

A potent synthetic nanobody targets RBD and protects mice from SARS-CoV-2 infection

Dianfan Li (✉ dianfan.li@sibcb.ac.cn)

University of Chinese Academy of Sciences <https://orcid.org/0000-0003-4729-4678>

Tingting Li

University of Chinese Academy of Sciences

Hongmin Cai

University of Chinese Academy of Sciences

Hebang Yao

University of Chinese Academy of Sciences

Bingjie Zhou

Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, <https://orcid.org/0000-0002-7753-4065>

Ning Zhang

Institute of Microbiology, University of Chinese Academy of Sciences

Yuhuan Gong

Institute of Microbiology, University of Chinese Academy of Sciences

Yapei Zhao

Institut Pasteur of Shanghai, University of Chinese Academy of Sciences,

Quan Shen

Institute of Microbiology, University of Chinese Academy of Sciences

Wenming Qin

National Facility for Protein Science in Shanghai, Chinese Academy of Sciences

Cedric Hutter

Institute of Medical Microbiology, University of Zurich <https://orcid.org/0000-0002-8920-3343>

Yanling Lai

Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences

Shu-Ming Kuo

Institut Pasteur of Shanghai, Chinese Academy of Sciences <https://orcid.org/0000-0002-4437-689X>

Juan Bao

Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences

Jiaming Lan

Institute Pasteur of Shanghai, Chinese Academy of Sciences

Markus Seeger

Institute of Medical Microbiology, University of Zurich <https://orcid.org/0000-0003-1761-8571>

Gary Wong

Institut Pasteur of Shanghai, Chinese Academy of Sciences

Yuhai Bi

Institute of Microbiology <https://orcid.org/0000-0002-5595-363X>

Dimitri LAVILLETTE

<https://orcid.org/0000-0002-4706-1519>

Article

Keywords: SARS-CoV-2, receptor-binding domain, synthetic nanobody

Posted Date: September 23rd, 2020

DOI: <https://doi.org/10.21203/rs.3.rs-75540/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Version of Record: A version of this preprint was published at Nature Communications on July 30th, 2021. See the published version at <https://doi.org/10.1038/s41467-021-24905-z>.

1 **Title:** A potent synthetic nanobody targets RBD and protects mice from SARS-CoV-2
2 infection

3
4 **Authors:** Tingting Li^{1,2,#}, Hongmin Cai^{1,2,#}, Hebang Yao^{1,2,#}, Bingjie Zhou^{2,3,#}, Ning
5 Zhang^{4,#}, Yuhuan Gong², Yapei Zhao^{2,3}, Quan Shen⁴, Wenming Qin⁵, Cedric A.J. Hutter⁶,
6 Yanling Lai^{1,2}, Shu-Ming Kuo³, Juan Bao¹, Jiaming Lan³, Markus A. Seeger⁶, Gary
7 Wong^{3,7*}, Yuhai Bi^{2,4,*}, Dimitri Lavillette^{3,8*}, Dianfan Li^{1,*}

8 **Affiliation:** ¹State Key Laboratory of Molecular Biology, CAS Center for Excellence in
9 Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai
10 Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320
11 Yueyang Road, Shanghai 200030, China.

12 ²University of CAS, Beijing 101408, China

13 ³CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai
14 CAS, 320 Yueyang Road, Shanghai 200031, China.

15 ⁴CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
16 Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS
17 Center of Excellence for Emerging Infectious Diseases (CEEID), CAS, Beijing 100101,
18 China

19 ⁵National Facility for Protein Science in Shanghai, Shanghai Advanced Research
20 Institute (Zhangjiang Laboratory), CAS, Shanghai, 201210, China.

21 ⁶Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.

22 ⁷Département de microbiologie-infectiologie et d'immunologie, Université Laval,
23 Québec, QC, Canada

24 ⁸Pasteurien College, Soochow University, Jiangsu, China.

25
26 [#]These authors contributed to the work equally.

