since
each individual DNA extract has its own pool of inhibitors that interfere with
qPCR assays, independent measurement on pure extract would not be realistic
(Svec, Tichopad, Novosadova, Pfaffl, & Kubista, 2015).

The exponential model (equation 5), which is valid before the PCR sat-
uration phase, can be used to estimate apparent PCR efficiencies. Estimated
efficiencies are referred to as apparent efficiencies because inhibition is always
present. For this study, however, only the relative values of the efficiencies are
important. A commonly used formula (equation 7, Gill, Bleka, & Fonnelgp,
2022) can be derived from the exponential model to estimate amplification effi-
ciencies from a series of qPCRs performed on successive dilutions. However, a
major limitation of this formula that has been identified here is that the esti-
mation of the slope is very sensitive to small variations in Cj, resulting in a
large variance of the estimator.

logio(mo) logio(Mc,)

Linear regression: C; = —
BresSION: = 0L+ A)  logio(L+ A)
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=alog;o(mo) +b+ e, e ~ N(0,0°) iid
A=10"Y*—1
and M¢, = 107%/¢ (7)

To estimate efficiencies more precisely, this approach is adapted. Linear
regression is used to estimate the constant value Mg, ~ 1.5 : 10! (num-
ber of molecules present at C}) by averaging the results for the three species.
Then K =~ 7.6 : 10! (equation 8) is inferred from observed relative fluores-
cence unit (RFU) values, assuming within-replicate proportionality between
RFU and DNA copy number (Gill et al., 2022), although RFU values are not
standardized and depend on many experimental factors (Svec et al., 2015).

3
Z RFUgnaq
s=1 t

Then, the efficiencies A; were estimated for each replicate from this con-
stant value of M¢, (equation 9). For subsequent analyses, the average A4 over
all replicates is used.

Mg, = M3(1+ A,)C®)

AL\ 1/Cus)
so Ag = (M(g) -1 9)

The extreme estimates of M¢, vary by a factor of 2.1, which implies a low
potential factor, applied equally to all Ay, of the order of 1.03.

Using the My community

PCR efficiencies were also inferred by optimizing the logistic PCR model pre-
sented above to fit experimental data, using known initial quantities of the
My community. The Fixed Landscape Inference MethOd (flimo, Moinard,
Oudet, Piau, Coissac, & Gonindard-Melodelima, 2022) implemented in Julia
was used for this purpose. The flimo method minimizes an objective function
in the form of a x? statistic (equation 10).

argmin J((mg)s)
mé,...,m8>0

s ~\2
with J(mg,...,mg):zM (10)
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where p, is the average proportion of species s in a replicate, estimated
over Ngim,m = 1900 simulations knowing the (mg)s, and p;(data) is the average
proportion of species s in the data.

However, the inferred efficiencies are relative, as the model can produce
similar results for different ranges of A;. The maximum efficiency value has
been set at 1. These efficiencies are then reused to infer the proportions of the
thirteen species.

Correction of relative abundances of a MOTU

Figure 2 summarizes the additional pipeline recommended for correcting
amplification bias in a metabarcoding experiment. The PCR amplification effi-
ciency of each species is estimated from samples of species characteristic of the
ecosystem studied that are assayed by ddPCR. There are two ways of doing
this: Taqgqman qPCR or a mock community study. These efficiencies are then
used to infer the initial proportions of each species.

f Uniform mock community
preparation

@ Sampling characteristic species

@ DNA extraction

4 Standard N l
metabarcoding pipeline @ Target DNA assay (ddPCR)
Environmental
sample

@ Uniform mock community
N J

DNA extraction / \

PCR amplification PCR efficiency assay PCR efficiency assay
l by metabarcoding by Tagman qPCR

. Probes design
\__ Sequencing ) Metabarcoding '
Tagman gPCR
A\

@ Efficiencies inference
(from serial dilution)

N /

Reference database of
specific amplification efficiencies

~

l Biased DNA relative abundances ‘ l Unbiased DNA relative abundances I

Efficiencies inference
(metabarcoding model)

Fig. 2: Additional pipeline recommended for correcting amplification bias in
a metabarcoding experiment as presented in this study.
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Using the Ratio method

Previous works (e.g. Shelton et al., 2022; Silverman et al., 2021) showed that
a reference mock community can be used to correct abundances in another
community composed of the same species. Although this was not the main
objective of our work, this result was verified using the three communities
studied. The My community was used as a reference to correct abundances
in the Mz and Mg communities. In the My community, each species had a
starting relative frequency of 1/13 ~ 7.7%, which should have been observed in
the final read proportions in the absence of amplification bias. The correction
factor for each species ¢y is therefore simply the median ratio between the
expected and the observed reads frequencies over all replicates in the My
community (equation 11).

