

Disruption of myelin structure and oligodendrocyte maturation in a pigtail macaque model of congenital Zika infection

Graphical abstract (also **Fig. S8** – see supplemental information for figure legend)

Jennifer Tisoncik-Go^{1,*}, Caleb Stokes^{1,2,*}, Leanne S. Whitmore¹, Daniel J. Newhouse¹, Kathleen Voss¹, Andrew Gustin¹, Cheng-Jung Sung¹, Elise Smith¹, Jennifer Stencel-Baerenwald¹, Edward Parker³, Jessica M. Snyder⁴, Dennis W. Shaw⁵, Lakshmi Rajagopal^{2,6,7}, Raj P. Kapur^{8,9}, Kristina Adams Waldorf^{7,10,11}, and Michael Gale Jr.^{1,7,10}

Affiliations:

¹Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA

²Department of Pediatrics, University of Washington, Seattle, Washington, USA

³Department of Ophthalmology, NEI Core for Vision Research, University of Washington, Seattle, Washington, USA

⁴Department of Comparative Medicine, University of Washington, Seattle, Washington, USA

⁵Department of Radiology, University of Washington, Seattle Washington, USA

⁶Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA

⁷Department of Global Health, University of Washington, Seattle, Washington, USA

⁸Department of Pathology, University of Washington, Seattle, Washington, USA

⁹Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA

¹⁰Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA

¹¹Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden

*These authors contributed equally to this work

Contact: Correspondence should be addressed to MG (mgale@uw.edu) and KAW (adamsk@uw.edu)

Additional Footnotes:

Abstract

1 Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and
2 neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly
3 understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure
4 model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure *in utero*. We
5 found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive
6 downregulation in gene expression for key components of oligodendrocyte maturation and myelin
7 production. Immunohistochemical analyses revealed marked decreases in myelin basic protein
8 intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin
9 sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or
10 remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte
11 gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked
12 brain injury underlying CZS resulting from ZikV exposure *in utero*. Because myelin is critical for
13 cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term
14 consequences on childhood neurodevelopment, even in the absence of overt microcephaly.

15 Main

16 Maternal infection during pregnancy can have severe consequences on fetal development
17 and survival. Zika virus (ZikV) is an emerging flavivirus that can be vertically transmitted to the fetus
18 from an infected pregnant mother, leading to congenital Zika syndrome (CZS), which encompasses
19 a range of fetal malformations including hearing loss, ocular manifestations, intrauterine growth
20 restriction, and microcephaly¹⁻⁴, as well as miscarriage⁵⁻⁷. CZS persists post-partum and imposes
21 major complications to childhood development, now manifested across ZikV-endemic regions^{8,9}.
22 While the mechanism of microcephaly in CZS is thought to be related to ZikV infection and death of
23 neural progenitor cells leading to decreased neurogenesis¹⁰⁻¹², the pathogenesis of
24 neurodevelopmental delay in CZS displaying normal brain development, termed “normocephalic”, is
25 poorly understood. Important questions remain in understanding the impact of ZikV infection on
26 prenatal development, and perhaps chief among these is the question of how ZikV causes
27 neurologic injury in CZS, including among normocephalic outcomes.

28 Neuronal remodeling and myelination are major processes that account for central nervous
29 system (CNS) growth and maturation¹³. Myelin, an extension of the lipid membrane of
30 oligodendrocytes, wraps around axons and plays a critical role in neuronal function by insulating and
31 facilitating efficient transmission of electrical signals along the axon¹⁴. In humans, myelination
32 initiates as early as the fifth fetal month within the caudal brain stem and progresses rostrally to the
33 forebrain, with rapid additional development within the first two years of postnatal life¹⁵⁻¹⁷. Formation
34 of myelin by oligodendrocytes is necessary for the development of complex neurologic circuits that
35 underlie movement, sensory processing, cognition, and memory¹⁸⁻²². However, in fetal development
36 the myelinated axons in the deep cortex are uniquely susceptible to injury by hypoxia and
37 inflammation²³.

38 Nonhuman primate (NHP) models of ZikV infection in pregnancy recapitulate aspects of
39 vertical transmission, fetal neuropathology, fetal demise, and miscarriage observed in humans²⁴⁻²⁷.
40 We have established an NHP model of congenital ZikV infection in pregnancy wherein maternal to

41 fetal virus transmission can result in fetal neuropathology with microcephaly²⁸ or without
42 microcephaly²⁹, reflecting human CZS. Here, we employ a systems biology approach to characterize
43 CZS and define fetal demyelinating disease following maternal-to-fetal ZikV transmission in mid-to-
44 late gestation in the context of otherwise normocephalic fetal development. Spatial transcriptomic,
45 bulk mRNA sequencing (RNAseq), magnetic resonance imaging (MRI), histopathologic and virologic
46 analyses of fetal brain tissue reveal that ZikV-exposed fetuses have extensive changes in white
47 matter histology, gene expression, and specific protein levels occurring independent of microcephaly
48 and are sustained after ZikV RNA is cleared from the tissue. These alterations include genes that
49 span all maturational stages of oligodendrocyte development and reveal specific tissue
50 disorganization with altered oligodendrocyte morphology within brain lesions following fetal exposure
51 to ZikV. The structure of myelin in ZikV-exposed fetuses is perturbed and, in the most severely
52 affected animals, there is evidence of oligodendrocyte injury and axonal dysfunction. These findings
53 indicate that oligodendrocyte alteration leading to dysregulation of myelination and myelin wrap
54 maintenance are features of CZS. Since altered myelination in CZS can occur in the absence of
55 microcephaly, our findings implicate oligodendrocyte dysregulation and myelin disruption as an
56 underlying feature of CZS that could impact pre- and post-natal neurologic development in children
57 with CZS.

58

59 **Results**

60 In an established nonhuman primate model of transplacental Zika virus transmission, we
61 investigated neuropathological changes in fetal white matter after maternal ZikV infection during
62 pregnancy using spatial and bulk tissue transcriptomics, immunohistochemistry (IHC), electron
63 microscopy (EM) and magnetic resonance imaging (MRI) analyses. We conducted a cohort study of
64 6 maternal ZikV challenge animals who received ZikV subcutaneously at times ranging from 60-121
65 gestation days (GD), and 6 control animals who received saline (at 59-138 GD) instead of virus

challenge (**Fig. S1a and Table S1**). Animals ZikV1 and ZikV2 were challenged with ZikV/FSS13025/Cambodia²⁸, while animals ZikV 3-6 were challenged with ZikV/Brazil/Fortaleza/2015²⁹ (**Table S1**). Each fetus was delivered by Cesarean section at gestational ages ranging from 141-159 days, corresponding to late third trimester (**Table S2**). Within the ZikV challenge cohort, transient viremia was demonstrated across 6/7 ZikV-challenged dams at 2 days post-infection (DPI), with ZikV RNA detected in fetal brain at necropsy of 3/6 ZIKV cohort animals (**Fig. S1d**)²⁹.

To define fetal brain transcriptome changes following maternal infection with ZikV, we used spatial transcriptional profiling to identify gene expression patterns from discrete regions of interest (ROIs) in developing parietal cortex. We chose ROIs representing functionally distinct compartments as follows: grey matter (DGM, containing cortical Layer V pyramidal neuron cell bodies), superficial white matter (SWM, containing proximal axons in cortical Layer VI), and deep white matter (DWM, containing myelinated axons of projecting neurons deep to the cortex) (**Fig.1a**). ROI-specific gene expression patterns matched those predicted by the predominant cell types in each region (**Fig. 1b**). With regional signatures identified in healthy controls, we next assessed the impact of ZikV exposure on gene expression (**Fig. 1c**). Our analysis indicated that the largest magnitude of ZikV-related transcriptional changes occurred in the deep white matter (**Fig. 1d-e, Fig. S2a-b, Tables S3 and S4**). The DWM of ZikV-exposed animals compared to control had markedly reduced expression (downregulation) of oligodendrocyte genes fundamental to the formation and maintenance of myelin sheaths in the central nervous system, including *MBP*, *MOBP*, *PLP1*, and *CNP* (**Fig. 1d**). In contrast, the gray matter of ZikV-exposed fetal brains showed increased expression (upregulation) of genes underlying axon growth (*NCAM1*, *TUBB*, *GAP43*), and down-regulation of genes related presynaptic function (*CLPLX1*, *SLC17A7*, *SYN2*; **Fig. 1e**) compared to control.

An over representation analysis of significantly differentially expressed genes displayed using gene network analysis across DGM and DWM fetal brain regions demonstrated downregulation of oligodendrocyte differentiation and functional genes in the DWM of ZikV exposed

92 fetuses; DGM changes included upregulation of neuron projection guidance, cell migration, and
93 neuron development genes in DGM (**Fig. 1f** and **Table S5**). Upstream regulator analysis of DE genes
94 indicated decreased activity of the transcription factor *TCF7L2*, which controls oligodendrocyte
95 development and myelin-related gene expression^{30,31}; importantly, this decrease was predicated in
96 all three brain regions for ZikV exposed fetuses (**Fig. S2c**). This finding agreed with our identification
97 of decreased gene expression across all maturational stages of the oligodendrocyte lineage within
98 ZikV-exposed fetal DWM, including *SOX10* and *OLIG2*³² (**Fig. S2d**). *TCF7L2* expression was
99 downregulated in DWM although not significant by FDR test (FDR=0.19; p=0.03 by t-test). In
100 addition, DGM (and, to a lesser extent, DWM) had downregulated genes related to synaptic signaling
101 (e.g., *SYN2*, *SLC17A7*, and *CPLX1*). Upstream regulator analysis also predicted decreased activity
102 of the transcription factor *SOX2* in SWM and DWM of ZikV-exposed fetuses, consistent with our
103 previous report of reduced Sox2+ cells in neurogenic populations in the subventricular zone (SVZ)
104 of ZikV-exposed fetuses²⁹.

105 This spatial transcriptomic analysis resolved ZikV-related gene expression changes within
106 specific regions of parietal cortex. To examine changes of cell populations in the parietal cortex, we
107 performed bulk RNA sequencing (RNAseq) of superficial fetal cortical samples spanning the
108 anterior-posterior axis and used CIBERSORT³³ to deconvolve gene expression profiles to estimate
109 the relative abundances of cell types in the tissue. The bulk RNAseq analysis demonstrated
110 widespread transcriptional changes related to axon guidance and myelination across the fetal brain
111 (**Fig. S3a-c**)³⁰⁻³². Cellular deconvolution analysis indicated the proportions of cell types in fetal cortex
112 of ZikV-exposed animals were largely unchanged relative to controls (**Fig. S3d**). In animals with ZikV
113 RNA detectable by PCR in fetal brain, the spatial distribution spanned the parietal and occipital
114 cortex (**Fig. S1e**, **Fig. S3e**).

