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A B S T R A C T

Predicting the evolution of white matter hyperintensities (WMH) (i.e., whether WMH will grow,

remain stable, or shrink with time) is important for personalised therapeutic interventions. However,

this task is difficult mainly due to the myriad of vascular risk factors (VRF) and comorbidities that

influence the evolution of WMH, and the low specificity and sensitivity of the intensities and textures

alone for predicting WMH evolution. Given the predominantly vascular nature of WMH, in this study,

we evaluate the impact of incorporating stroke information to a probabilistic deep learning model to

predict the evolution of WMH 1-year after the baseline image acquisition using brain T2-FLAIR MRI.

The Probabilistic U-Net was chosen for this study due to its capability of simulating and quantifying

uncertainties involved in the prediction of WMH evolution. We propose to use an additional loss

called volume loss to train our model, and incorporate an influential factor of WMH evolution, namely,

stroke lesions information. Our experiments showed that jointly segmenting the disease evolution map

(DEM) of WMH and stroke lesions, improved the accuracy of the DEM representing WMH evolution.

The combination of introducing the volume loss and joint segmentation of DEM of WMH and stroke

lesions outperformed other model configurations with mean volumetric absolute error of 0.0092 ml

(down from 1.7739 ml) and 0.47% improvement on average in shrinking, growing and stable WMH

using Dice similarity coefficient.

1. Introduction

White matter hyperintensities (WMH) are one of the

main neuroradiological features of cerebral small vessel

disease (SVD) and have been commonly associated with

stroke, aging, and dementia progression (Wardlaw et al.,

2013; Prins and Scheltens, 2015; Wardlaw et al., 2017). They

are often observed in T2-weighted and T2-fluid attenuated

inversion recovery (T2-FLAIR) brain magnetic resonance

images (MRI), appearing as bright regions. Small subcor-

tical infarcts may be indistinguishable from WMH on struc-

tural MRI in absence of intravenous contrast due to sharing

similar image intensity characteristics (Valdés Hernández

et al., 2013), and if mistaken for WMH could negatively

impact design of clinical research trials (Wang et al., 2012).

Clinical studies have indicated that some patients exhibit

WMH progression over time (i.e., increasing in volume)

(Schmidt et al., 2003; Sachdev et al., 2007; van Dijk et al.,

2008) while some show WMH regression over time (i.e.,

shrinking in volume) (Moriya et al., 2009; Jochems et al.,
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2022a). Another study indicated that WMH dynamically

change over time with clusters of WMH individually shrink-

ing, staying unchanged (i.e., stable), or growing, these being

observed at the same time point within the same individual

(Ramirez et al., 2016). These variations have been associated

with patients’ comorbidities and clinical outcome (Chappell

et al., 2017; Wardlaw et al., 2017). It must be noted that one

clinical study also acknowledged that all factors influencing

WMH evolution are still not fully known (Wardlaw et al.,

2017; Jochems et al., 2022a).

Predicting the evolution of WMH is crucial for better

care and prognosis of individual patients, but it remains a

difficult task because of the different rate and direction of

WMH evolution (Cai et al., 2022). Various deep learning

models have been proposed to predict the evolution of WMH

(Rachmadi et al., 2019, 2020, 2021). In these studies, WMH

evolution is represented by a map called disease evolution

map (DEM) which indicates the WMH voxels that shrink,

grow, or remain stable at a further time point. DEM can be

generated by subtracting images of manually labeled WMH

from different time points. Previous studies generated the

DEM by subtracting a baseline image of manually labeled

WMH of a patient (Visit 1, V1) from a follow-up image of

manually labeled WMH from the same patient one year after

(Visit 2, V2) (Rachmadi et al., 2020, 2021). An example of

DEM is visualised in Figure 1.
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Figure 1: Visualisation of disease evolution map (DEM) of
white matter hyperintesities (right) besides the corresponding
brain-extracted FLAIR axial slice of the baseline scan or
V1 (left). Red represents shrinking WMH, green represents
growing WMH, and blue represents stable WMH. Note that
labels of DEM for WMH evolution are combined with the label
for the stroke lesions (yellow), which is one of the contributions
of this study. Please, also observe that the growing WMH are
in areas of ill-defined, subtle, slightly hyperintense regions on
V1.

A recently proposed model for predicting the DEM of

WMH based on a Probabilistic U-Net (Kohl et al., 2018),

generates multiple predictions of DEM for a single brain

MRI data (Rachmadi et al., 2021). This model was proposed

to solve the challenge of representing spatial uncertainty

(Rachmadi et al., 2020), given difficulties in distinguishing

intensities and textures of shrinking and growing WMH

in T2-FLAIR brain MRI. The uncertainty associated with

the randomness of the dynamism of the WMH clusters

is commonly known as aleatoric uncertainty (Hüllermeier

and Waegeman, 2021). Previous experiments showed that

models based on Probabilistic U-Net performed significantly

better than the classical U-Net models previously used in

predicting the evoultion of WMH using the DEM paradigm

(Rachmadi et al., 2021).

So far, previous studies focused exclusively on the image

modality as input and the appearance of WMH themselves

while ignoring other clinically relevant factors. But a grow-

ing number of clinical studies have indicated that clinical

factors such as previous strokes (Cai et al., 2022), age (van

Dijk et al., 2008), and genetics (Schmidt et al., 2002, 2011;

Godin et al., 2009; Luo et al., 2017), influence the rate and

direction of WMH evolution. A previous study incorporated

volume of stroke lesions as auxiliary input to the prediction

model, but it did not improve the prediction results (Rach-

madi et al., 2020). Thus, incorporating clinically associated

factors into the model remains a challenge in the prediction

of WMH evolution.

The main contributions of this study are two-fold:

1. incorporating stroke lesions’ information to the

prediction model (described in Section 3.2) and

2. adding a volume loss to the cost function (formu-

lated as the mean squared error between the predicted

and the reference WMH volumes, as per Equation 3

and described in Section 4.4.2) to improve prediction

of WMH evolution.

We show that both significantly improve the prediction of

DEM for WMH.

Other efforts related to this study are described in Section

2 while our proposed approaches are described in Section 3.

All models tested in this study are based on the Probabilistic

U-Net with adversarial training (Rachmadi et al., 2021)

which is described in Section 3.1. Different configurations

of all tested models are described in Section 3.3 and Table

1. All experimental settings are described in Section 4, and

all results are discussed in Section 5. Lastly, our conclusion

can be read in Section 6 while codes and trained models are

available on GitHub 1.

2. Related Approaches

In general, previous studies that had developed predic-

tion models for disease progression from medical image

modalities using machine/deep learning can be categorised

into the three different approaches listed below.

1. Approaches predicting the outcomes of a disease.

These approaches are commonly used for diseases

with high rates of mortality and disability. Some ex-

amples are those predicting the outcomes of COVID-

19 (De Souza et al., 2021), multiple sclerosis (Pinto

et al., 2020), and traumatic brain injury (Chong et al.,

2015; Pease et al., 2022).

2. Approaches predicting the progression of a disease

with regards to the pathological timeline and/or

commonly associated disease markers. These ap-

proaches are commonly used for diseases with mul-

tiple stages of development and which take time to

progress, such as dementia and Alzheimer’s Disease

(AD), with mild cognitive impairment (MCI) being

their transitional stage (Pellegrini et al., 2018). Some

examples are predicting conversion of MCI patients

to AD (Zhang et al., 2021), conversion of healthy

individuals to MCI and AD (Nakagawa et al., 2020),

and predicting the progression of multimodal AD

markers (e.g., ventricular volume, cognitive scores,

etc.) (Nguyen et al., 2020).