(11)

¢, = Median (Observed reads frequency . )

Expected reads frequency

For the Mz and Mg communities, this correction factor is applied to
estimate the initial proportions p; for each species s (equation 12).

R Reads(s)
s Cs
R/
Ps = =5 12)
Y (

Using the estimated amplification efficiencies

The inference of the actual proportions of eDNA from the relative read abun-
dances (RRA) measured after DNA metabarcoding sequencing is achieved by
the same algorithmic method presented above, but this time the A; efficiencies
are assumed to be known.

The efficiencies measured by Tagman qPCR or inferred from the model fit
for the My community can be used to infer the initial proportions of My
and Mg.

An estimate of these proportions can be obtained using the exponential
model, but this requires knowledge of the PCR equivalent number of “expo-

o —

nential cycles”. The result is then given by the m§(k) calculated at cycle k
with the equation 13. The problem is that the relative frequencies vary by sev-
eral points depending on the cycle chosen. This method has not been included
in the following.

(13)
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Criteria for measuring quantification errors

The distance between the observed or corrected proportions (p;)s, median over
all the replicates) and the initial theoretical proportions (pi") is measured by
two RMSE (Root-Mean-Square Error) criteria. The error measured is either
absolute (equation 14) or relative (normalized by the theoretical proportions,
equation 15).

s
1
Absolute Error: AbsErr((pa)s) = || 5 > (B —pih)? (14)
s=1
and
LS (7ot
Relative Error: RelErr((p;)s) = S (Sths> (15)
b
s=1

Ecological conclusions: biodiversity indices

To compare theoretical, observed and inferred compositions, biodiversity
indices were computed for Mg and M. Hill numbers (Hill, 1973) (equation
16), interpretable as an effective number of species in the community, were cho-
sen with ¢ = 1 (linked to Shannon entropy) and ¢ = 2 (linked to Gini-Simpson
index).

S 1—q
1D = (Zp‘ﬁ) (16)

Results
ddPCR assay

The concentrations of each plant sample measured by ddPCR are shown in
Figure 3. For the same total DNA concentration, there was a wide variabil-
ity in average target concentration, ranging from 3.7 x 10* copies per ng for
Rhododendron ferrugineum to 2.5 x 10® copies per ng for Populus tremula with
an average of 1.1 x 10° copies per ng among the thirteen species. The factor
between the extremes is thus 6.6.

Metabarcoding experiment

Raw sequencing data

After processing with the OBITools, an average of 37,000 reads per non-
negative replicate was obtained with a standard deviation of 27,000 reads (first
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Fig. 3: Number of target DNA molecules (thousands) per ng of total DNA for
thirteen alpine plants, computed with the index used in equation 1. Each black
dot is a replicate, for different total DNA concentrations. The red diamonds
correspond to the mean for each species.

and third quartiles : 14,000 and 56,000 reads). Negative controls showed neg-
ligible contamination. For each community out of the 20 PCR replicates, one
replicate with fewer than 5,000 reads was discarded from further analysis.

Reads proportions

The comparison of observed and expected read proportions is shown in Figure
4. Significant differences can be observed: at most, between the observed and
expected proportions, there is a factor of 3.0 for Geranium robertianum in the
My community, 4.2 for Abies alba in My and 9.0 for Abies alba in Mg.

Comparing the observed proportions with the expected proportions allows
to visualize the two biases under study. For example, Rosa canina species has
both good efficiency and a high target concentration: the two biases add up.
Conversely, Geranium robertianum is penalized by both biases. Salvia pratensis
has a higher-than-average concentration, but poor efficiency. Capsella bursa-
pastoris is well amplified, but its target concentration is low.

