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Simple summary: The identification of DNA methylation patterns in breast cancer represents a
potentially valuable approach in defining more accurate diagnoses and treatment options. In this
study, we applied a novel methodology that integrates the DNA methylation profiles of all studies
available in public repositories via systematic review and meta-analysis. The results provide
evidence of a common DNA methylation signature in distinct breast cancer subtypes, which
reflects a significant deregulation of the immune system and alterations to the cell cycle. Overall,
these results may support the selection of disease/treatment biomarkers and the identification of

therapeutic targets.

Abstract: Epigenetic changes are involved in the onset and progression of cancer, and the
detection of DNA methylation signatures may foster the improvement of diagnosis and prognosis.
While the emergence of innovative technologies has fostered numerous studies in breast cancer,
many lack statistical power due to the small sample sizes generally involved. In this study, we
present a novel meta-analysis that identifies a common pattern of DNA methylation in all breast
cancer subtypes. We obtained DNA methylation signatures at the gene and biological function
level, identifying those significant groups of genes and functional pathways affected. To achieve
this, we conducted a thorough systematic review following PRISMA statement guidelines for the
selection of studies on DNA methylation in breast cancer. In total, we gathered four studies
(GSE52865, GSE141338, GSE59901 and GSE101443) that were split into 13 comparisons
comprising a set of 144 individuals. We discovered that most breast cancer subtypes share a
significant deregulation in the immune system and alterations to the cell cycle. This integrative
approach combines all available information from public data repositories and possesses greater
statistical power than any individual study. Further evaluations of the identified differential biological
processes and pathways may support the identification of novel biomarkers and therapeutic

targets.
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1. Introduction

Despite ongoing advances in research into disease mechanisms and treatment approaches,
breast cancer remains a major health problem that affects millions of women worldwide. Breast
cancer represents the leading cause of cancer-related deaths in women aged <45 years due to the
development of metastases, with incidence and mortality rates both expected to increase
significantly in the coming years [78]. The highly heterogeneous and potentially aggressive nature of
breast cancer may derive from the aberrant accumulation of epigenetic changes, which can

determine the effectiveness of various treatments [1].

Transcriptomic studies of breast cancer have revealed the presence of different molecular
subtypes with vastly different prognoses [79]. Efforts that aim to improve the understanding of breast
cancer have focused on: i) early detection mechanisms, such as the identification of hormone
receptor status [2], ii) the development of monoclonal antibody therapies, which can treat
approximately 30% of breast cancers [3], and iii) the development of technologies to evaluate gene
expression profiled of affected patients. A more in-depth understanding of the mechanisms
controlling breast cancer development and spread [1] may foster the development of better
diagnostic tools to allow early detection and improved and personalized treatment approaches that

may reduce mortality.

DNA methylation represents a major epigenetic mechanisms in mammals that generally acts to
repress gene expression by inducing a repressive or “closed” chromatin environment and inhibiting
the binding of transcription factors to gene regulatory regions. Abnormal DNA methylation patterns
contribute to several diseases including cancer [4] - abnormal hypermethylation of tumor suppressor
genes and hypomethylation of oncogenes can permit the uncontrolled proliferation of cancer cells,

leading to tumorigenesis.

High-throughput -omic technologies such as microarrays and next generation sequencing have
enabled major advances in cancer research. The huge amounts of cancer genomic data generated
is housed in open access biological repositories, such as the Gene Expression Omnibus (GEO) ',

2, and Sequence Read Archive (SRA) 3. Such databases represent an important

Array Express
source of biological information that can be reanalyzed with different approaches and interests in

mind.

While the cost of high-throughput technologies has decreased significantly in recent times,
sample size remains a limiting factor in cancer research, leading to the problem of class-imbalanced
datasets that hampers correct statistical analysis of the data [5]. Meta-analysis, which allows a

measure of the combined effect of interest and offers greater precision than individual studies, may
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overcome this problem. Meta-analysis and related techniques have been applied in numerous fields
such as social sciences [6], medicine [7] and genomics [8], where methods frequently focus on the
gene [9-15] or variant level [16,17].

In this study we present a novel targeted approach at two complementary levels: gene and
biological function, which integrates the different genes or regions that present significant biological
activity, thus providing a better understanding of the mechanisms of the disease in a systems
biology framework. The main objective of the study is to detect and characterize epigenetic
biomarkers and those mechanisms altered in breast cancer that may aid diagnosis and prognosis.
For this purpose, we undertook a functional meta-analysis [18] to identify DNA methylation
signatures associated with various subtypes of breast cancer (for the first time, to the best of our
knowledge). We hope that this approach will support the identification of new biomarkers for breast
cancer subtypes that may aid the development of diagnostic/predictive tools for breast cancer

management and novel treatment approaches.

2. Results
We have organized the results into five sections.
i) the selection of studies from the systematic review

ii) and iii) results of the bioinformatic analysis for each selected study, taking in the exploratory

analysis, differential methylation and functional characterization.

iv) and v) a description of the main results, which includes the methylation profiles at the gene

and function level identified via meta-analysis.

We have made the detailed results of each section available in the metafun-BC web tool
(https://bioinfo.cipf.es/metafun-BC), which allows the user to review the results described in the

manuscript.
2.1. Systematic Review and Selection of Studies

Following the inclusion criteria, we identified and carefully reviewed a total of 77 studies to
avoid duplicates and ensure a focus on breast cancer, which finally provided 39 full-text articles. We
retrieved raw DNA methylation data from five studies (Figure 1 - GSE78751, GSE52865,
GSE141338, GSE101443, and GSE59901), which represents a total of 14 different comparisons
between case and control groups including a total of 185 patients (150 cases and 35 controls)
(Figure 2). Adjacent to tumor normal breast tissue was considered (paired samples) in all the studies
unless GSE59901 where it is not indicated.

