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ABSTRACT

Predicting the evolution of white matter hyperintensities (WMH) (i.e., whether WMH will grow,
remain stable, or shrink with time) is important for personalised therapeutic interventions. However,
this task is difficult mainly due to the myriad of vascular risk factors (VRF) and comorbidities that
influence the evolution of WMH, and the low specificity and sensitivity of the intensities and textures
alone for predicting WMH evolution. Given the predominantly vascular nature of WMH, in this study,
we evaluate the impact of incorporating stroke information to a probabilistic deep learning model to
predict the evolution of WMH 1-year after the baseline image acquisition using brain T2-FLAIR MRI.
The Probabilistic U-Net was chosen for this study due to its capability of simulating and quantifying
uncertainties involved in the prediction of WMH evolution. We propose to use an additional loss
called volume loss to train our model, and incorporate an influential factor of WMH evolution, namely,
stroke lesions information. Our experiments showed that jointly segmenting the disease evolution map
(DEM) of WMH and stroke lesions, improved the accuracy of the DEM representing WMH evolution.
The combination of introducing the volume loss and joint segmentation of DEM of WMH and stroke
lesions outperformed other model configurations with mean volumetric absolute error of 0.0092 m!
(down from 1.7739 ml) and 0.47% improvement on average in shrinking, growing and stable WMH

using Dice similarity coefficient.

1. Introduction

White matter hyperintensities (WMH) are one of the
main neuroradiological features of cerebral small vessel
disease (SVD) and have been commonly associated with
stroke, aging, and dementia progression (Wardlaw et al.,
2013; Prins and Scheltens, 2015; Wardlaw et al., 2017). They
are often observed in T2-weighted and T2-fluid attenuated
inversion recovery (T2-FLAIR) brain magnetic resonance
images (MRI), appearing as bright regions. Small subcor-
tical infarcts may be indistinguishable from WMH on struc-
tural MRI in absence of intravenous contrast due to sharing
similar image intensity characteristics (Valdés Hernandez
et al., 2013), and if mistaken for WMH could negatively
impact design of clinical research trials (Wang et al., 2012).

Clinical studies have indicated that some patients exhibit
WMH progression over time (i.e., increasing in volume)
(Schmidt et al., 2003; Sachdev et al., 2007; van Dijk et al.,
2008) while some show WMH regression over time (i.e.,
shrinking in volume) (Moriya et al., 2009; Jochems et al.,
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2022a). Another study indicated that WMH dynamically
change over time with clusters of WMH individually shrink-
ing, staying unchanged (i.e., stable), or growing, these being
observed at the same time point within the same individual
(Ramirez et al., 2016). These variations have been associated
with patients’ comorbidities and clinical outcome (Chappell
et al., 2017; Wardlaw et al., 2017). It must be noted that one
clinical study also acknowledged that all factors influencing
WMH evolution are still not fully known (Wardlaw et al.,
2017; Jochems et al., 2022a).

Predicting the evolution of WMH is crucial for better
care and prognosis of individual patients, but it remains a
difficult task because of the different rate and direction of
WMH evolution (Cai et al., 2022). Various deep learning
models have been proposed to predict the evolution of WMH
(Rachmadi et al., 2019, 2020, 2021). In these studies, WMH
evolution is represented by a map called disease evolution
map (DEM) which indicates the WMH voxels that shrink,
grow, or remain stable at a further time point. DEM can be
generated by subtracting images of manually labeled WMH
from different time points. Previous studies generated the
DEM by subtracting a baseline image of manually labeled
WMH of a patient (Visit 1, V1) from a follow-up image of
manually labeled WMH from the same patient one year after
(Visit 2, V2) (Rachmadi et al., 2020, 2021). An example of
DEM is visualised in Figure 1.
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T2-FLAIR at baseline
(V1) (DEM)

Disease Evolution Map

Figure 1: Visualisation of disease evolution map (DEM) of
white matter hyperintesities (right) besides the corresponding
brain-extracted FLAIR axial slice of the baseline scan or
V1 (left). Red represents shrinking WMH, green represents
growing WMH, and blue represents stable WMH. Note that
labels of DEM for WMH evolution are combined with the label
for the stroke lesions (yellow), which is one of the contributions
of this study. Please, also observe that the growing WMH are
in areas of ill-defined, subtle, slightly hyperintense regions on
V1.

A recently proposed model for predicting the DEM of
WMH based on a Probabilistic U-Net (Kohl et al., 2018),
generates multiple predictions of DEM for a single brain
MRI data (Rachmadi et al., 2021). This model was proposed
to solve the challenge of representing spatial uncertainty
(Rachmadi et al., 2020), given difficulties in distinguishing
intensities and textures of shrinking and growing WMH
in T2-FLAIR brain MRI. The uncertainty associated with
the randomness of the dynamism of the WMH clusters
is commonly known as aleatoric uncertainty (Hiillermeier
and Waegeman, 2021). Previous experiments showed that
models based on Probabilistic U-Net performed significantly
better than the classical U-Net models previously used in
predicting the evoultion of WMH using the DEM paradigm
(Rachmadi et al., 2021).

So far, previous studies focused exclusively on the image
modality as input and the appearance of WMH themselves
while ignoring other clinically relevant factors. But a grow-
ing number of clinical studies have indicated that clinical
factors such as previous strokes (Cai et al., 2022), age (van
Dijk et al., 2008), and genetics (Schmidt et al., 2002, 2011;
Godin et al., 2009; Luo et al., 2017), influence the rate and
direction of WMH evolution. A previous study incorporated
volume of stroke lesions as auxiliary input to the prediction
model, but it did not improve the prediction results (Rach-
madi et al., 2020). Thus, incorporating clinically associated
factors into the model remains a challenge in the prediction
of WMH evolution.

The main contributions of this study are two-fold:

1. incorporating stroke lesions’ information to the
prediction model (described in Section 3.2) and

2. adding a volume loss to the cost function (formu-
lated as the mean squared error between the predicted
and the reference WMH volumes, as per Equation 3

and described in Section 4.4.2) to improve prediction
of WMH evolution.

We show that both significantly improve the prediction of
DEM for WMH.

Other efforts related to this study are described in Section
2 while our proposed approaches are described in Section 3.
All models tested in this study are based on the Probabilistic
U-Net with adversarial training (Rachmadi et al., 2021)
which is described in Section 3.1. Different configurations
of all tested models are described in Section 3.3 and Table
1. All experimental settings are described in Section 4, and
all results are discussed in Section 5. Lastly, our conclusion
can be read in Section 6 while codes and trained models are
available on GitHub .

2. Related Approaches

In general, previous studies that had developed predic-
tion models for disease progression from medical image
modalities using machine/deep learning can be categorised
into the three different approaches listed below.

1. Approaches predicting the outcomes of a disease.
These approaches are commonly used for diseases
with high rates of mortality and disability. Some ex-
amples are those predicting the outcomes of COVID-
19 (De Souza et al., 2021), multiple sclerosis (Pinto
et al., 2020), and traumatic brain injury (Chong et al.,
2015; Pease et al., 2022).

2. Approaches predicting the progression of a disease
with regards to the pathological timeline and/or
commonly associated disease markers. These ap-
proaches are commonly used for diseases with mul-
tiple stages of development and which take time to
progress, such as dementia and Alzheimer’s Disease
(AD), with mild cognitive impairment (MCI) being
their transitional stage (Pellegrini et al., 2018). Some
examples are predicting conversion of MCI patients
to AD (Zhang et al., 2021), conversion of healthy
individuals to MCI and AD (Nakagawa et al., 2020),
and predicting the progression of multimodal AD
markers (e.g., ventricular volume, cognitive scores,
etc.) (Nguyen et al., 2020).