27
28 ^{*}**Correspondence:** dianfan.li@sibcb.ac.cn; dlaville@ips.ac.cn; beeyh@im.ac.cn;
29 garyckwong@ips.ac.cn

30 **ABSTRACT**

31 SARS-CoV-2, the causative agent of COVID-19¹, recognizes host cells by attaching
32 its receptor-binding domain (RBD) to the host receptor ACE2²⁻⁷. Neutralizing
33 antibodies that block RBD-ACE2 interaction have been a major focus for therapeutic
34 development⁸⁻¹⁸. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer
35 advantages including ease of production and possibility for direct delivery to the lungs
36 by nebulization¹⁹, which are attractive features for bio-drugs against the global
37 respiratory disease. Here, we generated 99 synthetic nanobodies (sybodies) by *in vitro*
38 selection using three libraries. The best sybody, MR3 bound to RBD with high affinity
39 ($K_D = 1.0$ nM) and showed high neutralization activity against SARS-CoV-2
40 pseudoviruses ($IC_{50} = 0.40$ μ g mL^{-1}). Structural, biochemical, and biological
41 characterization of sybodies suggest a common neutralizing mechanism, in which the
42 RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies
43 with improved potency were generated by structure-based design, biparatopic
44 construction, and divalent engineering. Among these, a divalent MR3 conjugated with
45 the albumin-binding domain for prolonged half-life displayed highest potency ($IC_{50} =$
46 12 ng mL^{-1}) and protected mice from live SARS-CoV-2 challenge. Our results pave the
47 way to the development of therapeutic nanobodies against COVID-19 and present a
48 strategy for rapid responses for future outbreaks.

49 **INTRODUCTION**

50 The coronavirus disease that emerged in early December 2019 (COVID-19)¹ poses
51 a global health and economic crisis²⁰. The causative agent, SARS-CoV-2, uses its Spike
52 protein (S) to recognize receptors on host cells, an initial step for viral infection^{2,3,21,22}.
53 Key to this virus-host interaction is the binding between the S receptor-binding domain
54 (RBD) and the host ACE2 protein⁴⁻⁷. Therefore, the RBD has been a primary target for
55 neutralizing antibodies^{8-13,23} to block ACE2-binding.

56

57 Llama-derived nanobodies are generally more heat stable, easier and less
58 expensive for production, and more amenable to protein engineering compared to
59 conventional antibodies²⁴. As single-chain antibodies, nanobody libraries are less
60 complex to construct and screen, enabling *in vitro* selection of high-affinity binders in
61 relative short time, typically 2-4 weeks²⁵⁻³⁰. Recently, several nanobody therapeutics,
62 including the caplacizumab approved by the US Food and Drug Administration, have
63 been developed for a variety of immune diseases³¹. Of relevance to SARS-CoV-2,
64 nanobodies can survive nebulization and an inhaler nanobody drug (ALX-0171) has
65 gone into clinical trials for the treatment of the Respiratory Syncytial Virus³¹. Recent
66 weeks have witnessed the generation of nanobodies that neutralize SARS-CoV-2 from
67 several independent groups¹⁴⁻¹⁸. However, the *in vivo* efficacy of such nanobodies
68 remains to be investigated.

69

70 Here, we report our efforts in selection and engineering synthetic nanobodies
71 (sybodies)²⁶ that are highly potent against SARS-CoV-2, using biochemical and
72 structural approaches. For the first time, we demonstrate that nanobodies can protect
73 mice from live SARS-CoV-2 infection. Our results form a preliminary basis for the
74 development of nanobody therapeutics for COVID-19.