115 To further characterize myelin and oligodendrocytes, we analyzed white matter cellular
116 composition by performing immunohistochemistry on parietal and occipital cortex. The expression
117 of myelin basic protein (MBP), a key structural component of myelin, was significantly diminished in

118 brains of ZikV-exposed fetuses compared to controls (**Fig 2**). Qualitatively, this observation
119 corresponded to both a reduction in the MBP staining intensity and number of MBP+ fibers in most
120 cases (**Fig. S4a**). Luxol fast blue staining for compact myelin corroborated these findings, with
121 decreased staining of the white matter of ZikV-exposed animals (**Fig. S4b**). There were no
122 differences between control and ZikV-exposed fetal brain in the density of cells staining for Olig2
123 (**Fig. 2i**), which labels both oligodendrocyte precursors and myelinating oligodendrocytes^{34,35}. There
124 also were no significant differences in abundance of astrocytic marker, glial fibrillary acidic protein
125 (GFAP), or microglial marker, allograft inflammatory factor 1 (AIF-1/Iba1), in parietal cortex with
126 respect to ZikV exposure (**Fig. S4e-f**), or the density of NeuN-positive neurons in any layers of
127 cortex, either in occipital or parietal cortex (**Fig. S6**). However, we found a local increase in the GFAP
128 intensity and microglia density in the ependymal lining of the posterior lateral ventricle of ZikV
129 exposed animals, corresponding to a T2-bright primary lesion on MRI (**Fig. S5**). We also noted a
130 transition zone between ciliated ependymal cells and smooth columnar epithelium, with underlying
131 disruption in the cellular architecture (**Fig. S5d**). This observation is consistent with previous
132 descriptions of increased GFAP-immunoreactive gliosis and microglial activation in the
133 periventricular region within the central nervous system of a pregnant rhesus macaque ZikV infection
134 model^{26,28,29}.

135 To assess the spatial and temporal extent of the pathophysiological changes in ZikV exposed
136 animals, we reviewed serial magnetic resonance imaging. In addition to a previously described T2-
137 bright posterior periventricular (“primary”) lesion in ZikV-exposed animals²⁹, we noted T2-weighted
138 signal abnormalities in the subcortical white matter that were absent in age-matched controls
139 (compared at average GD123) and appeared to be persistent across multiple imaging time points
140 (**Fig. 3a-c**, see **Fig. S1**). These findings were most pronounced in parietal and occipital regions
141 corresponding to the primary sensory and visual areas of cortex. As T2-weighted MRI signal changes
142 may represent abnormal myelin structure, delayed myelination, or inflammation³⁶, we performed
143 histological and electron microscopic (EM) analysis of the primary lesion and the parietal cortex.

144 Although the white matter tissue appeared mildly vacuolated in ZikV-exposed animals compared to
145 controls, there was no evidence of inflammatory infiltrate for either group based on hematoxylin and
146 eosin staining (**Fig. 3d**). In the DGM overlying the site of the primary periventricular lesion, EM
147 revealed severe disruption to the brain parenchyma that was not observed in the control, while in
148 parietal grey matter there were less severe changes to ultrastructural architecture (**Fig. 3e**).

149 We further used EM to analyze the ultrastructural characteristics of axons in the white matter
150 of parietal cortex in control and ZikV-exposed fetal brain (**Fig. 4**). In both groups, most large-diameter
151 axons had a compact myelin sheath, with no consistent difference in axon diameter (**Fig. S7a-d**).
152 However, the myelin in ZikV-exposed animals had numerous focal areas in which the laminar
153 structure was disrupted, with outward bowing of the sheath and widened interlamellar spaces filled
154 with electron-dense material (**Fig. 4b**). We refer to this finding as “myelin decompaction,” as it
155 structurally resembles a phenotype that has been described in animal models of axonal injury and
156 in knockdown of myelin structural proteins such as MBP³⁷⁻⁴⁰. In many areas of decompacted myelin,
157 we observed swelling of the inner lamella of the myelin sheath. We did not find evidence of myelin
158 phagocytosis or increased density of phagocytes or other immune cells within the white matter (**Fig.**
159 **S4d**). Intact regions of myelin had apparently normal ultrastructural properties, including number of
160 wraps and wrap thickness (**Fig. 4c-d**, **Fig. S7e-f**). However, there was a significantly higher
161 proportion of axons with myelin decompaction in ZikV-exposed animals as compared to controls
162 (**Fig. 4e**). We measured the myelin g-ratio, which describes the fraction of the axon diameter
163 composed of myelin, and may be increased in demyelinating conditions⁴¹ or decreased in
164 hypomyelinating conditions¹⁹. There were no consistent differences in the g-ratio or the slope of the
165 regression line relating g-ratio to axon diameter across control and ZikV-exposed animals. However,
166 in the most severely affected ZikV exposed animal (ZIKA3), we found a reduced g-ratio (**Fig. 3f-g**,
167 **Fig. S7c**). Moreover, we found swelling of axonal mitochondria in ZIKA3 that is suggestive of axonal
168 stress or injury (**Fig. S7g-h**). Overall, there were no differences in fetal disease phenotype across

169 ZikV animals following exposure to either ZikV strain used in our studies, showing that CSZ is not
170 ZikV strain specific.

171 Together, these data demonstrate oligodendrocyte and myelin perturbation in ZikV-exposed
172 prenatal macaque brain spanning scale from altered gene expression to changes in cellular structure
173 and function, revealing links between myelin disease and neuronal dysfunction in CZS that may
174 have profound consequences on childhood neurodevelopment after fetal exposure to ZikV, even in
175 normocephalic infants.

176

177 **Discussion**

178 Neurotropic ZikV virus emerged to global importance as an etiologic agent of microcephaly
179 and is now recognized to cause CZS, characterized by extensive motor and cognitive impairment in
180 developing neonates^{42,43}. Neurodevelopmental delay has become apparent for ZikV-exposed
181 normocephalic infants born without microcephaly or other overt congenital anomalies⁴⁴⁻⁴⁷. Here, we
182 challenged pregnant pigtail macaques in mid-gestation with Asian or American lineage ZikV,
183 revealing similar normocephalic CZS phenotype across the fetal brain of all ZikV animals. This NHP
184 model reveals several key points i) CZS is not ZikV strain-specific but may manifest from different
185 viral strains following fetal exposure from maternal ZikV infection, and ii) CZS mirrors injury patterns
186 seen in humans, offering a window into the pathophysiological mechanisms underlying CZS^{26,28,29,48}.
187 We found widespread and severe disruption of CNS myelin in fetuses (5 female/1 male) that were
188 normocephalic and had no overt neuroanatomic abnormalities at birth. Our systems biology
189 transcriptomic analysis involved multi-scale systematic characterization of the brain from the ZikV
190 cohort animals, revealing altered gene expression in oligodendrocyte and neuronal development,
191 reduction of myelin proteins, and myelin decompaction. These observations indicate that ZikV
192 exposure can induce a demyelinating disease during prenatal development that is a feature
193 contributing to CZS.

194 Due to the widespread white matter injury pattern observed in fetal brain, we propose that
195 maternal-to-fetal transmission and infection with ZikV disrupts fetal myelin through a direct or indirect
196 virus-imposed blockade on fetal oligodendrocyte function and maturation (**Fig. S8**). Neural
197 progenitor cells (NPCs) are a primary cellular target of ZikV in the fetal brain, and NPC infection by
198 ZikV disrupts cortical neuron migration⁴⁹. In a fetal baboon model of congenital Zika infection, Gurung
199 and colleagues found a decrease in oligodendrocyte precursor cells (OPCs) in the cerebellum⁵⁰.
200 Moreover, in a mouse model of ZikV infection, ZikV infects glial progenitor cells, perturbing OPC
201 proliferation and differentiation⁵¹⁻⁵³. In support of this mechanism, our spatial transcriptional profiling
202 data revealed a decrease in expression of OPC-specific transcription factors OLIG2 and SOX10 in
203 the ZikV fetal brain cohort (see **Fig. S8**). This observation also validates our previous work
204 demonstrating a decrease in Sox2 from the subventricular zone within the NPC niche²⁹. Here, fetal
205 exposure to ZikV did not result in changes in the density of Olig2+ cells in white matter. In many
206 conditions of neurologic injury, Olig2+ OPC populations expand and differentiate to
207 oligodendrocytes, and this process is thought to facilitate repair and re-myelination of injured axons⁵⁴⁻
208 ⁵⁶. In contrast, we observed downregulation of genes spanning the oligodendrocyte lineage,
209 suggesting a broader mechanism of oligodendrocyte dysregulation impairing cell maturation as well
210 as myelin production.

211 A range of mechanisms have been identified underlying demyelinating diseases, including
212 direct insult on developing oligodendrocytes, loss of trophic support from axonal degeneration, and
213 immune-mediated attack. Fetal white matter is uniquely susceptible to injury. Hypoxia or infection *in*
214 *utero* can cause periventricular leukomalacia (PVL), in which necrotic death of premyelinating
215 oligodendrocytes is accompanied by astrogliosis and microglial activation^{57,58}. Although we identified
216 local disruption of tissue architecture and gliosis at the site of the posterior periventricular ZikV fetal
217 brain lesion, we found extensive changes to myelin at distal sites throughout the brain, without
218 necrosis or microglial activation typically observed in focal PVL. In adults, ZikV infection has been
219 associated with autoimmune attack on myelin, including Guillain-Barré syndrome and acute myelitis,

220 wherein ZikV was cultured from a patient with meningoencephalitis⁵⁹⁻⁶². Moreover, a fatal case of
221 encephalitis in a non-pregnant woman infected with ZikV was linked with autoantibodies against
222 myelin oligodendrocyte glycoprotein (MOG)⁶³. An important distinction here is that in our study there
223 was no histopathologic evidence of inflammatory infiltrate and minimal induction of proinflammatory
224 pathways from the transcriptomic data in the fetal brain of the ZikV cohort animals, indicating the
225 demyelinating phenotype is not the result of a chronic T cell-mediated autoimmune inflammatory
226 response against myelin proteins or phagocytic attack of oligodendrocytes. It remains possible,
227 however, that diffusible signals from the inflammatory response at the primary lesion in the brain or
228 from other fetal tissues led to widespread perturbations in oligodendrocyte lineage maturation
229 signaling—a mechanism that has been proposed to explain diffuse white matter injury in PVL^{64,65}.