The GSE101443 study (A) comprises four tumor samples and four healthy samples, which we
included in the next step of the meta-analysis. For the GSE141338 study (B), only healthy and

tumor samples were considered for the meta-analysis (41 cancer and 6 healthy samples). In the
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case of the GSE59901 (D) and GSE78751 (E) studies, we discarded information regarding cell lines
and lymph node metastasis (4 and 15 samples, respectively) and we considered only the breast
tissues (28 tumor and 4 healthy samples for the GSE59901 study and 23 tumor and 4 healthy
samples in the case of the GSE78751 study). Finally, we considered all samples from the
GSE52865 (C) study (40 tumor and 17 healthy samples). Figure 2 presents a detailed configuration

of the different datasets.
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Figure 1. Flow diagram presenting our systematic review of the literature and selection of studies for

this meta-analysis, according to the PRISMA statement guidelines.
2.2. Data Exploration, Quality Control, and Normalization

We explored all datasets by principal component analysis (PCA) and clustering analysis (see
the “Analysis exploratory” section in the metafun-BC web tool). We failed to detect any abnormal
patterns except for the GSE78751 study, which presented with high variability. To avoid this negative

influence on the outcome of the subsequent meta-analysis [20], we chose to discard this study.
2.3. Individual Epigenomic Analysis

We applied the same workflow analysis to all individual studies and collected the analysis of
differentially methylated genes in the form of UpSet plots. Figure 3 shows (for each study) the

number of significant genes and specific and common differentially methylation status according to
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the methylation score (MS): higher MS (Figure 3a) and lower MS (Figure 3b). We found highly
variable results for the differential methylation analysis for each of the 13 comparisons evaluated. In
10 comparisons, the number of hypomethylated genes in the breast cancer samples varied between
0 and 423, whereas the hypermethylated genes ranged between 1 and 39 (Figure 3). Interestingly,
we found a common pattern of methylated genes in breast cancer samples between different
studies. For example, Figure 3b shows how the luminal-A and luminal-B subtypes from the
GSE52865 study share a total of 69 hypomethylated genes and 3 hypermethylated compared to
control samples (see Figure 3a).

Of note, UpSet plots demonstrate a lack of significant genes across all studies. This data
highlights the need for integrated strategies, such as meta-analyses, to increase the statistical
power of any findings.

For each of the comparisons described, we functionally profiled the list of all genes ranked by
their differential MS. Table 1 shows the GSEA results for the Gene Ontology terms and KEGG
pathways — the intersection of significant results failed to highlight common functions across the
different studies.

We integrated those results in the final functional meta-analysis in the hope of retrieving
common functions affected in the different breast cancer studies.
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Figure 2. Studies selected for meta-analysis. A, B, C, D, and E report the distribution of samples for
studies GSE101413 [19], GSE141338 [21], GSE52865 [22], GSE59901, and GSE78751 [23]
respectively. Abbreviations: brc - no subtype specified, healthy — healthy breast tissue, basal - triple
negative/basal-like subtype, her2 - her2-positive subtype, lumA -- luminal A subtype, lumB - luminal B
subtype, lumHer2 - luminal-Her2 undifferentiated, inVitro - in vitro samples, brca1 - BRCA1-mutated
breast cancer, idc - invasive ductal carcinoma, ilb - invasive lobular carcinoma, and lymph - lymph

node metastasis.
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Figure 3. UpSet plots showing the number of common elements among the significantly
hypermethylated genes (a) and hypomethylated genes (b) in the differential methylation
analysis. Horizontal bars indicate the number of significant elements in each study. The
vertical bars indicate the elements in common between the sets indicated with dots under

each bar. The unique points represent the number of unique elements in each group.

Table 1. Number of significant GO terms and KEGG pathways from GSEA. Sig Up and
Sig Down refer to the GO terms or KEGG pathways that are significantly hypermethylated

and hypomethylated, respectively, in breast cancer samples.
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GO BP GO MF GO CC KEGG
SigUp SigDown | SigUp Sig Down | SigUp Sig Down | Sig Up Sig Down
52865-basal 25 28 2 2 1 0 0 1
52865-her2 14 58 0 1 1 0 0 1
52865-luma 31 14 3 8 19 5 1 3
52865-lumb 34 16 3 2 0 0 0 1
59901-brc 44 25 4 15 11 1 1 1
59901-idc 45 11 7 5 7 0 0 1
59901-ilc 24 9 7 6 0 0 0 1
101443-bc 12 6 7 3 5 5 1 1
141338-basal 24 12 15 2 28 13 2 1
141338-her2 26 5 1 3 1 0 2 2
141338-luma 3 28 2 18 7 18 3 2
141338-lumb 8 17 4 10 0 8 0 1
141338-lumher2 7 7 2 1 0 0 0 1

2.4. Methylated Gene Meta-Analysis

The meta-analysis strategy provided 19 protein-coding and micro-(mi)RNA genes with a
common methylation profile in all comparisons - 4 genes displayed hypermethylation
(INMT-MINDY4, LTB4R2, VSTM2B and ZNF471), 13 genes (FAM25C, GABRAS5, HSFY1P1, HULC,
MAGEAS5, NKAPP1, OR1B1, OR1Q1, RPS16P5, TGIF2LY, CCL16, CCL3, NREP-AS1) displayed
hypomethylation, and 2 microRNAs (hsa-miR-122 and hsa-miR-384) displayed hypomethylation

compared to controls (Table 2).