75

76

77 **RESULTS AND DISCUSSION**

78 **Generation of high-affinity neutralizing sybodies against SARS-CoV-2**

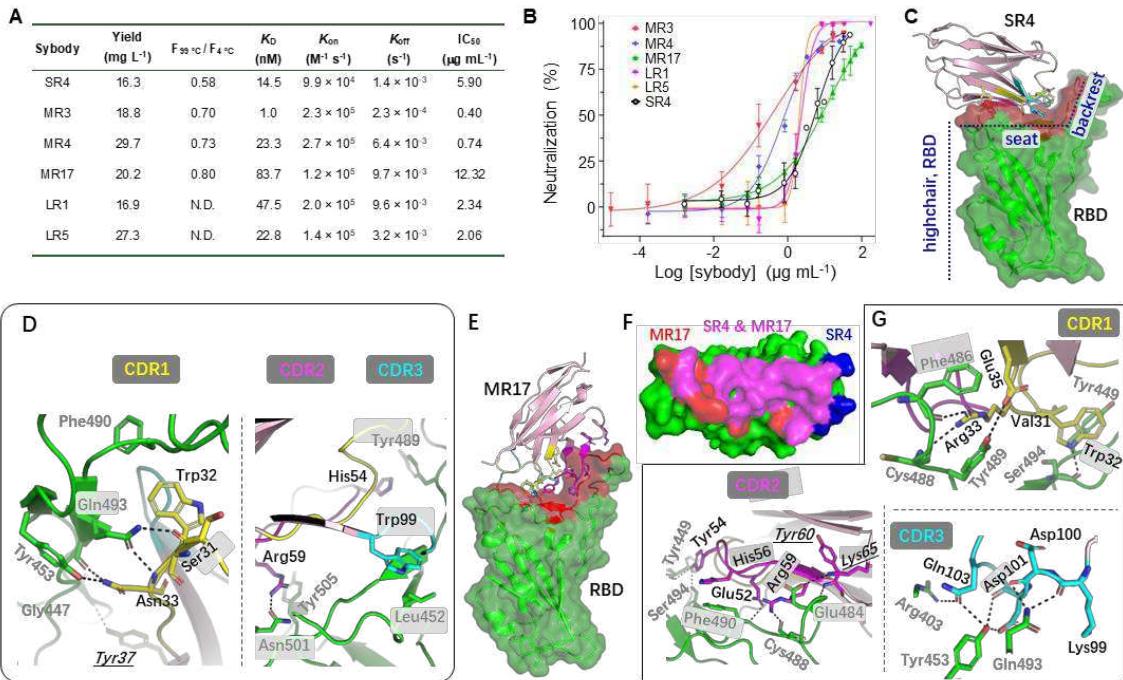
79 SARS-CoV-2 S-RBD binders were selected by performing one round of ribosome
80 display using three high-diversity libraries (Concave, Loop, and Convex)^{26,27}, and three
81 rounds of phage display using the RBD as the bait under increasingly stringent
82 conditions. Subsequent ELISA (**Extended Data Fig. 1**) identified 80, 77, and 90 positive
83 clones, corresponding to 62, 19, and 18 unique binders from the Concave, Loop, and
84 Convex library, respectively (**Extended Data Table 1**). Eighty sequencing ‘first-comers’

85 of the 99 sybodies were further screened by a convenient fluorescence-detector size
86 exclusion chromatography (FSEC) assay using crude extract from sybody-expressing
87 clones. This identified 28 (36%) sybodies, including 9 Concave (21%), 9 Loop (50%),
88 and 10 Convex (56%) binders that caused earlier retention of the fluorescein-labeled
89 RBD (**Extended Data Fig. 2A, Extended Data Table 1**).

90

91 The same 80 sybodies were also screened for neutralization activity against
92 retroviral pseudotypes harboring the SARS-CoV-2 S protein. Using 50% neutralization
93 at 1 μ M concentration as a cut-off, 11 Concave (26%), 13 Loop (68%), and 10 Convex
94 (56%) sybodies were identified as positive (**Extended Data Fig. 3A**). The high positive
95 rates suggest high efficiency of the *in vitro* selection platform. Of note, none of the
96 sybodies showed noticeable neutralization activities for the closely related SARS-CoV
97 pseudovirus (**Extended Data Fig. 3B**), indicating high specificity.