230 Several animal models of CNS injury have described a similar phenotype of myelin
231 decompaction, most notably the optic nerve crush model that is used to study demyelination and
232 axon regeneration^{37,66,67}. While the precise mechanisms of myelin decompaction are areas of active
233 investigation, acute knockdown of myelin structural components (e.g., MBP) can lead to a similar
234 phenotype⁴⁰, suggesting that active signaling and protein synthesis are necessary to maintain
235 compact myelin. Additionally, oligodendrocyte maturation and myelin synthesis are closely coupled
236 to neuronal maturation and function in a bidirectional manner⁶⁸. Therefore, we propose that the
237 disruption of myelin may be related to a loss of trophic support from local neurons or even
238 astrocytes³⁹ (**Fig. S8**). Indeed, our spatial transcriptional data from deep grey matter shows a
239 decrease in expression of genes for synaptic function and an increase in genes related to axon
240 outgrowth in ZikV cohort animals. We note that in a mouse model of flavivirus encephalitis recovery,
241 ZikV infection leads to loss of synapses⁶⁹. The gene networks we observed in DGM may therefore
242 represent remodeling of neuronal circuits in response to loss of synapses. This type of
243 developmental neuroplasticity is a well-described phenomenon in which neurons that experience a
244 loss of functional connectivity undergo axonal outgrowth in order to find new synaptic partners^{70,71},
245 and could be a widespread response to focal ZikV infection in the fetal brain affected by CZS⁶⁹.

246 The risk of recurrent ZikV outbreaks in endemic regions due to waning population immunity
247 or new epidemics due to ZikV introduction into naïve populations remains a lingering threat, with a
248 major impact resulting from maternal infections during pregnancy^{72,73}. Emerging infectious diseases
249 have the greatest impact in immunologically naïve populations and at risk individuals, such as
250 pregnant women and their unborn, as further demonstrated by the recent SARS-CoV2 pandemic^{74,75}.
251 Understanding how ZikV impacts cellular processes during prenatal development is necessary to
252 develop therapeutic strategies for preventing CZS and mitigating ZikV infection. These findings
253 reinforce the serious nature of ZikV infection, and virus infection during pregnancy in general, and
254 the need for effective vaccines or drugs to prevent congenital infections. Our study adds to these
255 findings by providing additional insight into the pathophysiology of CZS following ZikV fetal exposure,
256 including ultrastructural features of myelin decompaction, oligodendrocyte dysregulation, and
257 changes to neuronal function and signaling, that underlie CZS.
258 3097 words.

259

Methods

260 **Virus.** Working stocks of ZIKV/Brazil/Fortaleza/2015 (GenBank no. KX811222) and
261 ZIKV/FSS13025/Cambodia (GenBank no. MH368551) were obtained by plaque-purifying the
262 viruses and amplifying once in C6/36 *Aedes albopictus* cells. Virus was adsorbed to cells in DMEM
263 supplemented with 1% FBS at 37°C. After 2-hours incubation, the inoculum was removed and virus
264 propagated in complete media supplemented with 5% FBS, 2 mM L-Glutamine, 1 mM Sodium
265 Pyruvate, 100 U/mL of Penicillin, 100 µg/mL of Streptomycin, 20 mM HEPES, and 1X MEM Non-
266 essential Amino Acid Solution for 6 days, with media changed at 3 days post-inoculation.
267 Supernatants at 6 days were then collected and centrifuged at 2,000 RPM at 4°C for 10 min, and
268 frozen in aliquots at -80°C. Virus stocks were tittered on Vero cells.

269

270 **Study Design.** The nonhuman primate experiments were carried out in strict accordance with the
271 recommendations in the Guide for the Care and Use of Laboratory Animals of the National Research
272 Council and the Weatherall report, “The use of non-human primates in research”. The Institutional
273 Animal Care and Use Committee of the University of Washington approved the study (Permit
274 Number: 4165-02). There were a total of twelve, healthy pregnant pigtail macaques (*Macaca*
275 *nemestrina*; *Mn*) (**Fig. S1**). ZikV inoculation was administered to resemble the bite of a feeding
276 mosquito. ZIKA1 and ZIKA2, received subcutaneous (s.c.) inoculations of
277 ZIKV/FSS13025/Cambodia at five separate locations on the forearms, each with 10^7 plaque-forming
278 units (PFU) in their mid-late second trimester of pregnancy, while ZIKA3-6 received similar s.c.
279 inoculations of ZIKV/Fortaleza/Brazil/2015 at five separate locations on the forearms, each with 10^7
280 PFU. Six pregnant control animals, CTL1-6, received s.c. inoculations of media alone at five separate
281 locations on the forearms. Cesarean section was performed at least 10 days before the natural due
282 date (~172 days) to enable fetal and dam necropsy (**Table S1**). Fetal brains were weighed at birth
283 and sectioned (**Table S2**).

284

285 **Digital Spatial Profiling.** Fixed, paraffin-embedded NHP fetal brain sections representing parietal
286 cortex were prepared according to the GeoMx-DSP Slide Preparation User Manual (NanoString, Inc.,
287 MAN-10115-04). Unstained 5 μ m-thick tissue sections mounted on Colorfrost microscope slides
288 (Fisher Scientific) were used for GeoMx Digital Spatial Profiling (DSP; NanoString, Inc.) assay.
289 RBFOX3 (NeuN), GFAP, and Olig2 cellular markers were used to characterize the tissue
290 morphology and select regions of interest (ROIs) for profiling (**Table S10**). *In situ* hybridizations were
291 performed with the GeoMx Human Whole Transcriptome Atlas Panel (WTA, 18,676 total targets)
292 according to the manufacturer's instructions. One slide at a time, probes were added to each slide
293 in a hybridization chamber, covered with a coverslip, and incubated at 37°C overnight. Following
294 incubation, the slides were washed to remove unbound probe and blocked in 200 μ l Buffer W and
295 incubated in a humidity chamber. Rabbit polyclonal anti-Olig2 antibody (Millipore Cat # AB9610) was
296 incubated first at 1:100 in Buffer W, followed by Goat anti-rabbit AF647 (ThermoFisher Catalog
297 #A27040) for visualization. The remaining morphology markers were collectively diluted in Buffer W
298 at the following concentrations: 1:50 RBFOX3 (NeuN) (Abcam EPR12763 Catalog #ab190195),
299 1:400 GFAP (Novus GA5, Catalog # NBP-33184DL594, and STYO 83 for nuclei visualization for a
300 total volume of 200 μ l per slide. Each slide was scanned with a 20X objective and default scan
301 parameters. For each tissue section, geometric 500 μ m diameter circle ROIs were placed in the
302 following regions based on assessment by a Pathologist 1) subcortex (Subcortical WM; n=3/section),
303 2) WM tracts (Deep WM; n=3/section), and 3) cortical layers IV-VI (GM; n=3/section). After ROI
304 placement, the GeoMx DSP instrument photocleaves the UV cleavable barcoded linker of the bound
305 RNA probes from each ROI and collects the individual segmented areas into separate wells in the
306 DSP collection plate.

307

308 **Library preparation and generation of expression matrices.** Total target counts per DSP
309 collection plate for sequencing were calculated from the total samples areas (μ m²). For sequencing

310 of whole transcriptome analysis (WTA) libraries, the target sequencing depth was 100 counts/ μm^2 .
311 Sequencing libraries were generated by polymerase chain reaction (PCR) from the photo-released
312 indexing oligos and ROI-specific Illumina adapter sequences and unique i5 and i7 sample indices
313 were added. Each PCR reaction used 4 μl of indexing oligos, 4 μl of indexing primer mix and 2 μl of
314 Nanostring 5X PCR Master Mix. Thermocycling conditions were 37°C for 30 min, 50°C for 10 min,
315 95°C for 3 min; 18 cycles of 95°C for 15 sec, 65°C for 1 min, 68°C for 30 sec; and 68°C 5 min. PCR
316 reactions were pooled and purified twice using AMPure XP beads (Beckman Coulter, A63881)
317 according to manufacturer's protocol. Pooled libraries were sequenced at 2 \times 27 base pairs and with
318 the dual-indexing workflow on an Illumina NovaSeq. Reads were trimmed, merged, and aligned to
319 retrieve probe identity, and the unique molecular identifier of each read was used to remove PCR
320 duplicates converting reads to digital counts for each target within an individual ROI.

321

322 **Analysis of spatial RNA sequencing data.** Counts from each ROI were quantified using the
323 NanoString GeoMx NGS Pipeline. For the ROI analysis, initial quality control was implemented by
324 first identifying low performance probes by dividing the geometric mean of a single probe count
325 across all samples against the geometric mean of all the probe counts for that gene. All probes >0.1
326 were kept for analysis, as recommended by NanoString
327 (https://bioconductor.org/packages-devel/workflows/vignettes/GeoMxWorkflows/inst/doc/GeomxTools_RNA-NGS_Analysis.html).. To identify samples with high background noise (no-specific probe
328 binding), we first calculated the limit of quantification (LOQ), which is 2 standard deviations above
329 the geometric mean of the negative probes for each sample. The percentage of genes detected
330 above the LOQ value was then calculated and samples removed from the analysis if they fell below
331 a 1% gene detection rate. Additionally, we examined the ratio of the Q3 quartile value against the
332 mean of the geometric mean of the negative probe counts and removed samples with a ratio less
333 than 1, suggesting the signal from the probes in that sample are unreliable. This left 94 ROIs for
334 downstream analysis. Gene counts were normalized using Q3 normalization. Differential expression
335

336 within each ROI type (DWM, SWM and DGM) was calculated for each gene using a linear mixed
337 effect model with the Geomx Tools R package (doi: 10.18129/B9.bioc.G geomxTools; **Table S3**),
338 using ZikV exposure as the test variable, with random slope and random intercept for animal ID. This
339 method provides an unadjusted p-value for each gene comparison as well as a false-discovery rate
340 (FDR), which is calculated using the Benjamini-Hochberg method. Gene set enrichment analysis
341 was performed using FGSEA⁷⁶ or SetRank⁷⁷ with Gene Ontology (GO) biological processes on each
342 set of significant DE genes for each region using log fold changes as the ranking metric (**Table S4**).
343 For gene network analysis, a subset of significantly enriched pathways (FDR<0.05 in at least one
344 comparison; **Table S3**) identified from spatial DE analysis of DWM and DGM were visualized in a
345 gene network using Cytoscape v3.9.1 using Omics Visualizer Viz PieChart plug-in⁷⁸ (**Fig. 1f**).
346

