Phytochemical Characterization of Bio-active Compounds in Hydroethanolic Extract of *Elaeocarpus ganitrus* leaves using HPLC, LC MS, and HPTLC Analyses

Jyotsana Khushwaha^{1,} Alpana Joshi^{2,3*}, Shiva Sharma⁴, Subrata K. Das⁴

Abstract

Bioactive compounds have various applications in different industries, including food, pharmaceutical, and cosmetic industries, demonstrating the need to identify the beststandardized technique to screen the phytochemical profile of medicinal plants. This study aimed to characterize the bioactive compounds in the hydroethanolic extracts of *Elaeocarpus* ganitrus leaves using various analytical techniques: HPLC, LC-MS, and HPTLC. Air-dried leaves of E. ganitrus were extracted with 70% ethanol. The phytochemical composition of crude extracts was analyzed by the High performance liquid chromatography (HPLC) method, and a total of 93 compounds, including 46 flavonoids, 17 phenols, 14 polyphenols, 3 phenolic acid, 3 phenolic glycosides, 2 flavonoid glycosides, 2 glycosides, 2 phenylpropanoid glycoside, 1 hydroxycinnamic acid, 1 lignan, 1 tannin, and 1 terpene glycoside were detected and quantified. The Liquid chromatography mass spectrometry (LC-MS) analyses identified 11 major eleven compounds: quercetin (803.0215 µg/L), gallic acid (726.13 µg/L), ferulic acid (652.34 μg/L), chlorogenic acid (651.021μg/L), pinocembrin (264.11 μg/L), p-aminobenzoic acid (251.021 μg/L), epicatechin (246.02 μg/L), catechin (161.51 μg/L), caffeic acid (123.31 μg/L), syringaldehyde (116.31 μg/L), and naringenin (106.31 μg/L). The chemical fingerprinting was carried out by high performance thin layer chromatography (HPTLC), and HPTLC fingerprint qualitatively revealed a predominant amount of gallic acid (48.64 %), curcumin (15.21 %), caffeic acid (12.19 %) and cinnamic acid (6.50 %). A significant amount of bioactive constituents in a hydroethanolic extract of E. ganitrus leaves indicates the plant's

¹Department of Biotechnology, Shobhit Institute of Engineering & Technology, (Deemed-to-be University), Meerut, 250110, India

²Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, (Deemed-to-be University), Meerut, 250110, India

³Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea

⁴Department of Biomedical Engineering., Shobhit Institute of Engineering & Technology, (Deemed-to-be University), Meerut, 250110, India

^{*}Corresponding Email:-alpana.joshi@shobhituniversity.ac.in; joshi.alpana@gmail.com

therapeutic potential, including antioxidant, anti-inflammatory, antidiabetic, anticancer, neuroprotective, and cardio-protective activities.

Keywords: Bioactive compound, HPTLC, LC-MS, HPLC, *Elaeocarpus* ganitrus, Hydroethanolic extract.

1. Introduction

Medicinal plants constitute the basis of traditional and modern primary healthcare. Over 80% of the population, mainly of developing countries, depend on traditional and herbal medicine. In the past two decades, there has been substantial growth in the use of medicinal plants to pr event disease and promote health. The current pharmacopeia contains at least 25% plant-based medications; however, the medicinal plants must meet quality, safety, and efficacy standards for proper utilization. One of the most significant difficulties related to quality is that commercial medicinal plants are available in powdered form, making it challenging to identify specific plant parts or plant species (Salmerón-Manzano et al., 2020).

Elaeocarpus ganitrus (Rudraksha) belongs to the family Elaeocarpaceae and has been well-known from ancient times for its medicinal importance (Kumari et al., 2018; Rai et al., 2018; Sharma et al., 2022; Joshi and Kushwaha, 2023). These fruits are commonly found in India, specifically in the Himalayan and Gangetic plain regions, Nepal, Indonesia, and Java. The pharmacological action of Elaeocarpus sp. is due to the presence of bioactive phytochemicals and numerous studies revealed that petroleum ether, ethanol, and water extracts of Elaeocarpus sp. contain several alkaloids (elaeocarpidine, elaeocarpine, rudrakine), polyphenols (flavonoids, quercetin, tannin), phytosterols, fat, carbohydrates, proteins, gallic and ellagic acid (Johns and Lamberton, 1973; Katavic et al., 2007; Sudrajat and Timotius, 2022). The major identified biochemical compounds are isoelaeocarpine, epiisoelaeocarpiline, epielaeocarpiline, alloelaeocarpiline, and pseudo-epiiso-elaeocarpilline (Johns et al., 1970; Katavic et al., 2006; Katavic et al., 2007; Ezeoke et al., 2018; Sudrajat and Timotius, 2022).

E. ganitrus beads (Rudraksha) are known for their therapeutic potential against several disorders like stress, anxiety, insomnia, skin diseases, leprosy, hysteria, hyperglycemia, coma, leucorrhoea, infertility, asthma, hypertension, diabetes, arthritis, rheumatism, cardiovascular and liver diseases (Rai et al., 2018; Sharma et al., 2022). There are evidences in literature indicating their sedative, analgesic, anticonvulsant, anti-inflammatory, antioxidant, antiepileptic, hypnotic, antipyretic, antihypertensive, antidiabetic, antimicrobial, anxiolytic,

anti-cancerous, anti-asthmatic, nephroprotective, immune-stimulator, and electromagnetic properties (Ray et al., 1979; Fang et al., 1984; Ito et al., 2002; Katavic et al., 2006; Katavic et al., 2007; Meng et al., 2008; Shitamoto et al., 2010; Pan et al., 2012; Bordoloi et al., 2017; Liyanaarachchi et al., 2018; Kim et al., 2018; Ezeoke et al., 2018; Hong et al., 2019; Ogundele and Das, 2019; Turner et al., 2020; Ogundele et al., 2021; Kim et al., 2021; Banerjee et al., 2022; Joo et al., 2022). A summary of phytochemical investigations on Elaeocarpus species is listed in Table 1.

The plant contains abundant bioactive compounds in different concentrations and polarity. A key challenge in screening plant phytochemical profiles is extraction and characterization methods. The combination of different analytical techniques, such as High-performance liquid chromatography (HPLC), Liquid chromatography-mass spectrometry (LC-MS), and high-performance thin-layer chromatography (HPTLC), can be applied to detect bioactive constituents in plant extracts. These analytical techniques are effective for ensuring the quality of raw plant material and can be used to analyze various plant extracts (Nile and Park, 2014). The phytochemical profile of the ethanolic fraction of *E. floribundus* fruits displayed various biological activities, including antimicrobial (Sircar et al., 2017). HPLC and GC-MS analyses was conducted out to examine the bioactive constituents present in the fruits of *E. oblongus, E. serratus*, and *E. tectorius* (Muthuswamya and Senthamarai, 2014; Mundaragi et al., 2019; de Lima et al., 2019). LC-MS combines the separation abilities of liquid chromatography against a target compound. LC-MS profile of *E. grandiflorus* and *E. sphaericus* demonstrated the bioactive compounds significantly (Primiani et al., 2021; Habibah et al., 2021).

However, the phytochemical profiling of *E. ganitrus* using HPLC, LC-MS, and HPTLC has not been reported. Hence, the present investigation aimed to conduct a qualitative and quantitative assessment of phytochemical constituents in the hydroethanolic extract of *E. ganitrus* leaves using three different analytical techniques: High-performance liquid chromatography (HPLC), Liquid chromatography-mass spectrometry (LC-MS), and high-performance thin layer chromatography (HPTLC).

Table 1. Literature survey on phytochemical profile for *Elaeocarpus* species

Name of the	Phytochemicals	References
species	r hytochemicals	
E.	(±)-8,9-Dehydroelaeocarpine, (±)-Elaeocarpine	Hong et al., 2019
angustifolius	trifluoroacetate, (\pm) – 9-Epielaeocarpine cis-N-oxide	
ungusiijoiius	trifluoroacetate	
E. chinensis	Cucurbitacins D, Elaeocarpucins A-H	Pan et al., 2012
E.	Cucurbitacin F	Fang et al., 1984
dolichostylus	Cucuronaem 1	
	Gallic acid, myricitrin, mearnsitrin, myricetin, and	Ogundele and Das,
E.	·	2019; Ogundele et
flooribundus	mearnsetin, Phytol, a-tocopherolquinone, Euphorbol, Phaeophytins	al., 2021, Banerjee
	Fliacophythis	et al., 2022
E. fucoides	Elaeocarpine, Elaeocarpenine, Isoelaeocarpine,	Katavic et al., 2007
E. ganitrus	Rudrakine	Ray et al., 1979
E. grandis	(-)-Isoelaeocarpiline, Grandisine C, D, E, G,	Katavic et al., 2006
E.		Meng et al., 2008
hainanensis	Cucurbitacins D	Wieng et at., 2000
receivements		Shitamoto <i>et al.</i> ,
E. japonicus	Elaeocarpionoside	2010
	Myricetin, 4' -Methylmyricetin, Mearnsetin,	Ray et al., 1979;
E.	Triacontanoic acid, Octatriacontan-1-ol,	Bordoloi <i>et al.</i> ,
lanceofolius	Dotriacontane	2017
	Cucurbitacins D, Cucurbitacin F, 4'-O-Methylellagic	Ito et al., 2002
	acid 3-(2",3"-di-O-acetyl)-α-l-rhamnoside, 4,4'-O-	
E. mastersii	Dimethylellagic acid 3-(2",3"-di-O-acetyl)-α-l-	
	rhamnoside	
7		Turner et al., 2020
E. reticulatus	Cucurbitacin-I, Proanthocyanidins anthocyanins,	
E gamater-	Dibutyl succinate, Phytosterol, Elastase,	Liyanaarachchi et
E. serratus	Hyaluronidase, Tyrosinase	al., 2018

E. sylvestris	Geraniin, 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG), elaeocarpusin,	Kim et al., 2018; Kim et al., 2021; Joo et al., 2022
E. tectorius	Tectoricine, Tectoraline, Tectoramidines A, B	Ezeoke <i>et al.</i> , 2018

2. Material and Methods

2.1. Sample collection and hydroethanolic extract preparation

Fresh leaves samples of *E. ganitrus* were harvested at the Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Modipuram, Meerut, India, with the coordinates of the sites, Latitude 29.071274° and Longitude 77.711929°. Leaf samples were rinsed with double distilled water and air dried under shade conditions until all moisture content was gone. The plant samples (2 g) were ground into a fine powder using liquid nitrogen by mortar and pestle. The hydroethanolic extract was prepared by adding 70 % ethanol (10 ml) and incubated for 1 week at room temperature (**Figure 1**). Following centrifugation and filtration, extracts were lyophilized and stored at -80 °C.