98


99 Six FSEC-positive neutralizing sybodies, namely SR4 (1), MR3 (31), MR4 (9), MR17
100 (1), LR1 (31), and LR5 (19) (S, M, L refers to Concave, Loop, and Convex sybodies
101 respectively; brackets indicate ELISA redundancy), were characterized in more detail
102 as follows. They could be purified from *Escherichia coli* with high yield (**Fig. 1A**), formed
103 complexes with RBD on gel filtration (**Extended Data Fig. 2B**), displayed ultra-high
104 thermostability (**Fig. 1A, Extended Data Fig. 2C**) as originally designed²⁶, and bound
105 to the RBD with relatively high affinity (**Fig. 1A, Extended Data Fig. 4**), with K_D ranging
106 from 83.7 nM (MR17) to 1.0 nM (MR3). Consistent with its highest affinity, MR3
107 showed the slowest off-rate ($2.3 \times 10^{-4} \text{ s}^{-1}$). Using neutralization assays, we determined
108 IC₅₀ of the six sybodies (**Fig. 1B**). MR3 was the most potent (IC₅₀ of 0.40 μ g mL⁻¹),
109 indicating a largely consistent trend between neutralization potency and binding
110 kinetics (affinity and off-rate).

111

112 **Structure of sybody-RBD complexes**

113

114 To gain mechanistic insights into neutralization, we performed crystallization
115 trials for several RBD-sybody complexes and obtained crystals for four. Crystals of SR4-
116 and MR17-RBD diffracted to 2.15 \AA and 2.77 \AA resolution respectively and allowed
117 structure determination (**Extended Data Table 2**). Crystals for MR3- and MR4-RBD did
118 not diffract beyond 8.0 \AA despite our optimization efforts.

119 **Fig. 1. Biochemical and structural characterization of neutralizing sybodies. (A)**
120 Summary of the characterization. Yield refers to purification from 1 L of culture.
121 Fractional fluorescence (F) indicates remaining gel filtration peak intensity of sybodies
122 after heating at 99 °C for 20 min. N. D., not determined. **(B)** Neutralization assay. SARS-
123 CoV-2 pseudoviruses were pre-incubated with different concentration of sybodies
124 before infection of VeroE6-hACE2 cells. The rate of infection was measured by
125 fluorescence-activated cell sorting (FACS). IC₅₀ was obtained by Sigmoidal fitting of the
126 percentage of neutralization. Data are from three independent experiments. **(C)** The
127 overall structure of SR4 (pink cartoon) in complex with RBD (green surface) which
128 resembles a short backrest high chair. The binding surface is highlighted red. **(D)** SR4
129 CDR1 (yellow), CDR2 (magenta), and CDR3 (cyan) all contributed to the binding.
130 Underlining italics label the framework residue Tyr37. **(E)** The overall structure of the
131 MR17 (pink cartoon) in complex with RBD (green surface). **(F)** The overlap (magenta)
132 between the SR4- (blue) and MR17- (red) interacting surfaces on RBD. **(G)** All three
133 CDRs contributed to the binding with RBD (green). Underlining italics label the
134 framework residues Lys65 and Tyr60. Dashed lines indicate H-bonding or salt-bridges
135 between atoms that are <4.0 Å apart. Black texts label sybody residues and grey texts
136 label RBD residues.