347 **Bulk RNA Sequencing.** For each animal, brain was sampled from the rostral-caudal level of five
348 coronal sections and designated as frontal (F), parietal (P1-3), and occipital (O) (**Fig. S1b**). The
349 parietal designations encompassed midline structures, including thalamus and deep nuclei, as well
350 as temporal lobe. Brain samples were immersed immediately in RNALater, stored at 4°C for 24 h,
351 and subsequently homogenized in QIAzol (QIAGEN). RNA was isolated from QIAzol homogenates
352 following the QIAGEN RNeasy protocol. Ribosomal RNA (rRNA) was depleted from each RNA
353 sample using the Ribo-ZeroRNA Removal Kit (Epicentre), designed for human, mouse and rat
354 samples, but is also effective in reducing rRNA amounts for NHP total RNA samples. Libraries were
355 prepared from 150 ng of rRNA-depleted RNA following the KAPA Stranded RNA-Seq with RiboErase
356 workflow for Total RNA-Seq libraries (KAPA Biosystems). Library quality was evaluated using the
357 Qubit® 3.0 Fluorometer and the Agilent 2100 Bioanalyzer instrument. Constructed libraries were
358 sequenced on a NextSeq 500 Illumina platform, producing 2x75nt stranded paired-end reads.
359 Quality control of the primary sequencing data was performed using FastQC. Ribosomal RNA reads
360 were removed computationally using Bowtie2⁷⁹, with an index composed of human, mouse and rat
361 rRNA sequences, resulting in over 30 million reads. Sequence reads were trimmed to 50 bp and

362 then aligned to the pig-tailed macaque (*Macaca nemestrina*) genome (Mnem_1.0) using STAR⁸⁰.
363 Alignment results show >90% mapping of NHP reads to the pig-tailed genome.

364

365 **Analysis of bulk RNA sequencing data.** Statistical processing and analysis of RNA-seq count data
366 was done with the R statistical computing environment (R Core Team 2019). Gene counts were
367 filtered by a row mean of 3 or greater and then normalized using edgeR to implement TMM
368 normalization^{81,82}. Counts were transformed into log-counts for use in a linear model using voom⁸³.
369 Principle Component Analysis was performed using factoextra. Differential expression (DE) analysis
370 compared each ZIKV (BRZ or FSS) brain sample against its designation-matched CTL sample
371 based on a linear model fit for each gene using Limma⁸⁴. Criteria for all DE analyses were an
372 absolute fold change of 1.5 and an adjusted *P*-value<0.05 calculated using a Benjamini-Hochberg
373 correction. The average log2 fold changes (LFC) of significantly DE genes for each brain region
374 were averaged between BRZ and FSS to illustrate general expression trends across the two ZIKV
375 infections (**Fig. S4c**). Hierarchical clustering was performed on average LFC for DE genes identified
376 in at least one contrast and over representation analysis was performed on each of the clusters using
377 SetRank⁷⁷ using KEGG, WikiPathways, and Gene Ontology databases. All gene names were
378 converted to human orthologs and a pathway was considered significantly enriched with an FDR
379 <0.05 (**Table S7**). CIBERSORTx was used to predict cell type abundances in each brain sample by
380 inputting TMM log2 normalized expression values using the single cell reference data set from
381 Darmanis *et al.* 2015 (**Fig. S4d, Table S9**)^{33,85}.

382

383 **Data and code availability.** Transcriptomics data sets are available in the NCBI Gene Expression
384 Omnibus (GEO) under accession number GSE226401 (bulk RNA-seq) and GSE22753 (spatial
385 transcriptomics). The R codes applied to these analyses can be accessed at

386 https://github.com/galelab/Tisoncik-Go_ZIKA_NHP_FetalBrain and
387 https://github.com/galelab/Tisoncik-Go_ZIKA_NHP_Geomx_FetalBrain_BulkRNASeq.

388

389 **Automated Immunohistochemistry staining.** Immunohistochemistry staining was performed for
390 GFAP, Iba1, MBP, NeuN, and Olig2 (**Table S10**) utilizing the Leica Bond Rx Automated
391 Immunostainer (Leica Microsystems, Buffalo Grove, IL). Unless otherwise specified all reagents
392 were obtained from Leica Microsystems. Slides were first deparaffinized with Leica Dewax Solution
393 at 72°C for 30 sec. Antigen retrieval was performed on all slides stained for Iba1 and NeuN with
394 citrate, pH 6, at 100°C for 10 min and Olig2 stained slides for 20 min. Antigen retrieval was performed
395 on all slides stained for MBP with EDTA, pH 9, at 100°C for 20 min. Additionally, antigen retrieval for
396 GFAP consisted of proteinase K digestion at 37°C for 5 min. All subsequent steps were performed
397 at room temperature. Initial blocking consisted of 10% normal goat serum (Jackson
398 ImmunoResearch, Catalog Number 005-000-121) in tris-buffered saline for 20 min. Additional
399 blocking occurred with Leica Bond Peroxide Block for 5 min. Slides were incubated with GFAP
400 (1:500), Iba1 (1:500), or Olig2 (1:500) primary antibodies in Leica Primary Antibody Diluent for 30
401 min. Next, a secondary antibody, goat anti-rabbit horseradish peroxidase polymerized antibody, was
402 applied for 8 min. Slides incubated with MBP (1:500) primary antibody in Leica Primary Antibody
403 Diluent for 30 min was followed by application of a rabbit anti-rat secondary (Vector Laboratories,
404 Catalog Number AI-4001) for 8 min. Slides incubated with NeuN (1:500) primary antibody in Leica
405 Primary Antibody Diluent for 30 min was followed by application of the Leica Post-Primary linker for
406 8 minutes. NeuN-stained tissues were then incubated with a tertiary antibody, goat anti-rabbit
407 horseradish peroxidase polymerized antibody, for 8 min. All antibody complexes were visualized
408 using DAB (3,3'-diaminobenzidine), detection 2X for 10 min. Tissues were counterstained with
409 hematoxylin for 4 min followed by two rinses in deionized water. Slides were removed from the

410 automated stainer and dehydrated through graded alcohol to xylene. Once dehydrated, slides were
411 coverslipped with a synthetic mounting media and imaged.

412

413 **Quantitative microscopy and image analyses.** Slides were scanned in brightfield with a 20X
414 objective using the NanoZoomer Digital Pathology System (Hamamatsu City, Japan). The digital
415 images were then imported into Visiopharm software (Hoersholm, Denmark) for analysis. Using the
416 Visiopharm Image Analysis module, regions of interests (ROI) were automatically detected around
417 the entire tissue section. The digital images of the Iba1 and MBP slides were converted into
418 grayscale values using two feature bands, RGB – G with a mean 3 x 3 pixel filter and HDAB – DAB.
419 The Visiopharm software was trained to detect positive, Iba1 or MBP, staining and hematoxylin
420 counterstain, based on a threshold of feature band pixel values, creating a project specific
421 configuration. Images were processed in batch mode using this configuration to generate the desired
422 per area outputs. For NeuN quantitation, ROIs were manually drawn in three independent GM
423 regions of the parietal and occipital cortex tissues and subdivided into five tissue layers from each
424 region (**Fig. S6b**). The digital images of the NeuN slides were converted into grayscale values using
425 two feature bands, Chromaticity Red and FastRed_DAB – Fast Red with a mean 7 x 7 pixel filter.
426 The Visiopharm software was trained to detect positive, NeuN, staining and hematoxylin
427 counterstain, based on a threshold of feature band pixel values, creating a project specific
428 configuration. Images were processed in batch mode using this configuration to generate the desired
429 per area outputs. For Olig2 quantitation, ROIs were manually drawn around the white matter. The
430 digital images of the Olig2 slides were converted into grayscale values using two feature bands,
431 HDAB – DAB with a polynomial blob filter and H&E – hematoxylin with a mean 3 x 3 pixel filter and
432 polynomial blob filter. The Visiopharm software was trained to detect Olig2 positive nuclei and
433 negative nuclei based on a threshold of feature band pixel values, creating a project specific

434 configuration. Images were processed in batch mode using this configuration to generate the desired
435 outputs.

436

437 **Luxol fast blue-PAS-hematoxylin staining.** Luxol fast blue (LFB) combined with the periodic acid-
438 Schiff (PAS) procedure was used for histologic examination of white matter. On tissue slides, LFB
439 stain highlights the blue myelinated axons of neurons in the white matter tracks and the small dense
440 round nuclei of oligodendrocytes that produce myelin. Demyelination is identified as regions of CNS
441 which lose the blue color that the LFB normally confers to myelin. Fixed tissues 10-15 μ m thick were
442 sectioned from paraffin blocks and mounted onto slides. Slides were first deparaffinized and tissue
443 sections hydrated with 95% alcohol. Tissue sections were placed in a tightly capped container with
444 LFB solution at 56°C overnight. Sections were rinsed in 95% alcohol to remove excess stain followed
445 by rinses in distilled water. Slides were then immersed in lithium carbonate, 0.05% solution for 10-
446 20 sec followed by immersion in 70% alcohol solution until gray and white matter can be
447 distinguished. The sections were then washed in distilled water. The differentiation was finished by
448 rinsing briefly in lithium carbonate solution and then putting through several changes of 70% alcohol
449 solution until white matter sharply contrasted with the gray matter. The sections were thoroughly
450 rinsed in distilled water and placed in 1% periodic acid solution for 5 min followed by rinsing in 2
451 changes of distilled water. Sections were then placed in Schiff solution for 15 min and washed in tap
452 water for 5 min. Sections were then dehydrated in 95% alcohol and 2 changes of absolute alcohol.
453 The final step was clearing in 3 changes of xylene and mounting with a synthetic resin.

454

455 **Magnetic resonance imaging.** MRI was performed using a Philips Achieva 3T scanner using
456 acquisition parameters that have been previously described²⁹. In brief, a 2D single-shot, half-Fourier
457 turbo spin echo multislice sequence (HASTE) was used to acquire T2-weighted images at various
458 gestational time points (**Fig. S1**). Primary analysis of T2 signal abnormality was performed at a single
459 time point representing late gestation for which all animals had imaging (approximately GD120). To

460 quantify the magnitude of the T2 signal abnormality in white matter, a scale from 0-3 was devised,
461 corresponding to normal, mild, moderate, and severe abnormality. A score of 0 reflected the
462 expected signal intensity based on control animals and a score of 3 reflected increased signal
463 intensity matching the signal from surrounding CSF, which was typically the intensity of the primary
464 periventricular lesion in affected animals. Image quality and stability was insufficient to perform
465 analysis of diffusion tensor imaging.