Gene / miRNA P-value P-adj Methylation
CCL16 0.00298 0.04164 -
ZNF471 0.00279 0.02282 +
INMT-MINDY4 0.00324 0.01768 +
MIR384 0.00108 0.01518 =
NREP-AS1 0.00094 0.01321 -
GABRAS 0.00146 0.01023 -
CCL3 0.00019 0.00259 -
FAM25C 0.00008 0.00114 -
NKAPP1 0.00007 0.00102 -
TGIF2LY <0.00001 0.00002 -
LTB4R2 <0.00001 <0.00001 +
VSTM2B  <0.00001 <0.00001 +
HSFY1P1 <0.00001 <0.00001 -
HULC <0.00001 <0.00001 -
MAGEA5 <0.00001 <0.00001 -
MIR122 <0.00001 <0.00001 -
OR1B1 <0.00001 <0.00001 -
OR1Q1 <0.00001 <0.00001 -
RP516P5 <0.00001 <0.00001 -

Table 2. Final set of significantly affected protein-coding and miRNA genes obtained by
meta-analysis. P-value (adjusted by Benjamini-Hochberg) and methylation pattern are
shown for each protein-coding or miRNA gene. + indicates hypermethylation and —

indicates hypomethylation compared to controls.
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2.5. Functional DNA Methylation Signature Meta-Analysis

The functional meta-analysis integration of distinct functions retrieved from the individual
studies represents the last step of the workflow. We considered a random effects mode to account
for the possible heterogeneity in the effect measurements in the different studies. Table 3

summarizes the significant GO terms and KEGG pathways that we uncovered.

Table 3. Significant Results of the Meta-analysis. GO:BP, GO:MF, and GO:CC refer to GO
terms related to biological processes, molecular functions, and cellular components,
respectively. KEGG refers to KEGG pathways. Functions with an adjusted p-value less than or
equal to 0.05 were considered significant.

DB S5ig Up  5Sig Down  NoSig
GO:BI' 1187 819 6824
GO:MF 185 134 1456
GO:CC 115 b 933
KEGG 28 19 175

We conducted a total of 11,941 meta-analyses for the GO terms and KEGG pathways
considered in the previous individual analyses (11,719 and 222 meta-analyses, respectively). The
results of the functional meta-analysis show the magnitude of the combined effect of all the
individual studies through the logarithm of the odds ratio (LOR). We identified a large number of
significant functions; detailed results are available in the Functional Meta-analysis section of
metafun-BC web tool.

We next focused on the GO biological processes and KEGG pathways obtained that displayed
significantly different DNA methylation profiles and exhibited a high magnitude of change (LOR >=
-0.5 or LOR >= 0.5). Thus, we obtained a total number of significant GO biological processes
obtained of 138 (85 hypermethylated and 53 hypomethylated), while no significant KEGG pathway
passed the filtering criteria. Table 4 and Figure 4 show a selection of these biological processes with
higher magnitude of change.

10
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Figure 4. Dotplot of selected significant functions obtained by functional meta-analysis. The
thickness of the circle refers to the number of genes related to a specific pathway. The
GeneRatio refers to the number of genes related to a pathway relative to the total number of
genes in the functional enrichment analysis. The adjusted p-values are represented by a color

gradient.
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GO Term Bandogucal Function LOR {Loganthm of the odds rates)

GO Regulation of basement membrans organation [T
P 10519 Megative regulation of phospholipase activity 0754
Megative regulabion of metallopeptdase actviby 078

Pasitive regulation of transcopbion from ENA polymerase [1 promater in response to oxidative stress ik 2
Fhenylpropanoid metabolic process 0758

WA Coumarin metabolic process 0758
id26el  Regulation of mesodermal cell fate specification 0715
1503644 Regulation of chaperone-mediabed protem folding LT
1902218 Regulation of intrinsic apoptatic signaling pathway in response b osmatic stress (Ll
Y251 Somabostabin secrefion &S5
W1E54  Megative regulabion of ol adhestion malecule producton LSS el
X9 Transforming growth factor beta2 production Lk
GO:A0GZM  Regulation of transforming groawth factor beta2 productiom [LaE2
001504028 Regulation of collagen fibril organization é
GO:0I072E  Pasitive regulation of hydrogen perosdde metbolic process 0554
GOAN060573  Cell fate speafication invalved mnopathern specification L5935
GO:M03E1EY  Spmatostaxbn receptar signaling pathway 0573
GO:MEEIT  Somatostxin signaling pathway 0573
GO20O0E23  Megative regulation of glecocorbond receptar signaling pathway 571
G 40212 Regulation of long-chain fatty acid import into ozll 01549
G Megative regulabion of sphmgolipid binsynthetc process 0547
G Regulation of adipose tssue development 0544
G Reoognition of apoptotec cell 0545
G Pazitive regulation of transcripbion fram EMNA palymerase [1 promater i respanse to hypoxia 057
G Bload vessel maturation 0E02
G Regulation of glial cell apoptotc process .5
GOAE0753  Regulation of mast oel]l chemptaxis -1.51
00185 Regulation of CD8-positive, alpha-beta T oell adtivaton -{1.51

Pasitive regulation of memory T cell differentbation 1515

Megative regulation of glial cell apoptobic process 1537

Ketone body metabolic process .54

Regulation of toll-like receptor 9 signaling pathway 0543

Collagen-activated tyrosine kinase receptor signaling pathaway 1547
Ketons body biosynthetic prooess 156