The joint effect of the double bias is visible for Mz, with median pro-
portions comprised between 1.5% and 26%, and between 2.6% and 17% for
My

Inter-replicate variability is significant in some species, such as Populus
tremula (in My : mean proportion : 8.6%, varying from 3.3% to 14%, standard
deviation of 2.7%).
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Fig. 4: Observed relative proportions of reads of thirteen plant species for the
mock communities My and My. Gold lines indicate proportions expected
in the absence of target concentration and amplification bias. Gold diamonds
are the proportions expected in the absence of amplification bias. For the
My community, the deviation of the boxplots from the diamonds shows the
amplification bias alone. For the My community, both biases are present.
Concentration bias is visible as the difference between the diamond and the
line.

Inferring PCR efficiencies and abundances

The apparent PCR efficiencies for the three species tested (Fex, Cbe, Cbp)
measured using the Taqgqman qPCR method for the four probes have a relative
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differences of the order of 5%. That can be considered low, but due to the
exponential nature of PCR, it has a real impact on the final proportions in the
community due to the exponential nature of PCR amplification.

Table 2 shows the abundances in the reference mock community My and
the efficiencies inferred from the Tagman qPCR assay and from the model fit
to the My community, with the flimo method (around 100 seconds for the
thirteen species). The lowest efficiency is around 15% lower than the maxi-
mum. The absolute values determined by Tagman qPCR are overestimated in
relation to these values, but once normalized, they are broadly similar, even
though more values would be required for a rigorous comparison. Because of
this similarity and the fact that the assay involves only three species, the
results are based on efficiencies measured in My .

Average proportion in My (%) | PCR Efficiency inferred from

Species Theoretical Observed Tagman My
Bme 7.7 6.1 0.922
Rca 7.7 17 1.00
Lco 7.7 8.0 0.942
Ptr 7.7 8.6 0.948
Spr 7.7 2.7 0.862
Lxy 7.7 5.5 0.915
Fex 7.7 6.3 0.924 0.924
Aca 7.7 8.3 0.945
Cbp 7.7 11 0.973 0.964
Gro 7.7 2.4 0.855
0.956 (CbeA)
Cbe 7.7 8.1 0.931 (CbeB) 0.943
Aal 7.7 5.8 0.918
Rfe 7.7 10 0.960

Table 2: Proportions in My and relative PCR amplifica-
tion efficiencies measured for the four Tagman qPCR probes
and inferred from the My community. The maximum effi-
ciency was set at 1 for Rosa canina. Efficiencies inferred were
normalized so that Fex has the same efficiencies with both
methods.

Table 3 shows the proportions in the My and Mg communities, as well
as the errors compared to the theoretical proportions and the biodiversity
indices. The results of the two corrections are comparable and both improve
the RMSE criteria, as expected. The corrected biodiversity indices also seem
to better approximate the real biodiversity than the observed values.

PCR bias importance: comparison of model simulations
and observed data

To illustrate the effect of small differences in efficiency, PCR kinetics was
simulated for two species with equal initial quantities. Figure 5 shows the
final proportions of the two species according to the difference in PCR effi-
ciency. These simulations are compared with the proportions observed in the
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Average proportion in Mt (%) Average proportion in Mg (%)

Species Theoretical ~ Observed V‘/Ii:ie;r\idu gllf:;frif Theoretical ~ Observed V\]Iir;flezr\idu f:ﬁfr/e\i
Bme 8.5 6.2 8.4 8.3 50 36 54 54
Rca 14 26 12 12 25 40 20 19
Lco 9.5 11 11 12 13 15 16 16
Ptr 17 21 20 20 6.3 5.2 5.5 5.5
Spr 10 3.9 12 12 3.1 0.63 2.0 2.2
Lxy 5.0 2.7 3.8 3.9 1.6 0.94 1.5 1.6
Fex 5.9 4.3 5.7 5.6 0.78 0.68 0.96 0.96
Aca 9.1 7.9 7.8 8.1 0.39 0.16 0.17 0.17
Cbp 2.6 3.2 2.4 2.4 0.20 0.19 0.15 0.15
Gro 5.6 2.1 6.5 7.4 0.098 0.019 0.064 0.091
Cbe 3.6 2.8 2.6 2.7 0.049 0.030 0.031 0.032
Aal 6.1 1.5 2.3 2.1 0.024 0.0045 0.0072 0.0045
Rfe 2.5 5.1 3.7 3.8 0.012 0.014 0.012 0.015

AbsErr 0.045 0.017 0.019 0.057 0.020 0.022

RelErr 0.53 0.26 0.28 0.50 0.34 0.34
™D 11 9.8 11 11 4.0 3.7 3.7 3.8
2D 10 6.7 9.1 9.1 3.0 3.1 2.8 2.8

Table 3: Proportions of species in My and M. Inferred with My means
corrected by the ratios. Proportions inferred with Ag are obtained by fitting
the PCR model using the efficiencies inferred previously.