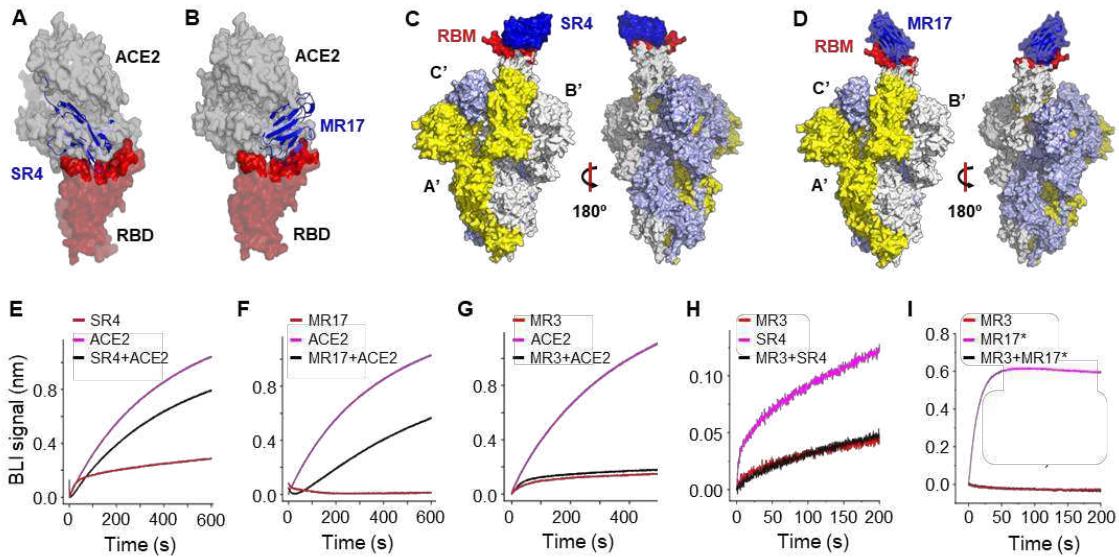
137
138 The RBD structure resembles a short backrest high chair and SR4 binds to both
139 the 'seat' and 'backrest' (**Fig. 1C**) with a surface area³² of 727.37 Å² with modest
140 electrostatic complementarity (**Extended Data Fig. 5A**). Of note, SR4 binds sideways,
141 as intended by design of the Concave sybody library²⁶. All three CDRs contributed to

142 the binding through hydrophobic interactions and H-bonding that involves both side
143 chains and main chains (**Fig. 1D**). In addition, Tyr37, a framework residue, also
144 participated binding by forming an H-bond with the RBD Gly447 backbone.

145

146 MR17 also binds to the RBD at the 'seat' and 'backrest' regions but approaches
147 the RBD at an almost perfect opposite direction of SR4 (**Fig. 1C, 1E**), indicating
148 divergent binding mode for these sybodies. The binding of MR17 to the RBD occurred
149 on an 853.94 Å² surface area with noticeable electrostatic complementarity (**Extended**
150 **Data Fig. 5B**). Interestingly, this surface was largely shared with the SR4 binding surface
151 (**Fig. 1F**). The interactions between MR17 and the RBD were mainly mediated by H-
152 bonding. Apart from the three CDRs, two framework residues, Lys65 and Tyr60,
153 interacted with the same RBD residue Glu484, via a salt bridge with its side chain, and
154 an H-bond with its main chain (**Fig. 1G**).