3. Approaches predicting dynamic changes (evolu-
tion) of specific disease features. These approaches
model and predict spatial changes of specific dis-
ease features such as evolution of WMH, enlargement
of ventricles, and brain atrophy. Other examples are
predicting lung nodule progression of pulmonary tu-
mour (Rafael-Palou et al., 2022), predicting dynamic
change of brain structures from healthy individuals to
MCI and AD patients (Sauty and Durrleman, 2022),
and studies for predicting the evolution of WMH in
brain images of stroke patients (Rachmadi et al., 2019,
2020, 2021)

Thttps://github.com/febrianrachmadi/probunet- gan-vie
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The present study belongs to the third category, in which
a predictive model is used to estimate spatial dynamic
changes of the evolution of WMH identified on an MRI scan.
This third category is the most challenging because of the
complexity and resolution of the data/image being predicted.
While approaches in the first and second categories predict
classes which are the disease outcomes (e.g., survive, death),
classes of disease stages (e.g., MCI, AD), or associated
disease markers (e.g., age, cognitive scores) from medical
imaging data, approaches in the third category predict the
dynamic changes and evolution of disease’s features (e.g.,
lesions) that appear on images throughout the entire image
space.

3. Proposed Deep Learning Model

Uncertainties are unavoidable when predicting the pro-
gression of WMH. Previous studies showed that incorpo-
rating uncertainties into a deep learning model, either by
incorporating Gaussian noise as auxiliary input (Rachmadi
etal., 2020) or using a conditional variational autoencoder in
the shape of a Probabilistic U-Net with adversarial training
(Rachmadi et al., 2021), improved prediction results, thus
justifying the use of a Probabilistic U-Net with adversarial
training (described in Section 3.1) in the present study.
Section 3.2 details the two improvements made to the pre-
viously published probabilistic scheme (Rachmadi et al.,
2021), implemented in the configurations related in section
3.3.

3.1. Probabilistic U-Net with adversarial training

In this study, we use Probabilistic U-Net with adver-
sarial training as proposed in (Rachmadi et al., 2021) to
capture spatial uncertainties from the brain MRI. Spatial
aleatoric uncertainty is the biggest challenge in predicting
the evolution of WMH, due to differences between experts
in WMH delineation (i.e., ground truth reliability issues),
and difficulty of previous automatic schemes distinguishing
textures and intensities of shrinking and growing WMH
in the T2-FLAIR MRI sequence (Rachmadi et al., 2020).
This uncertainty cannot be reduced by simply adding more
training data (Hiillermeier and Waegeman, 2021). Thus,
a Bayesian deep learning model named Probabilistic U-
Net (Kohl et al., 2018) proposed for this purpose, gener-
ated better prediction results than non-probabilistic models
(Rachmadi et al., 2021).

The probabilistic U-Net with adversarial training con-
sists of a U-Net configuration (Ronneberger et al., 2015),
two variational encoders called Prior Net and Posterior Net,
and a discriminator network for adversarial training. In this
study, the U-Net was used as segmentation network for pre-
dicting the DEM. Prior Net and Posterior Net were used for
variational inference. Prior Net estimates a low-dimensional
Gaussian distribution called prior latent space by producing
its mean(s) and variance(s) from T2-FLAIR MRI at baseline
(i.e., V1, denoted x},{). Whereas, Posterior Net estimates an-
other low-dimensional Gaussian distribution called posterior
latent space by producing its mean(s) and variance(s) from

the follow-up T2-FLAIR MRI (i.e., V2, denoted x},) and
ground truth DEM (ypgas)- Kullback-Leibler divergence is
used during training to make prior and posterior latent spaces
similar. In training, a sample z,,,, is taken from the posterior
latent space (2,55 ~ N (Hpst» Gposr)) and then broadcasted
and concatenated to the segmentation network. Multiple pre-
dictions of DEM (j/}) EM® )% M ) can be gener-

. . 1
ated by using multiple samples (zp”.or, Z o iopr prmr

the prior latent space (Z,.ior ~ N (Hprior O prior))- Lastly,
a discriminator network is used for adversarial training to
enforce anatomically realistic DEM with regards to the T2-
FLAIR MRI at V1 and V2. The Probabilistic U-Net used in
this study is illustrated schematically in Figure 2. Detailed
illustrations of each segmentation network, Posterior/Prior
Net, and discriminator network are shown in Figures 3, 4
(left), and 4 (right) respectively.
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Figure 2: Schematic representation of the Probabilistic U-Net
(Kohl et al., 2018) with adversarial training (Goodfellow et al.,
2014) used in this study. This approach was first introduced in
a previous work (Rachmadi et al., 2021).

3.2. Incorporation of stroke lesions information

Previous clinical studies have indicated that there are
strong correlations between stroke occurrence and progres-
sion of WMH over time (Cai et al., 2022). In a previous study
(Rachmadi et al., 2020), volume of stroke lesions was used as
an auxiliary input to an scheme designed to estimate WMH
evolution, but it was outperformed by the use of Gaussian
noises as auxiliary input representing uncertainty. Thus, in
this study, our main objective is to explore how information
on stroke lesions can be incorporated to the probabilistic
scheme, for better prediction of WMH evolution. We pro-
pose two different approaches which are 1) jointly segment
the WMH disease evolution map (DEM) and stroke lesions,
and 2) incorporating probabilistic maps of WMH change in
relation to stroke lesions’ locations.

3.2.1. Joint segmentation of DEM and stroke lesions
Due to the similar tissue intensity signal of WMH and
ischaemic stroke lesions in T2-FLAIR brain MRI, we hy-
pothesised that performing a joint segmentation of the WMH
DEM and stroke lesions will improve the accuracy in the
prediction of the WMH DEM because the deep learning
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Figure 3: Segmentation network of Probabilistic U-Net used in this study, which is based on the original U-Net extended into
Attention U-Net only when probability maps of WMH change are used as auxiliary input. The output channel of C is either 5 or
4 depending on whether stroke lesions are jointly segmented or not, respectively.

model will automatically learn the correlation between both
features. In this approach stroke lesions do not need to
be excluded in the preprocessing steps like in preceding
works(Rachmadi et al., 2020, 2021). This newly proposed
approach can be implemented by adding an output chan-
nel to the segmentation layer of the segmentation network
originally with 4 channels (i.e., channels for background,
shrinking WMH, growing WMH, and stable WMH), to 5
channels. Note in Figure 1 that the stroke lesions label has
been added to the DEM of WMH.

3.2.2. Probabilistic maps of WMH change in relation
to stroke lesions’ locations

Results from a clinical study indicate that there are strong
correlations between stroke lesions’ location at baseline (V1)
and WMH evolution after 1 year (V2) (Valdés Hernandez
et al.,, 2021) for patients with a stroke of type lacunar.
Specifically, if stroke lesions are subcortical and located in
either the centrum semiovale or the lentiform nucleus at
V1, then there are significant changes to the WMH at V2
(both in volume and location) specific to the location of
the stroke lesions at V1. This clinical study made available
probability maps of WMH change indicating brain locations
where changes of WMH are significant at V2 depending on
the infarcted region after accounting for vascular risk factors
(VRF) (Valdés Hernandez et al., 2021).