Cellular ketone body metabolic process 0565

Hematopoietic skem cell migrateon 0508

¥acrophage calary-stimulating factor production -{1.58

Eegulation of macrophage colony-stimulating factor production -{1.58

Pamitive regulaton of CO8-positive, alpha-beta T cell achvation RIERD

E-1 B cell differentiation (452

Megative regulation of tall-like receptor 2 signaling pathway -[L6H5%

Pazitive regulation of phosphalipase A2 actvity 1713

GO:071447  Cellullar respomse to hydroperoside 0783

GO:0EE044 Transforming, growth factor-beta secrebion (.78

Table 4. List of functions related to Figure 4. A positive LOR indicates hypermethylation in
breast cancer samples and a negative LOR indicates hypomethylation in breast cancer

samples when compared to healthy control samples.
3. Discussion

In this study, we generated a new characterization of breast cancer based on DNA methylation
patterns. This novel strategy based on the meta-analysis of reviewed and selected studies (whose
data are available in public repositories) has provided new DNA methylation signatures at the gene
and biological function level. These results supported the identification of common markers across
breast cancer subtypes that may impact the identification of new diagnostic/predictive tools and the

development of potential therapeutic approaches.

3.1. Gene-Level Meta-Analysis

Differentially DNA methylated regions detected in the breast cancer samples identified in this
study suggest the silencing of the INMT-MINDY4, LTB4R2, VSTM2B, and ZNF471 genes. Little is
known about INMT-MINDY4 and VSTMZ2B in cancer.
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INMT- MINDY4 is a lysine48 deubiquitinase 4 that belongs to a IncRNA gene category
described as regulatory molecules of gene expression. This gene has been related with FAM188B
(family with sequence similarity 188, member B), an oncogenic protein highly expressed in most
solid tumors as lung and colorectal cancer that negatively correlates with the overall survival of lung
cancer patients. INMT-MINDY4-FAM188B locus represents a rare but naturally occurring
read-through transcription between INMT-MINDY4 and FAM188B on chromosome 7. The
read-through transcript is unlikely to produce a protein. Interestingly, siFAM188B treatment induced
the upregulation and activation of TP53, and consequently increased p53-regulated pro-apoptotic
protein oncogenic role [25, 26]. The hypermethylation of the VSTM2B gene has been previously
reported in human papillomavirus-related oropharyngeal squamous cell carcinoma [27]. LTB4R2, a
leukotriene receptor also known as BLT2, is associated with malignant cell transformation in
esophageal squamous cell carcinoma and pancreatic cancers [28, 29], invasion, metastasis, and
survival in TNBC, and paclitaxel resistance in breast cancer cell lines [30]. The silencing of VSTM2B
and LTB4R2 might suggest a better prognosis for breast cancer patients. ZNF471 codes for a zinc
finger protein, whose members have previously shown tumor suppressor activity and high rates of
DNA methylation in primary head and neck squamous cell carcinoma according to our analysis [27,
31]. In breast cancer, ZNF471 exerts a tumor-suppressive function by blocking AKT and
Whnt/B-catenin signaling pathways; furthermore, downregulated expression through epigenetic

regulation has been associated with worse survival [32].

Hypomethylated genes include CCL76 and CCL3, cytokines whose overexpression can contribute to
breast cancer progression and metastases [33, 34]. We also encountered the hypomethylation of the
FAM25 and GABRA5 genes, suggesting their overexpression. While there exist no know link
between FAM25 and cancer, studies have suggested a role in the brain and in drug resistance (Allen
Brain Atlas Adult Human Brain Tissue Gene Expression Profiles). Meanwhile elevated expression of
GABRAS has been related to pediatric brain cancer medulloblastoma. Although further studies must
be performed, our results open the possibility to consider FAM25 and GABRAS as biomarkers for
brain metastases, a common complication in TNBC, and of poor prognostic. Expression of the HULC
gene, also hypomethylated in our study, can prompt the epithelial-mesenchymal transition to
promote tumorigenesis and metastases in hepatocellular carcinoma. The hypomethylated MAGEAS
gene has been described as tumor suppressor in breast cancer (comparably to other MAGEA

genes) whose expression associates with improved relapse-free survival [36].

Our study also showed the hypomethylation of regions associated with miR-122 and miR-384,
suggesting their expression. The upregulated expression of miR-122 inhibits cell proliferation and
suppresses tumorigenesis in vivo by targeting IGF1R in breast cancer [37]. Additionally, miR-122
also differentially controls the response to radiotherapy through a dual function as a tumor
suppressor and an oncomiR, dependent on cell phenotype [38]. The overexpression of miR-384 has
been demonstrated to inhibit the proliferation and migration of breast cancer cells in vitro and in vivo.
Therefore, the presence of hypomethylation at the miR-122 and miR-384 genes (or their
overexpression) could represent prognostic biomarkers for breast cancer patients and help to predict
response to therapy.
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The dysregulation of pseudogene expression in human cancer has been linked to tumor initiation
and progression [39], and we identified hypomethylated regions related to the HSFY1P1, NKAAP1,
and RPS16P5 pseudogenes in this study. HSFY1P1 is responsible of cat eye syndrome [40], and
while the biological functions of HSFY genes are poorly understood, accumulating evidence links the
overexpression of heat shock factors in a variety of human cancer to growth, survival, and

metastasis [41].

Our methylation analysis also highlighted the hypomethylation of NREP-AS1, an antisense RNA
associated with the NREP gene, which has been reported as a predictive biomarker for prostate
cancer progression [42]. We also found hypomethylation of OR7B7 and OR1Q1, which encode
olfactory receptors, in breast cancer samples. Mutations in these genes have been associated with

neoplasms [43].