Figure 1. The process of hydroethanolic extract preparation from E. ganitrus leaves.

2.2. High-Performance Liquid Chromatography (HPLC) analysis

Reagents of analytical grade Toluene, Ethyl acetate, Formic acid, Gallic acid, Catechin, Caffeic acid, Berberine, Rutin, Cinnamic acid, and Curcumin were obtained (Sigma-Aldrich, India). Precoated TLC Aluminum sheets silica gel 60F254 (10 x 10 cm, 0.2 mm thick) were obtained from E. Merck Ltd, Mumbai. The extract was diluted in 50 % methanol (1 mg/ml) and subjected to HPLC analysis. Waters binary HPLC system (Waters Corporation, Milford, MA, USA), equipped with column oven, auto-sampler (Waters 2707), and photodiode array (PDA) detector (Waters 2998), was used for the analyses. A reversed-phase C18 analytical column (4.60×250 mm, 5 μ m particle size; Sunfire, Waters, U.S.A.) was utilized at 30 °C column temperature. Binary gradient was used with 0.1% HCOOH in water (A) and Acetonitrile (B), and a run time of 35 minutes at a flow rate of 1ml/min was used for the analysis. The injection volume was 20 μ l (E. ganitrus leaf extracts) and 10 μ l (standard mix) at different concentrations. The identities of constituents were also confirmed with a photodiode array (PDA) detector by comparison with ultraviolet (UV) spectra of standards in the wavelength at 280 nm and 325 nm.

2.3. LC-MS Analysis

The hydroethanolic extract of *E. ganitrus* leaves was used for LC-MS analysis (**Singh** *et al.*, **2022**). The LC/MS instrument is equipped with an Electron Spray Ionization (ESI) ion source operating in a positive and negative ion mode. The capillary temperature was kept at 280 °C, and the sample flow rate was 8 μL/min. A mass range was selected from 50-1000 Da with a scanning time of 0.2 s. The elution was carried out using 156 gradient elution of 0.1 % formic acid in water (solvent A) and 0.1 % formic acid in 157 acetonitrile (solvent B) with a 400 μl/min flow rate. The solvent gradient program was started with 95-90 % of the mobile phase for 0-5 min, 90-80 % for 5-10 min, 80-60 % for 10-20 min, 60-40 % for 20-30 min, 40 % for 30-45 min, 40-95 % for 45-46 min, followed by 95 % for 46-50 min. Two microlitres of the test solution were used for screening, and the chromatograph was continuously tracked for 45 minutes.

2.4. HPTLC Analysis

Analysis was performed on a Camag HPTLC system equipped with a sample applicator ATS4, ADC2 development chamber, and TLC Scanner; TLC Visualizer and WinCats integration software were used. The standard solutions of gallic acid, catechin, caffeic acid, berberine, rutin, colchicine, cinnamic acid, and Curcumin were accurately weighed (10 mg), and the

solution was made up to 10 ml with methanol (1 mg/ml). From the stock solution of the standards, 0.1 ml was pipetted out and further diluted up to 1 ml to obtain the final concentration of 100 μg/ml. For standard mixture preparation, different standards were mixed to get a 100 ppm final concentration for all standards in methanol. Hydroethanolic extract of *E. ganitrus* leaves, and the standards were spotted on a precoated TLC Aluminum sheets silica gel 60 F254 (20x10cm, 0.2mm thickness) as 8mm wide bandwidth by using automatic TLC applicator ATS 4,10mm from the bottom. The Mobile phase used was Toluene: Ethyl acetate: Formic acid (5:4:1v/v). The plates were saturated in ADC2 for 20 min. After development, the plates were dried in ADC2 and scanned at 254 nm, 366, and after derivatization at 540 nm using CAMAG Scanner. The plates were photographed at an optimized wavelength of 254 nm, 366 nm, and 540 nm.

2.5. Data analysis

The chemical structure for each compound identified in the hydroethanolic extract of *E. ganitrus* leaves using HPLC, LC-MS, and HPTLC was searched using online database software (www.chemspider.com).

3. Results & Discussion

3.1. Identification and quantification of marker compounds by HPLC

Phytochemical profiling of hydroethanolic extracts of *E. ganitrus* leaves was performed using the HPLC analysis. A binary gradient method for HPLC was developed and optimized. The hydroethanolic extract was analyzed along with the mixture of standard marker compounds. Altogether, 93 phenolic compounds in the leaves of *E. ganitrus* were identified and quantified, including 2 flavonoid glycosides, 46 flavonoids, 2 glycosides, 1 hydroxycinnamic acid, 1 lignan, 3 phenolic acid, 3 phenolic glycosides, 17 phenols, 2 phenylpropanoid glycoside, 14 polyphenols, 1 tannin, and 1 terpene glycoside using HPLC analysis (**Table 2**). Each compound was identified and confirmed using its retention time (RT) and UV profile in a photodiode array (PDA) detector under similar conditions (**Figure 2 and Figure 3**).

The flavonoids, including flavanones, flavanols, flavonols, flavones, and isoflavones, were the most abundant compounds annotated in the hydroethanolic fraction of *E. ganitrus* leaves (**Table 2**). Forty six flavonoids were reported including; 2-hydroxy-2-phenylacetic acid (72 μ g/L) at RT 6.689, (+)-Gallocatechin 3-0-gallate (86 μ g/L) at RT 7.736, Methylepigallocatechin 3-0 gallate (44 μ g/L) at RT 8.264, Eriocitrin (35 μ g/L) at RT 8.597, Naringin (18 μ g/L) at RT 8.722, 8-prenylnaringenin (53 μ g/L) at RT 8.854, Hesperidin (63

μg/L) at RT 8.895, Hesperetin 3'-0'glucuronide (57 μg/L) at RT 9.081, Apigenin 7-0-apiosylglucuoside (26 µg/L) at RT 9.123, Apigenin 7-0-glucuronide (44 µg/L) at RT 9.287, Apigenin 6,8-di-C-lucoside (34 µg/L) at RT 9.377, Chrysoeriol 7-0-glucoside (50 µg/L) at RT 9.514, Apigenin 6-C-glucoside(Isovitexin) (86 µg/L) at RT 9.676, Patuletin (59 µg/L) at RT 9.916, 3-0-glucosyl-(1->6)-[apiosyl (1->2]-glucoside (17 µg/L) at RT 10.12, Quercetin 3-0-xylosylrutinoside (71 µg/L) at RT 10.37, Myricetin 3-0-rutinoside (48 µg/L) at RT 10.48, Quercetin 3-0-glucosyl-xyloside (45 µg/L) at RT 10.51, Kaempferol 3,7-0-diglucoside (38 µg/L) at RT 10.56, Myricetin 3-0-glucoside (36 µg/L) at RT 10.74, Kaempferol 3-0-glucosyl-rhamnosylgalactoside (71 µg/L) at RT 10.83, Kaempferol 3-0-(2"-rhamnosyl-galactoside)7-Orhamnoside (69 µg/L) at RT 10.95, Rhamnoside (70 µg/L) at RT 11.07, Quercetin 3'-Oglucuronide (37 µg/L) at RT 11.09, Myricetin 3-O-rhamnoside (22 µg/L) at RT 11.27, Quercetin 3-O-arabinoside (78 µg/L) at RT 11.32, Isorhamnetin (25 µg/L) at RT 11.42, Dihydrochalcones (23 µg/L) at RT 11.52, 3-hydroxyphloretin 2'-O-xylosyl-glucoside (67 μg/L) at RT 11.64, 3-hydroxyphloretin 2'-O-glucoside (25 μg/L) at RT 11.71, Peonidin 3-Odiglucoside-5-O-glucoside (55 μg/L) at RT 12.13, Cyanidin 3-O-(6"-p-coumaroyl-glucoside) (14 µg/L) at RT 12.27, Delphinidin 3-O-glucosyl-glucoside (21 µg/L) at RT 12.49, Isopeonidin 3-O-arabinoside (85 µg/L) at RT 12.58, Cyanidin 3,5-O-diglucoside (56 µg/L) at RT 12.63, Pelargonidin 3-O-rutinoside (75 μg/L) at RT 12.77, 6"-O-malonylglycitin (45 μg/L) at RT 12.89, 5,6,7,3',4'-pentahydroxyisoflavone (81 μg/L) at RT 13.04, 6"-O-acetyldaidzin (10 μg/L) at RT 13.24, Violanone (50 µg/L) at RT 13.39,3'-hydroxydaidzein (55 µg/L) at RT 13.62, 6"-O-acetylglycitin (86 µg/L) at RT 13.79, 3'-hydroxygenistein (32 µg/L) at RT 13.91, Dihydrobiochanin A (14 μg/L) at RT 14.02, 2-dehydro-O-desmethylangolensin (82 μg/L) at RT 14.1, and 3',4',7-trihydroxyisoflavanone (32 µg/L) at RT 14.35. Various investigations reported the antiviral, anticancer, neuroprotective, and anti-inflammatory activities of flavonoids (Muhammad et al., 2019; Yuan et al., 2021; Ortiz et al., 2022; Aboulaghras et al., 2022; Salehi et al., 2020; Ayvaz et al., 2022; Patel et al., 2023).