3. Approaches predicting dynamic changes (evolu-

tion) of specific disease features. These approaches

model and predict spatial changes of specific dis-

ease features such as evolution of WMH, enlargement

of ventricles, and brain atrophy. Other examples are

predicting lung nodule progression of pulmonary tu-

mour (Rafael-Palou et al., 2022), predicting dynamic

change of brain structures from healthy individuals to

MCI and AD patients (Sauty and Durrleman, 2022),

and studies for predicting the evolution of WMH in

brain images of stroke patients (Rachmadi et al., 2019,

2020, 2021)

1https://github.com/febrianrachmadi/probunet-gan-vie
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The present study belongs to the third category, in which

a predictive model is used to estimate spatial dynamic

changes of the evolution of WMH identified on an MRI scan.

This third category is the most challenging because of the

complexity and resolution of the data/image being predicted.

While approaches in the first and second categories predict

classes which are the disease outcomes (e.g., survive, death),

classes of disease stages (e.g., MCI, AD), or associated

disease markers (e.g., age, cognitive scores) from medical

imaging data, approaches in the third category predict the

dynamic changes and evolution of disease’s features (e.g.,

lesions) that appear on images throughout the entire image

space.

3. Proposed Deep Learning Model

Uncertainties are unavoidable when predicting the pro-

gression of WMH. Previous studies showed that incorpo-

rating uncertainties into a deep learning model, either by

incorporating Gaussian noise as auxiliary input (Rachmadi

et al., 2020) or using a conditional variational autoencoder in

the shape of a Probabilistic U-Net with adversarial training

(Rachmadi et al., 2021), improved prediction results, thus

justifying the use of a Probabilistic U-Net with adversarial

training (described in Section 3.1) in the present study.

Section 3.2 details the two improvements made to the pre-

viously published probabilistic scheme (Rachmadi et al.,

2021), implemented in the configurations related in section

3.3.

3.1. Probabilistic U-Net with adversarial training
In this study, we use Probabilistic U-Net with adver-

sarial training as proposed in (Rachmadi et al., 2021) to

capture spatial uncertainties from the brain MRI. Spatial

aleatoric uncertainty is the biggest challenge in predicting

the evolution of WMH, due to differences between experts

in WMH delineation (i.e., ground truth reliability issues),

and difficulty of previous automatic schemes distinguishing

textures and intensities of shrinking and growing WMH

in the T2-FLAIR MRI sequence (Rachmadi et al., 2020).

This uncertainty cannot be reduced by simply adding more

training data (Hüllermeier and Waegeman, 2021). Thus,

a Bayesian deep learning model named Probabilistic U-

Net (Kohl et al., 2018) proposed for this purpose, gener-

ated better prediction results than non-probabilistic models

(Rachmadi et al., 2021).

The probabilistic U-Net with adversarial training con-

sists of a U-Net configuration (Ronneberger et al., 2015),

two variational encoders called Prior Net and Posterior Net,

and a discriminator network for adversarial training. In this

study, the U-Net was used as segmentation network for pre-

dicting the DEM. Prior Net and Posterior Net were used for

variational inference. Prior Net estimates a low-dimensional

Gaussian distribution called prior latent space by producing

its mean(s) and variance(s) from T2-FLAIR MRI at baseline

(i.e., V1, denoted ĎĒ 1). Whereas, Posterior Net estimates an-

other low-dimensional Gaussian distribution called posterior

latent space by producing its mean(s) and variance(s) from

the follow-up T2-FLAIR MRI (i.e., V2, denoted ĎĒ 2) and

ground truth DEM (ďĀāĉ ). Kullback-Leibler divergence is

used during training to make prior and posterior latent spaces

similar. In training, a sample ĘĆąĉĊ is taken from the posterior

latent space (ĘĆąĉĊ < ü
(
ąĆąĉĊ,ÿĆąĉĊ

)
) and then broadcasted

and concatenated to the segmentation network. Multiple pre-

dictions of DEM ( �ď1
Āāĉ

, �ď2
Āāĉ

,ď , �ďĄ
Āāĉ

) can be gener-

ated by using multiple samples (Đ1
ĆĈÿąĈ

, Đ2
ĆĈÿąĈ

,ď , ĐĄ
ĆĈÿąĈ

) from

the prior latent space (ĘĆĈÿąĈ < ü
(
ąĆĈÿąĈ,ÿĆĈÿąĈ

)
). Lastly,

a discriminator network is used for adversarial training to

enforce anatomically realistic DEM with regards to the T2-

FLAIR MRI at V1 and V2. The Probabilistic U-Net used in

this study is illustrated schematically in Figure 2. Detailed

illustrations of each segmentation network, Posterior/Prior

Net, and discriminator network are shown in Figures 3, 4

(left), and 4 (right) respectively.

Figure 2: Schematic representation of the Probabilistic U-Net
(Kohl et al., 2018) with adversarial training (Goodfellow et al.,
2014) used in this study. This approach was first introduced in
a previous work (Rachmadi et al., 2021).

3.2. Incorporation of stroke lesions information
Previous clinical studies have indicated that there are

strong correlations between stroke occurrence and progres-

sion of WMH over time (Cai et al., 2022). In a previous study

(Rachmadi et al., 2020), volume of stroke lesions was used as

an auxiliary input to an scheme designed to estimate WMH

evolution, but it was outperformed by the use of Gaussian

noises as auxiliary input representing uncertainty. Thus, in

this study, our main objective is to explore how information

on stroke lesions can be incorporated to the probabilistic

scheme, for better prediction of WMH evolution. We pro-

pose two different approaches which are 1) jointly segment

the WMH disease evolution map (DEM) and stroke lesions,

and 2) incorporating probabilistic maps of WMH change in

relation to stroke lesions’ locations.

3.2.1. Joint segmentation of DEM and stroke lesions

Due to the similar tissue intensity signal of WMH and

ischaemic stroke lesions in T2-FLAIR brain MRI, we hy-

pothesised that performing a joint segmentation of the WMH

DEM and stroke lesions will improve the accuracy in the

prediction of the WMH DEM because the deep learning
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Figure 3: Segmentation network of Probabilistic U-Net used in this study, which is based on the original U-Net extended into
Attention U-Net only when probability maps of WMH change are used as auxiliary input. The output channel of ÿ is either 5 or
4 depending on whether stroke lesions are jointly segmented or not, respectively.

model will automatically learn the correlation between both

features. In this approach stroke lesions do not need to

be excluded in the preprocessing steps like in preceding

works(Rachmadi et al., 2020, 2021). This newly proposed

approach can be implemented by adding an output chan-

nel to the segmentation layer of the segmentation network

originally with 4 channels (i.e., channels for background,

shrinking WMH, growing WMH, and stable WMH), to 5

channels. Note in Figure 1 that the stroke lesions label has

been added to the DEM of WMH.

3.2.2. Probabilistic maps of WMH change in relation

to stroke lesions’ locations

Results from a clinical study indicate that there are strong

correlations between stroke lesions’ location at baseline (V1)

and WMH evolution after 1 year (V2) (Valdés Hernández

et al., 2021) for patients with a stroke of type lacunar.