We use these probability maps as auxiliary data input to
an attention U-Net (Oktay et al., 2018) within the Probabilis-
tic U-Net’s segmentation network. In it, the information of
the probability maps is encoded through the gating signal en-
coder (GSE), with outputs used as gating signal in multiple
resolutions (see Figure 3). The general idea of this approach
is to focus the attention of the segmentation network on the
areas that have high probability of WMH change according
to the locations of the stroke lesions.

Similar to the original Attention U-Net (Oktay et al.,
2018), this study uses an additive attention gate (AG), but

obtains the gating signals from the GSE instead of from
the outputs of the next (coarser) convolutional block. The
schematic of the additive AG can be seen in Figure 5. Input
features (x;) are from the U-Net’s skip connections, gating
signals (g;) are from the gating signal encoder (GSE), « are
the attention coefficients learned in the training process used
to scale input features x; to highlight important areas, € is
an element-wise addition, ) is an element-wise multiplica-
tion, and W, Wi, and y are 1 X1x 1 convolution operations.

For implementing this approach, we perform brain par-
cellation and registration of the probability maps (in standard
image space) to each patient’s space to identify the locations
of stroke lesions for each specific patient. Please see Section
4.2 for a detailed explanation of these processes. Note that
this second proposed approach is more complex than the first
proposed approach because it needs multiple preprocessing
steps.

3.3. Configuration of the proposed approach

In this study we evaluate four configurations of segmen-
tation networks. Three different configurations of networks
incorporating probabilistic maps of WMH and/or stroke
lesions were compared with the vanilla U-Net.

1. PUNet: Original U-Net (Ronneberger et al., 2015)
was used for the segmentation network.

PUNet-wSL: Joint segmentation of DEM of WMH
and stroke lesions was performed as explained in
Section 3.2.1.

Att-PUNet: Attention U-Net with probabilistic maps
of WMH change (as explained in Section 3.2.2) was
used for segmentation network instead of the original
U-Net.

Att-PUNet-wSL: Attention U-Net with probabilistic
maps of WMH change was used for segmentation
network and joint segmentation of DEM and stroke
lesions was performed simultaneously.

2.
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Figure 4: Architectures of Posterior/Prior Nets (left) and discriminator network (right) used in this study. Posterior/Prior Net.
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2018) is used for the discriminator network.
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Figure 5: Schematic of additive attention gate (AG) used in
this study and introduced in (Oktay et al., 2018). Input features
(x;) are from the U-Net's skip connection while gating signals
(g,) are from the gating signal encoder (GSE). Note that
both x, and g, feature maps have the same size because they
are from the same level of encoder (see Figure 3). Attention
coefficients (a) are learned in the training process and used to
scale input features x, to highlight important areas.

4. Experimental Setting

This section describes the dataset (Section 4.1), training
scheme (Section 4.3), and cost function (Section 4.4) used
in this study.

4.1. Dataset

For comparability of our results with those previously
published, we use the same dataset as (Rachmadi et al.,
2020), which comprises MRI data from n = 152 patients that
had a mild-to-moderate stroke and consented to participate
in a study of stroke mechanisms (Wardlaw et al., 2017).
The study protocols were approved by the Lothian Ethics
of Medical Research Committee (REC 09/81101/54) and
NHS Lothian R+D Office (2009/W/NEU/14), on the 29th
of October 2009. All patients were imaged with the same
acquisition protocol at two time points (i.e., baseline scan
(V1), and a year after the baseline scan (V2)). In total, 304
MRI from 152 stroke patients (i.e., 152 V1 MRI and 152
V2 MRI) were used. Overall increase in WMH volume was
identified in 98 of the 152 patients and reduction of WMH
total volume in 54 patients. The magnitudes of WMH change
(in ml) and their distribution for all patients can be seen in
Figure 6.

All T2-FLAIR brain MRI were acquired with a GE 1.5T
scanner, and a semi-automatic multi-spectral method was
used to produce several brain masks including intracranial
volume, cerebrospinal fluid, stroke lesions, and WMH, all
which were visually checked and manually edited by an
expert (Valdés Hernandez et al., 2015). For the prediction
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Figure 6: Volumetric progression of WMH (in ml) from V1 to
V2 (1 year apart) for all subjects from our dataset (left) and
distribution of volumetric progression of WMH (in ml) based
on WMH volume at V1 for all subjects (right).

of WMH evolution from V1 to V2, T2-FLAIR brain MRI
at follow-up (V2) and T2-FLAIR brain MRI at baseline
(V1) were linearly and rigidly aligned to a common space
using FSL-FLIRT (Jenkinson et al., 2002). The space trans-
formations were applied to all labels (i.e., binary/indexed
masks) including manually-derived (i.e., after manually cor-
recting results from a semi-automatic segmentation) labels
of WMH. The spatial resolution of the images was 256 X
256 x 42 with slice thickness of 0.9375 x 0.9375 X 4 mm.

Also to facilitate comparability between methods and
results, we used the same preprocessing pipeline as previ-
ous studies (Rachmadi et al., 2020, 2021). We generated a
DEM for each patient by subtracting the manually corrected
segmentation of WMH at V1 from the manually corrected
segmentation of WMH at V2. Values of T2-FLAIR brain
MRI were normalised into zero mean and unit variance
for each patient. Data augmentations were performed, such
as shifting, scaling, horizontal and vertical flip, and elastic
transformation.

4.2. Data pre-processing for incorporation of
probabilistic maps of WMH change
Given the influence of stroke lesion location in WMH
change and evolution patterns when the stroke lesions are
located at the centrum semiovale or the lentiform nucleus
(Valdés Herndndez et al., 2021), we only used probability
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Improving the prediction of WMH evolution in brain MRI of patients with SVD using stroke lesions information

maps of WMH change based on stroke lesions incident at
centrum semiovale or lentiform nucleus, publicly available”.

Probability maps in the standard space were obtained
from a clinical study (Valdés Hernandez et al., 2021) and
then registered to each patient’s native space using niftyreg
through TractoR (Clayden et al., 2011). To identify the
location of stroke lesions within a human brain, an age-
relevant brain template and its corresponding brain parcel-
lation), also publicly available (Valdés Hernandez, 2021),
were registered to each patient’s native space. If there were
no stroke lesions at centrum semiovale or lentiform nucleus
in a patient, then zero matrices were used as probabilistic
maps. Both probabilistic maps for centrum semiovale or
lentiform nucleus were concatenated before being used as
auxiliary input in the segmentation network (see Figure 3
for illustration).

4.3. Training scheme

To make sure all patients are used in both training
and testing, 4-fold cross validation with 512 epochs was
performed with each fold consisting of 114 MRI for training
and 38 for testing. The same 4-fold cross validation was
used for our previous studies (Rachmadi et al., 2019, 2020,
2021). In the training phase, we used 14/114 MRI data for
validation, and selected for testing the model that produced
the best performance (i.e., lowest validation loss).

4.4. Cost function

We used three lost functions in training to optimize the
different networks. These were: segmentation loss (L),
probabilistic loss using Kullback-Leibler Divergence (Dg ),
and adversarial loss (£,,;,). We used the segmentation loss
to compare the output of the segmentation network (i.e., the
predicted DEM segmentation) against the ground truth of
the DEM. The probabilistic loss was used to compare the
similarity between prior and posterior latent spaces. And the
adversarial loss was used to compare the similarity between
the ground truth DEM and the predicted DEM.