466

467 **Electron microscopy analysis.** Tissue was fixed in 4% glutaraldehyde in sodium cacodylate buffer
468 at a pH of 7.3, at room temperature, then stored overnight at 4°C. The tissue was then washed 5
469 times in buffer, then post fixed in 2% buffered osmium tetroxide for 1 hour, on ice. The tissue was
470 then washed 5 times in water, dehydrated in a graded series of alcohol, then propylene oxide twice.
471 This was followed by infiltration in 1:1 propylene oxide: epon araldite, 2 changes of epon araldite,
472 and finally polymerization overnight in an oven at 60°C. Sections of 80 nm thickness were collected
473 on formvar coated slot grids and imaged at 80KV on a JEOL1230 TEM. A formar grid was used to
474 define consistent regions of analysis in all sections assessed. All axons within five fields of view were
475 analyzed. Ten high-power images (10,000 x magnification) within a field of view were generated.
476 ImageJ analysis software was used to measure the axon diameter, fiber diameter (both the axon
477 and myelin sheath) and myelin sheath thickness. The g-ratio was only measured in areas of compact
478 myelin and calculated as the outer diameter across the axon divided by the outer diameter across
479 the axon and myelin sheath measured at the same point.

480

481 **Author Contributions**

482 JT-G and CS wrote the manuscript, with input from other authors, and coordinated contributions
483 between the collaborating laboratories. MG Jr., KAW and LR oversaw the NHP model at the
484 Washington National Primate Research Center. RPK performed the fetal brain necropsy and
485 collected samples. KV participated in sample collection and processing for RNA analysis. JSB
486 performed the viral qRT-PCR assay. JMS performed the histopathologic assessment of brain
487 tissues. EP prepared the specimens for electron microscopy and operated the transmission electron
488 microscope. JT-G collected electron microscopy images and CS performed electron microscopy
489 analysis. JT-G and CS performed immunohistochemical analyses. CS and DS performed MRI
490 analysis. JT-G processed samples for transcriptome sequencing. ES constructed bulk RNAseq
491 libraries and performed the library sequencing. ATG performed the GeoMx DSP assay on control
492 specimens. LSW and DN performed the spatial and bulk transcriptomic analyses. JT-G and CS
493 provided the associated functional interpretation of the transcriptomic datasets. All authors reviewed
494 the final draft of the manuscript. The authors declare no competing financial interests.

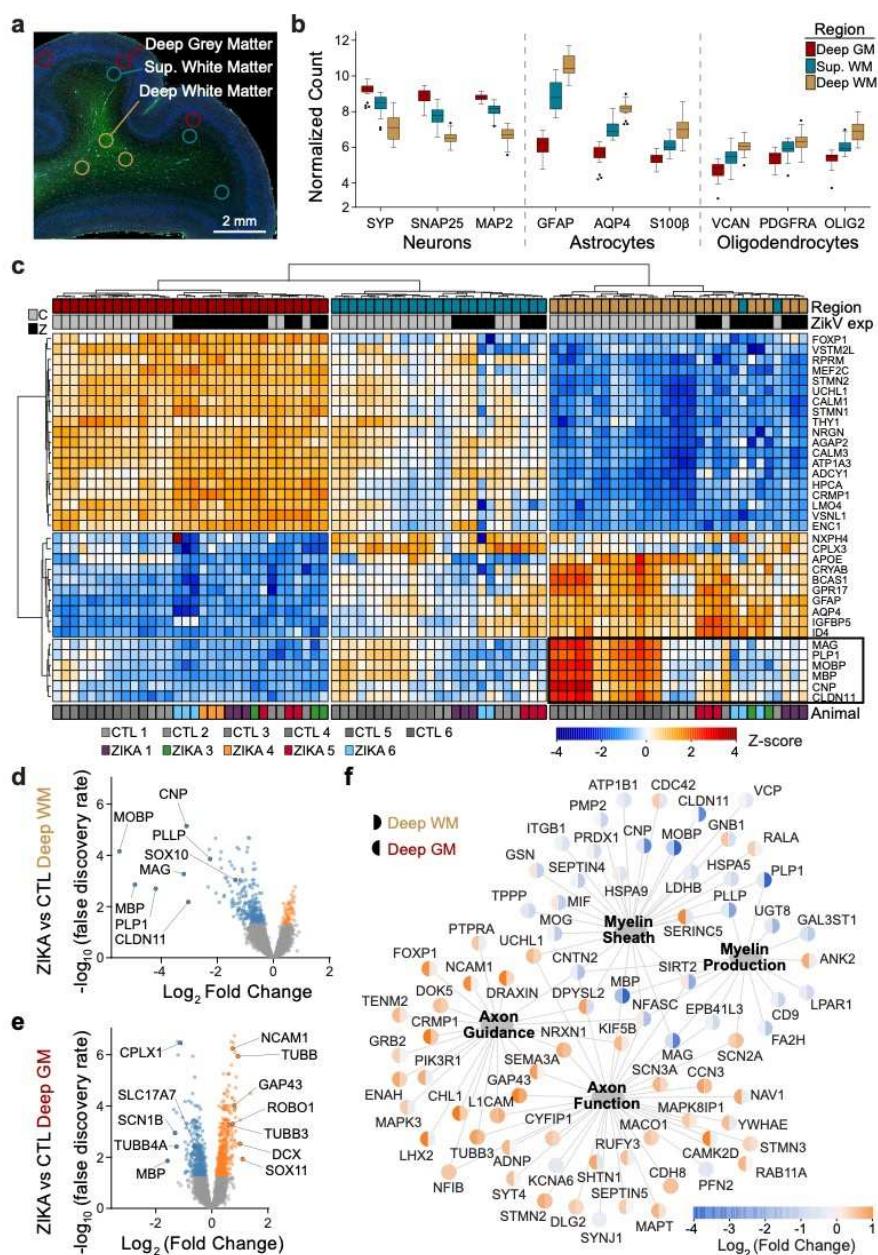
495

496 **Acknowledgements**

497 We acknowledge Audrey Baldessari, Chris English, Jason Ogle, Audrey Germond, and W. McIntyre
498 Durning at the Washington National Primate Research Center for their contributions to the study
499 execution. We thank Jonah Chan (UCSF) for providing input on experiments, Steve Perlmutter (UW)
500 and Philip Horner (Houston Methodist Research Institute) for valuable discussions of the electron
501 microscopy data. We acknowledge Bethany Kondiles (UW) for guidance on electron microscopy
502 analysis and Erica Boldenow (SCRI) for technical support. Funding for this study was supported by
503 5R01AI143265 (MG and KAW) and AI145296 (MG), K08AI150996 (CS), and Core Grant for Vision
504 Research NEI P30EY001730. We thank the University of Washington Histology and Imaging Core,
505 Seattle Genomics Core lab, and NanoString Technologies (Seattle, WA) for their services. Funding
506 for Seattle Genomics is supported in part by the National Institutes of Health, Office of the Director
507 P51OD010425 (Seattle MG). Instrumentation used for the GeoMx DSP experiment was supported
508 with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes
509 of Health, Department of Health and Human Services, under Contract No. HHSN272201800008C.