Specifically, if stroke lesions are subcortical and located in

either the centrum semiovale or the lentiform nucleus at

V1, then there are significant changes to the WMH at V2

(both in volume and location) specific to the location of

the stroke lesions at V1. This clinical study made available

probability maps of WMH change indicating brain locations

where changes of WMH are significant at V2 depending on

the infarcted region after accounting for vascular risk factors

(VRF) (Valdés Hernández et al., 2021).

We use these probability maps as auxiliary data input to

an attention U-Net (Oktay et al., 2018) within the Probabilis-

tic U-Net’s segmentation network. In it, the information of

the probability maps is encoded through the gating signal en-

coder (GSE), with outputs used as gating signal in multiple

resolutions (see Figure 3). The general idea of this approach

is to focus the attention of the segmentation network on the

areas that have high probability of WMH change according

to the locations of the stroke lesions.

Similar to the original Attention U-Net (Oktay et al.,

2018), this study uses an additive attention gate (AG), but

obtains the gating signals from the GSE instead of from

the outputs of the next (coarser) convolutional block. The

schematic of the additive AG can be seen in Figure 5. Input

features (ĎĂ) are from the U-Net’s skip connections, gating

signals (ąĂ) are from the gating signal encoder (GSE), ÿ are

the attention coefficients learned in the training process used

to scale input features ĎĂ to highlight important areas,
+

is

an element-wise addition,
,

is an element-wise multiplica-

tion, andēą ,ēĎ, andĀ are 1×1×1 convolution operations.

For implementing this approach, we perform brain par-

cellation and registration of the probability maps (in standard

image space) to each patient’s space to identify the locations

of stroke lesions for each specific patient. Please see Section

4.2 for a detailed explanation of these processes. Note that

this second proposed approach is more complex than the first

proposed approach because it needs multiple preprocessing

steps.

3.3. Configuration of the proposed approach
In this study we evaluate four configurations of segmen-

tation networks. Three different configurations of networks

incorporating probabilistic maps of WMH and/or stroke

lesions were compared with the vanilla U-Net.

1. PUNet: Original U-Net (Ronneberger et al., 2015)

was used for the segmentation network.

2. PUNet-wSL: Joint segmentation of DEM of WMH

and stroke lesions was performed as explained in

Section 3.2.1.

3. Att-PUNet: Attention U-Net with probabilistic maps

of WMH change (as explained in Section 3.2.2) was

used for segmentation network instead of the original

U-Net.

4. Att-PUNet-wSL: Attention U-Net with probabilistic

maps of WMH change was used for segmentation

network and joint segmentation of DEM and stroke

lesions was performed simultaneously.
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Figure 4: Architectures of Posterior/Prior Nets (left) and discriminator network (right) used in this study. Posterior/Prior Net.
produces mean (ą) and standard deviation (ÿ) that will be used to sample Ę. Note that spectral normalization (Miyato et al.,
2018) is used for the discriminator network.

Figure 5: Schematic of additive attention gate (AG) used in
this study and introduced in (Oktay et al., 2018). Input features
(ĎĂ) are from the U-Net’s skip connection while gating signals
(ąĂ) are from the gating signal encoder (GSE). Note that
both ĎĂ and ąĂ feature maps have the same size because they
are from the same level of encoder (see Figure 3). Attention
coefficients (ÿ) are learned in the training process and used to
scale input features ĎĂ to highlight important areas.

4. Experimental Setting

This section describes the dataset (Section 4.1), training

scheme (Section 4.3), and cost function (Section 4.4) used

in this study.

4.1. Dataset
For comparability of our results with those previously

published, we use the same dataset as (Rachmadi et al.,

2020), which comprises MRI data from Ą = 152 patients that

had a mild-to-moderate stroke and consented to participate

in a study of stroke mechanisms (Wardlaw et al., 2017).

The study protocols were approved by the Lothian Ethics

of Medical Research Committee (REC 09/81101/54) and

NHS Lothian R+D Office (2009/W/NEU/14), on the 29th

of October 2009. All patients were imaged with the same

acquisition protocol at two time points (i.e., baseline scan

(V1), and a year after the baseline scan (V2)). In total, 304

MRI from 152 stroke patients (i.e., 152 V1 MRI and 152

V2 MRI) were used. Overall increase in WMH volume was

identified in 98 of the 152 patients and reduction of WMH

total volume in 54 patients. The magnitudes of WMH change

(in ăĂ) and their distribution for all patients can be seen in

Figure 6.

All T2-FLAIR brain MRI were acquired with a GE 1.5T

scanner, and a semi-automatic multi-spectral method was

used to produce several brain masks including intracranial

volume, cerebrospinal fluid, stroke lesions, and WMH, all

which were visually checked and manually edited by an

expert (Valdés Hernández et al., 2015). For the prediction

Figure 6: Volumetric progression of WMH (in ăĂ) from V1 to
V2 (1 year apart) for all subjects from our dataset (left) and
distribution of volumetric progression of WMH (in ăĂ) based
on WMH volume at V1 for all subjects (right).

of WMH evolution from V1 to V2, T2-FLAIR brain MRI

at follow-up (V2) and T2-FLAIR brain MRI at baseline

(V1) were linearly and rigidly aligned to a common space

using FSL-FLIRT (Jenkinson et al., 2002). The space trans-

formations were applied to all labels (i.e., binary/indexed

masks) including manually-derived (i.e., after manually cor-

recting results from a semi-automatic segmentation) labels

of WMH. The spatial resolution of the images was 256 ×

256 × 42 with slice thickness of 0.9375 × 0.9375 × 4 mm.

Also to facilitate comparability between methods and

results, we used the same preprocessing pipeline as previ-

ous studies (Rachmadi et al., 2020, 2021). We generated a

DEM for each patient by subtracting the manually corrected

segmentation of WMH at V1 from the manually corrected

segmentation of WMH at V2. Values of T2-FLAIR brain

MRI were normalised into zero mean and unit variance

for each patient. Data augmentations were performed, such

as shifting, scaling, horizontal and vertical flip, and elastic

transformation.

4.2. Data pre-processing for incorporation of

probabilistic maps of WMH change
Given the influence of stroke lesion location in WMH

change and evolution patterns when the stroke lesions are

located at the centrum semiovale or the lentiform nucleus

(Valdés Hernández et al., 2021), we only used probability
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maps of WMH change based on stroke lesions incident at

centrum semiovale or lentiform nucleus, publicly available2.

Probability maps in the standard space were obtained

from a clinical study (Valdés Hernández et al., 2021) and

then registered to each patient’s native space using niftyreg

through TractoR (Clayden et al., 2011). To identify the

location of stroke lesions within a human brain, an age-

relevant brain template and its corresponding brain parcel-

lation), also publicly available (Valdés Hernández, 2021),

were registered to each patient’s native space. If there were

no stroke lesions at centrum semiovale or lentiform nucleus

in a patient, then zero matrices were used as probabilistic

maps. Both probabilistic maps for centrum semiovale or

lentiform nucleus were concatenated before being used as

auxiliary input in the segmentation network (see Figure 3

for illustration).

4.3. Training scheme
To make sure all patients are used in both training

and testing, 4-fold cross validation with 512 epochs was

performed with each fold consisting of 114 MRI for training

and 38 for testing. The same 4-fold cross validation was

used for our previous studies (Rachmadi et al., 2019, 2020,

2021). In the training phase, we used 14/114 MRI data for

validation, and selected for testing the model that produced

the best performance (i.e., lowest validation loss).

