

Title: Plasticity in the functional properties of NMDA receptors improves network stability during severe energy stress

Abbreviated Title: State-dependent NMDAR plasticity improves hypoxia tolerance

Authors: Nikolaus Bueschke^{1†}, Lara Amaral-Silva^{1†}, Min Hu², Alvaro Alvarez², Joseph M. Santin^{1*}

Author Affiliations: ¹University of Missouri, Columbia, MO 65201; ²University of North Carolina-Greensboro, Greensboro, NC 27402

***Email for correspondence:** santinj@missouri.edu

[†] Indicates co-first authorship

Number of figures: 7

Number of Words in Abstract: 219

Number of Words in Introduction: 634

Number of Words in Discussion: 1,499

Conflict of Interests: The authors declare no conflicts of interest.

Acknowledgment: We would like to thank the National Institutes of Health (R15NS112920-01A1, R01NS114514) the U.S. Department of Defense (W911NF2010275) for funding to JMS.

Abstract

1 Brain energy stress leads to neuronal hyperexcitability followed by a rapid loss of
2 function and cell death. In contrast, the frog brainstem switches into a state of extreme
3 metabolic resilience that allows them to maintain motor function during hypoxia as they
4 emerge from hibernation. NMDA receptors (NMDARs) are Ca^{2+} -permeable glutamate
5 receptors that contribute to the loss of homeostasis during hypoxia. Therefore, we
6 hypothesized that hibernation leads to plasticity that reduces the role of NMDARs within
7 neural networks to improve function during energy stress. To test this, we assessed a
8 circuit with a large involvement of NMDAR synapses, the brainstem respiratory network
9 of female bullfrogs, *Lithobates catesbeianus*. Contrary to our expectations, hibernation
10 did not alter the role of NMDARs in generating network output, nor did it affect the
11 amplitude, kinetics, and hypoxia sensitivity of NMDAR currents. Instead, hibernation
12 strongly reduced NMDAR Ca^{2+} permeability and enhanced desensitization during
13 repetitive stimulation. Under severe hypoxia, the normal NMDAR profile caused network
14 hyperexcitability within minutes, which was mitigated by blocking NMDARs. After
15 hibernation, the modified complement of NMDARs protected against hyperexcitability,
16 as disordered output did not occur for at least one hour in hypoxia. These findings
17 uncover state-dependence in the plasticity of NMDARs, whereby multiple changes to
18 receptor function improve neural performance during energy stress without interfering
19 with its normal role during healthy activity.

20 **Significance Statement:**

21 Neural circuits lose homeostasis during severe energy stress, and NMDA-glutamate
22 receptors play a major role in this response. In contrast, frogs have the remarkable
23 capacity to use plasticity that improves circuit function from minutes to hours during
24 hypoxia, likely as an adaptation to survive emergence from hibernation. We found this
25 occurs, in part, through modification of NMDA receptors that renders them less
26 permeable to Ca^{2+} and more likely to desensitize during high activity states. These
27 NMDA receptor modifications do not influence normal network function but protect
28 against hyperexcitability caused by hypoxia. This work points to endogenous plasticity
29 mechanisms that improve network function during energy stress without altering circuit
30 function when the brain is well-oxygenated.

31

Introduction:

32 Brain function requires high rates of ATP synthesis (Bordone et al., 2019). The
33 sudden loss of oxygen triggers hyperexcitability that leads to ion dysregulation and cell
34 death, termed “excitotoxicity” (Buck & Pamenter, 2018). A key contributor to
35 excitotoxicity involves the activation of NMDA-glutamate receptors (NMDARs), causing
36 pathological Ca^{2+} influx and saturation of intracellular Ca^{2+} buffering systems
37 (Szydlowska & Tymianski, 2010; White & Reynolds, 1995). As rates of ATP synthesis
38 wane, active transport of Ca^{2+} out of the cell becomes increasingly difficult, which
39 culminates in cell death through reactive oxygen species, pro-death signaling pathways,
40 and mitochondrial damage (Wu & Tymianski, 2018). Therefore, hyperexcitability caused
41 by overstimulation of NMDARs and subsequent Ca^{2+} influx represents a critical step in
42 the loss of homeostasis that drives neurological issues during hypoxia.

43 Unlike most mammals, some species experience variable oxygen tensions in
44 their environments and have evolved strategies to survive brain hypoxia (Larson et al.,
45 2014). Survival strategies often involve entry into a hypometabolic state associated with
46 arrested synaptic transmission to conserve energy (Buck & Pamenter, 2018). However,
47 some animals must remain active during hypoxia (Czech-Damal et al., 2014; Larson et
48 al., 2014; Larson & Park, 2009). This presents the challenge of maintaining circuit
49 function while avoiding hyperexcitability and excitotoxicity. An extreme example of this
50 problem is embodied by the respiratory network of American bullfrogs. This network
51 generates rhythmic output through mechanisms that involve AMPA and NMDA-
52 glutamate receptors (Kottick et al., 2013) and, therefore, requires ongoing aerobic
53 metabolism (Adams et al., 2021). However, for several months each year, frogs

54 hibernate in ice-covered ponds without breathing air, using only skin gas exchange. As
55 a consequence, blood oxygen falls dramatically, which may be as low as 1-3 mmHg
56 (Tattersall & Ultsch, 2008). Low oxygen in this environment does not pose an immediate
57 threat due to reduced metabolic rates in the cold (Tattersall & Boutilier, 1997). However,
58 during emergence at warm temperatures, this life sustaining network, must restart
59 activity on the background of severe hypoxia. If this was not already difficult enough, an
60 additional problem lies in the fact that frogs are not generally considered to be strongly
61 “hypoxia-tolerant,” and low O₂ levels present during emergence cannot power brainstem
62 circuits (Adams et al., 2021). To overcome these challenges, hibernation induces
63 metabolic plasticity at synapses that improve network function during severe hypoxia
64 from a few minutes to several hours (Bueschke et al., 2021, Amaral-Silva and Santin,
65 2023; Hu and Santin, 2022). Therefore, hibernation in frogs provides insight into
66 plasticity that shifts a typically “hypoxia-intolerant” circuit into a state that functions
67 remarkably well during severe energy stress.

68 As in mammals, hypoxia in the frog brain induces network hyperexcitability that
69 disrupts patterned output, followed by a swift loss of function (Adams et al., 2021;
70 Bueschke et al., 2021a). Thus, this network must engage mechanisms that constrain
71 excitability to maintain activity with a limited energy supply upon emergence from
72 hibernation. Many hypoxia-tolerant vertebrates have low levels of NMDARs or suppress
73 NMDARs in hypoxia to conserve energy and avoid excitotoxicity (Bickler et al., 2000;
74 Bickler & Buck, 2007; Wilkie et al., 2008). Therefore, we hypothesized that shifting from
75 “hypoxia intolerance” to “functional hypoxia tolerance” involves reduced NMDAR
76 function within the network. To test this hypothesis, we assessed the NMDAR tone of

77 the respiratory network, NMDAR currents using whole-cell voltage-clamp, and NMDAR
78 subunit composition using single-cell quantitative PCR. In contrast to our hypothesis,
79 hibernation did not influence the role of NMDARs in the network, current amplitude,
80 kinetics, and hypoxia sensitivity. We instead found that hibernation decreased the Ca^{2+} -
81 permeability of NMDARs and enhanced desensitization, serving to reduce Ca^{2+} influx
82 and lower depolarizing drive during high activity states. These modifications oppose the
83 loss of homeostasis driven by the normal profile of NMDARs. Overall, we identified
84 NMDAR plasticity that improves network activity during energy stress without
85 influencing their contribution in well-oxygenated conditions.

86

87

88

89 **Materials and Methods:**

90 *Animal husbandry and ethical approval:*

91 The use of animals was approved by the Institutional Animal Care and Use
92 Committee (IACUC) at the University of North Carolina at Greensboro (Protocol #19-
93 006). Female American bullfrogs (*Lithobates catesbeianus*) were ordered from Phrog
94 Farm (Twin Falls, ID, USA). Frogs were randomly assigned to one of two groups:
95 control or hibernation and were placed in designated plastic tubs containing
96 dechlorinated water bubbled with room air. Control frogs were kept at ambient room
97 temperatures (20°C) with access to wet and dry areas and fed pellets provided by Phrog
98 Pharm once a week. Plastic tubs containing frogs assigned for aquatic overwintering
99 were placed into low-temperature incubators (Thermo Fisher Scientific, Waltham, MA,
100 USA) that were gradually reduced from 20° to 4° C over the course of 7 days. Once at
101 overwintering temperatures, screens were placed below water level to ensure frogs'
102 cutaneous respiration as the primary oxygen exchange, and they were kept at 4° C for
103 30 days before use. Frogs exhibit metabolic suppression at these temperatures,
104 consistent with hibernation (Tattersall & Ultsch, 2008). Therefore, we refer to this group
105 as "hibernation." All frogs were kept under a 12:12 hour light/dark cycle.

106 *Dissection of Brainstem:*

107 Frogs were deeply anesthetized with isoflurane (1 mL) in a sealed 1 L container
108 until loss of toe-pinch response. They were then rapidly decapitated, and heads were
109 submerged for dissection in chilled artificial cerebrospinal fluid (aCSF; 104 mM NaCl, 4
110 mM KCl, 1.4 mM MgCl₂, 7.5 mM D-glucose, 1 mM NaH₂PO₄, 40 mM NaHCO₃, and 2.5

111 mM CaCl₂; (Bueschke et al., 2021), which was bubbled with 98.5% O₂ and 1.5% CO₂
112 for oxygenation, resulting in aCSF with a pH of 7.9 ± 0.1. These CO₂ and pH values are
113 normal for frogs at room temperature (Howell et al., 1970). The brainstem-spinal cord
114 was rapidly exposed, and the forebrain was crushed. Brainstem-spinal cord nerve roots
115 were carefully trimmed, allowing its' excision from the cranium, which was followed by
116 the dura membrane removal. Following all dissections, the preparations were held at
117 room temperature (22±1°C) and all experiments were performed at this temperature.

118 *Extracellular nerve root recordings:*

119 For experiments that assessed motor output from the intact network, we
120 assessed extracellular motor output from the vagus nerve rootlets, which innervates the
121 glottal dilator muscle to control airflow in and out of the lung. Dissected preparations
122 were pinned ventral side up in 6 mL Petri dishes coated with Sylgard 184 (Dow Inc.
123 Midland, MI, USA). Brainstem-spinal cords were continuously superfused with
124 oxygenated aCSF using a peristaltic pump (Watson Marlow, Falmouth, CNL, UK).
125 Population activity from the vagal nerve root (CNX) was recorded using a suction
126 electrode attached to a fire-polished borosilicate glass pulled from a horizontal pipette
127 puller (Sutter Instrument, Novato, CA, USA). Extracellular signals were amplified
128 (x1000) and filtered (low-pass, 1000 Hz; high pass, 100 Hz) using an AM-Systems 1700
129 amplifier (Sequim, WA, USA), then digitized using Powerlab 8/35 (ADInstruments,
130 Dunedin, New Zealand). The raw signal was integrated and rectified (100 ms τ) using
131 LabChart data acquisition system (ADInstruments). After 4 hours of decapitation, a
132 stable signal was recorded for ~30 minutes, and the preparation was challenged with
133 hypoxic aCSF (98.5% N₂ balanced with CO₂) or NMDAR antagonist, D-AP5 (50 μ M). All

134 preparations included in this study produced rhythmic motor output associated with lung
135 breathing.

136 *Motoneuron labeling and slice preparation:*

137 For experiments that assessed NMDA receptor currents in motoneurons from
138 brain slices, we isolated the 4th root of the glossopharyngeal-vagus complex and
139 attached a fire-polished borosilicate glass pipette to it. Tetramethylrhodamine dextran
140 dye was then added to the tip of the pipette (Invitrogen, Waltham, MA, USA) in contact
141 to the nerve root for at least 2 hours to diffuse to the soma. We then sliced the
142 brainstem-spinal cord preparations at 300 μ M using a vibratome (Technical Products
143 International series 1000, St Louis, MO, USA). During dye loading and slicing the tissue
144 was maintained in regular aCSF (described above).