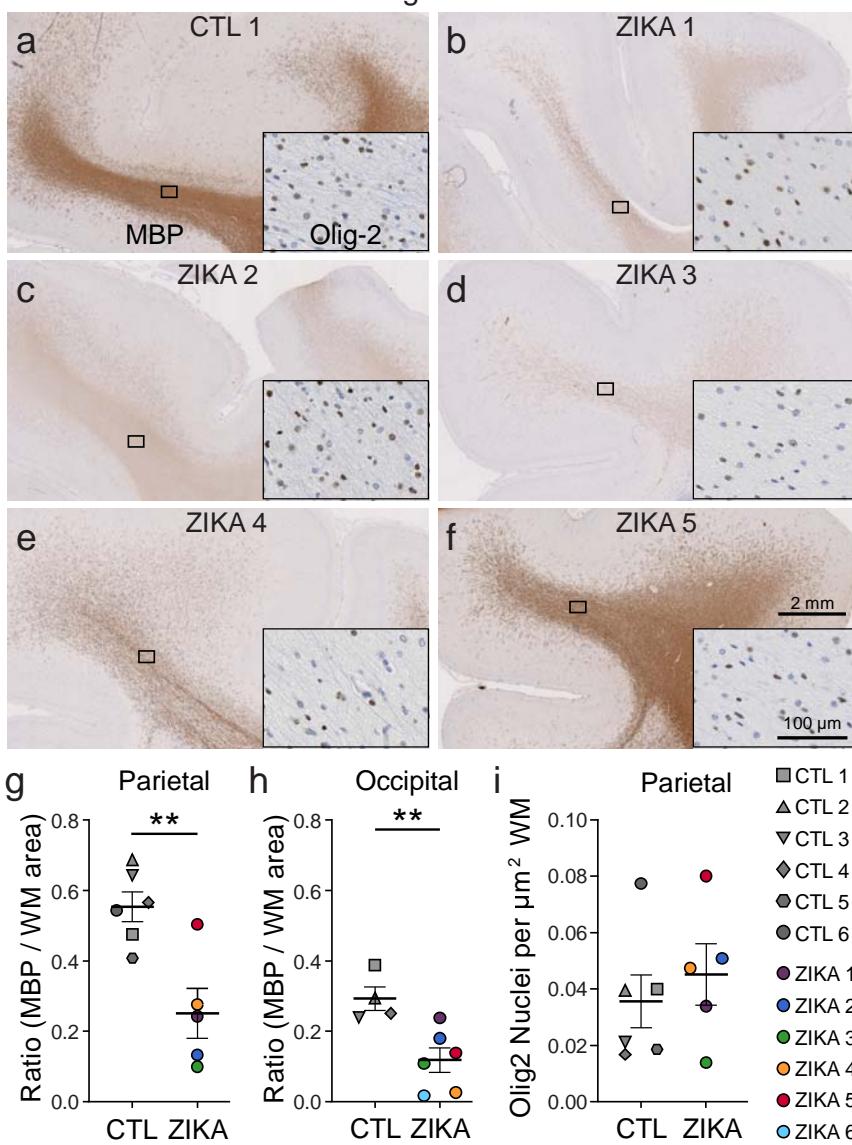
510 References

- 511 1 Leal, M. C. *et al.* Hearing Loss in Infants with Microcephaly and Evidence of Congenital Zika
512 Virus Infection - Brazil, November 2015-May 2016. *MMWR Morb Mortal Wkly Rep* **65**, 917-
513 919, doi:10.15585/mmwr.mm6534e3 (2016).
- 514 2 de Paula Freitas, B. *et al.* Ocular Findings in Infants With Microcephaly Associated With
515 Presumed Zika Virus Congenital Infection in Salvador, Brazil. *JAMA Ophthalmol*,
516 doi:10.1001/jamaophthalmol.2016.0267 (2016).
- 517 3 Brasil, P. *et al.* Zika Virus Infection in Pregnant Women in Rio de Janeiro. *N Engl J Med* **375**,
518 2321-2334, doi:10.1056/NEJMoa1602412 (2016).
- 519 4 Mlakar, J. *et al.* Zika Virus Associated with Microcephaly. *The New England journal of
520 medicine* **374**, 951-958, doi:10.1056/NEJMoa1600651 (2016).
- 521 5 Driggers, R. W. *et al.* Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain
522 Abnormalities. *N Engl J Med* **374**, 2142-2151, doi:10.1056/NEJMoa1601824 (2016).
- 523 6 Meaney-Delman, D. *et al.* Zika Virus Infection Among U.S. Pregnant Travelers - August 2015-
524 February 2016. *MMWR Morb Mortal Wkly Rep* **65**, 211-214, doi:10.15585/mmwr.mm6508e1
525 (2016).
- 526 7 van der Eijk, A. A. *et al.* Miscarriage Associated with Zika Virus Infection. *N Engl J Med* **375**,
527 1002-1004, doi:10.1056/NEJMc1605898 (2016).
- 528 8 Matiello, F. B., Hilario, J. S. M., Gondim, E. C., Santos, D. N. & Mello, D. F. Health surveillance
529 and development of children with congenital Zika Virus syndrome: an integrative literature
530 review. *Rev Paul Pediatr* **40**, e2020335, doi:10.1590/1984-0462/2022/40/2020335 (2021).
- 531 9 Sanders Pereira Pinto, P. *et al.* Brain abnormalities on neuroimaging in Children with
532 Congenital Zika Syndrome in Salvador, Brazil, and its possible implications on
533 neuropsychological development. *Int J Dev Neurosci* **80**, 189-196, doi:10.1002/jdn.10016
534 (2020).
- 535 10 Dang, J. *et al.* Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through
536 Activation of the Innate Immune Receptor TLR3. *Cell Stem Cell* **19**, 258-265,
537 doi:10.1016/j.stem.2016.04.014 (2016).
- 538 11 Tang, H. *et al.* Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their
539 Growth. *Cell Stem Cell* **18**, 587-590, doi:10.1016/j.stem.2016.02.016 (2016).
- 540 12 Li, C. *et al.* Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in
541 Mice. *Cell Stem Cell* **19**, 120-126, doi:10.1016/j.stem.2016.04.017 (2016).
- 542 13 Chang, K. J., Redmond, S. A. & Chan, J. R. Remodeling myelination: implications for
543 mechanisms of neural plasticity. *Nat Neurosci* **19**, 190-197, doi:10.1038/nn.4200 (2016).
- 544 14 Monje, M. Myelin Plasticity and Nervous System Function. *Annu Rev Neurosci* **41**, 61-76,
545 doi:10.1146/annurev-neuro-080317-061853 (2018).
- 546 15 Buyanova, I. S. & Arsalidou, M. Cerebral White Matter Myelination and Relations to Age,
547 Gender, and Cognition: A Selective Review. *Front Hum Neurosci* **15**, 662031,
548 doi:10.3389/fnhum.2021.662031 (2021).
- 549 16 Deoni, S. C. *et al.* Mapping infant brain myelination with magnetic resonance imaging. *J
550 Neurosci* **31**, 784-791, doi:10.1523/JNEUROSCI.2106-10.2011 (2011).


- 551 17 Hasegawa, M. *et al.* Development of myelination in the human fetal and infant cerebrum: a
552 myelin basic protein immunohistochemical study. *Brain Dev* **14**, 1-6, doi:10.1016/s0387-
553 7604(12)80271-3 (1992).
- 554 18 McKenzie, I. A. *et al.* Motor skill learning requires active central myelination. *Science* **346**, 318-
555 322, doi:10.1126/science.1254960 (2014).
- 556 19 Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-
557 dependent oligodendrocyte maturation and myelination. *Science* **337**, 1357-1360,
558 doi:10.1126/science.1220845 (2012).
- 559 20 Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in
560 white-matter architecture. *Nat Neurosci* **12**, 1370-1371, doi:10.1038/nn.2412 (2009).
- 561 21 Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R. & Kheirbek, M. A. Preservation of a remote
562 fear memory requires new myelin formation. *Nat Neurosci* **23**, 487-499, doi:10.1038/s41593-
563 019-0582-1 (2020).
- 564 22 Wang, F. *et al.* Enhancing Oligodendrocyte Myelination Rescues Synaptic Loss and Improves
565 Functional Recovery after Chronic Hypoxia. *Neuron* **99**, 689-701 e685,
566 doi:10.1016/j.neuron.2018.07.017 (2018).
- 567 23 Kadhim, H. *et al.* Inflammatory cytokines in the pathogenesis of periventricular leukomalacia.
568 *Neurology* **56**, 1278-1284, doi:10.1212/wnl.56.10.1278 (2001).
- 569 24 Nguyen, S. M. *et al.* Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus
570 macaques. *PLoS Pathog* **13**, e1006378, doi:10.1371/journal.ppat.1006378 (2017).
- 571 25 Coffey, L. L. *et al.* Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces
572 fetal neurologic disease. *Nat Commun* **9**, 2414, doi:10.1038/s41467-018-04777-6 (2018).
- 573 26 Martinot, A. J. *et al.* Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus
574 Monkeys. *Cell* **173**, 1111-1122 e1110, doi:10.1016/j.cell.2018.03.019 (2018).
- 575 27 Dudley, D. M. *et al.* Miscarriage and stillbirth following maternal Zika virus infection in
576 nonhuman primates. *Nat Med* **24**, 1104-1107, doi:10.1038/s41591-018-0088-5 (2018).
- 577 28 Adams Waldorf, K. M. *et al.* Fetal brain lesions after subcutaneous inoculation of Zika virus in
578 a pregnant nonhuman primate. *Nature medicine* **22**, 1256-1259, doi:10.1038/nm.4193 (2016).
- 579 29 Adams Waldorf, K. M. *et al.* Congenital Zika virus infection as a silent pathology with loss of
580 neurogenic output in the fetal brain. *Nat Med* **24**, 368-374, doi:10.1038/nm.4485 (2018).
- 581 30 Weng, C., Ding, M., Fan, S., Cao, Q. & Lu, Z. Transcription factor 7 like 2 promotes
582 oligodendrocyte differentiation and remyelination. *Mol Med Rep* **16**, 1864-1870,
583 doi:10.3892/mmr.2017.6843 (2017).
- 584 31 Zhao, C. T. *et al.* Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific
585 partners propels oligodendroglial maturation. *Nature Communications* **7**, doi:ARTN 10883
586 10.1038/ncomms10883 (2016).
- 587 32 Emery, B. & Lu, Q. R. Transcriptional and Epigenetic Regulation of Oligodendrocyte
588 Development and Myelination in the Central Nervous System. *Cold Spring Harb Perspect Biol*
589 **7**, a020461, doi:10.1101/cshperspect.a020461 (2015).
- 590 33 Newman, A. M. *et al.* Determining cell type abundance and expression from bulk tissues with
591 digital cytometry. *Nat Biotechnol* **37**, 773-782, doi:10.1038/s41587-019-0114-2 (2019).

- 592 34 Arnett, H. A. *et al.* bHLH transcription factor Olig1 is required to repair demyelinated lesions in
593 the CNS. *Science* **306**, 2111-2115, doi:10.1126/science.1103709 (2004).
- 594 35 Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte
595 lineage-specific basic helix-loop-helix transcription factors. *Neuron* **25**, 331-343,
596 doi:10.1016/s0896-6273(00)80898-3 (2000).
- 597 36 Riddle, A. *et al.* Histopathological correlates of magnetic resonance imaging-defined chronic
598 perinatal white matter injury. *Ann Neurol* **70**, 493-507, doi:10.1002/ana.22501 (2011).
- 599 37 Payne, S. C., Bartlett, C. A., Harvey, A. R., Dunlop, S. A. & Fitzgerald, M. Myelin sheath
600 decompaction, axon swelling, and functional loss during chronic secondary degeneration in rat
601 optic nerve. *Invest Ophthalmol Vis Sci* **53**, 6093-6101, doi:10.1167/iovs.12-10080 (2012).
- 602 38 Popko, B. *et al.* Myelin deficient mice: expression of myelin basic protein and generation of
603 mice with varying levels of myelin. *Cell* **48**, 713-721, doi:10.1016/0092-8674(87)90249-2
604 (1987).
- 605 39 Tognatta, R. *et al.* Astrocytes Are Required for Oligodendrocyte Survival and Maintenance of
606 Myelin Compaction and Integrity. *Front Cell Neurosci* **14**, 74, doi:10.3389/fncel.2020.00074
607 (2020).
- 608 40 Weil, M. T. *et al.* Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models
609 of Demyelinating Diseases. *Cell Rep* **16**, 314-322, doi:10.1016/j.celrep.2016.06.008 (2016).
- 610 41 Stikov, N. *et al.* Quantitative analysis of the myelin g-ratio from electron microscopy images of
611 the macaque corpus callosum. *Data Brief* **4**, 368-373, doi:10.1016/j.dib.2015.05.019 (2015).
- 612 42 Ribeiro, C. T. M. *et al.* Gross motor function in children with Congenital Zika Syndrome from
613 Rio de Janeiro, Brazil. *Eur J Pediatr* **181**, 783-788, doi:10.1007/s00431-021-04270-1 (2022).
- 614 43 Valdes, V. *et al.* Cognitive Development of Infants Exposed to the Zika Virus in Puerto Rico.
615 *JAMA Netw Open* **2**, e1914061, doi:10.1001/jamanetworkopen.2019.14061 (2019).
- 616 44 Nielsen-Saines, K. *et al.* Delayed childhood neurodevelopment and neurosensory alterations
617 in the second year of life in a prospective cohort of ZIKV-exposed children. *Nat Med* **25**, 1213-
618 1217, doi:10.1038/s41591-019-0496-1 (2019).
- 619 45 Vouga, M., Pomar, L., Panchaud, A., Musso, D. & Baud, D. A critical analysis of the
620 neurodevelopmental and neurosensory outcomes after 2 years for children with in utero Zika
621 virus exposure. *Nat Med* **25**, 1641-1642, doi:10.1038/s41591-019-0630-0 (2019).
- 622 46 Mulkey, S. B. *et al.* Neurodevelopmental Abnormalities in Children With In Utero Zika Virus
623 Exposure Without Congenital Zika Syndrome. *JAMA Pediatr* **174**, 269-276,
624 doi:10.1001/jamapediatrics.2019.5204 (2020).
- 625 47 Cavalcante, T. B. *et al.* Congenital Zika syndrome: Growth, clinical, and motor development
626 outcomes up to 36 months of age and differences according to microcephaly at birth. *Int J
627 Infect Dis* **105**, 399-408, doi:10.1016/j.ijid.2021.02.072 (2021).
- 628 48 Mavigner, M. *et al.* Postnatal Zika virus infection is associated with persistent abnormalities in
629 brain structure, function, and behavior in infant macaques. *Sci Transl Med* **10**,
630 doi:10.1126/scitranslmed.aa06975 (2018).
- 631 49 Seferovic, M. *et al.* Experimental Zika Virus Infection in the Pregnant Common Marmoset
632 Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities. *Sci Rep* **8**, 6851,
633 doi:10.1038/s41598-018-25205-1 (2018).