4.4. Cost function
We used three lost functions in training to optimize the

different networks. These were: segmentation loss (úĉăą),

probabilistic loss using Kullback-Leibler Divergence (òćĈ),

and adversarial loss (úÿĂČ). We used the segmentation loss

to compare the output of the segmentation network (i.e., the

predicted DEM segmentation) against the ground truth of

the DEM. The probabilistic loss was used to compare the

similarity between prior and posterior latent spaces. And the

adversarial loss was used to compare the similarity between

the ground truth DEM and the predicted DEM.

4.4.1. Segmentation loss

For the segmentation loss, we used the weighted focal

loss with ā (i.e., focal loss’ hyperparameter) set to ā = 2

following the recommendation of the original paper (Lin

et al., 2017). Equation 1 describes the weighted focal loss

function for all pixels from an MRI slice where ďÿ,ā * {0, 1}

indicates the class membership for pixel ÿ to class ā, Ćÿ the

predicted probability that pixel ÿ belongs to class ā, and ÿā
is the weight for class ā. The larger the value of ÿā , the

larger the contribution of class ā to the loss value. Č is

the random variable for the predicted probability, ĕ is the

random variable for the target classes, ÿ are the weights for

all classes, Ċ is the number of pixels in an axial MRI slice

(i.e.,Ċ = 256), andĉ is the number of classes in the DEM

(i.e.,Ċ = 4 if stroke lesions are not automatically segmented

and Ċ = 5 if otherwise). Based on our preliminary exper-

iments, the best weights were ÿā=0 = 0.25 for background,

2https://datashare.ed.ac.uk/handle/10283/3934

ÿā=1 = 0.75 for shrinking WMH, ÿā=2 = 0.75 for growing

WMH, ÿā=3 = 0.5 for stable WMH, and ÿā=4 = 0.75 for

stroke lesions.

FL(Č , ĕ , ÿ) = −

Ċ1

ÿ=1

ĉ=41

ā=0

ÿā ďÿ,ā (1 − Ćÿ,ā)
ā Ăąą

(
Ćÿ,ā

)
(1)

Note that the predicted segmentation of the DEM pro-

duced by the Probabilistic U-Net is conditioned to either the

posterior or the prior latent space. In training, the predicted

DEM segmentation is conditioned to the posterior latent

space defined by ĘĆąĉĊ < ü
(
ąĆąĉĊ,ÿĆąĉĊ

)
and modelled by

the Posterior Net. On the other hand, the predicted DEM

segmentation is conditioned by the prior latent space that

is formulated as ĘĆĈÿąĈ < ü
(
ąĆĈÿąĈ,ÿĆĈÿąĈ

)
and modelled

by the Prior Net in testing/inference. Thus, the probabilistic

segmentation loss úĉăą can be formulated as Equation 2

where �ĕĀāĉ is the predicted DEM segmentation.

úĉăą = FL(Č ( �ĕĀāĉ |ĔĒ 1, ĘĆąĉĊ), ĕ , ÿ)+vol( �ĕĀāĉ , ĕĀāĉ )

(2)

4.4.2. Volume loss

To avoid over- and under-segmentation in relation to

the volume of WMH, a volume-loss (that is formulated as

Equation 3) is added to Equation 2 as regularization term.

The term keeps the volume of WMH from the predicted

DEM ( �ĕĀāĉ ) close to the volume of the WMH from the

ground truth DEM (ĕĀāĉ ). To enforce this, we used the

mean squared error (MSE). Note that only the classes ā = 2

for growing WMH, and ā = 3 for the stable WMH were

used to calculate the volume of WMH. A denominator of

1000 was used to estimate the volume of WMH inăĂ (i.e., as

voxel dimensions are inăă3). To see the effectiveness of the

volume-loss regularization, ablation studies were performed

where the volume-loss was not used in training process for

all configurations of the segmentation network explained in

Section 3.3. All ablation studies and configurations are listed

in Table 1.

vol( �ĕĀāĉ , ĕĀāĉ ) = MSE

(1ĉ=3
ā=2

�ďā

1000
,

1ĉ=3
ā=2

ďā

1000

)
(3)

4.4.3. Probabilistic loss

We used Kullback-Leibler Divergence score (òćĈ) in

the training process for training the Prior Net and Posterior

Net. In this setting, Prior Net and Posterior Net were trained

together with the Segmentation Net for predicting the DEM.

Let č be the posterior distribution from the Posterior Net

and Č be the prior distribution from the Prior Net. The

difference between the posterior distributionč and the prior

distribution Č is described byòćĈ in Equation 4 whereĔĒ 2

is the T2-FLAIR at V2, ĕĀāĉ is the true DEM, and ĔĒ 1 is
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Improving the prediction of WMH evolution in brain MRI of patients with SVD using stroke lesions information

Table 1
Names of tested models with their respective configurations.
“PUNet” stands for Probabilistic UNet, “PMWCA” stands
for Probabilistic Maps of WMH Change as Attention, and
“JSDEMSL” stands for Joint Segmentation of DEM and Stroke
Lesions.

Model’s Name PMWCA JSDEMSL Volume Loss

PUNet (Rachmadi et al., 2021) - - -
PUNet-vol - - ✓

PUNet-wSL - ✓ -
PUNet-wSL-vol - ✓ ✓

Att-PUNet ✓ - -
Att-PUNet-vol ✓ - ✓

Att-PUNet-wSL ✓ ✓ -
Att-PUNet-wSL-vol ✓ ✓ ✓

the T2-FLAIR at V1. Based on our preliminary experiments,

the dimension for both ĘĆąĉĊ and ĘĆĈÿąĈ is 4 (smaller than the

original paper (Kohl et al., 2018) which used 6).

òćĈ(č G Č ) =

ĀĘĆąĉĊ<č,ĘĆĈÿąĈ<Č
[logč(ĔĒ 2, ĕĀāĉ ) − logČ (ĔĒ 1)]

(4)

4.4.4. Adversarial loss

Similar to a previous study (Rachmadi et al., 2021), the

original adversarial loss proposed by (Goodfellow et al.,

2014) was slightly modified by adding a segmentation loss

(úĉăą) so that the Segmentation Net was also optimised to

produce better segmentation result. Similar to the original

paper Goodfellow et al. (2014), the Segmentation Net aims

at minimising Equation 5 while the discriminator network

aims at maximising it. In Equation 5, ă is the Segmentation

Net,Ā is the discriminator network, ď < (ĔĒ 1, ĔĒ 2, ĕĀāĉ )

is the joint distribution of T2-FLAIR MRI at V1 and V2

and ground truth DEM (i.e., ĔĒ 1, ĔĒ 2, and ĕĀāĉ respec-

tively), Ď < (ĔĒ 1, ĔĒ 2,
�ĕĀāĉ ) is the joint distribution of

T2-FLAIR MRI at V1 and V2 and predicted DEM (i.e.,

ĔĒ 1, ĔĒ 2, and �ĕĀāĉ respectively), Āď < ĕăýĊ is the

expected value over ĕăýĊ , and ĀĎ is the expected value over

ĔăýĊ .

úÿĂČ = Āď<ĕăýĊ

[
log(Ā(ď))

]
+

ĀĎ<ĔăýĊ
[log(1−Ā(ă(Ď))) + úĉăą(ă(Ď))]

(5)

4.5. Evaluation measurements
In this study, we used the following evaluation measure-

ments to assess the performance of all configurations listed

in Table 1.