145 *NMDAR Currents:*

146 Slices were superfused with an extracellular solution (76.5 mM NaCl, 2.2 mM
147 KCl, 7.5 mM D-Glucose, 10 mM HEPES, 300 μ M CdCl₂, 20 mM TEA-Cl, 250 nM TTX,
148 10 μ M DNQX) containing two different Ca²⁺ concentrations. High Ca²⁺ had 10 mM of
149 CaCl₂, and low Ca²⁺ 1 mM of CaCl₂. Sucrose was added to maintain consistent
150 osmolarity (330 mOsm). Thus, 60mM was added to the high Ca²⁺ solution, and 89mM
151 was added to the low Ca²⁺ solution. MgCl₂ was excluded to prevent Mg²⁺ block of
152 NMDARs. Extracellular solutions were oxygenated by bubbling 98.5% O₂ and 1.5%
153 CO₂.

154 Labeled vagal neurons were approached by glass pipettes (2–4 M Ω resistance)
155 using a micromanipulator (MP-285/ MPC-200, Sutter Instruments, Novato, CA, USA)

156 attached to a head stage (CV203BU, Molecular Devices, San Jose, CA, USA). Positive
157 pressure was applied to the pipette while approaching the cell and quickly removed,
158 gentle negative pressure was used to form a $>1\text{G}\Omega$, and the whole-cell access was
159 obtained by breaking the seal with rapid negative pressure. We did not observe any
160 obvious differences in cell viability and ability to obtain patch clamp recordings in high
161 and low Ca^{2+} solutions. The solution filling the patch pipette (76.5 mM K-gluconate, 10
162 mM D-glucose, 10 mM HEPES, 1 mM $\text{Na}_2\text{-ATP}$, 0.1 mM $\text{Na}_2\text{-GTP}$, 2 mM MgCl_2 , 30 mM
163 TEA-Cl) was designed with Na^+ and K^+ concentrations equal and opposite to the
164 extracellular solution to generate a reversal (E_{rev}) potential of ~ 0 mV without Ca^{2+}
165 (assuming no difference in ion selectivity between Na^+ and K^+) as seen previously
166 (Jatzke et al., 2002).

167 To evoke NMDAR currents, we focally applied NMDA and glycine to the cell
168 body. For this, a borosilicate pipette pulled with a tip diameter of ~ 5 μm was filled with
169 NMDA (1 mM) and glycine (10 μM) (both from Hellobio, Princeton, NJ, USA) dissolved
170 in the extracellular solution. The pipette was driven by a Picospritzer II, and the focal
171 solution was applied during 10-20 ms onto the soma of labeled vagal motoneurons
172 (General Valve Corporation, Fairfield, NJ, USA) to activate NMDARs. Glycine is a co-
173 agonist of the NMDAR but did not elicit a response when applied alone in control or
174 hibernation neurons.

175 NMDAR E_{rev} was recorded by a voltage clamp step protocol with a $\Delta+5$ mV step
176 between -20 mV and 40 mV. In 3 recordings, E_{rev} was more hyperpolarized, and those
177 cells were stepped from -40 mV to 20 mV in 5 mV increments (control, $n=16$;
178 hibernation, $n=16$). NMDAR desensitization was assessed by puffing at a rate of 0.5 Hz

179 for a total of ten pulses at -20 mV (control, n=12; hibernation, n=14). Hypoxia was
180 applied to brain slices by bubbling extracellular solution with 98.5% of N₂ and 1.5% of
181 CO₂ for ~5 minutes before recording. All desensitization protocols and single activation
182 amplitude and kinetics experiments were performed on neurons held at -20 mV. All data
183 were acquired in pClamp 11 software using Axopatch 200B amplifier and Axon Digidata
184 1550B digitizer (Molecular Devices, San Jose, CA, USA).

185 *NMDAR subunits electrophysiology:*

186 Vagus motoneurons were recorded using patch-clamp as described above. For
187 this protocol, the pipette solution contained 110 mM K-gluconate, 2 mM MgCl₂, 10 mM
188 HEPES, 1 mM Na₂-ATP, 0.1 mM Na₂-GTP, and 2.5 mM EGTA. Once gaining whole cell
189 access the solution bathing the slice was changed from regular aCSF to 104 mM NaCl,
190 4 mM KCl, 7.5 mM D-glucose, 1 mM NaH₂PO₄, 40 mM NaHCO₃, 2.5 mM CaCl₂, 250 nM
191 TTX, 10 µM DNQX, 3 µM Glycine, and 2 µM Strychnine. NMDA currents were elicited
192 once every minute by focal application of NMDA (1 mM) and glycine (3 µM) diluted in
193 the aCSF in 500 ms pulses. The cell was continuously monitored in voltage clamp, and
194 after observing a stable current in 3 consecutive NMDA puffs (~ 10-15 min of recording),
195 we applied a specific NMDA subunit inhibitor in aCSF.

196 The subunit GluN2A was inhibited using 1 µM TCN 201 (Tocris Bioscience,
197 Bristol, UK) (Bettini et al., 2010; Edman et al., 2012); GluN2B was inhibited by 2 µM RO
198 25-6981 (Tocris Bioscience, Bristol, UK) (Abrahamsson et al., 2017; France et al.,
199 2017); GluN2C/GluN2D was inhibited using 10 µM QZN 46 (Tocris Bioscience, Bristol,
200 UK) (Hansen and Traynelis, 2011); and GluN3 was blocked by 30 µM TK30 (4-(2,4-
201 dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid; Santa Cruz Biotechnology, Dallas, TX,

202 USA) (Kvist et al., 2013; Christian et al., 2021). A time control experiment was
203 performed recording NMDAR currents while maintaining the slice in the aCSF described
204 above with no inhibitor added.

205 *Electrophysiology Data analysis:*

206 Extracellular motor output: Burst amplitude and frequency were determined by
207 averaging amplitude of fictive breaths selected in a 5-minute window prior to D-AP5
208 application. Amplitude and frequency in the presence of NMDAR antagonist were
209 analyzed for 5 minutes after burst amplitude stabilized. Peak amplitude was determined
210 using the Peak Analysis extension in LabChart (ADIstruments, Dunedin, New
211 Zealand). To characterize chaotic bursting behavior during hypoxia, we analyzed the
212 peak of the largest “non-respiratory” motor burst that clearly disrupted patterned
213 network output associated with respiratory activity and normalized it to the background
214 nerve signal value at the baseline to allow comparisons across groups.

215 NMDAR Ca^{2+} permeability: Relative Ca^{2+} permeability was determined by the
216 degree of shift in the NMDAR reversal potential (E_{rev}) based on the mean data of the
217 population in different Ca^{2+} concentrations in extracellular recording solution. The
218 underlying premise is that receptors that are permeable to Ca^{2+} have a depolarizing shift
219 in E_{rev} , while Ca^{2+} -impermeable channels do not (Jatzke et al., 2002). We evoked
220 NMDAR currents using low (1 mM) and high (10 mM) Ca^{2+} and measured the peak
221 current evoked by NMDA-glycine at each voltage step. We then plotted the current-
222 voltage relationship and interpolated E_{rev} through the x-intercept of the line of best fit
223 from 3-5 plot points near the intercept where $I=0$ pA. The currents elicited by NMDA-
224 glycine were small near E_{rev} and were unlikely to be affected by voltage errors due to

225 the series resistance (R_s). However, the holding current at depolarized voltages was
226 often substantial, even in the presence of TEA to block outward currents. Therefore, we
227 corrected the holding voltage for R_s errors. For this, we measured R_s at each voltage
228 step based on the peak of the transient current and corrected the holding voltage by the
229 voltage error caused by R_s . Currents were measured using the Peak Analysis extension
230 in LabChart. Averaging/decimation at 0.05-0.1 ms was applied to the traces prior to
231 peak analysis to filter out high-frequency spontaneous synaptic activity. This level of
232 filtering was chosen as it did not alter the amplitude of the NMDAR current.

233 Single NMDAR currents and desensitization: Single NMDAR currents were
234 measured using similar methods as the NMDAR Ca^{2+} permeability, where peak currents
235 induced by NMDA and glycine were assessed at -20 mV. Decay time constant was
236 determined between 90% and 10% of the peak height and calculated using the Peak
237 Analysis tool in LabChart. Desensitization was assessed by measuring the peak current
238 evoked at each step. The baseline for each current in the series was taken as the
239 recovered current after proceeding puff.

240 NMDAR subunit inhibition: The current amplitude was analyzed using peak
241 analysis in LabChart. The average of the last 3 currents before inhibitor application was
242 compared to currents recorded after 10 minutes of exposure to the drug. A set of time
243 control experiments compared the 3 first stable currents (parameter used to decide to
244 apply the inhibitor) to 10 min after that.

245 Single-cell Real-time quantitative PCR:

246 We used single-cell quantitative PCR (qPCR) to determine mRNA expression for
247 NMDARs subunits using the same cell harvesting, RNA extraction, cDNA synthesis,
248 and preamplification procedures detailed in Pellizzari et al., 2023.

249 PCR primers for open reading frames of the genes that code for NMDA
250 glutamate receptor subunits, *Grin1*, *Grin2a*, *Grin2b*, *Grin2c*, *Grin2d*, *Grin3a*, and *Grin3b*,
251 were designed from sequences found in the coding DNA sequence for *Lithobates*
252 *catesbeianus* (Table 1 and Table 2). For this, we used annotated amino acid sequences
253 for GluN subunits from *Rana temporaria* as a query in the *Lithobates catesbeianus*
254 amino acid database. This search revealed peptide sequences with high amino acid
255 sequence conservation. We then performed a reciprocal BLAST against the entire
256 nonredundant protein database using hits from *Lithobates catesbeianus* to verify the
257 identity of the target. Accession numbers were then used to identify the open reading
258 frame in the CDS to design PCR primers. Only *Grin1*, *Grin2a*, and *Grin3a* were
259 identified in the bullfrog CDS, likely due to low coverage and/or poor assembly of the *L.*
260 *catesbeianus* genome (Hammond et al., 2017). For *Grin2b*, *Grin2c*, *Grin2d*, and
261 *Grin3b*, we found the regions of the coding sequence in *Rana temporaria* (a species
262 closely related to *L. catesbeianus*) and *N. parkeri* (more distantly related frog species)
263 with high similarity to design PCR primers. Our rationale was that close sequence
264 identity at the nucleotide level between these two species (~98%) would allow us to
265 design primers for use in *Lithobates catesbeianus*.

266 Primer sets were validated with a series of four four-fold dilutions of brainstem
267 cDNA. All primer sets used here produced efficiencies greater than 80% (Table 1 and
268 Table 2) and a single peak in the melt curve in a SYBR Green assay, suggesting the

269 amplification of a single PCR product. As we observed in Pellizzari et al., 2023 some
270 primer sets that produced one peak in the melt curve using bulk brain cDNA as the input
271 material showed multiple peaks in the melt curve after single-cell preamplification.
272 When this occurred, these primer sets were redesigned.

273 All neurons in this experiment were assessed for the expression of each of the 7
274 *Grin* subtypes. *Grin2b*, *Grin2c*, *Grin2d*, and *Grin3b* were run using SYBR Green assays,
275 and *Grin1*, *Grin2a*, and *Grin3a* were run in one multiplex assay. For SYBR Green
276 assays, quantitative PCR was run in 10 μ L reaction volumes containing 2.5 μ M forward
277 and reverse primers and followed the instructions of the 2X SYBR Green Mastermix
278 (Applied Biosystems, ThermoFisher Scientific, Waltham, MA). Assays were run on 96-
279 well plates on an Applied Biosystems QuantStudio 3 (Applied Biosystems,
280 ThermoFisher Scientific, Waltham, MA) using the following cycling conditions according
281 to the SYBR Green instructions: 50 °C-2m, 95 °C-10 m, 95 °C-15 s, 60 °C-1 m. Following
282 40 cycles of PCR (95 °C-15 s, 60 °C-1 m), melt curves for all PCR products were
283 acquired by increasing the temperature in increments of 0.3 °C for 5 seconds from 60 °C
284 to 95 °C. For multiplex assays, we ran triplexed probed-based assays. For this, we used
285 the same primer concentration as described for SYBR Green assays, 312.5 nM reporter
286 probes, and followed the instructions of the 5X PerfeCTa qPCR Toughmix mastermix
287 (Quanta Bio). 18s ribosomal RNA was run to ensure the quality of the sample and for
288 normalization of copy number to account for the possibility of different amounts on
289 cDNA input and efficiency in the cDNA synthesis reaction.