- 634 50 Gurung, S. *et al.* Zika virus infection at mid-gestation results in fetal cerebral cortical injury and
635 fetal death in the olive baboon. *PLoS Pathog* **15**, e1007507, doi:10.1371/journal.ppat.1007507
636 (2019).
- 637 51 Cumberworth, S. L. *et al.* Zika virus tropism and interactions in myelinating neural cell cultures:
638 CNS cells and myelin are preferentially affected. *Acta Neuropathol Commun* **5**, 50,
639 doi:10.1186/s40478-017-0450-8 (2017).
- 640 52 Li, Q. *et al.* Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse
641 Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and
642 Necrosis. *Front Neurol* **9**, 581, doi:10.3389/fneur.2018.00581 (2018).
- 643 53 Schultz, V. *et al.* Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS
644 Cultures. *Viruses* **13**, doi:10.3390/v13010091 (2021).
- 645 54 Fancy, S. P., Zhao, C. & Franklin, R. J. Increased expression of Nkx2.2 and Olig2 identifies
646 reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. *Mol
647 Cell Neurosci* **27**, 247-254, doi:10.1016/j.mcn.2004.06.015 (2004).
- 648 55 Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F. & Richardson, W. D. NG2 glia generate
649 new oligodendrocytes but few astrocytes in a murine experimental autoimmune
650 encephalomyelitis model of demyelinating disease. *J Neurosci* **30**, 16383-16390,
651 doi:10.1523/JNEUROSCI.3411-10.2010 (2010).
- 652 56 Zawadzka, M. *et al.* CNS-resident glial progenitor/stem cells produce Schwann cells as well as
653 oligodendrocytes during repair of CNS demyelination. *Cell Stem Cell* **6**, 578-590,
654 doi:10.1016/j.stem.2010.04.002 (2010).
- 655 57 Back, S. A. White matter injury in the preterm infant: pathology and mechanisms. *Acta
656 Neuropathol* **134**, 331-349, doi:10.1007/s00401-017-1718-6 (2017).
- 657 58 Haynes, R. L. *et al.* Nitrosative and oxidative injury to premyelinating oligodendrocytes in
658 periventricular leukomalacia. *J Neuropathol Exp Neurol* **62**, 441-450,
659 doi:10.1093/jnen/62.5.441 (2003).
- 660 59 Carteaux, G. *et al.* Zika Virus Associated with Meningoencephalitis. *N Engl J Med* **374**, 1595-
661 1596, doi:10.1056/NEJMc1602964 (2016).
- 662 60 Neri, V. C. *et al.* Case Report: Acute Transverse Myelitis after Zika Virus Infection. *Am J Trop
663 Med Hyg* **99**, 1419-1421, doi:10.4269/ajtmh.17-0938 (2018).
- 664 61 Jurado, K. A. *et al.* Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. *Nat
665 Microbiol* **3**, 141-147, doi:10.1038/s41564-017-0060-z (2018).
- 666 62 Cao-Lormeau, V. M. *et al.* Guillain-Barre Syndrome outbreak associated with Zika virus
667 infection in French Polynesia: a case-control study. *Lancet* **387**, 1531-1539,
668 doi:10.1016/S0140-6736(16)00562-6 (2016).
- 669 63 Soares, C. N. *et al.* Fatal encephalitis associated with Zika virus infection in an adult. *J Clin
670 Virol* **83**, 63-65, doi:10.1016/j.jcv.2016.08.297 (2016).
- 671 64 Back, S. A. & Miller, S. P. Brain injury in premature neonates: A primary cerebral
672 dysmaturation disorder? *Ann Neurol* **75**, 469-486, doi:10.1002/ana.24132 (2014).
- 673 65 Back, S. A. & Rosenberg, P. A. Pathophysiology of glia in perinatal white matter injury. *Glia*
674 **62**, 1790-1815, doi:10.1002/glia.22658 (2014).


- 675 66 Giacci, M. K. *et al.* Three dimensional electron microscopy reveals changing axonal and
676 myelin morphology along normal and partially injured optic nerves. *Sci Rep* **8**, 3979,
677 doi:10.1038/s41598-018-22361-2 (2018).
- 678 67 Gutierrez, R., Boison, D., Heinemann, U. & Stoffel, W. Decompaction of CNS myelin leads to
679 a reduction of the conduction velocity of action potentials in optic nerve. *Neurosci Lett* **195**, 93-
680 96, doi:10.1016/0304-3940(94)11789-1 (1995).
- 681 68 Knowles, J. K., Batra, A., Xu, H. & Monje, M. Adaptive and maladaptive myelination in health
682 and disease. *Nat Rev Neurol* **18**, 735-746, doi:10.1038/s41582-022-00737-3 (2022).
- 683 69 Garber, C. *et al.* T cells promote microglia-mediated synaptic elimination and cognitive
684 dysfunction during recovery from neuropathogenic flaviviruses. *Nat Neurosci* **22**, 1276-1288,
685 doi:10.1038/s41593-019-0427-y (2019).
- 686 70 Choi, J. T., Vining, E. P., Mori, S. & Bastian, A. J. Sensorimotor function and sensorimotor
687 tracts after hemispherectomy. *Neuropsychologia* **48**, 1192-1199,
688 doi:10.1016/j.neuropsychologia.2009.12.013 (2010).
- 689 71 Fiori, S. & Guzzetta, A. Plasticity following early-life brain injury: Insights from quantitative MRI.
690 *Semin Perinatol* **39**, 141-146, doi:10.1053/j.semperi.2015.01.007 (2015).
- 691 72 Malhotra, B. *et al.* Clinico-epidemiological and genomic profile of first Zika Virus outbreak in
692 India at Jaipur city of Rajasthan state. *J Infect Public Health* **13**, 1920-1926,
693 doi:10.1016/j.jiph.2020.10.006 (2020).
- 694 73 Coutinho, R. Z., Montalvo, A. V., Weitzman, A. & Marteletto, L. J. Zika virus public health crisis
695 and the perpetuation of gender inequality in Brazil. *Reprod Health* **18**, 40, doi:10.1186/s12978-
696 021-01067-1 (2021).
- 697 74 Goyal, D. & Selix, N. W. Impact of COVID-19 on Maternal Mental Health. *MCN Am J Matern
698 Child Nurs* **46**, 103-109, doi:10.1097/NMC.0000000000000692 (2021).
- 699 75 Vouga, M. *et al.* Maternal outcomes and risk factors for COVID-19 severity among pregnant
700 women. *Sci Rep* **11**, 13898, doi:10.1038/s41598-021-92357-y (2021).
- 701 76 Korotkevich, G. *et al.* Fast gene set enrichment analysis. *bioRxiv*, 060012,
702 doi:10.1101/060012 (2021).
- 703 77 Simillion, C., Liechti, R., Lischer, H. E., Ioannidis, V. & Bruggmann, R. Avoiding the pitfalls of
704 gene set enrichment analysis with SetRank. *BMC Bioinformatics* **18**, 151,
705 doi:10.1186/s12859-017-1571-6 (2017).
- 706 78 Shannon, P. *et al.* Cytoscape: a software environment for integrated models of biomolecular
707 interaction networks. *Genome Res* **13**, 2498-2504, doi:10.1101/gr.1239303 (2003).
- 708 79 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,
709 357-359, doi:10.1038/nmeth.1923 (2012).
- 710 80 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
711 doi:10.1093/bioinformatics/bts635 (2013).
- 712 81 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
713 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140,
714 doi:10.1093/bioinformatics/btp616 (2010).
- 715 82 McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-
716 Seq experiments with respect to biological variation. *Nucleic Acids Res* **40**, 4288-4297,
717 doi:10.1093/nar/gks042 (2012).

- 718 83 Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model
719 analysis tools for RNA-seq read counts. *Genome Biol* **15**, R29, doi:10.1186/gb-2014-15-2-r29
720 (2014).
- 721 84 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and
722 microarray studies. *Nucleic Acids Res* **43**, e47, doi:10.1093/nar/gkv007 (2015).
- 723 85 Darmanis, S. *et al.* A survey of human brain transcriptome diversity at the single cell level.
724 *Proc Natl Acad Sci U S A* **112**, 7285-7290, doi:10.1073/pnas.1507125112 (2015).
- 725