4.4.1. Segmentation loss

For the segmentation loss, we used the weighted focal
loss with y (i.e., focal loss’ hyperparameter) set to y = 2
following the recommendation of the original paper (Lin
et al., 2017). Equation 1 describes the weighted focal loss
function for all pixels from an MRI slice where y; . € {0, 1}
indicates the class membership for pixel i to class ¢, p; the
predicted probability that pixel i belongs to class c, and «,
is the weight for class c¢. The larger the value of «,, the
larger the contribution of class ¢ to the loss value. P is
the random variable for the predicted probability, Y is the
random variable for the target classes, a are the weights for
all classes, N is the number of pixels in an axial MRI slice
(i.e., N = 256), and M is the number of classes in the DEM
(i.e., N = 4 if stroke lesions are not automatically segmented
and N = 5 if otherwise). Based on our preliminary exper-
iments, the best weights were a,._, = 0.25 for background,

Zhttps://datashare.ed.ac.uk/handle/10283/3934

a.—1 = 0.75 for shrinking WMH, a,_, = 0.75 for growing
WMH, «,_; = 0.5 for stable WMH, and a,_, = 0.75 for
stroke lesions.

FL(P,Y,a) = —

1

M=4
> @y (1=p) log (p.) (D)
c=0

™M=

Note that the predicted segmentation of the DEM pro-
duced by the Probabilistic U-Net is conditioned to either the
posterior or the prior latent space. In training, the predicted
DEM segmentation is conditioned to the posterior latent
space defined by z,,,, ~ N ( Hposts apost) and modelled by
the Posterior Net. On the other hand, the predicted DEM
segmentation is conditioned by the prior latent space that
is formulated as z,;,, ~ N (Hppior> Oprior) and modelled
by the Prior Net in testing/inference. Thus, the probabilistic
segmentation loss L, can be formulated as Equation 2
where Y}y, is the predicted DEM segmentation.

Lo = FL(P(?DEM [ Xy 15 Zpost)s Y aH_VOl(?DEM’ Ypem)
2

4.4.2. Volume loss

To avoid over- and under-segmentation in relation to
the volume of WMH, a volume-loss (that is formulated as
Equation 3) is added to Equation 2 as regularization term.
The term keeps the volume of WMH from the predicted
DEM (Ypp,) close to the volume of the WMH from the
ground truth DEM (Ypp,,). To enforce this, we used the
mean squared error (MSE). Note that only the classes ¢ = 2
for growing WMH, and ¢ = 3 for the stable WMH were
used to calculate the volume of WMH. A denominator of
1000 was used to estimate the volume of WMH in ml/ (i.e., as
voxel dimensions are in mm3). To see the effectiveness of the
volume-loss regularization, ablation studies were performed
where the volume-loss was not used in training process for
all configurations of the segmentation network explained in
Section 3.3. All ablation studies and configurations are listed
in Table 1.

M5 My, 3
1000 °~ 1000

4.4.3. Probabilistic loss

We used Kullback-Leibler Divergence score (D) in
the training process for training the Prior Net and Posterior
Net. In this setting, Prior Net and Posterior Net were trained
together with the Segmentation Net for predicting the DEM.
Let Q be the posterior distribution from the Posterior Net
and P be the prior distribution from the Prior Net. The
difference between the posterior distribution Q and the prior
distribution P is described by D ; in Equation 4 where X,
is the T2-FLAIR at V2, Yp ), is the true DEM, and Xy, is
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Table 1
Names of tested models with their respective configurations.
“PUNet" stands for Probabilistic UNet, “PMWCA" stands
for Probabilistic Maps of WMH Change as Attention, and
“JSDEMSL" stands for Joint Segmentation of DEM and Stroke
Lesions.

Model’s Name PMWCA JSDEMSL Volume Loss
PUNet (Rachmadi et al., 2021) -
PUNet-vol - - v/
PUNet-wSL - v -
PUNet-wSL-vol - v v
Att-PUNet v - -
Att-PUNet-vol v - v
Att-PUNet-wSL v v -
Att-PUNet-wSL-vol v v v

the T2-FLAIR at V1. Based on our preliminary experiments,
the dimension for both z,,,, and z,,,;,, is 4 (smaller than the
original paper (Kohl et al., 2018) which used 6).

Dg(Q |l P) =
[Ezp(,S,~Q,zp,m,~P[10g O(Xy, Yppy) = log P(Xy )]
@

4.4.4. Adversarial loss

Similar to a previous study (Rachmadi et al., 2021), the
original adversarial loss proposed by (Goodfellow et al.,
2014) was slightly modified by adding a segmentation loss
(Lyeq) so that the Segmentation Net was also optimised to
produce better segmentation result. Similar to the original
paper Goodfellow et al. (2014), the Segmentation Net aims
at minimising Equation 5 while the discriminator network
aims at maximising it. In Equation 5, G is the Segmentation
Net, D is the discriminator network, y ~ (X1, Xy2. YpEm)
is the joint distribution of T2-FLAIR MRI at V1 and V2
and ground truth DEM (i.e., Xy, Xy, and Y, respec-
tively), x ~ (Xy1, Xy, YpEa) is the joint distribution of
T2-FLAIR MRI at V1 and V2 and predicted DEM (.e.,
Xy, Xy, and Yy i), respectively), E, ~ Ygan is the
expected value over Y 4 v, and E, is the expected value over
XGaN-

Logo = Eyuy,,y [log(DO)] +

5
E [log(1-D(G(x))) + L, (G(x))] ®

x~XGAN

4.5. Evaluation measurements

In this study, we used the following evaluation measure-
ments to assess the performance of all configurations listed
in Table 1.

1. Spatial agreement between predicted and ground
truth DEM is measured by the Dice similarity co-
efficient (DSC) (Dice, 1945), precision (PRE), and
recall (REC). Higher values of DSC, PRE, and REC
mean better performance. DSC, PRE, and REC can be
calculated by using Equations 6, 7, and 8, respectively,

where TP is true positive, FP is false positive and FN
is false negative.

DSC = 2x TP )
FP+2XTP+FN

PRE = 1P __ 7
TP + FP

REC= 1P ®)
TP + FN

. Uncertainty quantification and correlation analy-

sis to measure correlation between uncertainty values
in predicted DEM and DSC values, is calculated as the
Cross Entropy (CE) between the mean sample and all
samples as per Equation 9 where y is the uncertainty
map, s is a set of predictions from an input, § is the
mean sample of set s, CE is the cross entropy function,
and E is the expected value function.

r(s) = E[CEG, 5)] ®

. Accuracy of prediction assesses how good our pro-

posed models predict WMH evolution for all patients
(i.e., growing or shrinking). Accuracy of prediction
for growing and shrinking WMH (i.e., subjects with
growing and shrinking WMH are correctly predicted
to have growing and shrinking WMH respectively)
is calculated by the Equations 10 and 11 respec-
tively. Ngrw and Ngyr are the number of subjects in
our dataset who have growing and shrinking WMH.
Whereas, Pgrw and Py are the number of subjects
correctly predicted as having growing and shrinking
WMH.