290 Absolute quantitation of transcript abundance was estimated through copy
291 number standard curves as previously described (Santin & Schulz, 2019). We normalized

292 absolute copy number by a normalization factor using 18s Cq values to account for the
293 possibility of different amounts of harvested cytoplasm and efficiencies of the cDNA
294 synthesis reaction across samples (Garcia et al., 2018). We ran qPCR for all *Grin*
295 subunits on 19 control neurons and 20 hibernation neurons. In some neurons, *Grin*
296 subunits appeared to be absent, or to be very lowly expressed. However, it is also
297 possible a lack of detection represents a false negative due to stochasticity in the cDNA
298 synthesis reaction due low RNA input quantities associated with the single cell. Thus,
299 we included *Grin* genes in analysis that had C_q values <29.5 after preamplification. The
300 only exception to this was for *Grin2D*. The abundance was consistently low for most
301 samples; therefore, we included all data points in the analysis for *Grin2D*.

302 *Statistical analysis:*

303 Statistical analysis was performed using GraphPad Prism 9 (GraphPad Software,
304 San Diego, CA, USA). Comparisons between independent 2 groups were carried out
305 with a two-tailed unpaired t-test. With 3 or more groups, we used a one-way ANOVA. In
306 experiments with a “before-after” design, we used a two-tailed paired t-test. In
307 experiments with two main effects, we used a two-way ANOVA. One-way and two-way
308 ANOVA were followed up with Holm-Sidak multiple comparison test when appropriate.
309 Individual data points were presented in addition to mean±SD or with box-and-whisker
310 plots, on the latter, boxes represent the interquartile range, and whiskers indicate
311 maximum and minimum values in the data set. Significant was accepted when p<0.05.

312

313

314

315 **Results:**

316 Function of the brainstem respiratory network in severe hypoxia increases by
317 hours after animals emerge from hibernation (Bueschke et al., 2021; Amaral-Silva &
318 Santin, 2023). To determine if reductions in NMDAR function play a role in this
319 response, we assessed the NMDAR tone in *in vitro* brainstem-spinal cord preparations.
320 This preparation produces rhythmic output associated with breathing that can be
321 recorded from the cranial nerve X rootlet (Fig. 1A). NMDARs are involved in transmitting
322 synaptic input from the respiratory rhythm generator to the motor pools (Kottick et al.,
323 2013). If the contribution of NMDAR was reduced following hibernation, we expected to
324 observe a lower sensitivity to the block of NMDARs using D-AP5 relative to controls. D-
325 APV reduced the amplitude of the motor output by ~50%, corroborating previous results
326 demonstrating that NMDAR transmission plays a large role in recruiting motoneurons to
327 the population burst (Kottick et al., 2013). However, sensitivity of the motor amplitude to
328 D-APV did not change after hibernation (Fig. 1B-C, $t_{(13)} = 0.9325$, $p = 0.37$, unpaired t-
329 test). In addition, sensitivity of respiratory burst frequency to D-APV, which provides an
330 assessment of rhythm generator function, did not change after hibernation (Fig. 1D, $t_{(13)}$
331 = 1.699, $p = 0.11$, unpaired t-test). These results show that the overall contribution of
332 NMDARs to network function is unchanged following hibernation.

333 Although the contribution of NMDAR to network function did not change, we
334 hypothesized that functional properties of the NMDAR may play a role in improving
335 robustness in hypoxia. For example, plasticity in current amplitude or kinetics (*i.e.*,
336 smaller currents with fast deactivation times) may lower ionic fluxes through NMDARs,
337 and, therefore, play a role in energy conservation. Moreover, some hypoxia-tolerant

338 species contain NMDARs that are inhibited by hypoxia, offsetting excitotoxicity during
339 energetic stress (Bickler et al., 2000). Therefore, we measured NMDARs currents in
340 identified vagal motoneurons from brain slices using whole-cell voltage clamp in
341 response to focal application of the NMDAR co-agonists, 1 mM NMDA and 10 μ M
342 glycine (Fig. 2A). Current amplitude and deactivation time constants at -20 mV did not
343 change in response to hibernation (Fig 2B-D, amplitude: $t_{(24)} = 1.502$, $p = 0.1461$,
344 unpaired t-test; deactivation time constant: $t_{(24)} = 0.4516$, $p = 0.6556$, unpaired t-test). In
345 addition, superfusion of aCSF bubbled with a hypoxic gas mixture (0% O₂) for 5 minutes
346 did not consistently alter the amplitude or deactivation time in controls (Fig 2E,
347 amplitude: $t_{(4)} = 1.455$, $p = 0.2193$, paired t-test; deactivation time constant: $t_{(4)} = 1.980$,
348 $p = 0.1189$, paired t-test) or following hibernation (Fig 2F, amplitude: $t_{(3)} = 0.2362$,
349 $p=0.8285$, paired t-test; deactivation time constant: $t_{(3)} = 0.1515$, $p=0.8892$, paired t-
350 test). Therefore, hibernation does not alter whole-cell NMDAR currents, as well as their
351 deactivation kinetics and sensitivity to acute hypoxia.

352 Ca^{2+} influx through NMDARs plays a role in network dysfunction during hypoxia
353 (Szydlowska and Tymianski, 2010). Thus, we assessed the Ca^{2+} permeability of
354 NMDARs before and after hibernation, as Ca^{2+} selectivity may increase or decrease
355 without obvious changes in the whole-cell current amplitude and kinetics (Murphy et al.,
356 2014; Skeberdis et al., 2006). For this, we measured the reversal potential of the
357 NMDAR current (E_{rev}) in low Ca^{2+} (1 mM) and high Ca^{2+} (10 mM). Changes in E_{rev} during
358 exposure to high Ca^{2+} concentrations provide a way to assess the relative Ca^{2+}
359 permeability of ligand-gated ion channels (Jatzke et al., 2002). Consistent with the
360 canonical role of NMDAR as a Ca^{2+} permeable channel, raising extracellular Ca^{2+}

361 depolarized E_{rev} of in control neurons (Fig. 3A top). Divalent cations can adhere to the
362 outer edge of cell membranes and alter the surface charge, making the apparent
363 voltage at the membrane more depolarized with increasing concentrations of divalent
364 cations (Hille, 2001). This is important to consider, given that we found a depolarizing
365 shift in E_{rev} in response to high Ca^{2+} . However, charge screening is unlikely to affect our
366 interpretation since E_{rev} shows a <2 mV difference between 1 mM and 10 mM Ca^{2+} on
367 Ca^{2+} -impermeable kainite receptors (Jatzke et al., 2002). Thus, most of the ~13 mV
368 depolarization we observe between low and high Ca^{2+} in control neurons likely reflects
369 its true Ca^{2+} permeability and not changes in the surface charge. After hibernation, the
370 change in E_{rev} during high Ca^{2+} appeared to be far smaller (Fig. 3A bottom). Indeed,
371 there was a significant interaction between Ca^{2+} concentration and group on E_{rev} (Fig.
372 3C, $F_{(1,60)} = 7.735$, $p = 0.0072$, two-way ANOVA), with a strong increase in E_{rev} by high
373 Ca^{2+} in the control group and no significant change in E_{rev} in high Ca^{2+} after hibernation.
374 Therefore, hibernation leads to a reduction in the Ca^{2+} permeability of the NMDAR, with
375 minimal influence on the whole-cell current amplitude and deactivation kinetics.

376 We next investigated the dynamic properties of NMDAR currents. Desensitization
377 describes the degree to which a receptor loses responsiveness to the agonist in
378 response to continued exposure, which may reflect a mechanism to dynamically reduce
379 NMDAR currents when the network is in a high activity state. For this, we simulated
380 NMDAR receptor activation that likely occurs during large phasic motor activation that
381 disrupts normal rhythmic output in severe hypoxia (Fig. 4A) (Adams et al., 2021). Thus,
382 we applied NMDAR agonists every 2 seconds for a total of 10 pulses per neuron to
383 assess desensitization in a physiologically-relevant way (Fig 4B). We observed a

384 moderate degree of desensitization in controls, whereby the 10th pulse in the series
385 produced a current that was ~60% of the baseline amplitude. NMDARs from hibernators
386 also desensitized, but the final puff elicited a current that was significantly smaller than
387 controls, at ~20% of the initial value (Fig. 4C, $t_{(24)} = 2.946$, $p=0.0071$, unpaired t-test). In
388 addition, a two-way ANOVA for relative current amplitude across all puffs shows a main
389 effect of group, indicating that currents from hibernators were more desensitized across
390 the entire experimental protocol (Fig. 4D, $F_{(1, 24)} = 7.084$, $p=0.0137$, two-way ANOVA).
391 Therefore, NMDAR currents not only become less permeable to Ca^{2+} after hibernation,
392 but they also pass less current during repetitive activation that otherwise causes
393 network output to lose homeostasis.

394 NMDARs are heterotetramers composed of an obligatory GluN1 subunit and a
395 combination of GluN2A-D and/or GluN3A-B protein subunits (Paoletti et al., 2013). To
396 gain insight into the NMDAR subunits that correspond these physiological changes, we
397 used inhibitors for the subunits GluN2A, GluN2B, GluN2C/GluN2D, and GluN3 to
398 uncover the physiological participation of NMDA subunits in neurons from controls and
399 hibernators. In controls, we observed a significant inhibition of the total NMDAR current
400 when the GluN2B and GluN2C/GluN2D subunits were inhibited compared to time
401 control, shown by a current decrease of 44% for GluN2B ($t_{17}=4.915$, $p=0.0001$ t-test)
402 and 29% for GluN2C/D ($t_{15}=2.916$, $p=0.0106$ t-test). It is important to appreciate that
403 time controls underwent a slight increase in current amplitude during the experimental
404 time course (Fig 5A); thus, the decreases induced by each drug represent an
405 underestimation of their true contribution to the total current. After hibernation GluN2B
406 maintained its participation in the NMDA current, showing a decrease relative to time

407 control when inhibited ($t_{22}=3.103$, $p=0.0052$ t-test), which did not differ from control
408 neurons ($t_{20}=1.427$, $p=0.1689$ t-test; Fig. 5C). However, GluN2C/GluN2D no longer
409 contributed to the NMDA current after hibernation ($t_{19}=0.2833$, $p=0.7800$ t-test
410 compared to time control), showing a difference from the control group ($t_{15}=2.612$,
411 $p=0.0196$ t-test, Fig. 5D). The subunits GluN2A (Fig. 5B) and GluN3 (Fig. 5E) did not
412 seem to have a consistent functional contribution to the NMDA current in control or
413 overwintered frogs. Therefore, the GluN2B subunit appears to be the main GluN2
414 subunit participating in the NMDA current, while GluN2C/D plays a smaller role and is
415 lost after hibernation.

416 To understand the potential for transcriptional control of NMDAR subunits, we
417 followed up physiology experiments with single-cell quantitative PCR (qPCR) to
418 measure the mRNA expression of all 7 NMDAR subunits that encode the NMDAR (the
419 *Grin* gene family). These data are summarized in Fig. 6. Consistent with the dominant
420 contribution of GluN2B to the total NMDAR current, *Grin2B* appeared to be the most
421 abundant *Grin* transcript for both controls and hibernators, along with *Grin1* that codes
422 for the obligatory GluN1 subunit. Pharmacologically, QZN 46 is selective for both
423 GluN2C and GluN2D. However, most neurons lacked mRNA expression of *Grin2D* (Fig
424 6), indicating the GluN2C is the main functional subunit blocked by QZN 46 in control
425 neurons. Consistent with our functional results, after hibernation we observed a
426 significant decrease in the mean abundance *Grin2C* ($p=0.0003$, Mann-Whitney U test).
427 Surprisingly, although we did not observe a contribution from the GluN3 subunit to the
428 NMDAR in either group, we observed mRNA expression of both *Grin3A* and *Grin3B*,
429 and each of these subunits decreased after hibernation (*Grin3A*: $t_{34}=2.920$, $p=0.0062$,

430 unpaired t test; *Grin3B*: $t_{21.62}=2.597$, $p=0.0166$, Welch's t-test). These data suggest that
431 a transcriptional program influences the NMDAR subunit composition in concert with
432 modification of whole-cell receptor current properties.

433 What are the functional impacts of NMDAR modifications on the ability of the
434 network to function during hypoxia? In control brainstems, the first several minutes of
435 hypoxia leads to large, uncoordinated output that interferes with the normal patterned
436 activity of the respiratory network (Fig. 7A₁). This type of chaotic activity is thought to
437 arise, at least in part, due to motor hyperexcitability induced by energy stress, as it does
438 not occur when the brainstem is well-oxygenated (Adams et al., 2021; Bueschke et al.,
439 2021). To determine the extent to which NMDARs play a role in this response, we
440 exposed a group of brainstem preparations to D-AP5 and then measured the degree of
441 large amplitude output that disrupted normal activity shortly after the onset of hypoxia.
442 In the presence of D-AP5 (Fig. 7A₂), the mean amplitude of this chaotic “non-
443 respiratory” activity was strongly blunted relative to controls. In addition, the small
444 degree of disruption was often not sufficient to disrupt patterned output during hypoxia
445 as shown in Fig. 7A₂. These results show that the normal profile of NMDARs (with a
446 permeability to Ca^{2+} and relatively less desensitization) contribute to chaotic output that
447 disrupts normal function of the network during hypoxia.