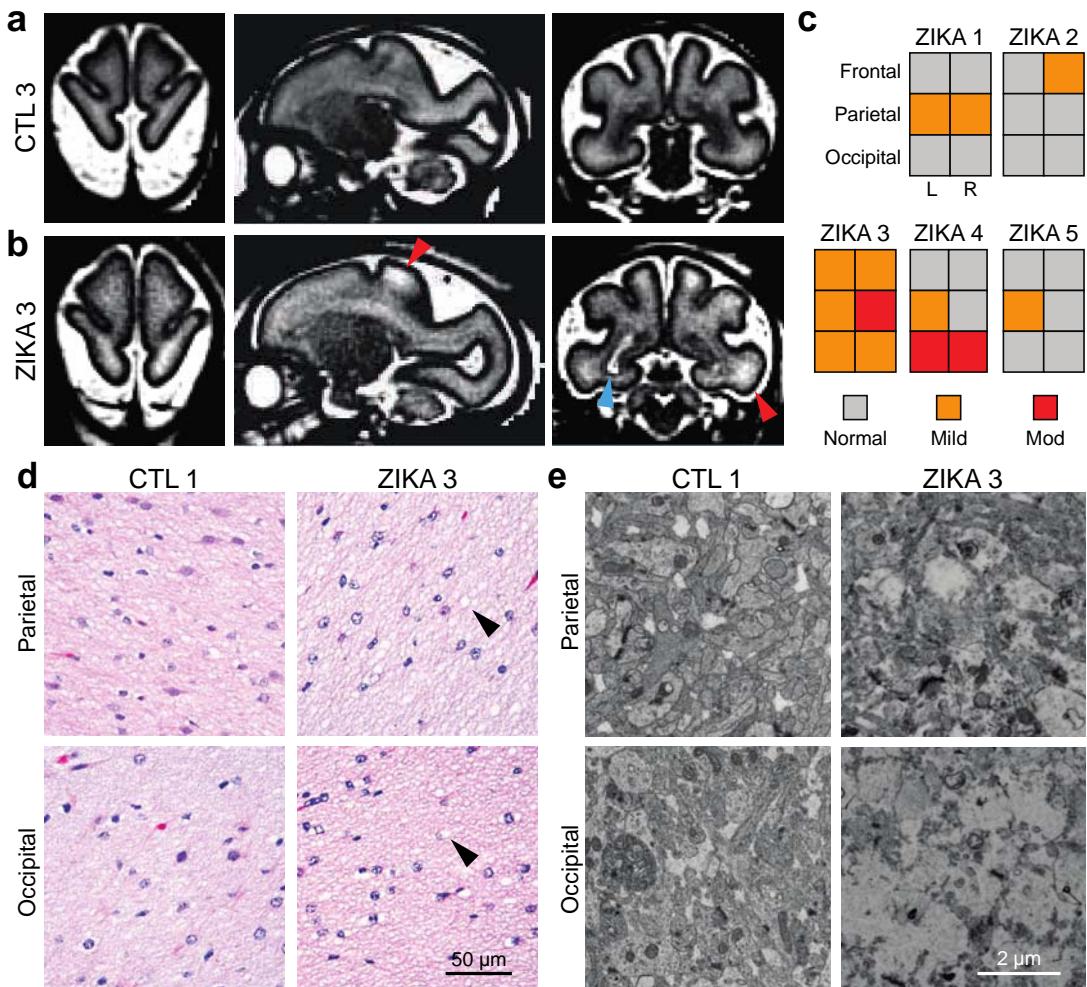

Fig. 1. Congenital Zika infection causes downregulation of myelination genes in deep white matter of nonhuman primate. Digital spatial profiling (DSP) of tissue was conducted using the Nanostring GeoMx DSP platform, after immunofluorescence staining to identify regions of brain and cell types. **a)** ROIs were selected in triplicate for each brain, representing DGM (red), SWM (teal) and DWM (tan). **b)** Tukey plot representing normalized counts for selected genes classically expressed by neurons (left), astrocytes (center), and oligodendrocytes (right), according to ROI. **c)** Normalized gene expression (row-specific Z-score) of the top 35 differentially expressed (DE) genes identified in pair-wise comparison of samples across ROI and ZikV exposure. Samples (x-axis) and genes (y-axis) were clustered by calculating Euclidean distances using Ward.D2. Top row, color coding by ROI, as in panel b. Second row, color coding by exposure: grey, control; black, ZikV. Bottom row: color coding by animal. Black outline identifies genes in DWM, all of which relate to myelination. **d-e)** Volcano plots of DE genes comparing ZikV to control animals for ROIs representing **d)** DWM and **e)** DGM. Orange, significantly ($FDR < 0.05$) upregulated in ZikV; blue, significantly downregulated in ZikV; grey, $FDR > 0.05$ in DE comparison. **f)** Network of 79 DE genes ($FDR < 0.05$) in either DWM or DGM clustered by gene ontology (GO, large nodes) representing axon function (GO:0030424 and GO:0007411) and myelination (GO:0042552 and GO:0043209). GO terms were selected by applying over-representation analysis (ORA) to DE genes in each cluster (Fig. S2a). Small nodes represent average log-fold change (color) for each gene in DWM (left half) and DGM (right half). Average gestational age ($\pm SD$) of ZikV-exposed vs CTL animals in DSP analysis = 150 (± 9) vs 156 (± 2) days; $p = 0.14$ by t-test for DGM; 154 (± 8) vs 156 (± 2) days; $p = 0.46$ by t-test for DWM.

Figure 2

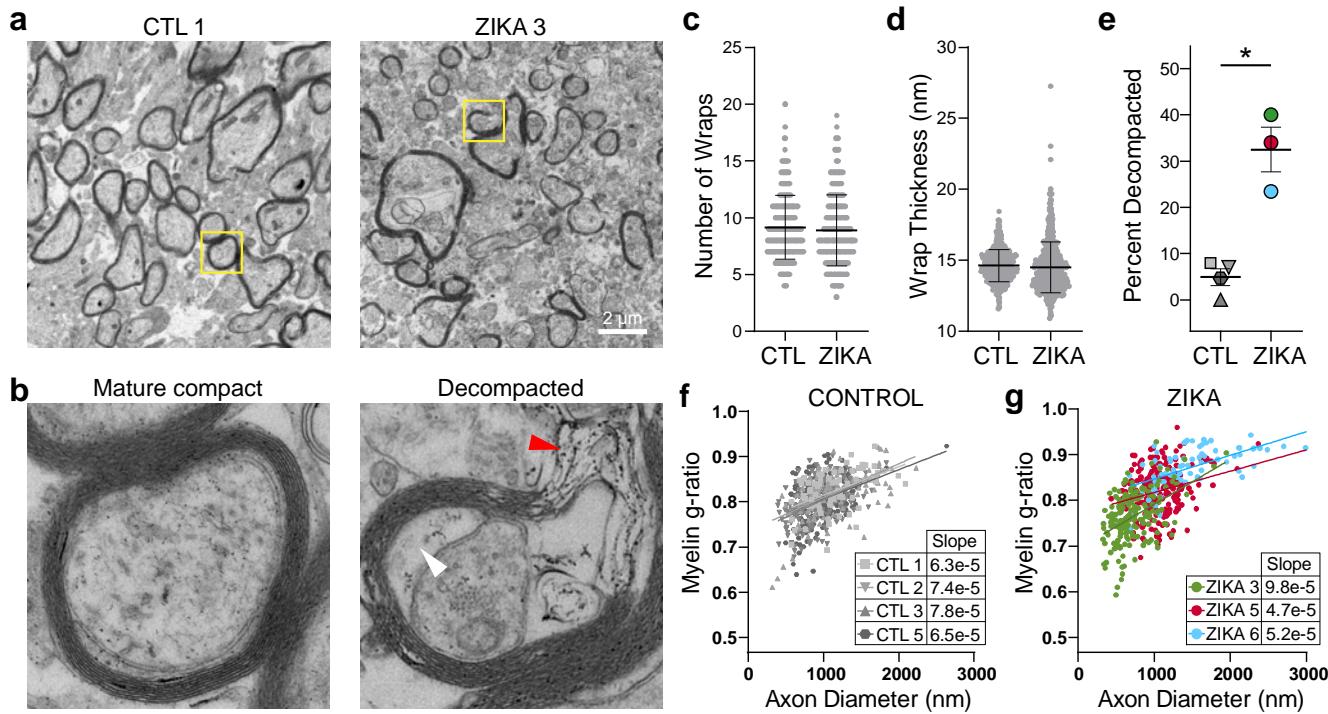

Fig. 2. Immunohistochemical analysis demonstrates marked reduction in myelin basic protein (MBP) in ZikV-exposed fetal NHP brains. a-f, MBP (primary image) and Olig2 (inset) immunohistochemical staining of a) control and b-f) ZikV animals. The representative images are taken from dorsal parietal cortex; the black rectangle identifies the approximate location in the DWM tracts represented in the inset. g-h) Quantification of MBP staining in the DWM from g) parietal and h) occipital cortex, measured as the ratio of area occupied by chromogen divided by the total area of the DWM. i) Quantification of the density of Olig2+ nuclei within the DWM. Points in the plots represent individual animals (one slice per animal was quantified), with bars indicating mean \pm SEM. **p<0.01 by unpaired t-test with Welch's correction. Average gestational age (\pm SD) of ZikV-exposed vs CTL animals in IHC analysis=152(\pm 2) vs 157(\pm 9) days; p=0.23 by t-test.

Figure 3

Fig. 3. Spatial heterogeneity of pathology in ZikV-exposed fetal NHP brain. a-b, Representative T2-weighted MRI images (left, axial; middle, sagittal; right, coronal) for a) control and b) ZikV animals. MRI scans were collected at GD125 for CTL3 and GD120 for ZIKA3 (Fig. S1). Blue arrowhead indicates the “primary” periventricular lesion described previously²⁹. Red arrowheads indicate T2-weighted (T2W) hyperintense foci in subcortical white matter, which can be seen in delayed, abnormal, or inflamed myelin. c) Ordinal scale of T2W intensity identified in the frontal, parietal and occipital lobes of Zika-exposed animals. Relative scale was established with normal appearance matching control animals and severe signal abnormality matching the T2W signal of the primary lesion. d) Representative hematoxylin and eosin (H&E) images of white matter at the level of parietal lobe (top) and occipital lobe (bottom) for control (left) and ZikV animals (right). Arrowheads indicate areas of vacuolization seen in the H&E staining of white matter of ZikV animals. e) Representative EM images of brain tissue collected from approximate focal areas with T2 signal at the level of parietal lobe (top) and occipital lobe (bottom) for CTL (left) and ZikV animals (bottom). MRI, magnetic resonance imaging.

Figure 4

Fig. 4. ZikV exposure is associated with myelin sheath decompaction in fetal NHP brain. EM analysis of brain sections sampled from DWM in parietal cortex. a-b) Representative EM images of myelinated axons from a control (left) and ZikV-exposed animal (right). The area marked by the yellow rectangle is expanded in panel b), demonstrating mature compact myelin (left) and decompact myelin (right) with electron-dense material in the interlamellar space (red arrowhead) and swelling of the inter lamella (white arrowhead). c-d) Quantification of specific myelin features including the number of c) myelin wraps and d) average wrap thickness for CTL and ZikV animals, measured in areas of compact myelin. Individual points represent data for a single axon; error bars represent mean \pm SEM across all points within a treatment condition. e) Percent of axons demonstrating a decompaction phenotype as defined by delamination of all layers of the myelin sheath with outward bowing, affecting at least 25% of the circumference of the axon. Individual points represent, for a single animal, the percent of myelinated axons with decompaction; error bars represent mean \pm SEM across all points within a condition. * $p<0.05$. f-g) Plot of myelin g-ratio (outer diameter of axon divided by outer diameter of myelin sheath, measured in areas of compact myelin) versus axon diameter. Individual points represent a single myelinated axon. Linear regression was calculated for all points representing a single animal; slope is indicated in the table.