P,
GRW = —SRW. (10)
GRW
P,
SHR = —SRW an
SHR

. Estimated volume interval (EVI) measures the de-

viation of the predicted WMH volume at follow-up
(V2) from the lowest and highest possible predicted
volumes of WMH (Rachmadi et al., 2021). The lowest
and highest possible predicted volumes of WMH at
V2 are estimated by ignoring the prediction chan-
nel for growing WMH and shrinking WMH respec-
tively. In other words, the lowest possible volume
of WMH (dubbed as Minimum Volume Estimation
or ‘MinVE’) is assumed to occur when there are
no growing WMH in the patient’s brain. Whereas,
the highest possible volume of WMH (dubbed as
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Maximum Volume Estimation or ‘MaxVE’) is as-
sumed to occur when there are no shrinking WMH
in the patient’s brain. There are 3 metrics in this
evaluation: “CP” which stands for “Correct Predic-
tion” (calculated by using Equation 12), “CPinEVI”
which stands for “Correct Prediction in Estimated
Volume Interval” (calculated by using Equation 13),
and “(CP+WP)inEVI” which stands for “Correct Pre-
diction + Wrong Prediction but still in EVI” (calcu-
lated by using Equation 14). In these equations, P(iﬁzw
and PS’;’I’{R are the number of subjects that are correctly
predicted as having growing and shrinking WMH and
have their estimated volumes of WMH at V2 are lo-
cated between ‘MinVE’ and ‘MaxVE’. Whereas, P"
is the number of subjects whose estimated volumes
of WMH at V2 are located between ‘MinVE’ and

‘MaxVE’.
P, + P.
Cp = GRW *+ T5HR (12)
Ngrw + Ngur
Pin + Pin
CPinEVI = —SRW___ SHR (13)
Ngrw + Nsur
Pin
(CP+WP)inEVI = —~ (14)
Grw + NsHr

5. Volume error measures how close the predicted
WMH volumes are with the real WMH volumes at
the follow-up assessment (V2). Volume error can

be calculated by using Equation 15 where Vol;:fe is
the true volume of WMH at V2, vol”?2 i is the
predicted

predicted volume of WMH at V2, and Voll/rfor is the
volume error.

V2 _ V2 _ V2
VOlerror - VOlpredicted VOltrue (15)

5. Results and Discussions

In this section, we show and discuss the results of the
evaluations using the four performance measurements de-
scribed in Section 4.5, namely spatial agreement evalu-
ation (Section 5.1), qualitative/visual evaluation (Section
5.2), volume based evaluation (Section 5.3), and uncertainty
quantification (Section 5.4), for all model configurations
listed in Table 1.

5.1. Spatial agreement evaluation

Tables 2, 3, and 4 show performances of all model
configurations listed in Table 1 evaluated using DSC, PRE,
and REC, calculated using Equations 6, 7, and 8 respectively.
The best and second best measurement values for each DEM
label are written in bold and underlined respectively. Note
that the label ‘Changing’ refers to shrinking and growing

WMH combined together as one label. The ‘Stroke Lesions’
label is only available when joint segmentation of WMH
DEM and stroke lesions are performed (see Section 3.2.1).

From Table 2, we can see that joint segmentation of
DEM and stroke lesions with volume loss (PUNet-wSL-
vol) produced the best segmentation results based on DSC
for ‘Shrinking’ (0.2290) and ‘Average’ (0.3598). Further-
more, we can see that joint segmentation of DEM and
stroke lesions (described in Section 3.2.1) by PUNet-wSL
(i.e., without volume loss) and PUNet-wSL-vol (i.e., with
volume loss) produced either the best or second best DSC
values for all categories of DEM except for ‘Growing’
and ‘Stable’ WMH, which were achieved by the original
configuration either without volume loss (PUNet) or with
volume loss (PUNet-vol). On the other hand, other con-
figurations especially with auxiliary input of probabilistic
maps of WMH change, described in Section 3.2.2, (i.e., Att-
PUNet, Att-PUNet-vol, Att-PUNet-wSL, and Att-PUNet-
wSL-vol) failed to improve the performance of the DEM
segmentation while improved the performance of ‘Stroke
Lesions’ segmentation.

We can also see from Table 2 that models trained using
volume loss (Equation 3, Section 4.4.2), which are PUNet-
vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-
vol, produced better DSC values on ‘Average’. Note that
‘Average’ DSC value is calculated by averaging DSC values
of ‘Shrinking’, ‘Growing’, and ‘Stable’. This indicates that
the volume loss impacted positively in the task of estimating
the DEM of WMH.

Tables 3 and 4 show that joint segmentation of DEM and
stroke lesions (i.e., PUNet-wSL and PUNet-wSL-vol), in
general, also produced either the best or second best PRE and
REC values for some categories while probabilistic maps
of WMH change as auxiliary input (Att-PUNet) produced
the best PRE values, and the original configuration (PUNet)
produced the best REC values for most DEM categories.
These results show that performing joint segmentation of
DEM and stroke lesions as described in Section 3.2.1, either
by using volume loss (PUNet-wSL-vol) or not (PUNet-
wSL), improved the quality of the predicted DEM of WMH
producing balanced performances in DSC, PRE, and REC
metrics. FP and FN counts produced by other configurations
were imbalanced. This imbalance in FP and FN counts
influenced the DSC, PRE, and REC values through their
respective equations (Equations 6, 7, and 8 respectively). For
example, PUNet-vol produced high DSC and REC values
and low PRE values due to the combination of higher FP and
lower FN counts. Whereas, Att-PUNet produced high PRE
values and low DSC and REC values due to the combination
of lower FP and higher FN counts.

To provide a better illustration of the relationship be-
tween DSC, PRE, and REC values and FP and FN counts,
we present the confusion matrices and a table compiling
these values from the ‘Shrinking’” WMH and ‘Growing’
WMH labels obtained from PUNet-vol and PUNet-wSL-vol
configurations (Figure 7 and Table 5 respectively). Figure
7 contains the number of segmented voxels corresponding
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Table 2

Dice similarity coefficient (DSC) for all model configurations listed in Table 1. Symbol 1 indicates that higher values are better.
The best and second best measurement values for each category of WMH are written in bold and underlined respectively.

Model’'s Name

Dice Similarity Coefficient (DSC) 1

Shrinking  Growing Stable Average Changing Stroke Lesions
PUNet (Rachmadi et al., 2021) 0.2132 0.2137  0.6385  0.3551 0.3633 -
PUNet-vol 0.2107 0.2232  0.6439 0.3593 0.3642 -
PUNet-wSL 0.2217 0.2130  0.6437  0.3595 0.3719 0.4499
PUNet-wSL-vol 0.2290 0.2112  0.6392  0.3598 0.3681 0.4281
Att-PUNet 0.2211 0.1796  0.6302  0.3437 0.3510 -
Att-PUNet-vol 0.2078 0.1981  0.6315  0.3458 0.3471 -
Att-PUNet-wSL 0.1968 0.2045 0.6240 0.3417 0.3543 0.5338
Att-PUNet-wSL-vol 0.1960 0.2077  0.6322  0.3453 0.3536 0.5430

Table 3

Precision (PRE) for all model configurations listed in Table 1. Symbol 1 indicates that higher values are better. The best and

second best measurement values for each category of WMH are written in bold and underline respectively.