1. Spatial agreement between predicted and ground

truth DEM is measured by the Dice similarity co-

efficient (DSC) (Dice, 1945), precision (PRE), and

recall (REC). Higher values of DSC, PRE, and REC

mean better performance. DSC, PRE, and REC can be

calculated by using Equations 6, 7, and 8, respectively,

where TP is true positive, FP is false positive and FN

is false negative.

DSC =
2 × TP

FP + 2 × TP + FN
(6)

PRE =
TP

TP + FP
(7)

REC =
TP

TP + FN
(8)

2. Uncertainty quantification and correlation analy-

sis to measure correlation between uncertainty values

in predicted DEM and DSC values, is calculated as the

Cross Entropy (CE) between the mean sample and all

samples as per Equation 9 where ā is the uncertainty

map, ĉ is a set of predictions from an input, �ĉ is the

mean sample of set ĉ,CE is the cross entropy function,

and Ā is the expected value function.

ā(s) = Ā[CE(�s, s)] (9)

3. Accuracy of prediction assesses how good our pro-

posed models predict WMH evolution for all patients

(i.e., growing or shrinking). Accuracy of prediction

for growing and shrinking WMH (i.e., subjects with

growing and shrinking WMH are correctly predicted

to have growing and shrinking WMH respectively)

is calculated by the Equations 10 and 11 respec-

tively. ĊGRW and ĊSHR are the number of subjects in

our dataset who have growing and shrinking WMH.

Whereas, ČGRW and ČSHR are the number of subjects

correctly predicted as having growing and shrinking

WMH.

GRW =
ČGRW

ĊăĎē

(10)

SHR =
ČGRW

ĊSHR

(11)

4. Estimated volume interval (EVI) measures the de-

viation of the predicted WMH volume at follow-up

(V2) from the lowest and highest possible predicted

volumes of WMH (Rachmadi et al., 2021). The lowest

and highest possible predicted volumes of WMH at

V2 are estimated by ignoring the prediction chan-

nel for growing WMH and shrinking WMH respec-

tively. In other words, the lowest possible volume

of WMH (dubbed as Minimum Volume Estimation

or ‘MinVE’) is assumed to occur when there are

no growing WMH in the patient’s brain. Whereas,

the highest possible volume of WMH (dubbed as
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Improving the prediction of WMH evolution in brain MRI of patients with SVD using stroke lesions information

Maximum Volume Estimation or ‘MaxVE’) is as-

sumed to occur when there are no shrinking WMH

in the patient’s brain. There are 3 metrics in this

evaluation: “CP” which stands for “Correct Predic-

tion” (calculated by using Equation 12), “CPinEVI”

which stands for “Correct Prediction in Estimated

Volume Interval” (calculated by using Equation 13),

and “(CP+WP)inEVI” which stands for “Correct Pre-

diction + Wrong Prediction but still in EVI” (calcu-

lated by using Equation 14). In these equations, Č ÿĄ
GRW

and Č ÿĄ
SHR

are the number of subjects that are correctly

predicted as having growing and shrinking WMH and

have their estimated volumes of WMH at V2 are lo-

cated between ‘MinVE’ and ‘MaxVE’. Whereas, Č ÿĄ

is the number of subjects whose estimated volumes

of WMH at V2 are located between ‘MinVE’ and

‘MaxVE’.

CP =
ČGRW + ČSHR

ĊGRW +ĊSHR

(12)

CPinEVI =
Č ÿĄ

GRW
+ Č ÿĄ

SHR

ĊGRW +ĊSHR

(13)

(CP+WP)inEVI =
Č ÿĄ

ĊGRW +ĊSHR

(14)

5. Volume error measures how close the predicted

WMH volumes are with the real WMH volumes at

the follow-up assessment (V2). Volume error can

be calculated by using Equation 15 where volĒ 2
ĊĈċă

is

the true volume of WMH at V2, volĒ 2
ĆĈăĂÿāĊăĂ

is the

predicted volume of WMH at V2, and volĒ 2
ăĈĈąĈ

is the

volume error.

volĒ 2
ăĈĈąĈ

= volĒ 2
ĆĈăĂÿāĊăĂ

− volĒ 2
ĊĈċă

(15)

5. Results and Discussions

In this section, we show and discuss the results of the

evaluations using the four performance measurements de-

scribed in Section 4.5, namely spatial agreement evalu-

ation (Section 5.1), qualitative/visual evaluation (Section

5.2), volume based evaluation (Section 5.3), and uncertainty

quantification (Section 5.4), for all model configurations

listed in Table 1.

5.1. Spatial agreement evaluation
Tables 2, 3, and 4 show performances of all model

configurations listed in Table 1 evaluated using DSC, PRE,

and REC, calculated using Equations 6, 7, and 8 respectively.

The best and second best measurement values for each DEM

label are written in bold and underlined respectively. Note

that the label ‘Changing’ refers to shrinking and growing

WMH combined together as one label. The ‘Stroke Lesions’

label is only available when joint segmentation of WMH

DEM and stroke lesions are performed (see Section 3.2.1).

From Table 2, we can see that joint segmentation of

DEM and stroke lesions with volume loss (PUNet-wSL-

vol) produced the best segmentation results based on DSC

for ‘Shrinking’ (0.2290) and ‘Average’ (0.3598). Further-

more, we can see that joint segmentation of DEM and

stroke lesions (described in Section 3.2.1) by PUNet-wSL

(i.e., without volume loss) and PUNet-wSL-vol (i.e., with

volume loss) produced either the best or second best DSC

values for all categories of DEM except for ‘Growing’

and ‘Stable’ WMH, which were achieved by the original

configuration either without volume loss (PUNet) or with

volume loss (PUNet-vol). On the other hand, other con-

figurations especially with auxiliary input of probabilistic

maps of WMH change, described in Section 3.2.2, (i.e., Att-

PUNet, Att-PUNet-vol, Att-PUNet-wSL, and Att-PUNet-

wSL-vol) failed to improve the performance of the DEM

segmentation while improved the performance of ‘Stroke

Lesions’ segmentation.

We can also see from Table 2 that models trained using

volume loss (Equation 3, Section 4.4.2), which are PUNet-

vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-

vol, produced better DSC values on ‘Average’. Note that

‘Average’ DSC value is calculated by averaging DSC values

of ‘Shrinking’, ‘Growing’, and ‘Stable’. This indicates that

the volume loss impacted positively in the task of estimating

the DEM of WMH.

Tables 3 and 4 show that joint segmentation of DEM and

stroke lesions (i.e., PUNet-wSL and PUNet-wSL-vol), in

general, also produced either the best or second best PRE and

REC values for some categories while probabilistic maps

of WMH change as auxiliary input (Att-PUNet) produced

the best PRE values, and the original configuration (PUNet)

produced the best REC values for most DEM categories.

These results show that performing joint segmentation of

DEM and stroke lesions as described in Section 3.2.1, either

by using volume loss (PUNet-wSL-vol) or not (PUNet-

wSL), improved the quality of the predicted DEM of WMH

producing balanced performances in DSC, PRE, and REC

metrics. FP and FN counts produced by other configurations

were imbalanced. This imbalance in FP and FN counts

influenced the DSC, PRE, and REC values through their

respective equations (Equations 6, 7, and 8 respectively). For

example, PUNet-vol produced high DSC and REC values

and low PRE values due to the combination of higher FP and

lower FN counts. Whereas, Att-PUNet produced high PRE

values and low DSC and REC values due to the combination

of lower FP and higher FN counts.