448 As disruptive motor activity during hypoxia arose largely due to NMDARs, this
449 type of activity provided a sensitive indicator of how the modified NMDAR profile
450 influenced network excitability in hypoxia. Strikingly, the chaotic, large amplitude, non-
451 respiratory bursting in hypoxia that was caused largely by NMDARs did not occur in any
452 hibernation preparation (Fig. 7B₁). We also applied D-AP5 to a group of hibernation

453 preparations. The addition of D-AP5 did not influence network function during hypoxia,
454 as there was no disruptive activity to suppress (Fig. 7B₂). These results are summarized
455 in Fig. 7C by a one-way ANOVA for control, control+D-AP5, hibernation, and
456 hibernation+D-AP5 ($F_{(3,31)}=15.25$, $p<0.0001$, one-way ANOVA). Post hoc tests reveal
457 that blocking NMDARs in control preparations suppresses the large non-respiratory
458 bursting in hypoxia ($p=0.0002$, Holm-Sidak multiple comparisons test). This is not
459 different than the degree of large amplitude bursting during hypoxia from hibernation
460 preparations without ($p=0.6824$, Holm-Sidak multiple comparisons test) or with D-AP5
461 ($p=0.6824$, Holm-Sidak multiple comparisons test). These results show that control
462 preparations without functional NMDARs (because they have been blocked by D-AP5)
463 behave similar to circuits with intact NMDARs after they have become less permeable
464 to Ca^{2+} and desensitize more strongly. Thus, modifications in NMDAR function act in a
465 way to prevent hyperexcitable network states during energy stress while maintaining
466 their role in network output under well-oxygenated conditions.

467

468 **Discussion:**

469 During energy stress, NMDAR activation disrupts circuit output in a wide range of
470 species, including amphibians (Fig 7). To emerge from hibernation in an ice-covered
471 pond, frogs must restart critical behaviors, including breathing, on the background of
472 extraordinarily low oxygen levels (Tattersall & Ultsch, 2008; Ultsch et al., 2004). The
473 challenge lies in the fact that most frogs are not generally considered to be a strongly
474 “hypoxia-tolerant” species. Metabolically, a suite of plasticity mechanisms arise during
475 hibernation and improve the fuel supply needed to operate brainstem synapses under
476 anaerobic conditions (Bueschke et al., 2021a; Hu & Santin, 2022, Amaral-Silva &
477 Santin, 2023). Here, we tested the hypothesis that these animals also use physiological
478 mechanisms to avoid hyperexcitable network states induced by energy stress. We
479 identified two key modifications to NMDARs that offset hyperexcitable output in hypoxia:
480 reduced Ca^{2+} permeability (Fig. 3) and enhanced desensitization (Fig. 4).

481 These NMDAR modifications are consistent with plasticity that acts to maintain
482 network excitability and reduce energy consumption in hypoxia. First, enhancing
483 desensitization reduces depolarizing drive during repetitive stimulation that normally
484 occurs during hypoxia (Fig. 4). As NMDARs contribute to chaotic bursting that disrupts
485 patterned network output (Fig. 4A, Fig. 7A), stronger desensitization during high activity
486 states likely acts as a potent brake on excitability. Second, switching to NMDARs with
487 lower Ca^{2+} permeability likely incurs a cost savings. Here, roughly 50% of the population
488 motor output that drives breathing is generated through NMDARs (Fig 1), which means
489 for every breath the animal takes, increases in intracellular Ca^{2+} from NMDARs must be
490 cleared to maintain ion homeostasis. Although the regulation of intracellular Ca^{2+} is

491 multifaceted, the plasma membrane Ca^{2+} ATPase plays a large role in maintaining Ca^{2+}
492 homeostasis in active neurons (Malci et al., 2022; Schmidt et al., 2017). This pump
493 consumes more than 3 times the ATP as the Na^+/K^+ ATPase, as it extrudes 1 Ca^{2+} ion
494 per ATP hydrolyzed and transports Ca^{2+} against a larger electrochemical gradient
495 compared to Na^+ and K^+ . Thus, in addition to minimizing well-established pathways for
496 Ca^{2+} -induced excitotoxicity (Szydlowska and Tymianski, 2010), lowering the Ca^{2+}
497 permeability of NMDAR may also reduce the metabolic burden of Ca^{2+} regulation in
498 hypoxia, allowing neurons to allocate energy to other processes required to maintain
499 homeostasis.

500 Interestingly, these modifications do not alter the normal role of the NMDARs in
501 generating motor output under well-oxygenated conditions (Fig. 1). One reason for this
502 may be that NMDAR currents in this study were measured at the cell body. Thus, the
503 plasticity in NMDAR function we observe may be localized to extra-synaptic regions,
504 which are well known to elicit the pathological actions of NMDARs during hypoxia and
505 ischemia (Tu et al., 2010; Zhou et al., 2013). It is not yet known if hibernation influences
506 NMDARs at respiratory-related synapses. However, if hibernation alters the properties
507 of synaptic NMDARs, reduced Ca^{2+} permeability and enhanced desensitization likely
508 have little influence on network output since these modifications do not alter the whole-
509 cell current amplitude and kinetics over the timescale of individual networks population
510 bursts (<1 s burst every ~10 s) (Fig. 1A). Altogether, NMDAR plasticity appears to
511 contribute to a state of resilience during metabolic stress without influencing normal
512 functioning of the network under healthy conditions.

513 What cellular mechanisms influence the functional changes we observe?

514 NMDAR receptors are heterotetrameric complexes composed of an obligatory GluN1

515 subunit and GluN2A-D and GluN3A-B subunits, which determine receptor properties

516 (Paoletti et al., 2013). Heterologous expression of GluN3 with GluN1 renders the

517 receptor impermeable to Ca^{2+} and highly responsive to glycine (Chatterton et al., 2002).

518 Although our single-cell qPCR data show altered mRNA expression of genes that code

519 for the GluN3 subunit, our functional studies show that it does not contribute to the

520 NMDAR current, indicating that changes in GluN3 are not responsible for decreases in

521 Ca^{2+} permeability after hibernation. Interestingly, in NMDAR complexes containing

522 GluN2, Ca^{2+} permeability is not an intrinsic property of the protein, but rather, is caused

523 by phosphorylation of the GluN2B subunit (Skeberdis et al., 2006; Murphy et al., 2014).

524 As GluN2B had the greatest functional role and mRNA expression (Fig. 5 and Fig. 6),

525 we speculate that alterations in the phosphorylation state of GluN2B may regulate Ca^{2+}

526 permeability. For desensitization, many factors influence this property, including subunit

527 composition (Vicini et al., 1998), protein binding partners (Sornarajah et al., 2008), and

528 intracellular signaling pathways (Alagarsamy et al., 1999). Most relevant to our results,

529 GluN1/GluN2C heterodimers undergo relatively weak desensitization (Dravid et al.,

530 2008; Alsaloum et al., 2016). We observed a decrease in *Grin2C* mRNA expression and

531 a reduced contribution of GluN2C to the whole-cell current after hibernation. These

532 results suggest that transcriptional control of GluN2C expression may shift neurons to

533 favor subunit combinations with greater degrees of desensitization, such as

534 GluN1/GluN2B (Vicini et al., 1998). As a caveat, we acknowledge that attributes of

535 NMDAR currents may represent the sum of many potential combinations of GluN

536 subunits; although we did not find significant functions of GluN3 and GluN2A, some
537 individual cells within the population did appear to respond to their inhibitors, suggesting
538 that variable combinations of NMDAR subunits compose the total whole cell current. In
539 addition, receptor expression may vary depending on the localization within the cell
540 (e.g., synaptic vs. extrasynaptic). This complicates the connection between single cell
541 mRNA abundances and NMDAR function measured at the cell body. Nevertheless,
542 combining functional and molecular approaches point to mechanisms that alter the
543 functional properties of the NMDARs to improve function during energy stress.

544 The frog brainstem has a remarkable ability to improve its function during
545 hypoxia and ischemia after hibernation (Bueschke et al., 2021). This response involves
546 enhancing anaerobic glucose metabolism at active synapses (Amaral-Silva & Santin,
547 2023; Bueschke et al., 2021a). Dominant hypotheses for neural circuit evolution posit
548 that natural selection acts on the efficiency of synapses, optimizing the ratio of
549 information transfer to ATP consumption (Harris et al., 2015; Quintela-López et al.,
550 2022). However, synapses here can switch into a state that supports network activity for
551 hours with ~1/15th the amount of ATP through adjustments in synaptic metabolism that
552 maximize glycolytic ATP production (Amaral-Silva & Santin, 2023). Our results suggest
553 that physiological modifications help to lower the cost of network activity to match the
554 dramatically reduced rate of energy production while maintaining seemingly normal
555 output. Given that this circuit makes physiological and energetic modifications that allow
556 it to run on very little energy, these results demonstrate some neural circuits may reside
557 far from their “optimal” efficiency. This begs the question of why animals would

558 suppress such a state until it is critical for survival (e.g., emerging from an ice-covered
559 pond after months of hibernation).

560 Although our results show strong support for NMDAR plasticity as a potential
561 energy-saving mechanism, they also hint at a potential cost of maintaining an “ultra-
562 high” efficiency network state. NMDARs play a key role in plasticity, whereby Ca^{2+} influx
563 through the receptor potentiates synaptic strength in a wide range of systems, including
564 the respiratory motoneurons in this species (Bueschke et al., 2021b). NMDAR
565 modifications we observe likely incur an energy savings but have features that appear
566 to be incompatible with NMDAR-dependent plasticity: strongly reduced Ca^{2+}
567 permeability and greatly enhanced desensitization which quickly reduces channel
568 activity upon repetitive stimulation. Indeed, Ca^{2+} impermeable NMDARs cause memory
569 impairments and reduce long-term potentiation in mice (Conde-Dusman et al., 2021;
570 Hurley et al., 2022). Therefore, we suggest a trade-off exists between metabolic
571 robustness and the capacity for plasticity within circuits. It seems sensible for an animal
572 to favor an extreme degree of energetic resilience to restart critical behaviors in
573 severely hypoxic conditions. However, when animals are not faced with energy stress,
574 as is the case for most vertebrates most of the time, it is clearly beneficial for the brain
575 to adapt to changes in the environment through plasticity. In support of the relationship
576 between plasticity and metabolic resilience, the rodent hippocampus shows a dorsal-
577 ventral gradient in damage by ischemia (Ashton et al., 1989), which mirrors the capacity
578 for synaptic plasticity owing to the degree of Ca^{2+} -permeability of the NMDARs (Hurley
579 et al., 2022). Therefore, hypotheses for selective pressures shaping the evolution of

580 neural circuits may need to incorporate how synapses have balanced the need for
581 plasticity and robust function during energy stress.

582 In conclusion, a failure to balance energy supply and physiological demands of
583 neurons leads to disordered circuit activity. We identified a circuit that has the capacity
584 to modify NMDARs to reduce Ca^{2+} influx and constrain excitability in hypoxia without
585 altering their normal contribution to network function. These findings represent a state-
586 dependent form of NMDAR plasticity that likely plays an adaptive role by promoting
587 coordinated network activity in a circuit that cannot typically maintain homeostasis in low
588 oxygen. These results provide insight into natural mechanisms that reduce neural circuit
589 reliance on high rates of energy production. Yet, they also point to a potential trade-off
590 between energetic robustness and plasticity that requires Ca^{2+} influx through NMDARs.
591 Uncovering mechanisms that shift the balance between these two states may inform
592 novel neuroprotection strategies with high clinical relevance.

593 **Author Contributions:** Conception and Design; JMS. Performed Experiments; NB,
594 MH, LAS, AA. Analyzed Data; NB, JMS. Wrote Manuscript; JMS, NB. Edited
595 manuscript; JS, NB, MH, LAS, AA. Approved Final version of the manuscript; JS, NB,
596 MH, LAS, AA.