My community when comparing Rosa canina (the most efficiently amplified — «
species) and the other species individually. These two proportion series are s

very close to each other. 429
al o S®Vo x| | Q= > 5 9
1.00 8 & &85 @525 IO
a 4 .
@ 0.75 Rosa canina
8
T
c
>
®
P T i e
=
8
[
g )
£ 0251 Second species
0.001

0.05 0.10 0.15

Relative decrease of PCR efficiency compared to Rosa canina

0.00

Fig. 5: Relative abundances in a mock community of two initially evenly
distributed species simulated with the logistic model (lines) and observed in
the My community (dots) considering only Rosa canina and the other species
individually. The first species has an efficiency of A; = 1. The second has a
variable efficiency, of value Ay = A;(1 — z) along the z-axis (Ay € [0.85,1.0]).
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Discussion

The quantitative aspect of DNA metabarcoding is regularly questioned by
ecologists. Here, two potential biases were considered and their relative effects
quantified.

The first is well known. It has long been discussed by microbial ecologists
(Kembel, Wu, Eisen, & Green, 2012; Milivojevi¢ et al., 2021) and has been
identified for macroorganisms (Garrido-Sanz et al., 2022; Krehenwinkel et al.,
2017). It can be summarized by a simple question: how many copies of the
target gene marker are present per genome in each species under considera-
tion? In macro-organisms such as plants and animals, most of the targeted
markers are carried by the chloroplast or mitochondrial genome, but the
same question remains: how many copies of the organelle genome are there
per cell? When the genome size of a species is unknown, the best proxy of
this number of copies is the number of marker copies per weight unit of
total DNA. This amount can be estimated by ddPCR. Among the 13 plants
tested, the one more concentrated in chloroplast DNA, Populus tremula (Ptr),
has 6.6 times more copies per unit of nuclear DNA than the one less con-
centrated, Rhododendron ferrugineum (Rfe). According to the Kew C-value
database (https://cvalues.science.kew.org/), the 1C value of Ptr is 0.45 pg
(Siljak-Yakovlev et al., 2010) and that of Rhododendron ponticum, the only
Rhododendron measured, is 0.74 pg (Bou Dagher-Kharrat et al., 2013). Both
together allow to estimate that the bias in chloroplast abundance (in copies
per genome) can lead to a 4-fold overestimation of Ptr abundances relative to
Rfe.

The second type of bias is an amplification bias, which has never been
quantified. The amplification efficiency of a marker for the species s (Ay)
is an intrinsic property of the sequence. It does not depend on co-amplified
sequences. It can be measured by either of the two methods proposed in this
study. Both methods provide similar values, and the choice between them
depends on practical convenience. The values obtained can be used to cor-
rect the composition of any community, as long as differences in amplifiability
between the species present do not cause one or more to disappear. The pro-
posed correction method combines the generation of a reference base for the
amplifiability and a mathematical model of the PCR. It does not require any
modification of the metabarcoding protocol. Therefore, it can be applied to
already generated results and is easy to implement.

The amplification bias is accumulated over each PCR cycle. Thus, the final
bias on the observed read relative frequencies is a function of the amplifiability
per cycle and the number of amplification cycles. In PCR, the actual number
of amplification cycles is not necessarily the number of cycles programmed into
the PCR instrument. This number may be lower because the total amount of
DNA that can be synthesized is limited by the nucleotide concentration. It
is therefore possible that the plateau will be reached before the programmed
number of cycles has been reached, with the last cycles not corresponding
to any amplification (Figure 1). Correcting for bias using the ratio method
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(e.g. Shelton et al., 2022; Silverman et al., 2021) requires that each sample,
including the reference mock community used to estimate it, be amplified
with the same effective number of PCR cycles. This means that each sample
must contain the same total number of target DNA molecules at the start of
the PCR. In our study, each mock community was prepared with close total
amounts of target DNA, thus respecting the ideal condition for using the ratio
method. Therefore, as shown in Table 3, the corrections made by the ratio
method and our PCR model-based approach are strictly equivalent. When
samples contain different amounts of target DNA, the efficiency of the ratio
method should decrease because the number of effective PCR cycles varies
from sample to sample. Fortunately, our PCR model-based correction method
allows us to estimate the effective number of PCR cycles for each sample,
thereby accounting for sample heterogeneity. Without performing ddPCR on
each sample and diluting to equilibrate the amount of target DNA between
samples, our model-based method results in a correction that is more robust
to expected inter-sample variability than the ratio method.