To provide a better illustration of the relationship be-

tween DSC, PRE, and REC values and FP and FN counts,

we present the confusion matrices and a table compiling

these values from the ‘Shrinking’ WMH and ‘Growing’

WMH labels obtained from PUNet-vol and PUNet-wSL-vol

configurations (Figure 7 and Table 5 respectively). Figure

7 contains the number of segmented voxels corresponding
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Table 2
Dice similarity coefficient (DSC) for all model configurations listed in Table 1. Symbol ² indicates that higher values are better.
The best and second best measurement values for each category of WMH are written in bold and underlined respectively.

Model’s Name
Dice Similarity Coefficient (DSC) ²

Shrinking Growing Stable Average Changing Stroke Lesions

PUNet (Rachmadi et al., 2021) 0.2132 0.2137 0.6385 0.3551 0.3633 -
PUNet-vol 0.2107 0.2232 0.6439 0.3593 0.3642 -

PUNet-wSL 0.2217 0.2130 0.6437 0.3595 0.3719 0.4499
PUNet-wSL-vol 0.2290 0.2112 0.6392 0.3598 0.3681 0.4281

Att-PUNet 0.2211 0.1796 0.6302 0.3437 0.3510 -
Att-PUNet-vol 0.2078 0.1981 0.6315 0.3458 0.3471 -

Att-PUNet-wSL 0.1968 0.2045 0.6240 0.3417 0.3543 0.5338
Att-PUNet-wSL-vol 0.1960 0.2077 0.6322 0.3453 0.3536 0.5430

Table 3
Precision (PRE) for all model configurations listed in Table 1. Symbol ² indicates that higher values are better. The best and
second best measurement values for each category of WMH are written in bold and underline respectively.

Model’s Name
Precision (PRE) ²

Shrinking Growing Stable Average Changing Stroke Lesions

PUNet (Rachmadi et al., 2021) 0.2349 0.2331 0.6638 0.3773 0.3489 -
PUNet-vol 0.2527 0.2391 0.6553 0.3824 0.3686 -

PUNet-wSL 0.2346 0.2541 0.6600 0.3829 0.3690 0.4226
PUNet-wSL-vol 0.2295 0.2479 0.6642 0.3805 0.3603 0.4065

Att-PUNet 0.2370 0.2435 0.6740 0.3848 0.3694 -
Att-PUNet-vol 0.2241 0.2253 0.6516 0.3670 0.3501 -

Att-PUNet-wSL 0.2245 0.2247 0.6385 0.3626 0.3461 0.3918
Att-PUNet-wSL-vol 0.2315 0.2345 0.6531 0.3730 0.3628 0.3746

to each label (n) from all patients in the testing set, false

negative rate (fnr), false positive rate (fpr), true positive

rate (TPR), and positive predictive value (PPV). Table 5

compiles values of DSC, PRE, REC, FN, and FP for the

‘Shrinking’ WMH and ‘Growing’ WMH labels from both

PUNet-vol and PUNet-wSL-vol configurations. From both,

Figure 7 and Table 5, we can see that PUNet-vol produced

higher PRE value for ‘Shrinking’ WMH with lower FP

counts than PUNet-wSL-vol. But PUNet-vol produced lower

PRE value for ‘Growing’ WMH as it produced higher FP

counts than PUNet-wSL-vol in this label/category.

Figure 8 shows the correspondence between the indi-

vidual WMH volumes at V1 and the DSC values for all

DEM labels produced by the four models that have the WMH

volume loss incorporated. The ideal scenario will be a thin

cloud of points aligned horizontally throughout the volume

range, near and below the DSC value of 1 for all the labels.

As can be appreciated all the four models produced similar

results with DSC values around 0.8 for ‘Stable’ WMH vol-

umes above 30 ml, while ‘Shrinking’ and ‘Average’ had DSC

values between 0.3 and 0.5 and ‘Growing’ had the lowest

DCS values across the same range of WMH volumes. It is

worth noting that DSC values for ‘Shrinking’ and ‘Stable’

Table 4
Recall (REC) for all model configurations listed in Table 1. Symbol ² indicates that higher values are better. The best and second
best measurement values for each category of WMH are written in bold and underlined respectively.

Model’s Name
Recall (REC) ²

Shrinking Growing Stable Average Changing Stroke Lesions

PUNet (Rachmadi et al., 2021) 0.2730 0.2646 0.6783 0.4053 0.4091 -
PUNet-vol 0.2408 0.2569 0.6881 0.3953 0.3820 -

PUNet-wSL 0.2979 0.2303 0.6814 0.4032 0.4012 0.3811
PUNet-wSL-vol 0.3066 0.2346 0.6703 0.4038 0.4032 0.3831

Att-PUNet 0.2885 0.1806 0.6450 0.3714 0.3565 -
Att-PUNet-vol 0.2579 0.2319 0.6785 0.3894 0.3797 -

Att-PUNet-wSL 0.2427 0.2413 0.6768 0.3869 0.3877 0.4048
Att-PUNet-wSL-vol 0.2267 0.2323 0.6726 0.3772 0.3710 0.3846
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Figure 7: Confusion matrices for all labels produced by PUNet-vol and PUNet-wSL-vol configurations from all subjects.
Abbreviation n stands for number of segmented voxels which can be used to calculate false negative rate (fnr), false positive rate
(fpr), true positive rate (TPR), and positive predictive value (PPV). Note that TPR and fnr are calculated horizontally for each
row (true label of DEM). On the other hand, PPV and fpr are calculated vertically for each column (predicted label of DEM).

Table 5
Comparison of DSC, PRE, and REC values to FN and FP counts for PUNet-vol and PUNet-wSL-vol configurations. Symbols ²

and ´ indicate that higher and lower values are better respectively.

Shrinking WMH Growing WMH
DSC ² PRE ² REC ² FN ´ FP ´ DSC ² PRE ² REC ² FN ´ FP ´

PUNet-vol 0.2107 0.2527 0.2408 220,342 215,635 0.2232 0.2391 0.2569 259,905 279,753
PUNet-wSL-vol 0.2290 0.2295 0.3066 211,424 266,436 0.2112 0.2479 0.2346 262,794 271,775

WMH (i.e., and, therefore ‘Average’ WMH) from patients

with smaller WMH volumes were lower than those from

patients with WMH volumes of 30 ml and above, bringing

the overall mean DSC, represented by the horizontal line in

the graphs, to a lower value. However, the mean DSC for

‘Growing’ WMH seem to be rather higher than most of the

individual results, as this label was slightly better identified

in the scans from patients that had low WMH volume.

Confusion matrices in Figure 7, show a high level of

uncertainty between ‘Growing’ WMH and ‘Normal’ brain

tissues as more than 50% of the ‘Growing’ WMH identified

in the ground truth DEM were wrongly predicted as ‘Nor-

mal’ tissues (i.e., under-segmentation of ‘Growing’ WMH

which leads to higher fnr in the confusion matrix) by PUNet-

vol and PUNet-wSL-vol configurations with fnr = 0.5339

and fnr = 0.5254 respectively. In extended experiments,

all proposed configurations were observed producing the

same level of under-segmentation for ‘Growing’ WMH.