The proposed integrative meta-analysis has identified differentially methylated regions (DMRs)
related to expression genes with potential utility as prognostic indicators, therapeutic targets and

guiding treatment decisions.
3.2. Functional-Level Meta-Analysis

Our study identified an elevated number of deregulated functions common to all breast cancer
studies, which relate to well-known cancer hallmarks, such as apoptosis, immune response, and
metastases [44] Table 4 lists the top functions (GO BP) collected in Figure 4, ordered according to

their level of differential methylation in breast cancer samples.

Apoptosis may be deliberated by via extrinseca mediated by receptors as tumor necrosis factor
(TNF) and intrinsic pathways in response to DNA damage with the participation of mitochondria and
mitochondrial proteins [45], in addition to T-cell mediated cytotoxicity and perforin-granzyme system.
But frequently cancer cells show resistance to apoptosis programs [46]. Related to apoptosis, we
found altered the biological processes GO:0043654 (the recognition of apoptotic cell) and
G0:1902218 (the regulation of intrinsic apoptotic signaling pathway in response to osmotic stress),
both driving resistance to apoptosis in breast cancer cells [45]. In our study, genomic regions
involved in the recognition of apoptotic cell and intrinsic pathway processes present an elevated
level of methylation in breast cancer patients that means a loss or lower level of the expression of
the genes involved in apoptotic mechanisms and suggests in these breast cancer patients the
apoptosis evasion by tumor cells. Additionally, tumor cells of these patients could be able to evade
traditional therapies such as chemotherapy, radio, and immunotherapy since resistance to apoptosis
may confer resistance to conventional therapies and the immune system. The Programmed cell
death is a known cancer hallmark, critical to the maintenance of genomic homeostasis. Thus, and
according to the literature [47] truncation of the apoptotic signaling pathway by several factors such
as DNA damage or osmotic stress play a critical role in the development of several cancers. In fact,
as we noted from our results, there is not only a clear avoidance of the cell death program, but also
a dysregulation of functions related to stress response. Among other functions obtained, the

regulation of chaperone-mediated protein folding (G0:1903644) and functions related to hydrogen
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peroxide species stand out in this regard. It is common for cancer cells to be subjected to a wide
variety of types of stress, including oxidative stress, DNA damage, hypoxia, and nutrient

deficiencies, among others.

Many of these stress signals culminate in programmed cell death in favor of the rest of the healthy
tissue, but mutations in cancer can lead proteins such as chaperones to protect cancer cells from
programmed death. Chaperones are a family of proteins involved in the folding of proteins so that
they can perform their function. There is great evidence that they are found in high concentration in
distinct types of cancer. This is because, for cancer cells to avoid programmed cell death, they
require chaperones to stabilize poorly folded proteins due to these elevated levels of stress, which
could otherwise lead to cell death [48]. On the other hand, our results suggest a higher level of
expression of functions related to the cellular response to oxidative stress as we can note by the GO
Term 0071447 (Cellular response to hydroperoxide). This function is found with lower methylation
levels in cancer samples which means that it is highly expressed in these samples. Hydroperoxide is
an important signaling molecule that is produced by several types of cancer. This molecule could
increase genomic instability by inducing damage to DNA strands, which could facilitate the
appearance of malignant processes such as proliferation, resistance to apoptosis and metastasis
among others. However, other studies indicate that a relatively high concentration of this molecule

may be able to induce selective apoptosis in cancer cells [49].

Overall, the response to stress and avoidance of cell apoptosis observed in the study could lead to
an improved overall survival of breast cancer cells which is a recurrent characteristic denoted by

many types of cancer.

It is also worth noting that several of our results also agree with a higher proliferative profile of
breast cancer cells in contrast with healthy ones, which indeed is another major cancer hallmark. In
this sense, we found a deregulation of the genes that carry out the biological process GO:0032430
which refers to the positive regulation of phospholipase A2 activity. These genes are found with a
lower level of methylation in cancer patients, which results, a priori, in a higher level of expression of
the genes which carry out this function. According to the literature [50], phospholipase A2 enzymes
regulate the release of biologically active fatty acids and lysophospholipids from membrane
phospholipid pools. In general, phospholipases are important mediators in intracellular and
intercellular signals. The lipids generated by these proteins can act by promoting tumorigenesis [51],
or modulating proliferation, migration, invasion, and angiogenesis. Although the protein
phospholipase A2 has not yet been classified as an oncogene or tumor suppressor gene, there is
compelling evidence that their key role in breast cancer could be more related with oncogenic

functions.

Moreover, we can find other biological processes such as GO terms GO:0032906 and GO:0038044,
both related to the transforming growth factor beta protein (TGF-B). Although these results may
seem divergent (note that one is over methylated and the other under methylated, resulting in a

higher and lower expression respectively), it is interesting to remark that the dual effects of TGF-B
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during tumor growth in breast cancer have been reported in the literature. In fact, many discordant
results have been published about its prognosis in breast cancer. Among them, the consensus is
that TGF-B influences cell homeostasis through proliferation, migration, and apoptosis. TGF-B has
been reported to function as a tumor suppressor in the initial stages of the disease by inhibiting cell
proliferation, however, it appears that in later stages it would have pro-oncogenic capabilities

through stimulation of cell invasion and migration [52].