The second abundant category was phenols, and 17 compounds were recognized including; Galloyl glucose (9 μ g/L) at RT 3.749, Hydroxybenzoic acid (59 μ g/L) at RT 3.905, 4-hydroxybenzoic acid 4-0 (44 μ g/L) at RT 4.021, Hydroxycinnamic acids (79 μ g/L) at RT 4.248, Cinnamic acid (73 μ g/L) at RT 4.344, 3-p-coumaroylquinic acid (41 μ g/L) at RT 4.552, M-coumaric acid (38 μ g/L) at RT 4.63, 4-hydroxybenzoic acid 4-0 (18 μ g/L) at RT 4.718, Caffeic acid (45 μ g/L) at RT 4.993, Hydroxyphenylacetic acids (39 μ g/L) at RT 6.454, 3-hydroxy-3(3-hydroxyphenyl) propionic acid (41 μ g/L) at RT 7.588, 7-hydroxymatairesinol (15 μ g/L) at RT

9.142, Anthocyanins (80 μg/L) at RT 12.01, Coumarin (75 μg/L) at RT 14.44, Salvianolic acid B (7 μg/L) at RT 14.78, Scopoletin (72 μg/L) at RT 14.82, and 4-vinylsyringol (53 μg/L) at RT 15.23. Phenols are known to exhibit various pharmacological activities such as., antioxidant, anti-inflammatory, antimicrobial, anti-adipogenic, antidiabetic anticancer, and neuroprotective (Cardile *et al.*, 2015; Li *et al.*, 2020; Kowalska *et al.*, 2021).

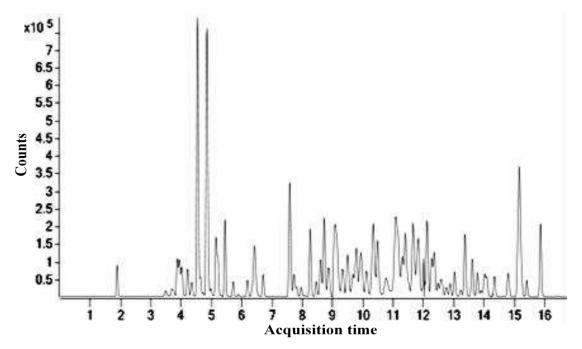


Figure 2. HPLC chromatogram of identified phytochemical constituents' profile hydroethanolic extract of *E. ganitrus* leaves

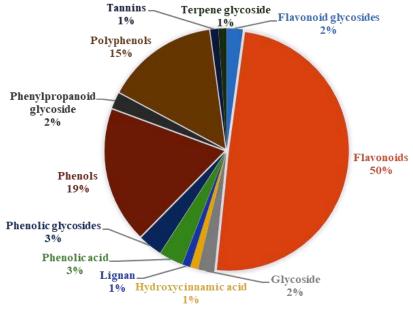


Figure 3. The phytochemical composition identified in HPLC analysis in a hydroethanolic fraction of *E. ganitrus* leaves.

The third abundant category of phytochemicals was polyphenols. The present study detected 14 polyphenols, including 1-sinapoyl-2-feruloylgentiobiose (22 μg/L) at RT 6.434, (+)-Catechin 3-0-gallate (72 μg/L) at RT 7.609, (-)-Epigallocatechin (65 μg/L) at RT 7.815, Procyanidin trimer C1 (79 μg/L) at RT 7.961, (-)-Epicatechin 4"-0-(4 μg/L) at RT 8.263, Procyanidin dimer B1 (76 μg/L) at RT 8.473, 3,4-dihydroxyphenylacetic acid (60 μg/L) at RT 8.895, Todolactol A (54 μg/L) at RT 9.083, Stilbenes (41 μg/L) at RT 9.151, Phloridzin (33 μg/L) at RT 11.81, Alkylmethoxyphenols (56 μg/L) at RT 15.13, Hydroxybenzoketones (65 μg/L) at RT 15.42, 2,3-dihydroxy-1-guaiacylpropanone (10 μg/L) at RT 15.88, and 2-hydroxy-4-methoxyacetophenone 5-sulfate (21 μg/L) at RT 16.48. Polyphenols are secondary metabolites that exhibit multiple pharmacological activities: anti-infectious, anti-inflammatory, cardio-protective, antimicrobial, antiviral, antimutagenic, antihyperglycemic, and anti-allergic (**Rue** *et al.*, **2018**). The major bioactive compounds identified by HPLC analysis were displayed with their classification and pharmacological activities (**Table 4**).

Table 2. The phytochemical profile of the *E. ganitrus* hydroethanolic extract identified using HPLC

Compound	RT	Response	Concentration	Category
Galloyl glucose	3.749	3940	9 μg/L	Phenols
Hydroxybenzoic acid	3.905	547355	59 μg/L	Phenols
4-hydroxybenzoic acid 4-0	4.021	244884	44 μg/L	Phenols
Gallic acid	4.196	25297	63 μg/L	Phenolic acid
Paeoniflorin	4.211	132476	38 μg/L	Glycoside
Hydroxycinnamic acids	4.248	36410	79 μg/L	Phenols
Cinnamic acid	4.344	80249	73 μg/L	Phenols
3-p-coumaroylquinic acid	4.552	224901	41 μg/L	Phenols
M-coumaric acid	4.63	88404	38 μg/L	Phenols
4-hydroxybenzoic acid 4-0	4.718	14194	18 μg/L	Phenols
Caffeoyl glucose	4.848	2004689	54 μg/L	Phenylpropanoid
Carredy's glacose	7.040	200400)	3+ μg/L	glycoside
Caffeic acid	4.993	32645	45 μg/L	Phenols
3-feruloylquinic acid	5.151	562991	10 μg/L	Phenolic acid
Ferulic acid 4-0-glucoside	5.212	233991	73 μg/L	Phenolic
Totalio dola 1 o giacosiae	3.212	233771	, ο με, Σ	glycosides

Isoferulic acid	5.443	474103	10 μg/L	Hydroxycinnamic
isorciume acid	3.443	474103	10 μg/L	acid
P-coumaric acid 4-0 glucoside	5.716	134202	26 μg/L	Phenolic
r-countaire acid 4-0 glucoside	3.710	134202	20 μg/L	Glycosides
Sinapic acid	6.191	147932	76 μg/L	Phenolic Acid
Verbascoside	6.347	44183	8 μg/L	Phenylpropanoid
Verbaseoside	0.547	44103	ο με/Ε	glycoside
1-sinapoyl-2-feruloylgentiobiose	6.434	167708	22 μg/L	Polyphenols
Hydroxyphenylacetic acids	6.454	185413	39 μg/L	Phenols
2-hydroxy-2-phenylacetic acid	6.689	2078	72 μg/L	Flavonoids
3-hydroxy-3(3-hydroxyphenyl)	7.588	344193	41 μg/L	Phenols
propionic acid	7.300	344173	τι μg/L	Thenois
(+)-Catechin 3-0-gallate	7.609	140339	72 μg/L	Polyphenols
(+)-Gallocatechin 3-0-gallate	7.736	154358	86 μg/L	Flavonoids
(-)-Epigallocatechin	7.815	105280	65 μg/L	Polyphenols
Procyanidin trimer C1	7.961	57531	79 μg/L	Polyphenols
Cinnamtannin A2	8.082	11012	86 μg/L	Tannins
(-)-Epicatechin 4"-0-	8.263	261452	4 μg/L	Polyphenols
Hydroxytyrosol 4-O-glucoside	8.264	124797	34 μg/L	Phenolic
Trydroxytyrosor 4-0-graeosiae	0.204	124771	3+ μg/L	glycosides
Methylepigallocatechin 3-0 gallate	8.264	231580	44 μg/L	Flavonoids
Procyanidin dimer B1	8.473	112349	76 μg/L	Polyphenols
Eriocitrin	8.597	38440	35 μg/L	Flavonoids
Naringin	8.722	199063	18 μg/L	Flavonoids
Demethyloleuropein	8.729	206757	21 μg/L	Terpene glycoside
8-prenylnaringenin	8.854	194299	53 μg/L	Flavonoids
3,4-dihydroxyphenylacetic acid	8.895	63118	60 μg/L	Polyphenols
Hesperidin	8.895	116122	63 µg/L	Flavonoids
Hesperetin 3'-0'glucuronide	9.081	295808	57 μg/L	Flavonoids
Todolactol A	9.083	267752	54 μg/L	Polyphenols
Apigenin 7-0-apiosyl-glucuoside	9.123	276639	26 μg/L	Flavonoids
7-hydroxymatairesinol	9.142	9091	15 μg/L	Phenols
Stilbenes	9.151	141612	41 μg/L	Polyphenols