Model’'s Name

Precision (PRE) 1

Shrinking  Growing Stable Average Changing Stroke Lesions
PUNet (Rachmadi et al., 2021) 0.2349 0.2331  0.6638  0.3773 0.3489 -
PUNet-vol 0.2527 0.2391  0.6553  0.3824 0.3686 -
PUNet-wSL 0.2346 0.2541 0.6600  0.3829 0.3690 0.4226
PUNet-wSL-vol 0.2295 0.2479  0.6642  0.3805 0.3603 0.4065
Att-PUNet 0.2370 0.2435 0.6740 0.3848 0.3694 -
Att-PUNet-vol 0.2241 0.2253  0.6516  0.3670 0.3501 -
Att-PUNet-wSL 0.2245 0.2247  0.6385  0.3626 0.3461 0.3918
Att-PUNet-wSL-vol 0.2315 0.2345  0.6531  0.3730 0.3628 0.3746

to each label (n) from all patients in the testing set, false
negative rate (fnr), false positive rate (fpr), true positive
rate (TPR), and positive predictive value (PPV). Table 5
compiles values of DSC, PRE, REC, FN, and FP for the
‘Shrinking” WMH and ‘Growing” WMH labels from both
PUNet-vol and PUNet-wSL-vol configurations. From both,
Figure 7 and Table 5, we can see that PUNet-vol produced
higher PRE value for ‘Shrinking” WMH with lower FP
counts than PUNet-wSL-vol. But PUNet-vol produced lower
PRE value for ‘Growing’ WMH as it produced higher FP
counts than PUNet-wSL-vol in this label/category.

Table 4

Figure 8 shows the correspondence between the indi-
vidual WMH volumes at V1 and the DSC values for all
DEM Ilabels produced by the four models that have the WMH
volume loss incorporated. The ideal scenario will be a thin
cloud of points aligned horizontally throughout the volume
range, near and below the DSC value of 1 for all the labels.
As can be appreciated all the four models produced similar
results with DSC values around 0.8 for ‘Stable” WMH vol-
umes above 30 ml, while ‘Shrinking’ and ‘Average’ had DSC
values between 0.3 and 0.5 and ‘Growing’ had the lowest
DCS values across the same range of WMH volumes. It is
worth noting that DSC values for ‘Shrinking’ and ‘Stable’

Recall (REC) for all model configurations listed in Table 1. Symbol 1 indicates that higher values are better. The best and second
best measurement values for each category of WMH are written in bold and underlined respectively.

Model’'s Name

Recall (REC) 1

Shrinking Growing Stable Average Changing Stroke Lesions
PUNet (Rachmadi et al., 2021) 0.2730 0.2646 0.6783  0.4053 0.4091 -
PUNet-vol 0.2408 0.2569 0.6881  0.3953 0.3820 -
PUNet-wSL 0.2979 0.2303 0.6814  0.4032 0.4012 0.3811
PUNet-wSL-vol 0.3066 0.2346 0.6703  0.4038 0.4032 0.3831
Att-PUNet 0.2885 0.1806 0.6450 0.3714 0.3565 -
Att-PUNet-vol 0.2579 0.2319 0.6785  0.3894 0.3797 -
Att-PUNet-wSL 0.2427 0.2413 0.6768  0.3869 0.3877 0.4048
Att-PUNet-wSL-vol 0.2267 0.2323 0.6726  0.3772 0.3710 0.3846
M.F. Rachmadi et al.: Preprint submitted to Elsevier Page 9 of 17
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Predicted label

Normal Shrink Grow Stable

Normal

n = 62,669,618
TPR = 0.9946
PPV = 0.9952

True label
Shrink Normal
Grow Shrink

Grow

Stable

n = 544,340
TPR = 0.7892
PPV = 0.7619

Stable

Stroke

PUNet-vol

n = 62,344,340
TPR = 0.9936 N 029
PPV = 0.9947

Predicted label

Normal Shrink Grow Stable Stroke

n = 183,248

n = 33,510
fnr = 0.0005
fpr = 0.0485

-08

n = 15,559
fnr = 0.0593
fpr = 0.0225

fnr = 0.0139
fpr = 0.0103

PUNet-w-SL-vol

(n = numbers, fnr = false negative rate, fpr = false positive rate, TPR = true positive rate, PPV = positive predictive value)

Figure 7: Confusion matrices for all labels produced by PUNet-vol and PUNet-wSL-vol configurations from all subjects.
Abbreviation n stands for number of segmented voxels which can be used to calculate false negative rate (fnr), false positive rate
(fpr), true positive rate (TPR), and positive predictive value (PPV). Note that TPR and fnr are calculated horizontally for each
row (true label of DEM). On the other hand, PPV and fpr are calculated vertically for each column (predicted label of DEM).

Table 5

Comparison of DSC, PRE, and REC values to FN and FP counts for PUNet-vol and PUNet-wSL-vol configurations. Symbols 1
and | indicate that higher and lower values are better respectively.

Shrinking WMH Growing WMH
DSCt PREt REC? FN | FP | DSCt PREt REC? FN | FP |
PUNet-vol 0.2107 0.2527 0.2408 220,342 215,635 | 0.2232 0.2391 0.2569 259,905 279,753
PUNet-wSL-vol | 0.2290 0.2295 0.3066 211,424 266,436 | 0.2112 0.2479 0.2346 262,794 271,775

WMH (i.e., and, therefore ‘Average” WMH) from patients
with smaller WMH volumes were lower than those from
patients with WMH volumes of 30 ml and above, bringing
the overall mean DSC, represented by the horizontal line in
the graphs, to a lower value. However, the mean DSC for
‘Growing’ WMH seem to be rather higher than most of the
individual results, as this label was slightly better identified
in the scans from patients that had low WMH volume.
Confusion matrices in Figure 7, show a high level of
uncertainty between ‘Growing’ WMH and ‘Normal’ brain

Model = Att-PUNet-vol

Model = PUNet-vol

tissues as more than 50% of the ‘Growing” WMH identified
in the ground truth DEM were wrongly predicted as ‘Nor-
mal’ tissues (i.e., under-segmentation of ‘Growing’ WMH
which leads to higher fir in the confusion matrix) by PUNet-
vol and PUNet-wSL-vol configurations with fur = 0.5339
and fnr = 0.5254 respectively. In extended experiments,
all proposed configurations were observed producing the
same level of under-segmentation for ‘Growing” WMH.
In general, areas of ‘Growing” WMH are difficult to be
differentiated from ‘Normal’ brain tissues due to the high

Model = PUNet-wSL-vol Model = Att-PUNet-wSL-vol

WMHs category

& . % x Shrinking
1 X A Growing
P A A
ke g XX * Stable
= T &R x NE=E: . Average
¥ x X x X % Changing
X - X
= -
¥y
= ¥ v
0 20 40 60 80 100 120 0 20 40 60 80 100 120 20 40 60 80 100 120 0 20 40 60 80 100 120

V1 volume V1 volume

V1 volume V1 volume

Figure 8: Correspondence between WMH volume (ml) at V1 and DSC values for all DEM labels produced by PUNet-vol,
Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol configurations.
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Figure 9: Examples of predicted DEM produced by PUNet-wSL-vol and PUNet-vol and their corresponding DEM ground truth
from subjects with high DSC values on average. Red represents shrinking WMH, green represents growing WMH, blue represents
stable WMH, and yellow represents stroke lesions. Obvious improvements are highlighted in white rectangles.
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Figure 10: Examples of predicted DEM produced by PUNet-wSL-vol and PUNet-vol and their corresponding DEM ground truth
from subjects with low DSC values on average. Red represents shrinking WMH, green represents growing WMH, blue represents
stable WMH, and yellow represents stroke lesions.

level of uncertainty between these two classes. Overall, for 5.2. Qualitative/visual evaluation
the model that jointly segmented the stroke lesions and the PUNet-wSL-vol and PUNet-vol were chosen for qualita-
WMH, mean DSC values were slightly better in this sample. tive/visual evaluation as they produced the best and second
best DSC values on ‘Average’ (See Table 2 Section 5.1).
Figures 9 and 10 show examples of the predicted DEM
segmentation from PUNet-wSL-vol and PUNet-vol and
their corresponding DEM ground truth forpatients with high
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Table 6

Volume based evaluation for all models evaluated. There are 98 patients with growing (GRW) and 54 with shrinking (SHR)
volume of WMH. “CP" stands for “Correct Prediction”, “CPinEVI" stands for “Correct Prediction in Estimated Volume Interval”,
and “(CP+WP)inEVI" stands for “Correct Prediction + Wrong Prediction but still in EVI”. Symbol 1 indicates that higher values
are better while symbol — 0 indicates that values closer to 0 are better. The best and second best values for each evaluation

measurements are written in bold and underlined respectively.