It is important to note the presence of other terms associated with a high proliferative state of breast
cancer cells such as the somatostatin signaling pathway (GO terms GO:0038169 and GO:0038170).
Somatostatin receptors initiate a signaling cascade that increases apoptosis and represses cell
proliferation. According to our results, genes belonging to this pathway are less expressed in
individuals with breast cancer (higher methylation status on cancer samples). This is an expected
result since routes that lead to an apoptotic anti-proliferation signal are often silenced in several
types of cancer. However, according to several studies [53, 54] somatostatin receptors are found in
large numbers on breast cancer cells. This seems to point out that in our studies, some point on the
somatostatin signaling pathway may be affected. According to the literature cited above, it is
possible that somatostatin activates tumor suppressor genes such as PTEN and p53, so it appears
that it may be this point on the somatostatin signaling pathway that is found to be under-expressed
in our samples. Even so, treatment with somatostatin is usually as effective that research lines have
been opened to fight cancer through its analogues. This is a signalling pathway that would be worth
studying further to find out which exact point in the pathway might be affected. Last but not least for
this functional block of functions let us discuss the term GO:0090155 which makes reference to the
negative regulation of sphingolipid biosynthetic processes. Evidence that lipid mediators play pivotal
roles in breast cancer biology has been increasing for the last few years. Since that, sphingolipids
have emerged as important signaling mediators that regulate critical processes during the
development of cancer. Silencing of genes related with this term could be related with a higher
production of sphingolipids in breast cancer tissue with respect to normal breast tissue which indeed
is a behavior reported in the literature [55]. In this way, high sphingolipids levels may be related to

cancer proliferation and metastasis in breast cancer cells.

According to the results obtained in Table 4, let us now consider a group of functions related to
vascularization and tissue invasion, which is another important hallmark in cancer intimately linked
to tumor dissemination. Within this group of functions, we find the regulation of mesodermal cell fate
specification (GO:0042661). This biological process is linked to a deregulation of the mesoderm,
which could point to one of the main characteristics of several types of tumors: the epithelial to
mesenchymal transition (EMT). Due to EMTs, cancer cells acquire a strong invasive and metastatic
capacity. In addition, it has been shown that there is a certain capacity of modulation, being a
reversible process. This great invasive capacity is given because mesenchymal cells are separated
from each other by their respective cellular matrices, not having a basal lamina that separates them

from the adjacent tissue and therefore having greater freedom of movement [56].

On the other hand, related to a higher capacity of invasion we found functions related to the
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structural organization of the cells. For example, let us consider the function regulation of basement
membrane organization (GO:0110011). The basement membrane is an important part of the
extracellular matrix which underlies epithelial and endothelial tissues. This structure serves as a
natural barrier against cancer invasion, intravasation and extravasation, however, it is known that
cancer cells can invade it to spread across other areas [57]. In fact, we obtained other functions
related with the invasion and migration of cancer cells through the extracellular matrix. Among these
functions, note the downregulation of the organization of the collagen fibers (term G0:1904026,
caused by a high methylation level in cancer samples) and a high activity of metallopeptidases
(G0O:1905049) caused by a downregulation of genes related to the negative regulation of their
activity. First, the downregulation of collagen fibers has been widely described during years on every
phase of carcinogenesis and tumor progression. Changes in the organization and structure of
collagen fibers contribute to the formation of a microenvironment that promotes cancer progression
and invasion [58]. Related to the tumoral microenvironment, the increased activity of
metallopeptidases could also favor cancer invasion and migration. Metallopeptidases are a family of
proteins which have been recently proposed as markers of many cancers due to their ability to
degrade extracellular matrix components and remodel tissues. Some studies have pointed out that
the overexpression of these proteins can lead to a loss of epithelial phenotype and the adoption of
mesenchymal one, increasing the migratory capabilities of cancer cells [59]. Overall, with our results

we observe a high invasive and migratory status on breast cancer cells.

Metabolism disruption is another key factor for the survival of cancer cells. Through a readjustment
of the metabolism, cancer cells obtain selective advantages during initiation and progression such
as deregulated uptake of glucose and amino acids or opportunistic modes of nutrient acquisition
[60]. There is a high evidence of the important role of lipids in cancer progression because they are
required as a structural part of the cell membranes, to provide energy to the cell or just as
secondary messengers [61]. This phenomenon can be seen in our results with GO BPs like the
regulation of long-chain fatty acid import into cell (GO:0140212). The genes responsible for this
function appear with higher methylation levels in cancer samples which means that their expression
could be silenced in this condition. This kind of metabolism deregulation has been widely observed
in several types of cancer because, as stated before, cancer cells need nutrients in order to keep
growing and proliferation. In this way, the lipid metabolism is not only affected by a higher uptake of
peripheral lipids into the cell but also by a deregulation in the development of the adipose tissue
(G0O:1904177) which ultimately led to an increased lipid metabolism in breast cancer cells. On the
other hand, related to cancer metabolism we obtained the terms G0O:0046951 and GO:0046950
which refer to ketone body metabolic process and ketone body biosynthetic process. According to
the results, both functions show a lower methylation profile in cancer samples than in healthy ones
which means that the expression of the genes belonging to the related functions is higher in cancer
condition. Not only lipid metabolism but ketone metabolism also has been reported to be
overexpressed in breast cancer cells. Ketones have a two-compartment metabolism in tumor cells
[62]. First by upregulating key enzymes in the production of ketogenic fibroblasts in the stroma of
adjacent breast cancer cells. In a second step, these ketone bodies are transferred from stromal

fibroblast to cancer cells. Through this metabolic process breast cancer cells will obtain energy for
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promoting tumor growth and metastasis.