Matairesinol	9.181	119015	47 μg/L	Lignan
Apigenin 7-0-glucuronide	9.287	26576	44 μg/L	Flavonoids
Apigenin 6,8-di-C-lucoside	9.377	264250	34 μg/L	Flavonoids
Chrysoeriol 7-0-glucoside	9.514	436876	50 μg/L	Flavonoids
Apigenin 6-C-	9.676	104039	86 µg/L	Flavonoids
glucoside(Isovitexin)	7.070	101037	ου με/Ε	Tavonolas
Neodiosmin	9.716	127475	60 μg/L	Flavonoid
1 100 410 511411	77,10	127.70	0	glycosides
Patuletin	9.916	64119	59 μg/L	Flavonoids
3-0-glucosyl-(1->6)-[apiosyl (1-	10.12	215634	17 μg/L	Flavonoids
>2]-glucoside	10.12	215051	1, 48,2	Tiavonoras
Quercetin 3-0-xylosyl-rutinoside	10.37	855408	71 μg/L	Flavonoids
Myricetin 3-0-rutinoside	10.48	20422	48 μg/L	Flavonoids
Quercetin 3-0-glucosyl-xyloside	10.51	452348	45 μg/L	Flavonoids
Kaempferol 3,7-0-diglucoside	10.56	3406	38 μg/L	Flavonoids
Myricetin 3-0-glucoside	10.74	29613	36 μg/L	Flavonoids
Kaempferol 3-0-glucosyl-	10.83	36162	71 μg/L	Flavonoids
rhamnosyl-galactoside	10.03	30102	/ Ι μζ/ Ε	Tiuvonoius
Kaempferol 3-0-(2"-rhamnosyl-	10.95	4300	69 μg/L	Flavonoids
galactoside)7-O-rhamnoside	10.55	1300	υ μς/Σ	Tuvonoids
Rhamnoside	11.07	216751	70 μg/L	Flavonoids
Quercetin 3'-O-glucuronide	11.09	567900	37 μg/L	Flavonoids
Myricetin 3-O-rhamnoside	11.27	189474	22 μg/L	Flavonoids
Quercetin 3-O-arabinoside	11.32	326216	78 μg/L	Flavonoids
Isorhamnetin	11.42	305651	25 μg/L	Flavonoids
Dihydrochalcones	11.52	13954	23 μg/L	Flavonoids
3-hydroxyphloretin 2'-O-xylosyl-	11.64	56793	67 μg/L	Flavonoids
glucoside	11.04	30133	0/ μg/L	Tavonoids
3-hydroxyphloretin 2'-O-glucoside	11.71	279595	25 μg/L	Flavonoids
Phloridzin	11.81	278976	33 μg/L	Polyphenols
Anthocyanins	12.01	165071	80 μg/L	Phenols
Peonidin 3-O-diglucoside-5-O-glucoside	12.13	825636	55 μg/L	Flavonoids

Cyanidin 3-O-(6"-p-coumaroyl-glucoside)	12.27	593935	14 μg/L	Flavonoids
Delphinidin 3-O-glucoside	12.36	158245	55 μg/L	Flavonoid glycosides
Delphinidin 3-O-glucosyl-glucoside	12.49	81014	21 μg/L	Flavonoids
Isopeonidin 3-O-arabinoside	12.58	112968	85 μg/L	Flavonoids
Cyanidin 3,5-O-diglucoside	12.63	88400	56 μg/L	Flavonoids
Pelargonidin 3-O-rutinoside	12.77	91061	75 μg/L	Flavonoids
6"-O-malonylglycitin	12.89	84742	45 μg/L	Flavonoids
5,6,7,3',4'-pentahydroxyisoflavone	13.04	239694	81 μg/L	Flavonoids
6"-O-acetyldaidzin	13.24	64871	10 μg/L	Flavonoids
Violanone	13.39	492839	50 μg/L	Flavonoids
3'-hydroxydaidzein	13.62	228757	55 μg/L	Flavonoids
6"-O-acetylglycitin	13.79	226902	86 μg/L	Flavonoids
3'-hydroxygenistein	13.91	45909	32 μg/L	Flavonoids
Dihydrobiochanin A	14.02	194915	14 μg/L	Flavonoids
2-dehydro-O-desmethylangolensin	14.1	197210	82 μg/L	Flavonoids
3',4',7-trihydroxyisoflavanone	14.35	125408	32 μg/L	Flavonoids
Coumarin	14.44	560	75 μg/L	Phenols
Esculin	14.64	5603	87 μg/L	Glucoside
Salvianolic acid B	14.78	61866	7 μg/L	Phenols
Scopoletin	14.82	142959	72 μg/L	Phenols
Alkylmethoxyphenols	15.13	533112	56 μg/L	Polyphenols
4-vinylsyringol	15.23	91460	53 μg/L	Phenols
Hydroxybenzoketones	15.42	138903	65 μg/L	Polyphenols
2,3-dihydroxy-1- guaiacylpropanone	15.88	458347	10 μg/L	Polyphenols
2-hydroxy-4-methoxy acetophenone 5-sulfate	16.48	3595	21 μg/L	Polyphenols

3.2. Identification and quantification of marker compounds by LC-MS

Detailed phytochemical profiling of hydroethanolic extract was performed using LC-MS analysis. LC-MS analysis showed a total of 22 phytochemicals, including 11 flavonoids, 2 polyphenols, 2 hydroxybenzoic acids, 4 hydroxycinnamic acid, 1 phenolic acid, and 2 phenolic aldehydes in a hydroethanolic fraction of *E. ganitrus* leaves, and the chromatogram was displayed in **Figure 4**. LC-MS data of the identified compounds with their retention time, responses (frequency), and concentration was provided in **Table 3**. The major eleven identified compounds were quercetin (803.0215 μg/L) at RT 7.319, Gallic acid (726.13 μg/L) at RT 6.223, Ferullic acid (652.34 μg/L) at RT 7.672, Chlorogenic acid (651.021 μg/L) at RT 8.812, Pinocembrin (264.11 μg/L) at RT 13.387, p-aminobenzoic acid (251.021 μg/L) at RT 1.678, Epicatechin (246.02 μg/L) at RT 1.336, Catechin (161.51 μg/L) at RT 1.336, Caffeic acid (123.31 μg/L) at RT 9.555, Syringaldehyde (116.31 μg/L) at RT 7.696, and Naringenin (106.31 μg/L) at RT 8.697 (**Figure 4 and 5**).

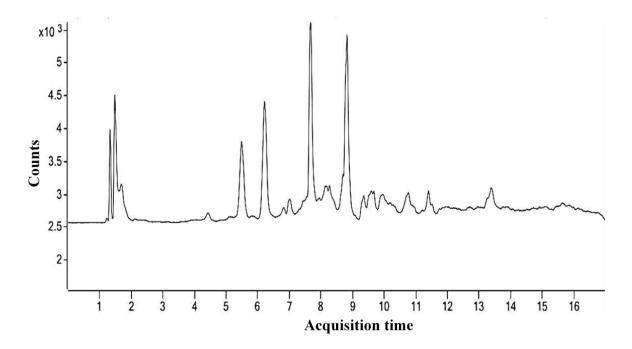


Figure 4. LC-MS chromatogram of identified phytochemical constituents' profile hydrolethanolic extract of *E. ganitrus* leaves.

Identified compounds belonged to various classes, including flavonoids, polyphenols, hydroxybenzoic acid, hydroxycinnamic acid, phenolic acid, and phenolic aldehyde. The major bioactive compounds identified by LC-MS analysis were presented along with their classification and pharmacological activities (**Table 4**). The bioactive compounds have diverse therapeutic potential which includes anti-inflammatory, antioxidant, antifungal, anticancer,

antidiabetic, anti-adipogenic, cardio-protective and neuroprotective activities (Laborda et al., 2018; Imran et al., 2019; Zhang et al., 2019; Musial et al., 2020; Gong et al., 2020; Pimpley et al., 2020; Yi et al., 2021; Mirzaei et al., 2021; Dong et al., 2022; Dicks et al., 2022; Bai et al., 2022; Jiang et al., 2022; Wu et al., 2022; De Luca et al., 2022).

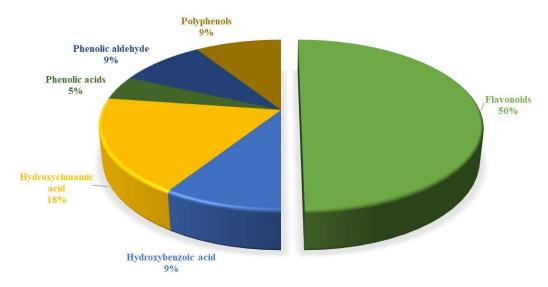


Figure 5. The phytochemical composition identified in LC-MS analysis in a hydroethanolic fraction of *E. ganitrus* leaves.