In general, areas of ‘Growing’ WMH are difficult to be

differentiated from ‘Normal’ brain tissues due to the high

Figure 8: Correspondence between WMH volume (ăĂ) at V1 and DSC values for all DEM labels produced by PUNet-vol,
Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol configurations.
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Figure 9: Examples of predicted DEM produced by PUNet-wSL-vol and PUNet-vol and their corresponding DEM ground truth
from subjects with high DSC values on average. Red represents shrinking WMH, green represents growing WMH, blue represents
stable WMH, and yellow represents stroke lesions. Obvious improvements are highlighted in white rectangles.

Figure 10: Examples of predicted DEM produced by PUNet-wSL-vol and PUNet-vol and their corresponding DEM ground truth
from subjects with low DSC values on average. Red represents shrinking WMH, green represents growing WMH, blue represents
stable WMH, and yellow represents stroke lesions.

level of uncertainty between these two classes. Overall, for

the model that jointly segmented the stroke lesions and the

WMH, mean DSC values were slightly better in this sample.

5.2. Qualitative/visual evaluation
PUNet-wSL-vol and PUNet-vol were chosen for qualita-

tive/visual evaluation as they produced the best and second

best DSC values on ‘Average’ (See Table 2 Section 5.1).

Figures 9 and 10 show examples of the predicted DEM

segmentation from PUNet-wSL-vol and PUNet-vol and

their corresponding DEM ground truth forpatients with high
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Table 6
Volume based evaluation for all models evaluated. There are 98 patients with growing (GRW) and 54 with shrinking (SHR)
volume of WMH. “CP” stands for “Correct Prediction”, “CPinEVI” stands for “Correct Prediction in Estimated Volume Interval”,
and “(CP+WP)inEVI” stands for “Correct Prediction + Wrong Prediction but still in EVI”. Symbol ² indicates that higher values
are better while symbol ³ 0 indicates that values closer to 0 are better. The best and second best values for each evaluation
measurements are written in bold and underlined respectively.

Model’s Name
Prediction ² Estimated Volume Interval (n=152) ² Volumetric Error

GRW SHR CP CPinEVI (CP+WP)inEVI (std) ³ 0

PUNet (Rachmadi et al., 2021) 78.57% 46.30% 67.11% 47.37% 61.18% -1.7739 (9.798)
PUNet-vol 83.67% 51.85% 71.71% 46.71% 60.53% -0.8342 (8.657)

PUNet-wSL 75.51% 64.81% 71.71% 48.68% 59.21% 0.2269 (10.427)
PUNet-wSL-vol 74.49% 74.07% 74.34% 53.29% 62.50% -0.0092 (9.751)

Att-PUNet 70.41% 79.63% 73.68% 45.39% 55.26% 3.1823 (8.447)
Att-PUNet-vol 81.63% 55.56% 72.37% 43.42% 54.61% -0.5546 (9.043)

Att-PUNet-wSL 86.73% 55.56% 75.66% 51.97% 59.87% -0.5978 (10.901)
Att-PUNet-wSL-vol 81.63% 64.81% 75.66% 43.42% 53.95% 0.2701 (9.050)

and low DSC values on ‘Average’ respectively. Figure 9

shows that PUNet-wSL-vol, which jointly segments WMH

DEM and stroke lesions, produced better segmentation

results than PUNet-vol, which exhibits a high level of uncer-

tainty in predicting shrinking and growing WMH. Confusion

matrices in Figure 7 show that PUNet-wSL-vol lowered

this uncertainty by producing lower rates of fnr (and their

corresponding FN counts (n)) for shrinking and growing

WMH) in most cases. Figure 10 illustrates cases where

low DSC values of predicted WMH DEM were caused

mostly by two reasons: low WMH volume at V1 (patients

MSSB239 and MSSB172) and brain MRI artefacts (patients

MSSB239 and MSSB211). Based on our observations, these

two problems were relevant throughout the sample in our

evaluations.

Figure 11: Average progression of WMH volume (ăĂ) from
V1 to V2 (1 year) for Ground truth and all tested mod-
els/configurations.

5.3. Volume based evaluation
WMH volume is an important clinical feature for clinical

research and could be an important biomarker if available

for clinical practice. Hence, we evaluated how well WMH

volume at V2 (1 year later) can be estimated by using our

proposed models. Table 6 shows the prediction accuracy of

WMH volumetric progression (i.e., whether WMH volume

will grow or shrink at V2 for each patient) calculated using

Equations 10 and 11, the estimated volume interval (EVI)

calculated using Equations 12, 13, and 14, and the volu-

metric error calculated using Equation 15. Figure 11 shows

the average progression of WMH volume from V1 to V2

from the ground truth and all tested models/configurations.

Figures 12 and 13 show volumetric progression of WMH

(in ăĂ) from V1 to V2 and its distribution for all patients in

our dataset, and Figure 14 shows the WMH volume change

in patients grouped by quintiles depending on their WMH

volume at baseline.

As Table 6 shows, PUNet-wSL-vol performed better

than the rest of the models producing either the best or

second best results for almost all evaluation metrics except

predicting growing WMH (GRW). Although there were

more patients with net growing WMH than with net shrink-

ing WMH in the dataset, thus hinting to a possible bias by the

other models towards growing WMH, reduction in WMH

volume was mainly observed in patients with high WMH

volume (see Figure 14).

As Figure 11 shows, the average progression of WMH

volume from V1 to V2 (inăĂ) was well estimated by PUNet-

wSL-vol (i.e., brown dashed line representing PUNet-wSL-

vol is coincident with the red line representing the ground

truth). In general, as expected, models trained using volume

loss (Equation 3, Section 4.4.2) (i.e., PUNet-vol (green

line), Att-PUNet-vol (orange line), PUNet-wSL-vol (brown

line), and Att-PUNet-wSL-vol (grey line)) produced more

accurate progression of WMH volume from V1 to V2 than

those which did not use volume loss during training. Of

note, however, PUNet-wSL (yellow line) and Att-PUNet-

wSL (pink line), had lines close to the red line of the ground

truth. Overall, models jointly segmenting stroke lesions and

WMH improved the estimation of future volume of WMH at

V2 (see correspondence with average results sown in Table

6) .

Figures 12 and 13 illustrate that the WMH volumes at

V2 estimated using PUNet-wSL-vol are more similar to

the ground truth than the other models for most individual

patients (Figure 12) and as a whole (Figure 13).

To further analyse the accuracy of the winner scheme

in estimating the WMH volume change, we grouped the
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Figure 12: Volumetric progression of WMH (ăĂ) from V1 to V2 (1 year apart) for each individual subject based on ground truth
data (left) and future volume of WMH at V2 predicted by PUNet-vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol
models.

Figure 13: Distribution of volumetric progression of WMH at V2 (ăĂ) based on WMH volume at V1 (ăĂ) for each individual
subject based on ground truth data (left) and predicted by PUNet-vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol
models.

patients in quintiles according to their WMH volume at

baseline and calculated the WMH change produced by the

reference (i.e., ground truth) segmentation, and the PUNet

model using volume loss with and without jointly segment-

ing the DEM and the stroke lesions. As can be appreciated

from Figure 14, the scheme that jointly segmented the stroke

lesions and the DEM of WMH change produced mean,

median and a distribution of WMH volume change values

across the sample more similar to those from the reference

segmentation, than the scheme that only segmented the

DEM of WMH change for all but the highest quintile.

We also divided the reference WMH segmentations into

intense and less intense WMH as per (Valdés Hernández

et al., 2015), and considered an ‘extended’ WMH volume

Figure 14: Volumetric WMH change in ml (vertical axes) for patients grouped by quintiles (horizontal axes) depending on their
WMH volume at baseline.
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Figure 15: Uncertainty maps produced by PUNet-wSL-vol from subject MSSB212.