Finally, a growing evidence on the implication of the immune system with cancer has been reported
in recent years. In this way, let us focus on a group of functions related to the immune system and
immune modulation in breast cancer samples. Note that all functions related to the immune system
at Table 4 are found with a lower level of methylation in breast cancer patients than in healthy
individuals. Within this functional block we find the following GO terms: GO:0060753, GO:2001185,
G0:0043382, GO:0034351,G0:0034163, G0O:0035701, GO:0036301, GO:1901256, GO:2001187,
G0:0001923 and G0:0034136. The Immune system is intimately involved in the progression of
cancer through various functions such as its pro-inflammatory activity [63]. For example, the
activation of T cells — G0O:2001187 — is a process that presents a lower level of methylation in
cancer patients, which leads to a higher level of expression of genes related to this function. T cells
can have both pro-inflammatory and anti-inflammatory activities while their infiltration into cancerous
tissues correlates with a better prognosis of the disease. However, it has been observed that several
types of cancer are able to utilize the immunosuppressive properties of T cells and in turn, alter the
anti-tumor effects they exert, such as their infiltration, survival, proliferation and cytotoxicity
capabilities. In this way, cancer cells that escape the control of the immune system adopt a
phenotype that is resistant to the immune system while taking advantage of its pro-inflammatory

capabilities.

On the other hand, some cancers have a lower amount of leukocyte antigens on their surface due to
several mutations. Thanks to this phenomenon, cancer cells can avoid the effect of leukocytes on
them while their infiliration causes a higher rate of inflammation, which they take advantage of to
develop [64]. It is also worth noting the terms GO:0036301 and G0O:1901256 referring to a higher
methylation level of genes related to the macrophage colony-stimulating factor production. Tumor
associated macrophages can promote cancer progression in several ways, for example by secreting
IL-6 which enhances cancer epithelial-to-mesenchymal transition through p-STAT3 signaling [65].
Additionally, macrophages can contribute to cancer progression by altering glucose metabolism,
promoting angiogenesis and immune evasion within the tumor [66]. Finally we found a deregulation
of genes related to toll-like receptors 2 and 9 signaling pathways (G0:0034136 and GO:0034163

respectively).

Toll-like receptors (TLRs) are pattern recognition receptors which can be found on the surface of
immune cells. Their main function is the production of cytokines and chemokines to promote the
inflammatory response. Although the roles of TLRs have not been widely studied in breast cancer
yet, there is evidence that supports the crosstalk between them and breast cancer. In our results, we
found that the negative regulation of the TLR 2 has higher methylation levels on normal breast
tissues which could be related with a lower expression level of the genes responsible for carrying
out that function. In contrast, in breast cancer cells we would find the opposite, a higher expression
of the genes which repress this signaling pathway. Comparable results have been reported in the
literature [67]. In this case, the expression levels of the TLR 2 were about 10-fold lower in the breast

cancer cell line MDA-MB-231 compared to the less malignant MCF7 breast cancer cells. However,


https://doi.org/10.1101/2022.10.15.512358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.15.512358; this version posted October 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

there seems to be controversy regarding the role of this type of receptor in breast cancer since the
overactivation of TLR 2 signaling pathway promotes upregulation of interleukin-6, transforming
growth factor-B, vascular endothelial growth factor and matrix metalloproteinase 9. On the other
hand, TLR 9 has been positively correlated with tumor grade suggesting that this receptor is related
to poor differentiated breast cancer tissue and involved in tumor progression and metastasis. In this
sense, it is the only toll-like receptor (along with TLR 6) whose expression is associated with greater
tumor aggressiveness. Overall, although promising, further studies are needed to fully elucidate the
role and mechanism of action of TLRs in breast cancer. As we can see, our results agree with what
is expected in the literature: the immune system is intimately linked to cancer and may even favor its
development and invasiveness through inflammatory processes. Thus, the up regulation of the
immune system functions in our study point to the creation of an ideal tumor microenvironment for

the development of the disease and could guide breast cancer immunotherapy.

This dual characterization of methylation profiles in breast cancer has provided which elements
could be relevant in a broad set of subtypes of this disease, identifying a gene signature as well as a
function signature. This information provides guidance on the main molecular mechanisms that may

be the target of new therapeutic targets.

4. Materials and Methods

4.1. Systematic Review and Selection of Studies

This review was conducted in October 2019, according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines [68]. Breast cancer
methylation datasets were selected from GEO repository [69], using the following keywords: breast
cancer, methylation, and Homo sapiens in studies published in English. The following exclusion
criteria were applied: (i) studies conducted in organisms other than humans; (ii) sample size less
than 10 in each experimental group; (iii) experimental design different from case-control and (iv)
methylation profiling platform other than Infinium HumanMethylation450 BeadChip from lllumina.
The study platform was chosen for its high resolution - around 450,000 methylation sites - and its

wide acceptance in the field [19].

4.2. Bioinformatics Analysis Strategy

The following workflow was applied to each of the selected studies: i) Data acquisition; ii)
Exploratory analysis and quality control of the samples; iii) splitting of the studies into different case
vs. control comparisons; iv) Analysis of differential methylation profiles between case and control
groups; v) functional enrichment analysis for each comparison; and, vi) integration of the methylation

profiles and functional results in the final meta-analysis —see Figure 5A—.

4.3. Data Exploration, Quality Control and Normalization

Exploration of raw data was performed through principal component analysis (PCA) and
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clustering analysis. Data quality control was conducted with the minfi R package [20]. Levels of the
signals from methylated and non-methylated channels were checked, then a quantile normalization

was performed on the data for subsequent comparisons —Figures 5B, 5C, 5D—.
4.4. Individual Epigenomic Analysis

Differential methylation analysis for each comparison was carried out with the minfi R package.
Briefly, permutation tests were performed to obtain the methylation scores of all analyzed regions on
the lllumina BeadChip 450k. A total of 13 comparisons derived from the individual studies were
performed in the form control vs cancer (where a positive methylation score indicates a higher
methylation value on cancer samples than in the control condition). Comparisons were performed
between paired samples for all the studies except for the GSE59901 study where the information
about the source of the control samples were missing. The comparisons are: Control vs TNBC
(Triple Negative Breast Cancer) (GSE52865 and GSE141338), Control vs HER-2 subtype
(GSE52865 and GSE141338), Control vs Lum-A subtype (Luminal A) (GSE52865 and GSE141338),
Control vs Lum-B subtype (Luminal B) (GSE52865 and GSE141338), Control vs BRCA1 mutated
(no subtype specified), Control vs Invasive Ductal Carcinoma (IDC), Control Vs Invasive Lobular

Carcinoma (ILC) and Control vs BRCA (no molecular subtype specified).