Table 1: Quantification of phytochemicals in hydroethanolic extract of *E. ganitrus* leaves through LC-MS

Compound	RT	Response	Concentration	Category
Epicatechin	1.336	4762	246.02 μg/l	Flavonoids
Catechin	1.336	2852	161.51 μg/l	Flavonoids
P-Aminobenzoic acid	1.678	5716	251.021 μg/l	Phenolic acids
Hesperidin	2.461	29	1.021 µg/l	Flavonoids
Gallic acid	6.223	14924	726.13 µg/l	Hydroxybenzoic acid
Syringic acid	7.014	128	2.261 µg/l	Hydroxybenzoic acid
Quercetin	7.319	17295	803.0215 µg/l	Flavonoids

Coniferaldehyde	7.58	143	2.2614 μg/l	Phenolic aldehyde
Cyanidin 3-glucoside	7.582	362	3.0215 µg/l	Flavonoids
Apigenin	7.654	73	2.0541 μg/l	Flavonoids
Ferullic acid	7.672	10776	652.34 µg/l	Hydroxycinnamic acid
Syringaldehyde	7.696	2113	116.31 μg/l	Phenolic aldehyde
Ellagic acid	8.013	25	1.0215 μg/l	Polyphenols
Naringenin	8.697	1832	106.31 μg/l	Flavonoids
Chlorogenic acid	8.812	12167	651.021 μg/l	Polyphenols
Luteolin	9.337	67	6.02 µg/l	Flavonoids
p-Coumaric acid	9.364	545	3.051 µg/l	Hydroxycinnamic acid
Taxifolin	9.552	13	1.001 µg/l	Flavonoids
Caffeic acid	9.555	1662	123.31 μg/l	Hydroxycinnamic acid
Kaempeferol	10.04	51	2.021 µg/l	Flavonoids
Sinapic Acid	10.877	921	3.021 µg/l	Hydroxycinnamic acid
Pinocembrin	13.387	3925	264.11 μg/l	Flavonoids

HPTLC

The HPTLC analysis of the hydroethanolic extract of *E. ganitrus* leaves showed the presence of various phytoconstituents in different concentrations, such as Gallic acid (48.64 %), Curcumin (15.21 %), Caffeic acid (12.19%) and Cinnamic acid (6.50%) (**Figure 6**). The developed HPTLC method will assist in the standardization of *E. ganitrus* extract using biologically active chemical markers. Several pharmacological activities of identified phytochemicals exhibit antioxidant, anti-inflammatory, antifungal, and antibacterial activities

due to the presence of bioactive phytochemicals such as phenolic acid, phenols, hydroxycinnamic acid, and flavonoids (**Zhang** *et al.*, **2019**; **Mirzaei** *et al.*, **2021**; **Fu** *et al.*, **2021**; **Bai** *et al.*, **2022**; **Jiang** *et al.*, **2022**). The major bioactive compounds identified by HPTLC analysis were displayed with their classification and pharmacological activities in **Table 4**.

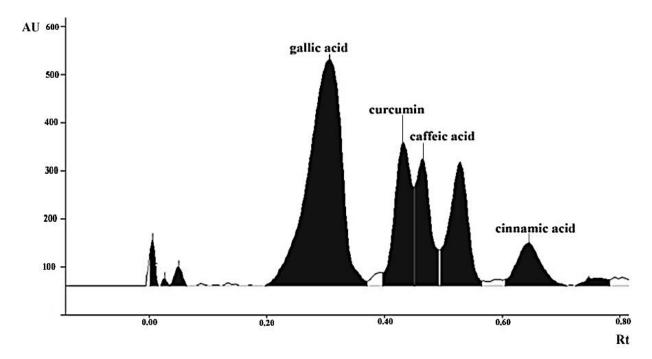


Figure 6. HPTLC chromatogram of identified phytochemical constituents' profile hydroethanolic extract of *E. ganitrus* leaves.

Table 4: Pharmacological properties of major bioactive compounds identified in LC-MS, HPLC, and HPTLC analyses

Compound name	Pharmacological properties	Chemical Structure	References
2-dehydro-O-desmethylangolensin	antioxidant	НО	Ali et al., 2021

3,4- dihydroxyphenylacetic acid (DOPAC)	antioxidant, anti- inflammatory	но	Liu et al., 2017
Daidzein (3'- hydroxydaidzein)	antioxidant	но он	Zhang <i>et al.</i> , 2 023
3-hydroxyphloretin 2'- O-xylosyl-glucoside	antioxidant	HO HO OH OH	Zhu et al., 2022
Canolol (4- vinylsyringol)	antimutagens and anticarcinogens, antioxidant	OH O	Kraljić <i>et al.</i> , 2015
Anthocyanins (flavylium)	anti-inflammatory, antioxidant, antidiabetic, cardio protective, neuroprotective	*	Salehi <i>et al.</i> , 2020; Ayvaz <i>et al.</i> , 2022
Apigenin 6-C- glucoside(Isovitexin)	Antidiabetic	HO OH OH OH	Abdulai <i>et al.</i> , 2021
Caffeic acid	anticancer and neuroprotective	HO HO	Zhang et al., 2019; Mirzaei et al., 2021
Caffeoyl glucose	Antidiabetic, antioxidant	HO OH	Alcázar Magaña et al., 2021

Catechin	anticancer and anti- inflammatory	но он он	Musial <i>et al.</i> , 2020
Chlorogenic acid	antidiabetic, anti- adipogenic, neuroprotective	но он он	Pimpley et al., 2020
Chrysoeriol 7-0-glucoside	anticancer, antidiabetic, anti- diabetic, cardio- protective, neuroprotective	HO OH	Aboulaghras et al., 2022
Cinnamic acid	Antioxidant, antimicrobial, antidiabetic, anti- inflammatory, anticancer, neuroprotective	но	Kowalska <i>et al.</i> , 2021
Cinnamtannin A2	antioxidant, anti- inflammatory	HO HOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHOHO	Li <i>et al.</i> , 2020
Coumarin	anticancer, anti- inflammatory, anticonvulsant,		Srikrishna <i>et al.</i> , 2018

	antimicrobial, antioxidant		
Curcumin	anticancer, anti- inflammatory, antioxidant, neuroprotective	H0 0	Fu et al., 2021
Cyanidin 3,5-O-diglucoside	antioxidant, antidiabetic, antiaging, cardio- protective	HO OH OH OH OH OH	Olivas-Aguirre <i>et</i> al., 2016
(Myrtillin) delphinidin 3-O-glucoside	antioxidant, anti- inflammatory, anticancer	HO OH OH OH	Sharma et al., 2021
Epicatechin	Cardio-protective	но он он	Dicks et al., 2022
Ferullic acid	neuroprotective	НО	Dong et al., 2022
Gallic acid	antioxidant, antimicrobial, anticancer	но	Bai et al., 2022; Jiang et al., 2022
Hesperetin 3'- 0'glucuronide	antiviral, anticancer, neuroprotective, anti-inflammatory	НО	Muhammad et al., 2019

Hesperidin	anti-inflammatory, neuroprotective	HO OH OH OH	Ortiz et al., 2022
(Salicylic acid) hydroxybenzoic acid	antioxidant, antimicrobial	HO	Kalinowska <i>et al.</i> , 2021
Hydroxycinnamic acids	antioxidant, anti- adipogenic	ОН	Cardile et al., 2015
kaempferol 3-0- glucosyl-rhamnosyl- galactoside	antioxidant, neuroprotective	HO HO HO H	Yuan et al., 2021
Luteolin	anticancer and neuroprotective	но он он	Imran <i>et al</i> 2019; De Luca <i>et al.</i> , 2022
Naringenin	anti-inflammatory activity	но он о	Wang et al., 2020

Neodiosmin	anticancer	HO OH OH OH	Zheng <i>et al.</i> , 2020
P-Aminobenzoic acid	antifungal	HO NH ₂	Laborda et al., 2018
Patuletin	anti-inflammatory, antinociceptive, antioxidant, antiplatelet, antiproliferative, hepatoprotective	HO OH OH	Patel et al., 2023
Pelargonidin 3-O-rutinoside	antidiabetic	H H H H H H H H H H H H H H H H H H H	Xu et al., 2018

Peonidin 3-O-diglucoside-5-O-glucoside	anti-inflammatory, antioxidant,	H O H O H	Sari <i>et al</i> ., 2019
Pinocembrin	neuroprotective	HO	Gong et al., 2020
procyanidin dimer B1	anti-infectious, anti-inflammatory, cardio protective, antimicrobial, antiviral, antimutagenic, antihyperglycemic, anti-allergic	но он он он он он он	Rue et al., 2018
Procyanidin trimer C1	anti-infectious, anti-inflammatory, cardio protective, antimicrobial, antiviral, antimutagenic, antihyperglycemic, anti-allergic	HO OH OH OH OH OH OH OH OH	Rue et al., 2018

Quercetin	anti-inflammatory	OH O OH H ₂ O OH OH	Yi et al., 2021
Salvianolic acid B	anti-cancer, antifibrosis, anti-diabetic		Ma et al., 2019
Scopoletin	Antioxidant, antimicrobial, anticarcinogenic, anti-metabolic disorder, neuroprotective	но	Antika <i>et al.</i> , 2022
Sinapic acid	antioxidant, anti- inflammatory, anticancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, antidiabetic, anxiolytic and antibacterial	но	Pandi and Kalappan, 2021
Syringaldehyde	antioxidant, anti- inflammatory, and antidiabetes	O O H	Wu et al., 2022

Verbascoside	neuroprotective	HO OH OH	Zhao et al., 2023
Violanone	antimicrobial, antifungal	O D D D D D D D D D D D D D D D D D D D	Deesamer et al., 2007

Conclusion

The phytochemical profile of *E. ganitrus* leaf extract was characterized using HPLC, LC-MS, and HPTLC analyses. The hydroethanolic fraction of *E. ganitrus* leaf was found to contain valuable metabolites: phenolic acid, polyphenols, flavonoids, phenols, phenolic glycosides, flavonoid glycosides, terpene glycoside, phenylpropanoid glycoside, hydroxycinnamic acid, hydroxybenzoic acid, phenolic aldehyde, lignin, and tannins. The phytochemicals could be employed as potential biochemical markers because different phytochemicals were detected in three studied (HPLC, LC-MS, and HPTLC) analytical techniques. Previous research has shown that *Elaeocarpus* species contain beneficial bioactive compounds in significant amounts, which have a wide range of applications in the pharmaceutical, food, and cosmetic industries. Moreover, only a limited number of researches are available on the phytochemical profiling of *E. ganitrus*. Hence, extensive investigations on phytochemical analysis and pharmacological activities of different fractions of leaf, fruit (bead), and pulp of *E. ganitrus* would be of much interest using a combination of modern analytical techniques or assays. Further research is required to isolate and characterize individual bioactive compounds and to validate their therapeutic potential.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no funding support.