References

597 Abrahamsson T, Chou CYC, Li SY, Mancino A, Costa RP, Brock JA, Nuro E, Buchanan
598 KA, Elgar D, Blackman AV (2017). Differential regulation of evoked and
599 spontaneous release by presynaptic NMDA receptors. *Neuron* 96:839-855. e835.
600 <https://doi.org/10.1016/j.neuron.2017.09.030>
601

602 Adams, S., Zubov, T., Bueschke, N., & Santin, J. M. (2021). Neuromodulation or energy
603 failure? Metabolic limitations silence network output in the hypoxic amphibian
604 brainstem. *American Journal of Physiology-Regulatory, Integrative and*
605 *Comparative Physiology*, 320(2), R105–R116.
606 <https://doi.org/10.1152/ajpregu.00209.2020>
607 Alagarsamy, S., Marino, M. J., Rouse, S. T., Gereau, R. W., Heinemann, S. F., & Conn,
608 P. J. (1999). Activation of NMDA receptors reverses desensitization of mGluR5 in
609 native and recombinant systems. *Nature Neuroscience*, 2(3), 234–240.
610 <https://doi.org/10.1038/6338>
611

612 Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP (2016). A molecular determinant of
613 subtype-specific desensitization in ionotropic glutamate receptors. *Journal of*
614 *Neuroscience* 36, 2617-2622. <https://doi.org/10.1523/JNEUROSCI.2667-15.2016>
615

616 Amaral-Silva, L., Santin, J.M., (2023). Synaptic modifications transform neural networks
617 to function without oxygen. *BMC Biology*, 21(54).

618 Ashton, D., Van Reempts, J., Haseldonckx, M., & Willems, R. (1989). Dorsal-ventral
619 gradient in vulnerability of CA1 hippocampus to ischemia: A combined
620 histological and electrophysiological study. *Brain Research*, 487(2), 368–372.
621 [https://doi.org/10.1016/0006-8993\(89\)90842-1](https://doi.org/10.1016/0006-8993(89)90842-1)
622

623 Beesley, S., Sullenberger, T., & Kumar, S. S. (2020). The GluN3 subunit regulates ion
624 selectivity within native N-methyl-d-aspartate receptors. *IBRO Reports*, 9, 147–
625 156. <https://doi.org/10.1016/j.ibror.2020.07.009>
626

627

628 Bettini E, Sava A, Griffante C, Carignani C, Buson A, Capelli AM, Negri M, Andreetta F,
629 Senar-Sancho SA, Guiral L (2010). Identification and characterization of novel
630 NMDA receptor antagonists selective for NR2A-over NR2B-containing receptors.
631 *Journal of Pharmacology and Experimental Therapeutics* 335, 636-644.
632 <https://doi.org/10.1124/jpet.110.172544>
633

634 Bickler, P. E., & Buck, L. T. (2007). Hypoxia Tolerance in Reptiles, Amphibians, and
635 Fishes: Life with Variable Oxygen Availability. *Annual Review of Physiology*,
636 69(1), 145–170. <https://doi.org/10.1146/annurev.physiol.69.031905.162529>

637 Bickler, P. E., Donohoe, P. H., & Buck, L. T. (2000). Hypoxia-Induced Silencing of
638 NMDA Receptors in Turtle Neurons. *The Journal of Neuroscience*, 20(10), 3522–
639 3528. <https://doi.org/10.1523/JNEUROSCI.20-10-03522.2000>

640 Bordone, M. P., Salman, M. M., Titus, H. E., Amini, E., Andersen, J. V., Chakraborti, B.,
641 Diuba, A. V., Dubouskaya, T. G., Ehrke, E., Espindola de Freitas, A., Braga de
642 Freitas, G., Gonçalves, R. A., Gupta, D., Gupta, R., Ha, S. R., Hemming, I. A.,
643 Jaggar, M., Jakobsen, E., Kumari, P., ... Seidenbecher, C. I. (2019). The
644 energetic brain – A review from students to students. *Journal of Neurochemistry*,
645 151(2), 139–165. <https://doi.org/10.1111/jnc.14829>

646 Buck, L. T., & Pamenter, M. E. (2018). The hypoxia-tolerant vertebrate brain: Arresting
647 synaptic activity. *Comparative Biochemistry and Physiology Part B: Biochemistry
648 and Molecular Biology*, 224, 61–70. <https://doi.org/10.1016/j.cbpb.2017.11.015>

649 Bueschke, N., Amaral-Silva, L., Adams, S., & Santin, J. M. (2021a). Transforming a
650 neural circuit to function without oxygen and glucose delivery. *Current Biology*,
651 31(24), R1564–R1565. <https://doi.org/10.1016/j.cub.2021.11.003>

652 Bueschke, N., Amaral-Silva, L., Hu, M., & Santin, J. M. (2021b). Lactate ions induce
653 synaptic plasticity to enhance output from the central respiratory network. *The
654 Journal of Physiology*, 599(24), 5485–5504. <https://doi.org/10.1113/JP282062>

655 Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin,
656 Y., Cui, J., Tu, S., Sevarino, K. A., Nakanishi, N., Tong, G., Lipton, S. A., &
657 Zhang, D. (2002). Excitatory glycine receptors containing the NR3 family of
658 NMDA receptor subunits. *Nature*, 415(6873), 793–798.
659 <https://doi.org/10.1038/nature715>

660

661 Christian DT, Stefanik MT, Bean LA, Loweth JA, Wunsch AM, Funke JR, Briggs CA,
662 Lyons J, Neal D, Milovanovic M (2021). GluN3-containing NMDA receptors in the
663 rat nucleus accumbens core contribute to incubation of cocaine craving. *Journal
664 of Neuroscience* 41, 8262–8277. <https://doi.org/10.1523/JNEUROSCI.0406-21.2021>

666

667 Conde-Dusman, M. J., Dey, P. N., Elía-Zudaire, Ó., Rabaneda, L. G., García-Lira, C.,
668 Grand, T., Briz, V., Velasco, E. R., Andero, R., Niñerola, S., Barco, A., Paoletti,
669 P., Wesseling, J. F., Gardoni, F., Tavalin, S. J., & Perez-Otaño, I. (2021). Control
670 of protein synthesis and memory by GluN3A-NMDA receptors through inhibition
671 of GIT1/mTORC1 assembly. *ELife*, 10, e71575.
672 <https://doi.org/10.7554/eLife.71575>

673 Czech-Damal, N. U., Geiseler, S. J., Hoff, M. L. M., Schliep, R., Ramirez, J.-M., Folkow,
674 L. P., & Burmester, T. (2014). The role of glycogen, glucose and lactate in
675 neuronal activity during hypoxia in the hooded seal (*Cystophora cristata*) brain.
676 *Neuroscience*, 275, 374–383. <https://doi.org/10.1016/j.neuroscience.2014.06.024>

677 Dravid, S. M., Prakash, A., & Traynelis, S. F. (2008). Activation of recombinant
678 NR1/NR2C NMDA receptors: NR1/NR2C receptor activation. *The Journal of
679 Physiology*, 586(18), 4425–4439. <https://doi.org/10.1113/jphysiol.2008.158634>

680

681 Edman S, McKay S, Macdonald L, Samadi M, Livesey M, Hardingham G, Wyllie D
682 (2012). TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-
683 agonist dependent but non-competitive manner. *Neuropharmacology* 63, 441-
684 449. <https://doi.org/10.1016/j.neuropharm.2012.04.027>
685

686 France G, Fernández-Fernández D, Burnell ES, Irvine MW, Monaghan DT, Jane DE,
687 Bortolotto ZA, Collingridge GL, Volianskis A (2017). Multiple roles of GluN2B-
688 containing NMDA receptors in synaptic plasticity in juvenile hippocampus.
689 *Neuropharmacology* 1127 6-83.
690 <https://doi.org/10.1016/j.neuropharm.2016.08.010>
691

692 Garcia, V. B., Abbinanti, M. D., Harris-Warrick, R. M., & Schulz, D. J. (2018). Effects of
693 Chronic Spinal Cord Injury on Relationships among Ion Channel and Receptor
694 mRNAs in Mouse Lumbar Spinal Cord. *Neuroscience*, 393, 42–60.
695 <https://doi.org/10.1016/j.neuroscience.2018.09.034>

696 Hammond, S. A., Warren, R. L., Vandervalk, B. P., Kucuk, E., Khan, H., Gibb, E. A.,
697 Pandoh, P., Kirk, H., Zhao, Y., Jones, M., Mungall, A. J., Coope, R., Pleasance,
698 S., Moore, R. A., Holt, R. A., Round, J. M., Ohora, S., Walle, B. V., Veldhoen, N.,
699 ... Birol, I. (2017). The North American bullfrog draft genome provides insight into
700 hormonal regulation of long noncoding RNA. *Nature Communications*, 8(1),
701 1433. <https://doi.org/10.1038/s41467-017-01316-7>
702

703 Hansen KB, Traynelis SF (2011). Structural and mechanistic determinants of a novel
704 site for noncompetitive inhibition of GluN2D-containing NMDA receptors. *Journal of
705 Neuroscience* 31, 3650-3661. <https://doi.org/10.1523/JNEUROSCI.5565-10.2011>
706

707

708 Harris, J. J., Jolivet, R., Engl, E., & Attwell, D. (2015). Energy-Efficient Information
709 Transfer by Visual Pathway Synapses. *Current Biology*, 25(24), 3151–3160.
710 <https://doi.org/10.1016/j.cub.2015.10.063>

711 Hille, B. (2001). *Ion channels of excitable membranes* (3rd ed). Sinauer.

712 Howell, B., Baumgardner, F., Bondi, K., & Rahn, H. (1970). Acid-base balance in cold-
713 blooded vertebrates as a function of body temperature. *American Journal of
714 Physiology-Legacy Content*, 218(2), 600–606.
715 <https://doi.org/10.1152/ajplegacy.1970.218.2.600>

716 Hu, M., & Santin, J. M. (2022). Transformation to ischaemia tolerance of frog brain
717 function corresponds to dynamic changes in mRNA co-expression across
718 metabolic pathways. *Proceedings of the Royal Society B: Biological Sciences*,
719 289(1979), 20221131. <https://doi.org/10.1098/rspb.2022.1131>

720 Hurley, E. P., Mukherjee, B., Fang, L., Barnes, J. R., Nafar, F., Hirasawa, M., &
721 Parsons, M. P. (2022). *Atypical NMDA Receptors Limit Synaptic Plasticity in the
722 Adult Ventral Hippocampus* [Preprint]. *Neuroscience*.
723 <https://doi.org/10.1101/2022.10.05.510966>

724 Jatzke, C., Junryo Watanabe, & Wollmuth, L. P. (2002). Voltage and concentration
725 dependence of Ca^{2+} permeability in recombinant glutamate receptor subtypes.

726 *The Journal of Physiology*, 538(1), 25–39.
727 <https://doi.org/10.1113/jphysiol.2001.012897>

728 Kottick, A., Baghdadwala, M. I., Ferguson, E. V., & Wilson, R. J. A. (2013).
729 Transmission of the respiratory rhythm to trigeminal and hypoglossal motor
730 neurons in the American Bullfrog (*Lithobates catesbeiana*). *Respiratory
731 Physiology & Neurobiology*, 188(2), 180–191.
732 <https://doi.org/10.1016/j.resp.2013.06.008>

733

734 Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Bräuner-Osborne H (2013).
735 Structure-based discovery of antagonists for GluN3-containing N-methyl-D-
736 aspartate receptors. *Neuropharmacology* 75:324–336.
737 <https://doi.org/10.1016/j.neuropharm.2013.08.003>

738

739 Larson, J., Drew, K. L., Folkow, L. P., Milton, S. L., & Park, T. J. (2014). No oxygen? No
740 problem! Intrinsic brain tolerance to hypoxia in vertebrates. *Journal of
741 Experimental Biology*, 217(7), 1024–1039. <https://doi.org/10.1242/jeb.085381>

742 Larson, J., & Park, T. J. (2009). Extreme hypoxia tolerance of naked mole-rat brain.
743 *NeuroReport*, 20(18), 1634–1637.
744 <https://doi.org/10.1097/WNR.0b013e32833370cf>

745 Malci, A., Lin, X., Sandoval, R., Gundelfinger, E. D., Naumann, M., Seidenbecher, C. I.,
746 & Herrera-Molina, R. (2022). Ca²⁺ signaling in postsynaptic neurons:
747 Neuroplastin-65 regulates the interplay between plasma membrane Ca²⁺
748 ATPases and ionotropic glutamate receptors. *Cell Calcium*, 106, 102623.
749 <https://doi.org/10.1016/j.ceca.2022.102623>

750 Murphy, J. A., Stein, I. S., Lau, C. G., Peixoto, R. T., Aman, T. K., Kaneko, N.,
751 Aromolaran, K., Saulnier, J. L., Popescu, G. K., Sabatini, B. L., Hell, J. W., &
752 Zukin, R. S. (2014). Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to
753 Synaptic NMDA Receptor Function and Ca²⁺ Signaling in Spines. *The Journal of
754 Neuroscience*, 34(3), 869–879. <https://doi.org/10.1523/JNEUROSCI.4538-13.2014>

755 Paoletti, P., Bellone, C., & Zhou, Q. (2013). NMDA receptor subunit diversity: Impact on
756 receptor properties, synaptic plasticity and disease. *Nature Reviews
757 Neuroscience*, 14(6), 383–400. <https://doi.org/10.1038/nrn3504>

758 Pellizzari, S., Hu, M., Amaral-Silva, L., Saunders, S., Santin, J.M. (2023). Neuron
759 populations use variable combinations of short-term feedback mechanisms to stabilize
760 firing rate. *PLOS Biology*, accepted for publication.