Model's Name Prediction 1 Estimated Volume Interval (n=152) 1 | Volumetric Error
GRW SHR CP  CPinEVI (CP+WP)inEVI (std) — 0
PUNet (Rachmadi et al., 2021) | 78.57% 46.30% | 67.11%  47.37% 61.18% -1.7739 (9.798)
PUNet-vol 83.67% 51.85% | 71.71%  46.71% 60.53% -0.8342 (8.657)
PUNet-wSL 75.51% 64.81% | 71.71%  48.68% 59.21% 0.2269 (10.427)
PUNet-wSL-vol 74.49% 74.07% | 74.34%  53.29% 62.50% -0.0092 (9.751)
Att-PUNet 70.41% 79.63% | 73.68%  45.39% 55.26% 3.1823 (8.447)
Att-PUNet-vol 81.63% 55.56% | 72.37%  43.42% 54.61% -0.5546 (9.043)
Att-PUNet-wSL 86.73% 55.56% | 75.66% 51.97% 59.87% -0.5978 (10.901)
Att-PUNet-wSL-vol 81.63% 64.81% | 75.66%  43.42% 53.95% 0.2701 (9.050)

and low DSC values on ‘Average’ respectively. Figure 9
shows that PUNet-wSL-vol, which jointly segments WMH
DEM and stroke lesions, produced better segmentation
results than PUNet-vol, which exhibits a high level of uncer-
tainty in predicting shrinking and growing WMH. Confusion
matrices in Figure 7 show that PUNet-wSL-vol lowered
this uncertainty by producing lower rates of fnr (and their
corresponding FN counts (n)) for shrinking and growing
WMH) in most cases. Figure 10 illustrates cases where
low DSC values of predicted WMH DEM were caused
mostly by two reasons: low WMH volume at V1 (patients
MSSB239 and MSSB172) and brain MRI artefacts (patients
MSSB239 and MSSB211). Based on our observations, these
two problems were relevant throughout the sample in our
evaluations.

30 —e— Ground truth
-#- PUNet
28 = PUNet-vol
-#- Att-PUNet
26 Att-PUNet-vol
o i i ; PUNet-wSL
E24 -4~ PUNet-wSL-vol
S Att-PUNet-wSL

Att-PUNet-wSL-vol

A28 \'73
Time Point

Figure 11: Average progression of WMH volume (ml/) from
V1 to V2 (1 year) for Ground truth and all tested mod-
els/configurations.

5.3. Volume based evaluation

WMH volume is an important clinical feature for clinical
research and could be an important biomarker if available
for clinical practice. Hence, we evaluated how well WMH
volume at V2 (1 year later) can be estimated by using our
proposed models. Table 6 shows the prediction accuracy of
WMH volumetric progression (i.e., whether WMH volume
will grow or shrink at V2 for each patient) calculated using
Equations 10 and 11, the estimated volume interval (EVI)

calculated using Equations 12, 13, and 14, and the volu-
metric error calculated using Equation 15. Figure 11 shows
the average progression of WMH volume from V1 to V2
from the ground truth and all tested models/configurations.
Figures 12 and 13 show volumetric progression of WMH
(in ml) from V1 to V2 and its distribution for all patients in
our dataset, and Figure 14 shows the WMH volume change
in patients grouped by quintiles depending on their WMH
volume at baseline.

As Table 6 shows, PUNet-wSL-vol performed better
than the rest of the models producing either the best or
second best results for almost all evaluation metrics except
predicting growing WMH (GRW). Although there were
more patients with net growing WMH than with net shrink-
ing WMH in the dataset, thus hinting to a possible bias by the
other models towards growing WMH, reduction in WMH
volume was mainly observed in patients with high WMH
volume (see Figure 14).

As Figure 11 shows, the average progression of WMH
volume from V1 to V2 (in ml) was well estimated by PUNet-
wSL-vol (i.e., brown dashed line representing PUNet-wSL-
vol is coincident with the red line representing the ground
truth). In general, as expected, models trained using volume
loss (Equation 3, Section 4.4.2) (i.e., PUNet-vol (green
line), Att-PUNet-vol (orange line), PUNet-wSL-vol (brown
line), and Att-PUNet-wSL-vol (grey line)) produced more
accurate progression of WMH volume from V1 to V2 than
those which did not use volume loss during training. Of
note, however, PUNet-wSL (yellow line) and Att-PUNet-
wSL (pink line), had lines close to the red line of the ground
truth. Overall, models jointly segmenting stroke lesions and
WMH improved the estimation of future volume of WMH at
V2 (see correspondence with average results sown in Table
6).

Figures 12 and 13 illustrate that the WMH volumes at
V2 estimated using PUNet-wSL-vol are more similar to
the ground truth than the other models for most individual
patients (Figure 12) and as a whole (Figure 13).

To further analyse the accuracy of the winner scheme
in estimating the WMH volume change, we grouped the
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Ground truth PUNet-vol Att-PUNet-vol PUNet-wSL-vol Att-PUNet-wSL-vol
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Volume
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Figure 12: Volumetric progression of WMH (ml) from V1 to V2 (1 year apart) for each individual subject based on ground truth
data (left) and future volume of WMH at V2 predicted by PUNet-vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol
models.
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Figure 13: Distribution of volumetric progression of WMH at V2 (ml) based on WMH volume at V1 (ml!) for each individual
subject based on ground truth data (left) and predicted by PUNet-vol, Att-PUNet-vol, PUNet-wSL-vol, and Att-PUNet-wSL-vol
models.

patients in quintiles according to their WMH volume at median and a distribution of WMH volume change values
baseline and calculated the WMH change produced by the across the sample more similar to those from the reference
reference (i.e., ground truth) segmentation, and the PUNet segmentation, than the scheme that only segmented the
model using volume loss with and without jointly segment- DEM of WMH change for all but the highest quintile.

ing the DEM and the stroke lesions. As can be appreciated We also divided the reference WMH segmentations into
from Figure 14, the scheme that jointly segmented the stroke ~ intense and less intense WMH as per (Valdés Hernindez
lesions and the DEM of WMH change produced mean, et al., 2015), and considered an ‘extended” WMH volume

WMH volume change (ml) per quintile WMH vol change (ml) per quintile (intense, less intense, total and extended lesions)
40 ; 40
30 i 30
20 .. ‘ TIT 20 .
10 . 0 10 rie :
e g # I el R
0 2l | 0 < i
-10 7 | -10 | s
-20 -20
-30 -30
-40 -40
Q1 Q2 Q@3 Q@4 Q@5
. Reference segmentation -50 Q1 Q2 Q3 Q4 Q5
- PUNet with volume loss I intense (severe) WMH
.I PUNet with volume loss and joint stroke lesions segmentation Less intense (mild) WMH

B Total (severe and mild) WMH (i.e. reference WMH segmentation)

WMH including hyperintensities around lacunes (likely
reminiscences from old lacunar infarcts)