Acknowledgment

The authors acknowledge all the faculty and staff members of the Department of Biotechnology, Department of Biomedical Engineering, Department of Agriculture Technology & Agri–Informatics, Shobhit Institute of Engineering & Technology, (Deemed-to-be University), Meerut, 250110, India for their support and motivation.

References

- Abdulai, I.L., Kwofie, S.K., Gbewonyo, W.S., Boison, D., Puplampu, J.B., & Adinortey, M.B. (2021). Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications. *The Scientific World Journal*, 2021, 6641128. https://doi.org/10.1155/2021/6641128.
- 2. Aboulaghras, S., Sahib, N., Bakrim, S., Benali, T., Charfi, S., Guaouguaou, F.E., Omari, N.E., Gallo, M., Montesano, D., Zengin, G., Taghzouti, K., & Bouyahya, A. (2022). Health Benefits and Pharmacological Aspects of Chrysoeriol. *Pharmaceuticals* (*Basel, Switzerland*), 15(8), 973. https://doi.org/10.3390/ph15080973.
- **3.** Alcázar Magaña, A., Kamimura, N., Soumyanath, A., Stevens, J.F., & Maier, C.S. (2021). Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. *The Plant journal: for cell and molecular biology*, 107(5), 1299–1319. https://doi.org/10.1111/tpj.15390.
- **4.** Ali, A., Wu, H., Ponnampalam, E.N., Cottrell, J.J., Dunshea, F.R., & Suleria, H.A.R. (2021). Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through L.C.-E.S.I.-Q.T.O.F.-MS² and Their Antioxidant Potential. *Antioxidants* (*Basel*, *Switzerland*), 10(5), 721. https://doi.org/10.3390/antiox10050721.
- **5.** Antika, L.D., Tasfiyati, A.N., Hikmat, H., & Septama, A.W. (2022). Scopoletin: a review of its source, biosynthesis, methods of extraction, and pharmacological activities. *Zeitschrift fur Naturforschung. C, Journal of biosciences*, 77(7-8), 303–316. https://doi.org/10.1515/znc-2021-0193.
- 6. Ayvaz, H., Cabaroglu, T., Akyildiz, A., Pala, C.U., Temizkan, R., Ağçam, E., Ayvaz, Z., Durazzo, A., Lucarini, M., Direito, R., & Diaconeasa, Z. (2022). Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. *Antioxidants (Basel, Switzerland)*, 12(1), 48. https://doi.org/10.3390/antiox12010048.

- 7. Bai, J., Zhang, Y., Tang, C., Hou, Y., Ai, X., Chen, X., Zhang, Y., Wang, X., & Meng, X. (2021). Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 133, 110985. https://doi.org/10.1016/j.biopha.2020.110985.
- **8.** Banerjee, C., Nandy, S., Chakraborty, J., & Kumar, D. (2022). Myricitrin -a flavonoid isolated from the Indian olive tree (Elaeocarpus floribundus) -inhibits monoamine oxidase in the brain and elevates striatal dopamine levels: therapeutic implications against Parkinson's disease. *Food Funct.* 13(12), 6545–6559. https://10.1039/d 2fo00734g.
- **9.** Bordoloi, M., Saikia, S., Bordoloi, P.K., Kolita, B., Dutta, P.P., Bhuyan, P.D., & Rao, P.G. (2017). Isolation, characterization and antifungal activity of very long chain alkane derivatives from Cinnamomum obtusifolium, Elaeocarpus lanceifolius and Baccaurea sapida. *J. Mol. Struct.*, 1142, 200–210. https://doi.org/10.1016/j. molstruc.2017.04.027.
- 10. Cardile, V., Graziano, A.C., & Venditti, A. (2015). Clinical evaluation of Moro (Citrus sinensis (L.) Osbeck) orange juice supplementation for the weight management. *Natural product research*, 29(23), 2256–2260. https://doi.org/10.1080/14786419.2014.1000897.
- **11.** de Lima, F.F., Breda, C.A., Cardoso, C.A.L., Duarte, M.C.T., & Sanjinez-Argandoña, E.J. (2019). Evaluation of nutritional composition, bioactive compounds and antimicrobial activity of Elaeocarpus serratus fruit extract. *African Journal of Food Science*, 13(1), 30-37. https://doi.org/10.5897/AJFS2018.1760.
- 12. De Luca, P., Camaioni, A., Marra, P., Salzano, G., Carriere, G., Ricciardi, L., Pucci, R., Montemurro, N., Brenner, M. J., & Di Stadio, A. (2022). Effect of Ultra-Micronized Palmitoylethanolamide and Luteolin on Olfaction and Memory in Patients with Long COVID: Results of a Longitudinal Study. *Cells*, 11(16), 2552. https://doi.org/10.3390/cells11162552.
- 13. Deesamer, S., Kokpol, U., Chavasiri, W., Douillard, S., Peyrot, V., Vidal, N., Combes, S., & Finet, J.P. (2007). Synthesis and biological evaluation of isoflavone analogues from Dalbergia oliveri. Tetrahedron, 63(52), 12986-12993. https://doi.org/10.1016/j.tet.2007.10.030.
- **14.** Dicks, L., Haddad, Z., Deisling, S., & Ellinger, S. (2022). Effect of an (-)-Epicatechin Intake on Cardiometabolic Parameters-A Systematic Review of Randomized Controlled Trials. *Nutrients*, 14(21), 4500. https://doi.org/10.3390/nu14214500.

- **15.** Dong, X., & Huang, R. (2022). Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. *Phytomedicine: international journal of phytotherapy and phytopharmacology*, 105, 154355.
- **16.** Ezeoke, M.C., Krishnan, P., Sim, D.S.Y., Lim, S.H., Low, Y.Y., Chong, K.W., & Lim, K.H. (2018). Unusual phenethylamine-containing alkaloids from Elaeocarpus tectorius. *Phytochemistry*, 146, 75–81. https://doi.org/10.1016/j.phytochem.2017.12.003.
- **17.** Fang, X., Phoebe Jr., C.H., Pezzuto, J.M., Fong, H.H., Farnsworth, N.R., Yellin, B., & Hecht, S.M. (1984). Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus. *J. Nat. Prod.* 47 (6), 988–993. https://doi.org/10.1021/np50036a013.
- **18.** Fu, Y.S., Chen, T.H., Weng, L., Huang, L., Lai, D., & Weng, C.F. (2021). Pharmacological properties and underlying mechanisms of Curcumin and prospects in medicinal potential. *Biomedicine & pharmacotherapy*, 141, 111888. https://doi.org/10.1016/j.biopha.2021.111888.
- **19.** Göger, G., Köse, Y.B., Demirci, F., & Göger, F. (2021). Phytochemical Characterization of Phenolic Compounds by LC-MS/MS and Biological Activities of *Ajuga reptans* L., *Ajuga salicifolia* (L.) Schreber and *Ajuga genevensis* L. from Turkey. *Turkish journal of pharmaceutical sciences*, 18(5), 616–627. https://doi.org/10.4274/tjps.galenos.2021.33958.
- **20.** Gong, L.J., Wang, X.Y., Gu, W.Y., & Wu, X. (2020). Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. *Journal of neuroinflammation*, 17(1), 337. https://doi.org/10.1186/s12974-020-02014-w.
- **21.** Habibah, N.A., Anggraito, Y., Nugrahaningsih, N., Safitri, S., Musafa, F., Wijayati, N. (2021). LC-MS Based Secondary Metabolites Profile of Elaeocarpus grandiflorus J.E. Smith. Cell Suspension Culture Using Picloram and 2,4-Dichlorophenoxyacetic Acid. *Tropical Journal of Natural Product Research*, 5(8),1403-1408.
- **22.** Hong, W., Zhang, Y., Yang, J., Xia, M.Y., Luo, J.F., Li, XN, & Wang, J.S. (2019). Alkaloids from the branches and leaves of Elaeocarpus angustifolius. *J. Nat. Prod.* 82 (12), 3221–3226. https://doi.org/10.1021/acs.jnatprod.8b01027.
- 23. Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M.A., Khan, I.A., Imran, A., Orhan, I.E., Rizwan, M., Atif, M., Gondal, T.A., & Mubarak, M.S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie*, 112, 108612. https://doi.org/10.1016/j.biopha.2019.108612.