761

762 Quintela-López, T., Shiina, H., & Attwell, D. (2022). Neuronal energy use and brain
763 evolution. *Current Biology*, 32(12), R650–R655.
764 <https://doi.org/10.1016/j.cub.2022.02.005>

765 Santin, J. M., & Schulz, D. J. (2019). Membrane Voltage Is a Direct Feedback Signal
766 That Influences Correlated Ion Channel Expression in Neurons. *Current Biology*,
767 29(10), 1683-1688.e2. <https://doi.org/10.1016/j.cub.2019.04.008>

768 Schmidt, N., Kollewe, A., Constantin, C. E., Henrich, S., Ritzau-Jost, A., Bildl, W.,
769 Saalbach, A., Hallermann, S., Kulik, A., Fakler, B., & Schulte, U. (2017).

770 Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane
771 Ca²⁺-ATPases and Key Regulators of Ca²⁺ Clearance. *Neuron*, 96(4), 827-
772 838.e9. <https://doi.org/10.1016/j.neuron.2017.09.038>

773 Skeberdis, V. A., Chevaleyre, V., Lau, C. G., Goldberg, J. H., Pettit, D. L., Suadicani, S.
774 O., Lin, Y., Bennett, M. V. L., Yuste, R., Castillo, P. E., & Zukin, R. S. (2006).
775 Protein kinase A regulates calcium permeability of NMDA receptors. *Nature
776 Neuroscience*, 9(4), 501–510. <https://doi.org/10.1038/nn1664>

777 Sornarajah, L., Vasuta, O. C., Zhang, L., Sutton, C., Li, B., El-Husseini, A., & Raymond,
778 L. A. (2008). NMDA Receptor Desensitization Regulated by Direct Binding to
779 PDZ1-2 Domains of PSD-95. *Journal of Neurophysiology*, 99(6), 3052–3062.
780 <https://doi.org/10.1152/jn.90301.2008>

781 Szydlowska, K., & Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. *Cell
782 Calcium*, 47(2), 122–129. <https://doi.org/10.1016/j.cea.2010.01.003>

783 Tattersall, G. J., & Boutilier, R. G. (1997). Balancing hypoxia and hypothermia in cold-
784 submerged frogs. *The Journal of Experimental Biology*, 200(Pt 6), 1031–1038.
785 <https://doi.org/10.1242/jeb.200.6.1031>

786 Tattersall, G. J., & Ultsch, G. R. (2008). Physiological Ecology of Aquatic Overwintering
787 in Ranid Frogs. *Biological Reviews*, 83(2), 119–140.
788 <https://doi.org/10.1111/j.1469-185X.2008.00035.x>

789 Tu, W., Xu, X., Peng, L., Zhong, X., Zhang, W., Soundarapandian, M. M., Belal, C.,
790 Wang, M., Jia, N., Zhang, W., Lew, F., Chan, S. L., Chen, Y., & Lu, Y. (2010).
791 DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage
792 in Stroke. *Cell*, 140(2), 222–234. <https://doi.org/10.1016/j.cell.2009.12.055>

793 Ultsch, G. R., Reese, S. A., & Stewart, E. R. (2004). Physiology of hibernation in *Rana
794 pipiens*: Metabolic rate, critical oxygen tension, and the effects of hypoxia on
795 several plasma variables. *Journal of Experimental Zoology*, 301A(2), 169–176.
796 <https://doi.org/10.1002/jez.a.20014>

797 Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., Wolfe, B. B., &
798 Grayson, D. R. (1998). Functional and Pharmacological Differences Between
799 Recombinant N-Methyl- D -Aspartate Receptors. *Journal of Neurophysiology*,
800 79(2), 555–566. <https://doi.org/10.1152/jn.1998.79.2.555>

801 White, R. J., & Reynolds, I. J. (1995). Mitochondria and Na⁺/Ca²⁺ exchange buffer
802 glutamate-induced calcium loads in cultured cortical neurons. *The Journal of
803 Neuroscience: The Official Journal of the Society for Neuroscience*, 15(2), 1318–
804 1328.

805 Wilkie, M. P., Pamenter, M. E., Alkabie, S., Carapic, D., Shin, D. S. H., & Buck, L. T.
806 (2008). Evidence of anoxia-induced channel arrest in the brain of the goldfish
807 (*Carassius auratus*). *Comparative Biochemistry and Physiology Part C:
808 Toxicology & Pharmacology*, 148(4), 355–362.
809 <https://doi.org/10.1016/j.cbpc.2008.06.004>

810 Wu, Q. J., & Tymianski, M. (2018). Targeting NMDA receptors in stroke: New hope in
811 neuroprotection. *Molecular Brain*, 11(1), 15. <https://doi.org/10.1186/s13041-018-0357-8>

812 Zhou, X., Hollern, D., Liao, J., Andrechek, E., & Wang, H. (2013). NMDA receptor-
813 mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic

815 receptors. *Cell Death & Disease*, 4(3), e560–e560.
816 <https://doi.org/10.1038/cddis.2013.82>

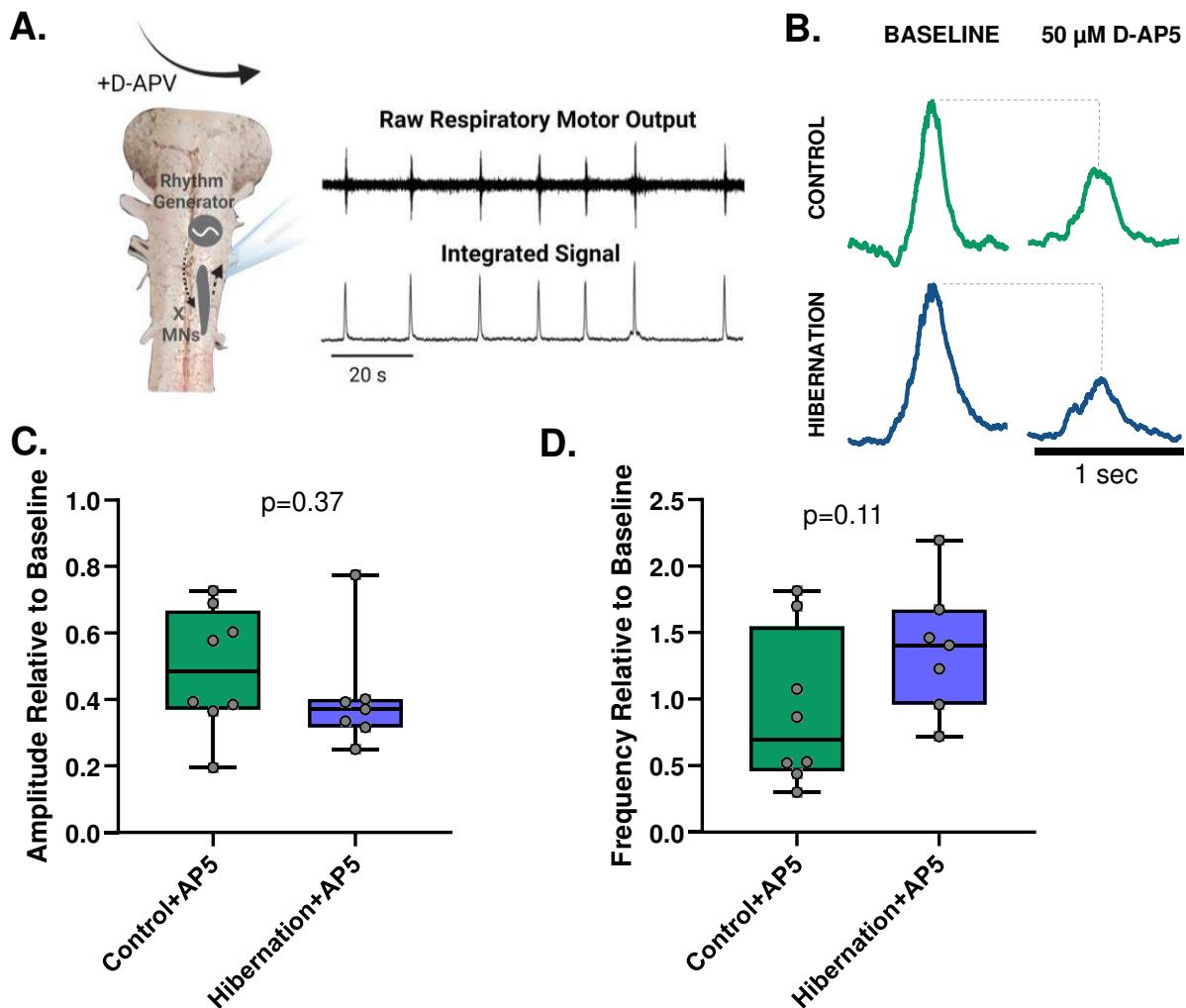
817

818 **Tables**

Table 1. Primer Sequences for SYBR Green qPCR Assays			
Target	Forward	Reverse	Efficiency
<i>Grin2b</i>	GAGTGGGAGGGACAGAACTGC	TGGCAGACTTCACAGCGGAT	81%
<i>Grin2c</i>	GGTGCTGCAAGTGGAACTG	GGATGTAGCGGGCACTTT	100%
<i>Grin2d</i>	TGTTCGCATGGGAGCATCTT	GCCTTGGATCCTCAGCACT	95%
<i>Grin3b</i>	CCAGCGATCTCCTTGGTGT	TGTCCAACCAGCCAGTGAAA	84%
<i>18S rRNA</i>	CAGGCCGGTCCGCTGAATAC	GGCCCCAGTTCCGAAAACCA	101%