Subsequently, methylation scores were annotated to gene level through the bumphunter R
Package [70]. In cases where more than one differentially methylated region (DMR) was reported for
a gene, the one with the highest absolute value was used. Then, a functional enrichment analysis
was performed from the differential methylation results using Gene Set Analysis (GSA) [71] in which
the genes were ordered according to their p-values and the sign of the contrast statistic. The GSA
was then performed following the logistic regression model implemented in the mdgsa R package
[72], as well as its corresponding functional annotation. The p-values were corrected for each
function by false discovery rate (FDR) [73]. The databases used for functional enrichment were the
Gene Ontology (GO) [74] and the Kyoto PATHWAY Encyclopedia of Genes and Genomes (KEGG)
[75].

Significant functions were represented in the form of Upset plots [76] from which the number of
functional elements specific and shared by each breast cancer subtypes can be observed —see

Figure 5SE—.
4.5. Methylated Genes Meta-Analysis

Individual genes were identified from the mapping of the DMRs. Those genes with a common
differential pattern between case and control groups were selected. For each gene, the p-values of
all comparisons were then integrated using the Fisher combination method (or the inverse
normal/weighted method). Finally, the combined p-values were corrected by the FDR method [73].
This meta-analysis strategy provided the genes with a significant common methylation profile in all

the selected studies.
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4.6. Functional DNA Methylation Signatures Meta-Analysis

Finally, once the functional enrichment study was performed for each comparison, the results
were integrated into a functional meta-analysis as previously described [17]. The metafor R package
was used to assess the combined effect of the studies together with a random effects model [77].
The variability of individual studies was considered for the calculation of the log odds ratio (LOR) in
the meta-analysis. In turn, an analysis of heterogeneity to check the suitability of the selected
studies, together with a sensitivity analysis and assessment of bias to detect whether any of the

comparisons had an excessive influence on the final meta-analysis were performed.

Each analyzed function in the meta-analysis is accompanied by the combined estimate of the
effect of the studies (LOR), the 95% confidence interval and the adjusted p-value by the Benjamini
and Hochberg method [73]. Thus, those functions with an adjusted p-value equal to or less than
0.05 were considered significant. For each significant function, forest and funnel plots were used to
measure the contribution of each study to the meta-analysis and to assess its variability —Figures
5F, 5G—.

4.7. Web Tool

The large volume of data and results generated in this study is freely available in the
metafun-BC web tool (https://bioinfo.cipf.es/metafun-BC), which will allow users to review the results
described in the manuscript and any other results of interest to researchers. The front-end was
developed using the Bootstrap library. All graphics used in this tool were implemented with Plot.ly,

except for the exploratory analysis cluster plot, which was generated with the ggplot2 R package.

This easy-to-use resource is organized into five sections: (1) a quick summary of the results
obtained with the analysis pipeline in each of the phases. Then, for each of the studies, the detailed
results of (2) the exploratory analysis, (3) the differential expression, and (4) the functional
characterization are shown. The user can interact with the tool through its graphics and search for
specific information for a gene or function. Finally, in Section (5), indicators are shown for the
significant functions and genes identified in the methylation meta-analysis that inform whether they
are more or less active in patients. Clicking on each indicator obtains the forest plot and funnel plot
that explain the effect of each function in individual studies, as well as an evaluation of their

variability.
5. Conclusions

Breast cancer is one of the main focuses of research at present, being key to the identification
of biomarkers that impact on the knowledge of the disease as well as on the development of
diagnostic and predictive tools that would improve the clinical decision making. In this study we
have identified a series of new methylation patterns common in the different breast cancer subtypes
through the application of a novel methodology based on meta-analysis tools at gene and functional

level, integrating the information described so far. This approach provides greater statistical power
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than individual studies, incorporating in the statistical model the specific characteristics of each
study. Among the main functions shared by the different breast cancer subtypes are the
overactivation of the immune system itself in favor of the creation of a tumor microenvironment.
Although further studies are required to fully verify and explore these findings, our results provide

new clues to understand the molecular mechanisms in breast cancer.
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Figure 5. (A) Pipeline data analysis. (B, C and D) Exploratory data analysis. (E) UpSet
plot showing the number of common elements among the significant genes. Only the 20
most abundant interactions are shown. Horizontal bars indicate the number of significant
elements in each study. The vertical bars indicate the common elements in the sets,
indicated with dots under each bar. The single points represent the number of unique
elements in each group. (F) A forest plot of the GO:0042110 term, showing the LOR of
each study and the global result. (G) Funnel plot of the GO:0042110 term; dots in the white
area indicate the absence of bias and heterogeneity.
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Abbreviations

The following abbreviations are used in this manuscript:

Lum-A Luminal A

Lum-B Luminal B

TLA Three letter acronym

LD linear dichroism

TNBC Triple negative breast cancer

IDC Invasive ductal carcinoma
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ILC Invasive lobular carcinoma

Appendix A. Supplementary material
Appendix A.1. Data availability

Data used in this work can be downloaded at GEO: GSE52865, GSE59901, GSE101443, GSE141338.
Appendix A.2. Computed code

The code used in this work can be found at

https.//qgithub.com/atrassierra/methylation _meta-analysis
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