- **24.** Ito, A., Chai, H.B., Lee, D., Kardono, L.B.S., Riswan, S., Farnsworth, N.R., & Kinghorn, AD (2002). Ellagic acid derivatives and cytotoxic cucurbitacins from Elaeocarpus mastersii. *Phytochemistry*, 61(2), 171–174. https://doi.org/10.1016/S0031-9422 (02)00232-7.
- **25.** Jiang, Y., Pei, J., Zheng, Y., Miao, Y.J., Duan, B.Z., & Huang, L.F. (2022). Gallic Acid: A Potential Anticancer Agent. *Chinese journal of integrative medicine*, 28(7), 661–671. https://doi.org/10.1007/s11655-021-3345-2.
- **26.** Johns, S.R., & Lamberton, J.A. (1973). Chapter 8 Elaeocarpus alkaloids. In: Manske, R.H.F. (Ed.), The Alkaloids: Chemistry and Physiology. Academic Press, pp. 325–346. Vol. 14.
- **27.** Joo, Y.H., Lee, Y.G., Lim, Y., Jeon, H., Kim, E.H., Choi, J., & Seo, Y.J. (2022). Potent antiviral activity of the extract of Elaeocarpus sylvestris against influenza A virus in vitro and in vivo. *Phytomedicine*, 97, 153892. https://doi.org/10.1016/j. phymed.2021.153892.
- 28. Kalinowska, M., Gołębiewska, E., Świderski, G., Męczyńska-Wielgosz, S., Lewandowska, H., Pietryczuk, A., Cudowski, A., Astel, A., Świsłocka, R., Samsonowicz, M., Złowodzka, A. B., Priebe, W., & Lewandowski, W. (2021). Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in M.D.A.-MB-231 and M.C.F.-7 Cell Lines. *Nutrients*, 13(9), 3107. https://doi.org/10.3390/nu13093107.
- **29.** Katavic, P.L., Venables, D.A., Forster, P.I., Guymer, G., & Carroll, A.R. (2006). Grandisines C-G, indolizidine alkaloids from the Australian rainforest tree Elaeocarpus grandis. *J. Nat. Prod.* 69 (9), 1295–1299. https://doi.org/10.1021/np060179c.
- **30.** Katavic, P.L., Venables, D.A., Rali, T., & Carroll, A.R., (2007). Indolizidine alkaloids with delta-opioid receptor binding affinity from the leaves of Elaeocarpus fuscoides. *J. Nat. Prod.* 70 (5), 872–875. https://doi.org/10.1021/np060607e.
- **31.** Kim, M.J., Kim, Y.Y., Choi, Y.A., Baek, M.C., Lee, B., Park, P.H., & Kim, S.H. (2018). Elaeocarpusin inhibits mast cell-mediated allergic inflammation. *Front. Pharmacol.* 9, 591. https://doi.org/10.3389/fphar.2018.00591.
- **32.** Kim, Y.S., Chung, H.S., Noh, S.G., Lee, B., Chung, H.Y., & Choi, J.G. (2021). Geraniin inhibits the entry of SARS-CoV-2 by blocking the interaction between spike protein RBD and human ACE2 receptor. *Int. J. Mol. Sci.* (16), 22. https://doi.org/10.3390/ ijms22168604.

- **33.** Kowalska, J., Tyburski, J., Matysiak, K., Jakubowska, M., Łukaszyk, J., & Krzymińska, J. (2021). Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. *Molecules (Basel, Switzerland)*, 26(17), 5299. https://doi.org/10.3390/molecules26175299.
- **34.** Kraljić, K., Škevin, D., Barišić, L., Kovačević, M., Obranović, M., & Jurčević, I. (2015). Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. *Food*chemistry, 187, 236–242. https://doi.org/10.1016/j.foodchem.2015.04.039.
- **35.** Kumar, B.R. (2017). Application of HPLC and E.S.I.-M.S. techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). *Journal of pharmaceutical analysis*, 7(6), 349–364. https://doi.org/10.1016/j.jpha.2017.06.005.
- **36.** Kumari, B., Santosh, K., Tiwari, Srivastava, A., & Tiwari, S. (2018). Elaeocarpus spp.: a threatened power generating plant, its geographical distribution, propagation through in vivo condition and its medicinal aspects. *Int. J. Fauna Biol. Stud.* 5(2), 27–31. https://doi.org/10.13140/RG.2.2.21211.87842.
- **37.** Kushwaha, J., & Joshi, A. (2023). In silico characterization and phylogenetic analysis of Elaeocarpus ganitrus based on ITS2 barcode sequence *International Journal of Biotech Trends and Technology*. 13(2), 26-37. https://doi.org/10.14445/22490183/IJBTT-V13I2P604.
- **38.** Laborda, P., Zhao, Y., Ling, J., Hou, R., & Liu, F. (2018). Production of Antifungal p-Aminobenzoic Acid in Lysobacter antibioticus OH13. *Journal of agricultural and food chemistry*, 66(3), 630–636. https://doi.org/10.1021/acs.jafc.7b05084.
- **39.** Li, N., Xu, M., Wu, M., & Zhao, G. (2020). Cinnamtannin A2 protects the renal injury by attenuates the altered expression of kidney injury molecule 1 (K.I.M.-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression in 5/6 nephrectomized rat model. *AMB Express*, 10(1), 87. https://doi.org/10.1186/s13568-020-01022-6.
- 40. Liu, Y., Kurita, A., Nakashima, S., Zhu, B., Munemasa, S., Nakamura, T., Murata, Y., & Nakamura, Y. (2017). 3,4-Dihydroxyphenylacetic acid is a potential aldehyde dehydrogenase inducer in murine hepatoma Hepa1c1c7 cells. *Bioscience, biotechnology, and biochemistry*, 81(10), 1978–1983. https://doi.org/10.1080/09168451.2017.1361809.
- **41.** Liyanaarachchi, G.D., Samarasekera, J.K.R.R., Mahanama, K.R.R., & Hemalal, K.D.P. (2018). Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri

- Lankan medicinal plants for novel cosmeceuticals. *Ind. Crops Prod.*, 111, 597–605. https://doi.org/10.1016/j.indcrop.2017.11.019.
- **42.** Ma, L., Tang, L., & Yi, Q. (2019). Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. *Frontiers in pharmacology*, *10*, 97. https://doi.org/10.3389/fphar.2019.00097.
- **43.** Meng, D., Qiang, S., Lou, L., & Zhao, W. (2008). Cytotoxic cucurbitane-type triterpenoids from Elaeocarpus hainanensis. *Planta Med.* 74(14), 1741–1744. https://doi.org/10.1055/s-2008-1081356.
- **44.** Mirzaei, S., Gholami, M.H., Zabolian, A., Saleki, H., Farahani, M.V., Hamzehlou, S., Far, F.B., Sharifzadeh, S.O., Samarghandian, S., Khan, H., Aref, A.R., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. *Pharmacological research*, 171, 105759. https://doi.org/10.1016/j.phrs.2021.105759.
- **45.** Muhammad, T., Ikram, M., Ullah, R., Rehman, S.U., & Kim, M. O. (2019). Hesperetin, a Citrus Flavonoid, Attenuates L.P.S.-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling. *Nutrients*, 11(3), 648. https://doi.org/10.3390/nu11030648.
- **46.** Mundaragi, A., Thangadurai, D., Sangeetha, J., & Bhat, S. (2019). Phenolic composition, volatile constituents and antioxidant potential of wild edible fruit elaeocarpustectorius (lour.) Poir. (Elaeocarpaceae). *Farmacia*, 67, 2311. https://doi.org/10.31925/farmacia.2019.2.16.
- **47.** Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. *International journal of molecular sciences*, 21(5), 1744. https://doi.org/10.3390/ijms21051744.
- **48.** Muthuswamya, R., & Senthamarai, R. (2014). Pharmacognostical studies on the fruit of Elaeocarpus oblongus Gaertn. *Pheog J.*, 6(3).
- **49.** Nile, S.H., & Park, S.W. (2014). HPTLC Analysis, Antioxidant and Antigout Activity of Indian Plants. *Iranian journal of pharmaceutical research*, 13(2), 531–539.
- **50.** Ogundele, A.V., & Das, A.M. (2019). Chemical constituents from the leaves of Elaeocarpus floribundus. *Nat. Prod. Res.* 35(3), 517–520. https://doi.org/10.1080/14786419.2019.1637870.
- **51.** Ogundele, A.V., Yadav, A., Haldar, S., & Das, A.M. (2021). Antimicrobial activities of extract, fractions and isolated compounds from the fruits of Elaeocarpus floribundus