819

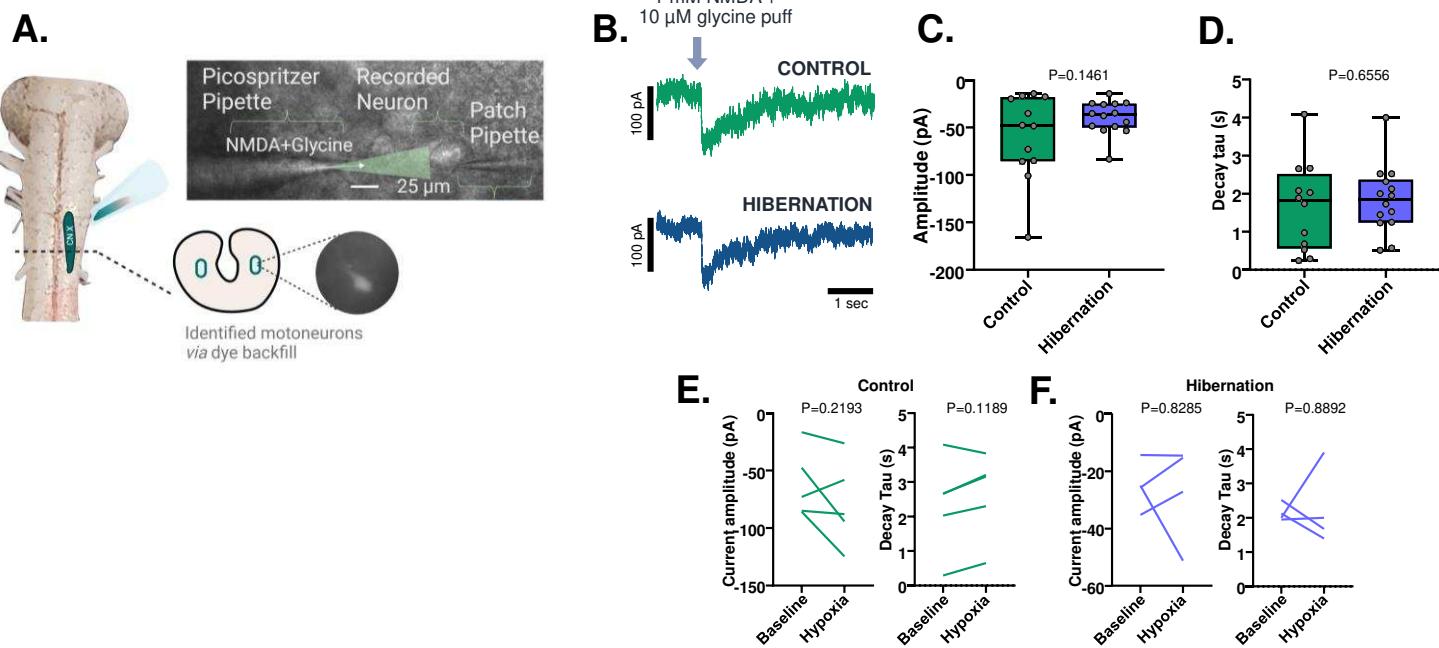
Table 2. Primer Sequences for Probe-based qPCR Assays			
Target	Forward Primer	Reverse Primer	Efficiency
<i>Grin1</i>	TGGTGGCGGTAAATGTTGTATC	TCAGTGCATCCTCCTCTTCTTC	91%
<i>Grin2a</i>	TGACCCATTGCCGAAGTTG	GCATTGGTCTTCATCAATGTCA	91%
<i>Grin3a</i>	GGCCAGACCAAGCACAAAG	CACAAAGGGTGGCTCAATCAAG	96%
Prober Sequences		Probe-Quencher	
<i>Grin1</i>	CAGGTTCAGTCCTTTGGCCGGTT	FAM-BHQ1	
<i>Grin2a</i>	ACCCAGTTACTGGTCACTACTCAACCA	ROX-BHQ2	
<i>Grin3a</i>	CAGAAGTCATTCCAACAAACCACCTCGA	VIC-BHQ1	


820

821

822

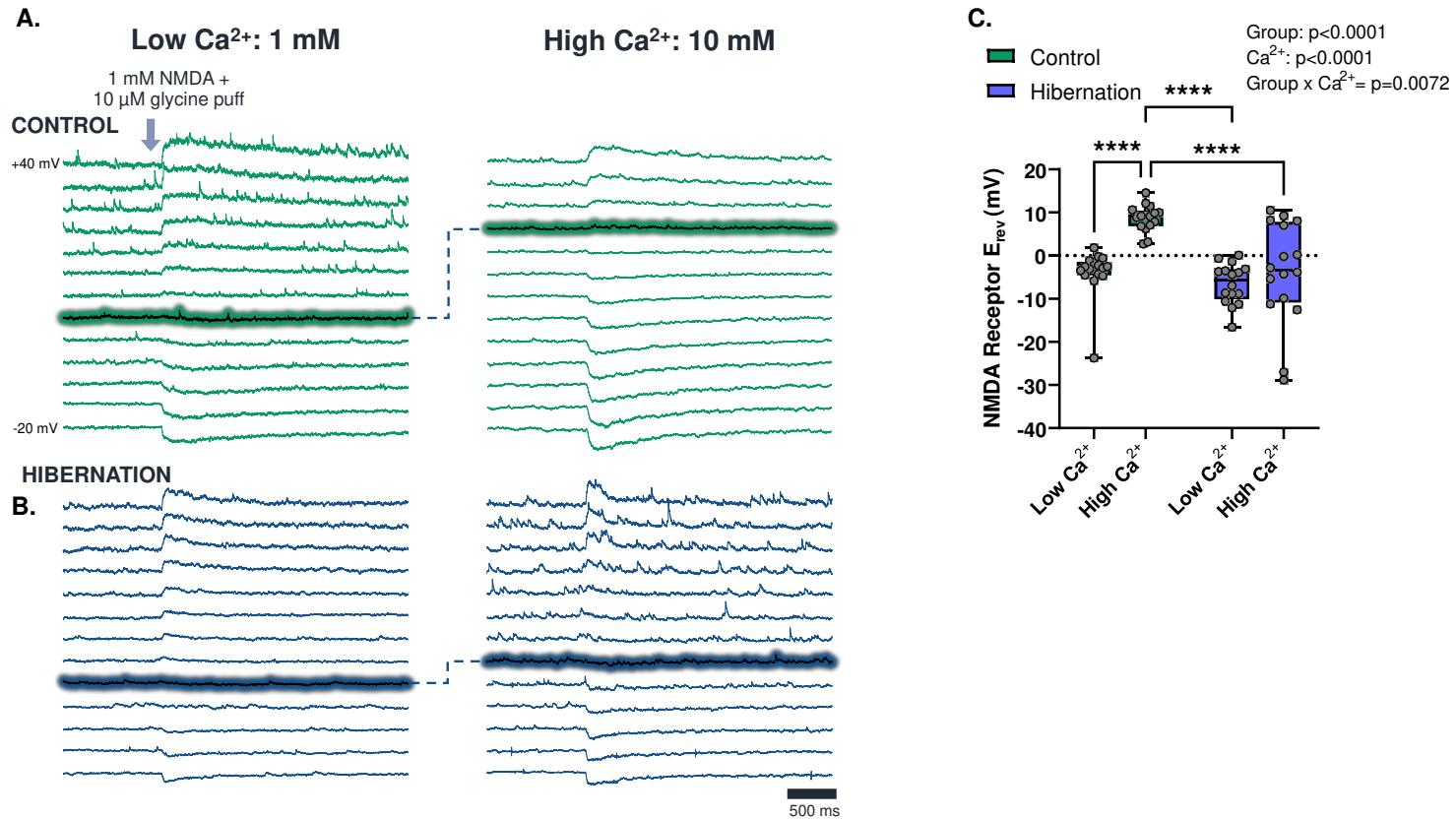
823


824 **Figures and Legends**

825

826 **Figure 1. Hibernation does not alter the NMDAR tone of respiratory motor output.** (A)
827 Schematic of the in vitro brainstem preparation. Raw motor output associated with breathing
828 can be recorded from the cut cranial nerve X rootlet (CNX). Raw signals are then rectified and
829 integrated for analysis. (B) Representative respiratory motor bursts in baseline conditions and
830 after block of NMDA-glutamate receptors with 50 μ M D-AP5. Control animals are shown on the
831 top and hibernation is shown on the bottom. (C) Box and whisker plot comparing burst
832 amplitude in D-AP5 relative to control between controls (left, green, n = 8) and hibernation
833 (right, blue, n = 7) brainstems, showing no significant change in D-AP5 sensitivity (unpaired t-
834 test). (D) Box and whisker plots comparing burst frequency changes in response to D-AP5.
835 There was no significant difference between the change in burst frequency induced by D-AP5
836 across groups. Dots represent each data point of individual experiments.

837

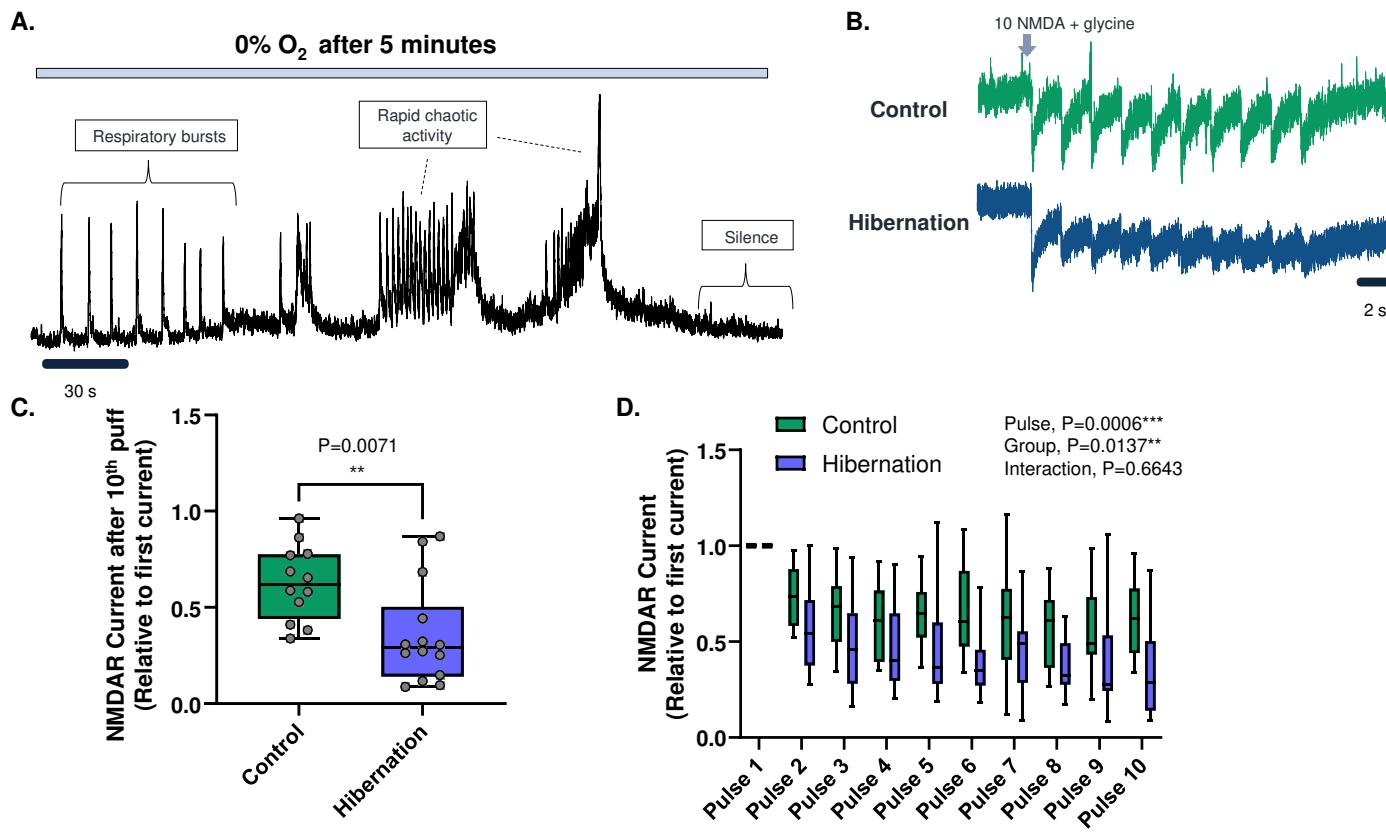

838

839

840

841 **Figure 2. Hibernation does not alter the whole-cell NMDAR current amplitude, decay**
842 **kinetics, and hypoxia sensitivity in identified respiratory motoneurons.** (A) Schematic
843 illustrating the backfill labeling process to identify motoneurons and the setup to focally apply
844 NMDAR agonists (1 mM NMDA and 10 μ M glycine) to the cell body. (B) Traces showing typical
845 responses to focal application of NMDA and glycine. (C-D) NMDAR current amplitude and
846 decay time constant is unaltered between control (n = 11 neurons from N = 5 animals) and
847 hibernation (n = 13 neurons from N = 4 animals) neurons following unpaired t tests. Boxes show
848 interquartile range and whiskers represent min and max values with dots showing individual
849 data points. (E-F) Individual NMDAR amplitude and decay values before and after \sim 5 minutes
850 of hypoxia (0% O₂). Paired t test results suggest hypoxia does not change either NMDAR
851 variable in control (n = 5 neurons from N = 4 animals) or hibernation (n=4 neurons from N = 4
852 animals) neurons. Line represents the “before” and “after” response for individual neurons in
853 response to hypoxia.