Figure 16: Correlation between the average of uncertainty values inside the predicted DEM and DSC values of predicted DEM
produced by PUNet-wSL-vol for each DEM label.

that included the WMH surrounding lacunes, thought to

be reminiscences of old small subcortical infarcts. As can

be observed from Figure 14, the volume output from the

scheme that jointly segmented the stroke lesions with the

DEM of WMH change resulted strikingly similar to the one

produced by this ‘extended’ WMH segmentation (see gray

and yellow box plots in Figure 14), especially for patients

in the highest quintile. Patients in this quintile exhibit a

high burden of WMH coalescing with lacunes and previous

strokes. Therefore, it is expected that not only AI schemes,

but also experts would consider all hyperintensities as part

of the white matter disease in absence of any other sequence

or clinical information from this patient group. It can be also

seen that the reference WMH change (i.e., blue box plot in

the same figure) is mainly determined by the less intense

WMH change (i.e., pale green box plot), therefore explaining

the difficulty in obtaining accurate growth and shrinking

spatial estimates and putting into question the accuracy in

the spatial estimates of the ground truth segmentations given

the degree of observer-dependent manual input they had.

5.4. Uncertainty quantification
As all configurations evaluated are based on the Proba-

bilistic U-Net, uncertainty for each label in the DEM was

quantified by predicting DEM for each subject multiple

times. In this study 30 different DEM predictions were

generated from 30 samples of ĐĆĈÿąĈ from Prior Net for

each input data/patient. From these 30 DEM predictions per

patient data, uncertainty was calculated as the Cross Entropy

(CE) between probability values from all DEM predictions

and its average as written in Equation 9.

Figure 15 shows the uncertainty maps for all DEM labels

produced by the model that generated the best DSC ‘Aver-

age’ value, PUNet-wSL-vol, for the whole brain and inside

the predicted DEM for a patient. From the uncertainty maps

for the whole brain, we can see that the uncertainties for

shrinking and growing WMH encompass larger brain areas

than for stable WMH. Some areas showing uncertainty in the

‘Shrinking’ label are incorrect (e.g. in the frontal cortex and

in the septum), due mainly to hyperintense flow artefacts.

Also, in the uncertainty maps inside the predicted DEM,

the uncertainty values inside DEM labels of shrinking and

growing WMH are higher than those inside stable WMH, a

consistent finding from this evaluation.

Figure 16 shows that the uncertainty values inside the

predicted DEM and DSC values produced by PUNet-wSL-

vol are negatively correlated for each DEM label (i.e.,

M.F. Rachmadi et al.: Preprint submitted to Elsevier Page 14 of 17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.14.520239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520239
http://creativecommons.org/licenses/by-nc-nd/4.0/


Improving the prediction of WMH evolution in brain MRI of patients with SVD using stroke lesions information

shrinking, growing and stable WMH).The average uncer-

tainty values inside each DEM label (i.e., the bottom figure

in Figure 15) can be used to indicate the quality of predicted

DEM. Higher DSC values of DEM labels can be predicted

for lower uncertainty values inside the predicted DEM and

vice versa.

6. Conclusion

This study proposed deep learning models based on the

Probabilistic U-Net (Kohl et al., 2018) architecture trained

incorporating stroke lesions information into the models

and using volume loss as additional loss for improving the

quality of predicted disease evolution map (DEM). Proba-

bilistic U-Net was chosen as the baseline method because

a preliminary study showed that it performed better than

the U-Net in predicting DEM of WMH (Rachmadi et al.,

2021). Based on our experiments, both proposed approaches

improved the quality of predicted DEM of WMH in different

ways.

We proposed three different approaches for incorpo-

rating stroke lesions information into Probabilistic U-Net

models. These are (1) joint segmentation of DEM and stroke

lesions (described in Section 3.2.1), (2) use of probabilistic

maps of WMH change in relation to stroke lesions’ locations

(described in Section 3.2.2), and (3) combination of (1) and

(2). We proposed to incorporate stroke lesions information

into deep learning models to predict WMH evolution be-

cause stroke is commonly associated with the evolution of

WMH (Wardlaw et al., 2017). Based on results from various

experiments, joint segmentation of DEM and stroke lesions

(approach (1)) was the most effective approach to improve

the quality of predicted DEM of WMH in all evaluations,

while being also simpler and more straightforward than the

other approaches evaluated in this study.

The introduction of a volume loss as an additional loss to

the scheme substantially improved the quality in predicting

the DEM of WMH in terms of volume (discussed in Section

5.3) and in terms of spatial agreement on ‘Average’ as DSC

metric values showed (discussed in Section 5.1).

This study shows that 1) incorporating factors that have

been commonly associated with WMH progression (i.e.,

stroke lesions information) is crucial to produce better pre-

diction of DEM for WMH from brain MRI; 2) the best

method for incorporating associated factors that can be

extracted from the same data/image modality involves per-

forming multi-task learning; and 3) in patients with vascu-

lar pathology, a multi-class segmentation of brain features

resulting from symptomatic (i.e. stroke) and asymptomatic

(i.e., WMH) vascular events generates better results consis-

tent with clinical research. In this study, as stroke lesions

appear on the same T2-FLAIR MRI sequence as WMH, we

performed joint segmentation of DEM for WMH and stroke

lesions. However, previous clinical studies have shown that

there are other non-image risk factors and brain features

that have been commonly associated with the progression

and evolution of WMH, like age (van Dijk et al., 2008),

ventricular enlargement (Breteler et al., 1994; Jochems et al.,

2022b), and brain atrophy (Wardlaw et al., 2015). Thus,

more (image and non-image) factors could be incorporated

in future studies to further improve the quality of predicted

DEM of WMH, although the best way to incorporate non-

image factors to the prediction model remains to be found.

This study also has limitations to overcome in future

works. The dataset was small in size impeding a quantitative

in-depth analysis of the models’ performance in different

patient subgroups, e.g., patients stratified by age and sex,

patients grouped by stroke subtype, etc. Thus, subgroup

analyses were carried out visually and volumetrically, not

spatially. By using only data from patients presenting to a

clinic with a mild-to-moderate stroke, the generalisability of

the proposed approach can be questioned. Therefore, further

evaluation in a wider and more heterogeneous sample will

be needed. The use of DSC in the evaluation needed the bi-

narisation of the probabilistic outputs from the models. Lim-

itations in the use of DSC have been recently acknowledged

(Maier-Hein et al., 2022). However, it must be noted that

ground truth segmentations are also binary, and observer-

dependent. By using different quality control metrics in a

comprehensive analysis we have overcome the limitations

that the analysis of the spatial agreement using DSC poses.

A probabilistic metric allowing spatial analyses of segmen-

tation results is needed. Also, we used probabilistic maps

of WMH change for strokes in the lentiform nucleus and

centrum semiovale based on findings from a clinical study.

However, the same clinical study specified that it was not

possible to ascertain WMH evolution and distribution for

patients with the stroke in other regions like thalami and

midbrain or brain stem due to the limited sample of patients

with infarcts in those regions. Incorporating findings for

more powered studies would be necessary to conclude about

the usefulness of incorporating attention maps to the AI

schemes. Finally, various schemes for estimating uncertainty

in segmentation/classification tasks have recently emerged

(Liu et al., 2020; Sensoy et al., 2018), which would be worth

exploring in the future for estimating WMH evolution.
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