Figure 14: Volumetric WMH change in m/ (vertical axes) for patients grouped by quintiles (horizontal axes) depending on their
WMH volume at baseline.
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Figure 15: Uncertainty maps produced by PUNet-wSL-vol from subject MSSB212.
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Figure 16: Correlation between the average of uncertainty values inside the predicted DEM and DSC values of predicted DEM

produced by PUNet-wSL-vol for each DEM label.

that included the WMH surrounding lacunes, thought to
be reminiscences of old small subcortical infarcts. As can
be observed from Figure 14, the volume output from the
scheme that jointly segmented the stroke lesions with the
DEM of WMH change resulted strikingly similar to the one
produced by this ‘extended” WMH segmentation (see gray
and yellow box plots in Figure 14), especially for patients
in the highest quintile. Patients in this quintile exhibit a
high burden of WMH coalescing with lacunes and previous
strokes. Therefore, it is expected that not only Al schemes,
but also experts would consider all hyperintensities as part
of the white matter disease in absence of any other sequence
or clinical information from this patient group. It can be also
seen that the reference WMH change (i.e., blue box plot in
the same figure) is mainly determined by the less intense
WMH change (i.e., pale green box plot), therefore explaining
the difficulty in obtaining accurate growth and shrinking
spatial estimates and putting into question the accuracy in
the spatial estimates of the ground truth segmentations given
the degree of observer-dependent manual input they had.

5.4. Uncertainty quantification
As all configurations evaluated are based on the Proba-
bilistic U-Net, uncertainty for each label in the DEM was

quantified by predicting DEM for each subject multiple
times. In this study 30 different DEM predictions were
generated from 30 samples of z,, from Prior Net for
each input data/patient. From these 30 DEM predictions per
patient data, uncertainty was calculated as the Cross Entropy
(CE) between probability values from all DEM predictions
and its average as written in Equation 9.

Figure 15 shows the uncertainty maps for all DEM labels
produced by the model that generated the best DSC ‘Aver-
age’ value, PUNet-wSL-vol, for the whole brain and inside
the predicted DEM for a patient. From the uncertainty maps
for the whole brain, we can see that the uncertainties for
shrinking and growing WMH encompass larger brain areas
than for stable WMH. Some areas showing uncertainty in the
‘Shrinking’ label are incorrect (e.g. in the frontal cortex and
in the septum), due mainly to hyperintense flow artefacts.
Also, in the uncertainty maps inside the predicted DEM,
the uncertainty values inside DEM labels of shrinking and
growing WMH are higher than those inside stable WMH, a
consistent finding from this evaluation.

Figure 16 shows that the uncertainty values inside the
predicted DEM and DSC values produced by PUNet-wSL-
vol are negatively correlated for each DEM label (i.e.,

M.F. Rachmadi et al.: Preprint submitted to Elsevier

Page 14 of 17


https://doi.org/10.1101/2022.12.14.520239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.14.520239; this version posted December 16, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Improving the prediction of WMH evolution in brain MRI of patients with SVD using stroke lesions information

shrinking, growing and stable WMH).The average uncer-
tainty values inside each DEM label (i.e., the bottom figure
in Figure 15) can be used to indicate the quality of predicted
DEM. Higher DSC values of DEM labels can be predicted
for lower uncertainty values inside the predicted DEM and
vice versa.

6. Conclusion

This study proposed deep learning models based on the
Probabilistic U-Net (Kohl et al., 2018) architecture trained
incorporating stroke lesions information into the models
and using volume loss as additional loss for improving the
quality of predicted disease evolution map (DEM). Proba-
bilistic U-Net was chosen as the baseline method because
a preliminary study showed that it performed better than
the U-Net in predicting DEM of WMH (Rachmadi et al.,
2021). Based on our experiments, both proposed approaches
improved the quality of predicted DEM of WMH in different
ways.

We proposed three different approaches for incorpo-
rating stroke lesions information into Probabilistic U-Net
models. These are (1) joint segmentation of DEM and stroke
lesions (described in Section 3.2.1), (2) use of probabilistic
maps of WMH change in relation to stroke lesions’ locations
(described in Section 3.2.2), and (3) combination of (1) and
(2). We proposed to incorporate stroke lesions information
into deep learning models to predict WMH evolution be-
cause stroke is commonly associated with the evolution of
WMH (Wardlaw et al., 2017). Based on results from various
experiments, joint segmentation of DEM and stroke lesions
(approach (1)) was the most effective approach to improve
the quality of predicted DEM of WMH in all evaluations,
while being also simpler and more straightforward than the
other approaches evaluated in this study.

The introduction of a volume loss as an additional loss to
the scheme substantially improved the quality in predicting
the DEM of WMH in terms of volume (discussed in Section
5.3) and in terms of spatial agreement on ‘Average’ as DSC
metric values showed (discussed in Section 5.1).

This study shows that 1) incorporating factors that have
been commonly associated with WMH progression (i.e.,
stroke lesions information) is crucial to produce better pre-
diction of DEM for WMH from brain MRI; 2) the best
method for incorporating associated factors that can be
extracted from the same data/image modality involves per-
forming multi-task learning; and 3) in patients with vascu-
lar pathology, a multi-class segmentation of brain features
resulting from symptomatic (i.e. stroke) and asymptomatic
(i.e., WMH) vascular events generates better results consis-
tent with clinical research. In this study, as stroke lesions
appear on the same T2-FLAIR MRI sequence as WMH, we
performed joint segmentation of DEM for WMH and stroke
lesions. However, previous clinical studies have shown that
there are other non-image risk factors and brain features
that have been commonly associated with the progression
and evolution of WMH, like age (van Dijk et al., 2008),
ventricular enlargement (Breteler et al., 1994; Jochems et al.,

2022b), and brain atrophy (Wardlaw et al., 2015). Thus,
more (image and non-image) factors could be incorporated
in future studies to further improve the quality of predicted
DEM of WMH, although the best way to incorporate non-
image factors to the prediction model remains to be found.
This study also has limitations to overcome in future
works. The dataset was small in size impeding a quantitative
in-depth analysis of the models’ performance in different
patient subgroups, e.g., patients stratified by age and sex,
patients grouped by stroke subtype, etc. Thus, subgroup
analyses were carried out visually and volumetrically, not
spatially. By using only data from patients presenting to a
clinic with a mild-to-moderate stroke, the generalisability of
the proposed approach can be questioned. Therefore, further
evaluation in a wider and more heterogeneous sample will
be needed. The use of DSC in the evaluation needed the bi-
narisation of the probabilistic outputs from the models. Lim-
itations in the use of DSC have been recently acknowledged
(Maier-Hein et al., 2022). However, it must be noted that
ground truth segmentations are also binary, and observer-
dependent. By using different quality control metrics in a
comprehensive analysis we have overcome the limitations
that the analysis of the spatial agreement using DSC poses.
A probabilistic metric allowing spatial analyses of segmen-
tation results is needed. Also, we used probabilistic maps
of WMH change for strokes in the lentiform nucleus and
centrum semiovale based on findings from a clinical study.
However, the same clinical study specified that it was not
possible to ascertain WMH evolution and distribution for
patients with the stroke in other regions like thalami and
midbrain or brain stem due to the limited sample of patients
with infarcts in those regions. Incorporating findings for
more powered studies would be necessary to conclude about
the usefulness of incorporating attention maps to the Al
schemes. Finally, various schemes for estimating uncertainty
in segmentation/classification tasks have recently emerged
(Liu et al., 2020; Sensoy et al., 2018), which would be worth
exploring in the future for estimating WMH evolution.
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