854

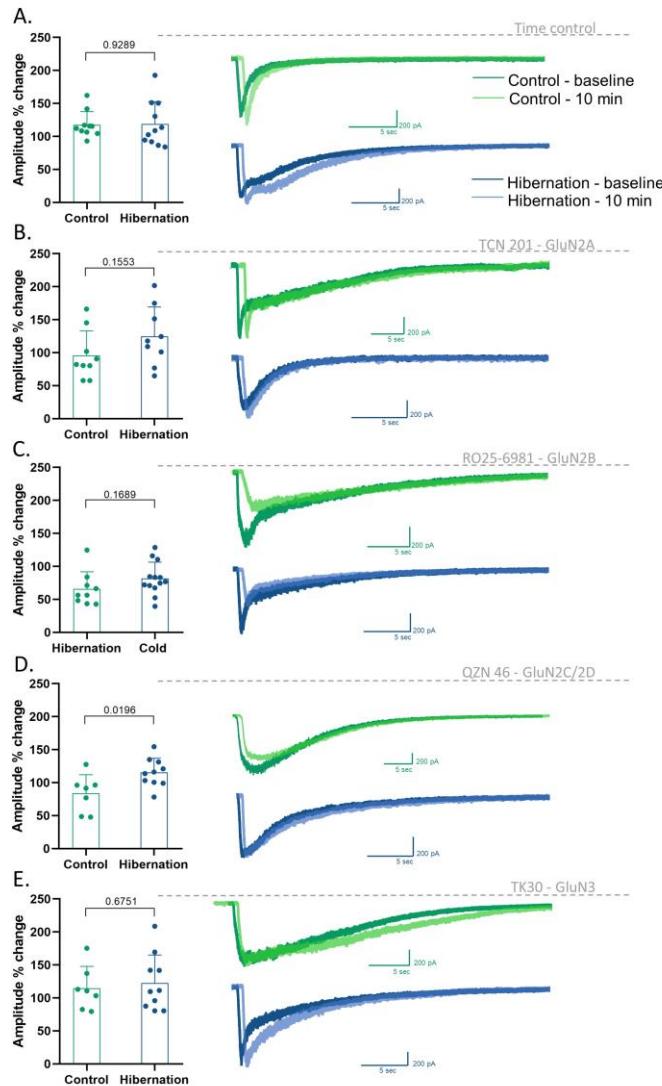


855

856 **Figure 3. Hibernation decreases Ca^{2+} permeability of NMDARs.** (A-B) Raw whole-cell
857 voltage clamp traces held at a range of voltages (-20 to +40 mV, $\Delta 5$ mV) responding to NMDAR
858 activation *via* focal application of NMDAR agonists. Control (A) is shown on the top in green,
859 and hibernation (B) is shown in blue. Reversal potentials (E_{rev}) in these example traces are
860 highlighted to visualize the typical reversal potentials in 1 mM and 10 mM Ca^{2+} from control and
861 hibernation motoneurons. (C) Results of NMDAR E_{rev} ($n = 16$ neurons, all groups) show
862 significance in 2-way ANOVA interaction ($p = 0.0072$), indicating that hibernation affects the
863 response to Ca^{2+} . Pairwise comparisons reveal a significant depolarization of E_{rev} by 10 mM
864 Ca^{2+} in control neurons but not hibernation neurons. We used 4 animals for hibernation in low
865 Ca^{2+} and 5 animals for all other groups. Dots represent each data point of individual cells in
866 each group, with boxes representing interquartile range and whiskers displaying min and max
867 E_{rev} values. E_{rev} values shown in this plot are corrected for calculated series resistance errors
868 based on the holding current. ****signifies $p < 0.0001$

869

870

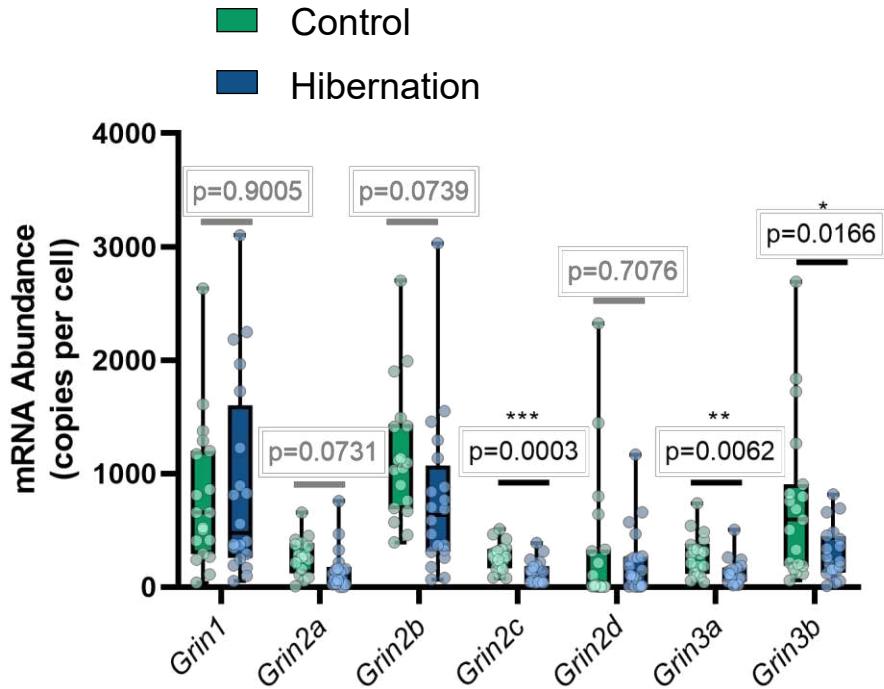

871

872

Figure 4. Hibernation enhances NMDAR desensitization in response to repetitive activation. (A) Example recording of population motor output from a control brainstem preparation ~5 minutes into hypoxia. This illustrates the transition from normal patterned output to chaotic, higher frequency output with large amplitude “non-respiratory” bursting activity that occurs during hypoxia. (B) Representative traces of vagal motoneuron response to pulses of NMDAR/glycine onto the soma at 0.5 Hz. Controls under a moderate degree of desensitization (green, top), while hibernation neurons (bottom, blue) tended to have smaller current amplitudes by the end of the experiment. (C) Final (10th) pulse current amplitude relative to initial pulse. Hibernation motoneurons ($n = 14$ neuron from $N = 4$ animals) had a significantly lower final amplitude than controls ($n = 12$ neurons, $N = 5$ animals), suggesting that NMDARs after hibernation are more susceptible to desensitization. (D) Plot showing all data from the experimental series. Two-way ANOVA reveals a main effect of group and puff number. A significant group effect indicates that NMDAR currents throughout the experimental series were overall smaller after hibernation, consistent with enhanced desensitization. Dots represent each data point from individual cells, boxes represent the interquartile range, and lines display mean with min and max values.

889

890



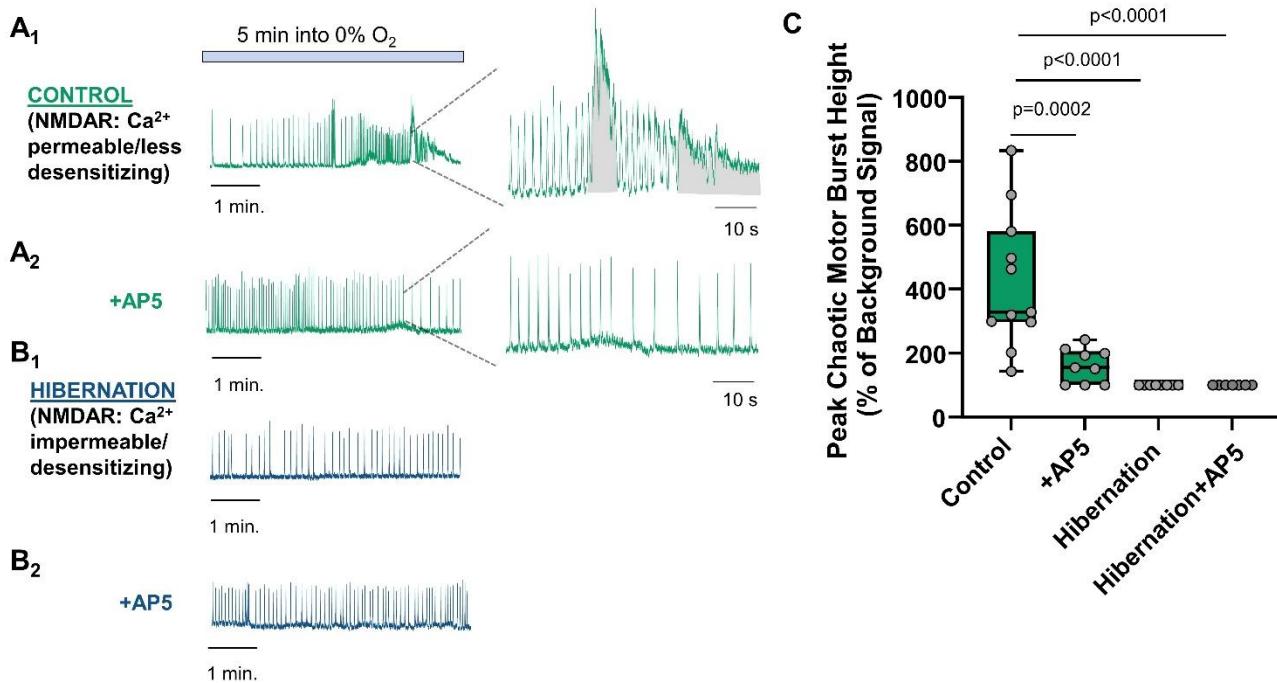
891

892

893 **Figure 5. Physiological contributions from NMDAR subunits and changes after**
894 **hibernation.** Change in NMDAR current amplitude after 10 minutes of recording (A, Time
895 control), inhibition of GluN2A (B, 1 μ M TCN 201), GluN2B (C, 2 μ M RO 25-6981),
896 GluN2C/GluN2D (D, 10 μ M QZN 46), and GluN3 (E, 30 μ M TK30). Left - change in current
897 amplitude (expressed as % of baseline) in control neurons compared to after hibernation. Right-
898 Example traces of a baseline current overlapped with a current after 10 min of recording (A) or
899 after 10 min of the inhibitor exposure (B-E) in neurons from frogs in control and hibernation
900 conditions. The “after drug” or time controls traces are slightly offset from their respective
901 baseline recordings to enhance visibility. Number of cells (n) and frogs (N) used in these
902 experiments: Time control in control n= 10, N= 4, in hibernation n=11, N=7; GluN2A inhibition in
903 control n= 9, N= 3, in hibernation n=9, N=6; GluN2B inhibition in control n= 9, N= 3, in
904 hibernation n=13, N=6; GluN2C/GluN2D inhibition in control n= 7, N= 3, in hibernation n=10,
905 N=6; GluN3 inhibition in control n= 7, N= 2, in hibernation n=10, N=9.

906

907


908 **Figure 6. Single-cell qPCR shows that hibernation changes in the NMDAR subunit profile**
909 **in motoneurons.** Single-cell mRNA abundances for all 7 *Grin* family members. The dominant
910 subunits were *Grin1*, which encodes the obligatory NMDAR subunit, GluN1, as well *Grin2B* and
911 *Grin3B*. Hibernation led to decreases in the abundance of *Grin2C*, *Grin3A*, and *Grin3B*. Sample
912 sizes for each gene are as follows for control and hibernation. *Grin1*, n=19 control, n=20
913 hibernation; *Grin2A*, n=16 control, n=16 hibernation; *Grin2B*, n=18 control, n=20 hibernation;
914 *Grin2C*, n=19 control, n=20 hibernation; *Grin2D*, n=19 control, n=20 hibernation; *Grin3A*, n=18
915 control, n=18 hibernation; *Grin3B*, n=19 control, n=20 hibernation. Control cells came from N=6
916 animals and Hibernation cells came from N=5 animals. * p<0.05; **p<0.01; ***; p<0.001.

917

918

919

920

921 **Figure 7. Modified NMDAR profile after hibernation protects against network**
922 **hyperexcitability during hypoxia.** Extracellular recordings of motor nerve output from the
923 brainstem-spinal cord preparation. (A₁) Shows the typical response to hypoxia in controls,
924 whereby large amplitude bursting disrupts patterned output from the respiratory network. (A₂)
925 shows motor output during hypoxia in a preparation that was pretreated with D-AP5 to block
926 NMDARs. In the presence of D-AP5, large amplitude bursting is less severe and often does not
927 fully disrupt the respiratory rhythm. This indicates the normal profile of NMDARs contributes to
928 disruptive motor activity in hypoxia. (B₁) Shows patterned motor output from a hibernation
929 preparation over the same timescale as controls. Despite intact NMDARs, there is no
930 observable disruptive motor output. (B₂) A hibernation preparation pretreated with D-AP5, also
931 showing disrupted motor output. (C) Summary data of the degree of large amplitude non-
932 respiratory bursting from n=11 controls, n=9 control+D-AP5, n=8 hibernation, and n=7
933 hibernation+D-AP5 analyzed by a one-way ANOVA. Non-respiratory bursting was smaller on
934 average after the application of D-AP5, and this was not statistically different from hibernation
935 preparations with or without D-AP5.