- growing in North-East India. *J. Herb. Med.* 30, 100511 https://doi.org/10.1016/j. hermed.2021.100511.
- **52.** Olivas-Aguirre, F.J., Rodrigo-García, J., Martínez-Ruiz, N.D., Cárdenas-Robles, A.I., Mendoza-Díaz, S.O., Álvarez-Parrilla, E., González-Aguilar, G.A., de la Rosa, L.A., Ramos-Jiménez, A. & Wall-Medrano, A. (2016). Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. *Molecules (Basel, Switzerland)*, 21(9), 1264. https://doi.org/10.3390/molecules21091264.
- **53.** Ortiz, A.C., Fideles, S.O.M., Reis, C.H.B., Bellini, M.Z., Pereira, ESBM, Pilon, J.P.G., de Marchi, M.Â., Detregiachi, C.R.P., Flato, U.A.P., Trazzi, B.F.M., Pagani, B.T., Ponce, J.B., Gardizani, T.P., Veronez, F.S., Buchaim, D.V., & Buchaim, R.L. (2022). Therapeutic Effects of Citrus Flavonoids Neohesperidin, Hesperidin and Its Aglycone, Hesperetin on Bone Health. *Biomolecules*, 12(5), 626. https://doi.org/10.3390/biom12050626.
- **54.** Pan, L., Yong, Y., Deng, Y., Lantvit, D.D., Ninh, T.N., Chai, H., & Kinghorn, AD (2012). Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. *J. Nat. Prod.*, 75 (3), 444–452. https://doi.org/10.1021/np200879p.
- **55.** Pandi, A., & Kalappan, V.M. (2021). Pharmacological and therapeutic applications of Sinapic acid-an updated review. *Molecular biology reports*, 48(4), 3733–3745. https://doi.org/10.1007/s11033-021-06367-0.
- **56.** Patel, D.K., Kumar Singh, G., Husain, G.M., & Prasad, S.K. (2023). Ethnomedicinal importance of Patuletin in Medicine: Pharmacological Activities and Analytical Aspects. *Endocrine, metabolic & immune disorders drug targets*, 10.2174/1871530323666230816141740. Advance online publication. https://doi.org/10.2174/1871530323666230816141740.
- **57.** Pimpley, V., Patil, S., Srinivasan, K., Desai, N., & Murthy, P.S. (2020). The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. *Preparative biochemistry & biotechnology*, 50(10), 969–978. https://doi.org/10.1080/10826068.2020.1786699.
- **58.** Primiani, C.N., Pujiati, P., & Setiawan, M.A. (2019). Bioactive Compounds Profile of Alkaloid on Elaeocarpus sphaericus Schum Seeds by Liquid Chromatography-Mass Spectrometry. *Advances in Social Science, Education and Humanities Research*, 630.
- **59.** Rai, D.V., Sharma, S., & Rastogi, M. (2018). Scientific Research On Elaeocarpus Ganitrus (Rudraksha) For Its Medicinal Importance, *Pb. Univ. Res. J (Sci.)*, 68, 1-6.

- **60.** Ray, A.B., Chand, L., & Pandey, V.B. (1979). Rudrakine, a new alkaloid from Elaeocarpus ganitrus. *Phytochemistry*, 18(4), 700–701. https://doi.org/10.1016/S0031-9422(00) 84309-5.
- **61.** Rue, E.A., Rush, M.D., & van Breemen, R.B. (2018). Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. *Phytochemistry reviews*, 17(1), 1–16. https://doi.org/10.1007/s11101-017-9507-3.
- 62. Salehi, B., Sharifi-Rad, J., Cappellini, F., Reiner, Ž., Zorzan, D., Imran, M., Sener, B., Kilic, M., El-Shazly, M., Fahmy, N.M., Al-Sayed, E., Martorell, M., Tonelli, C., Petroni, K., Docea, A.O., Calina, D., & Maroyi, A. (2020). The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. *Frontiers* in pharmacology, 11, 1300. https://doi.org/10.3389/fphar.2020.01300.
- **63.** Salmerón-Manzano, E., Garrido-Cardenas, J. A., & Manzano-Agugliaro, F. (2020). Worldwide Research Trends on Medicinal Plants. *International journal of environmental research and public health*, 17(10), 3376. https://doi.org/10.3390/ijerph17103376.
- **64.** Sari, D. R. T., Cairns, J. R. K., Safitri, A., & Fatchiyah, F. (2019). Virtual Prediction of the Delphinidin-3-O-glucoside and Peonidin-3-O-glucoside as Anti-inflammatory of TNF-α Signaling. *Acta informatica medica: AIM: journal of the Society for Medical Informatics of Bosnia & Herzegovina:casopis Drustva za medicinsku informatiku BiH*, 27(3), 152–157. https://doi.org/10.5455/aim.2019.27.152-157.
- **65.** Sharma, A., Choi, H.K., Kim, Y.K., & Lee, H.J. (2021). Delphinidin and Its Glycosides' War on Cancer: Preclinical Perspectives. *International journal of molecular sciences*, 22(21), 11500. https://doi.org/10.3390/ijms222111500.
- **66.** Sharma, S., Rastogi, M., Rai, D.V., Singh, N., Sharma, G., & Singh, K. (2022). Electrical behavior of plant based material. *Materials Today: Proceedings*, 79(2), 349-354 https://doi.org/10.1016/j.matpr.2022.12.035.
- **67.** Shitamoto, J., Matsunami, K., Otsuka, H., Shinzato, T., & Takeda, Y. (2010). Elaeocarpionoside, a megastigmane glucoside from the leaves of Elaeocarpus japonicus Sieb. *Zucc. J. Nat. Med.*, 64(1), 104–108. https://doi.org/10.1007/s11418-009-0370-4.
- **68.** Singh, P.K., Singh, J., Medhi, T., & Kumar, A. (2022). Phytochemical Screening, Quantification, F.T.-I.R. Analysis, and *In Silico* Characterization of Potential Bioactive Compounds Identified in H.R.-LC/MS Analysis of the Polyherbal Formulation

- from Northeast India. *ACS omega*, 7(37), 33067–33078. https://doi.org/10.1021/acsomega.2c03117.
- **69.** Sircar, B., Mandal, M., Mondal, M.A., & Mandal, S. (2017). High performance liquid chromatography analysis and anti-methicillinresistant staphylococcus aureus activity of olive fruit ethanolic extract. *Int. Res. J. Pharm.*, 8(7).
- **70.** Srikrishna, D., Godugu, C., & Dubey, P.K. (2018). A Review on Pharmacological Properties of Coumarins. *Mini reviews in medicinal chemistry*, 18(2), 113–141. https://doi.org/10.2174/1389557516666160801094919.
- **71.** Sudradjat, S.E., & Timotius, K.H. (2022). Pharmacological properties and phytochemical components of Elaeocarpus: A comparative study. *Phytomedicine Plus*, 2(4), 100365. https://doi.org/10.1016/j.phyplu.2022.100365.
- **72.** Turner, A., Bond, D.R., Vuong, Q.V., Chalmers, A., Beckett, E.L., Weidenhofer, J., & Scarlett, C.J. (2020). Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro. *Mol. Biol. Rep.* 47(3), 2073–2084. https://doi.org/10.1007/s11033-020-05307-8.
- **73.** Wang, Q., Ou, Y., Hu, G., Wen, C., Yue, S., Chen, C., Xu, L., Xie, J., Dai, H., Xiao, H., Zhang, Y., & Qi, R. (2020). Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. *British journal of pharmacology*, 177(8), 1806–1821. https://doi.org/10.1111/bph.14938.
- **74.** Wu, J., Fu, Y.S., Lin, K., Huang, X., Chen, Y.J., Lai, D., Kang, N., Huang, L., & Weng, C.F. (2022). A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. *Biomedicine & pharmacotherapy*, 153, 113339. https://doi.org/10.1016/j.biopha.2022.113339.
- **75.** Xu, Y., Xie, L., Xie, J., Liu, Y., & Chen, W. (2018). Pelargonidin-3-O-rutinoside as a novel α-glucosidase inhibitor for improving postprandial hyperglycemia. *Chemical communications*, 55(1), 39–42. https://doi.org/10.1039/c8cc07985d.
- **76.** Yi, H., Peng, H., Wu, X., Xu, X., Kuang, T., Zhang, J., Du, L., & Fan, G. (2021). The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. *Oxidative medicine and cellular longevity*, 2021, 6678662.
- 77. Yuan, Y., Zhai, Y., Chen, J., Xu, X., & Wang, H. (2021). Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. *Biomolecules*, 11(7), 923. https://doi.org/10.3390/biom11070923.

- **78.** Zhang, J., Shao, J., Da, QY, Ma, PH, & Jing, L.L. (2023). Convenient Synthesis, Antioxidant and Anti-Hypoxia Activities of 8-Hydroxy, 3'-Hydroxy, and 8,3'-Dihydroxydaidzein from Daidzein. *Chem Nat Compd.*, 59, 444–450. https://doi.org/10.1007/s10600-023-04020-9.
- **79.** Zhang, Y., Wu, Q., Zhang, L., Wang, Q., Yang, Z., Liu, J., & Feng, L. (2019). Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson's disease. *Pharmacological research*, 150, 104538. https://doi.org/10.1016/j.phrs.2019.104538,.
- **80.** Zhao, Y., Wang, S., Pan, J., & Ma, K. (2023). Verbascoside: A neuroprotective phenylethanoid glycosides with anti–depressive properties. *Phytomedicine international journal of phytotherapy and phytopharmacology*, 120, 155027. https://doi.org/10.1016/j.phymed.2023.155027.
- **81.** Zheng, Y., Zhang, R., Shi, W., Li, L., Liu, H., Chen, Z., & Wu, L. (2020). Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. *Food & function*, 11(10), 8472–8492. https://doi.org/10.1039/d0fo01598a.
- **82.** Zhu, Z., Zhong, B., Yang, Z., Zhao, W., Shi, L., Aziz, A., Rauf, A., Aljohani, A.S.M., Alhumaydhi, F.A., & Suleria, H.A.R. (2022). L.C.-E.S.I.-Q.T.O.F.-MS/MS Characterization and Estimation of the Antioxidant Potential of Phenolic Compounds from Different Parts of the Lotus (*Nelumbo nucifera*) Seed and Rhizome. *ACS omega*, 7(17), 14630–14642. https://doi.org/10.1021/acsomega.1c07018.