When the two species with the most different amplifiability, Rosa canina
(ARca = 1.000) and Geranium robertianum (Agro = 0.855) are co-amplified,
with equal amounts of initial target DNA in the extract, the ratio between
the RRA observed after sequencing can be up to 6.7 (Figure 5), leading to a
strong overestimation of Rca abundance relative to Gro. This initial assess-
ment shows that due to the exponential nature of PCR, even a small difference
in amplifiability, as little as 15% between Rca and Gro, the two extreme
species tested, can have as strong an effect on the observed RRA as the bias
observed due to chloroplast richness. Sometimes the two biases studied push
in the same direction, as in Populus tremula (Ptr), which has a high chloro-
plast concentration and a high amplifiability, or Capsella bursa-pastoris (Cbe),
which combines both a low chloroplast concentration and a low amplifiability
(Fig. 4). Sometimes, by chance, both biases partially compensate, as in Salvia
pratensis (Spr).

Even if the abundances observed by traditional surveys and those of
metabarcoding reads are correlated (Yoccoz et al., 2012), it is necessary to
be cautious when analyzing DNA metabarcoding data in terms of quanti-
tative information. If we consider the estimation of biodiversity indices, the
worst situation is the estimation of a-diversity. Because of all the biases
acting simultaneously on DNA metabarcoding measures, but their good repro-
ducibility, the information they provide is inherently relative. Relative in
terms of abundances, DNA metabarcoding can at best provide relative abun-
dances, but also relative because the values provided are biased. Therefore,
only changes between measures are truly meaningful. Although it has been
shown that a-diversity of plant communities can be correctly estimated from
DNA metabarcoding data (Calderén-Sanou, Miinkemdiiller, Boyer, Zinger, &
Thuiller, 2020), the limited condition under which this is true, Hill numbers
computed for ¢ = 1, indicates that this is because at this level of weighting of
rare versus abundant species by chance most of the biases are compensated.
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This phenomenon can also be observed in our results (Table 3), where ' D and
2D values estimated from raw RRA and corrected abundances do not strongly
differ, while the error between RRA and theoretical composition decreases by
a factor of two when using corrected abundances. This discrepancy between
the decrease in error due to the correction and the not so good increase in
the quality of the a-diversity estimates can be at least partially explained in
M by the abundances of the two most abundant species, Briza media (Bme)
and Rosa canina (Rea), which have inverted abundances when estimated from
RRA. For any study analyzing changes in diversity across time or ecologi-
cal gradients, because metabarcoding measures are biased but accurate, the
true (-diversity patterns can be easily detected using metabarcoding. In fact,
because the biases are repeatable between measures, they often amplify the
pattern because the errors correlate with the ecological signal. The problem
of all these biases only arises when trying to disentangle the observed pat-
tern from changes in specific species. Therefore, we can strongly encourage
people to be very cautious when interpreting the observed pattern, and to be
careful not to over-interpret changes in the abundance of a few species in the
community as an ecological cause.

Conclusion

We investigated two of the biases that prevent proper quantification of rela-
tive eDNA abundances in metabarcoding data. Despite their importance, these
biases are far from being corrected or even considered in most current stud-
ies. In this study, we measure the two studied biases and propose a simple
method to correct the amplification biases in the limit of extreme cases where
some species are so strongly disadvantaged that they disappear from the raw
results. The advantage of our method compared to the previous ones is that
it is more robust to sample variability, while compared to the spiking-based
method it does not require any change in metabarcoding protocols. This also
allows the reanalysis of previously obtained results, providing the opportunity
for a better ecological interpretation of them. By combining relative abundance
correction and ddPCR to estimate the amount of target DNA in each sample,
we can even consider the possibility of having access to an absolute quantifi-
cation of DNA in the analyzed DNA extracts for each species instead of only
relative abundances. This opens the possibility to increase the robustness of
the quantitative interpretation of DNA metabarcoding results, although other
biases still need to be assessed and modeled in a similar way to fully achieve
the goal of truly quantitative metabarcoding.
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