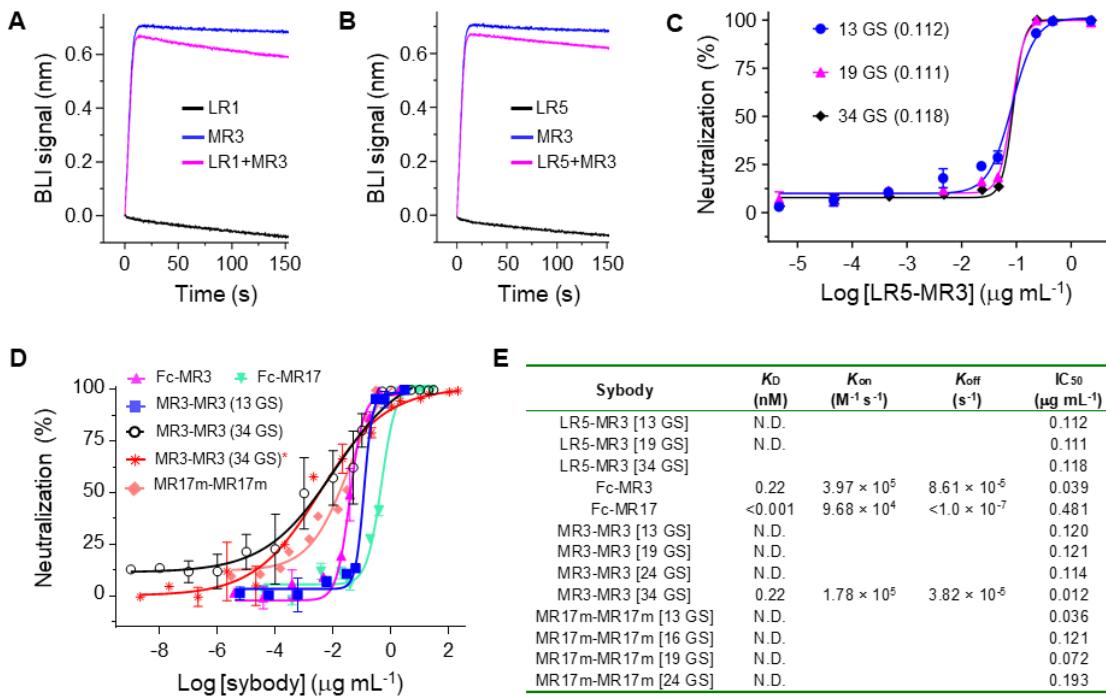
155


156

157 Molecular mechanism for neutralization

158 Structure alignment of SR4-, MR17- and ACE2-RBD⁴ showed that both sybodies
159 engage with RBD at the receptor-binding motif (RBM) (**Fig. 2A, 2B**). Superposing SR4
160 and MR17 to the S trimer showed both sybodies could bind to the 'up' conformation²
161 of RBD with no steric clashes (**Fig. 2C, 2D**), and to the 'down' conformation with only
162 minor clashes (**Extended Data Fig. 6**) owing to their minute sizes. Consistent with the
163 structure observation, both SR4 and MR17 inhibited the binding of ACE2 to RBD, as
164 revealed by bio-layer interferometry (BLI) assays (**Fig. 2E, 2F**).

165


166 To probe the epitope for MR3 without a structure, competitive BLI binding assays
167 were carried out. The results showed that MR3 could block ACE2 (**Fig. 2G**), and SR4
168 and MR17 (**Fig. 2H, 2I**), suggesting it also binds to at least part of the RBM, although
169 the possibility of allosteric inhibition remains to be investigated. Taken together, SR4
170 and MR17, and probably MR3, neutralize SARS-CoV-2 by competitively blocking the
171 ACE2-RBD binding.

172
173 **Fig. 2. Molecular basis for neutralization.** (A,B) Alignment of the SR4- (A) or MR17- (B)
174 RBD to the ACE2-RBD structure (PDB ID 6M0J)⁴ reveals that SR4/MR17 (blue) binds
175 RBD (red) at the motif (dark red) where ACE2 (white) also binds at. (C,D) Alignment of
176 the SR4-RBD (C) and MR17-RBD (D) to the 'up' conformation of the RBD from the cryo-
177 EM structure of the trimer S (PDB ID 6VYB)². A'/B'/C' label three subunits. RBM (red)
178 marks the ACE2-binding motif. (E-G) Competitive binding for the RBD between sybody
179 and ACE2. A sensor coated with streptavidin was saturated with 2 μ g mL⁻¹ of
180 biotinylated RBD. The sensor was then soaked in 200 nM of indicated sybody before
181 further soaked in sybody-containing buffer with (black) or without (red) 25 nM of ACE2
182 for BLI signal recording. As a control, the ACE2-RBD interaction was monitored in the
183 absence of sybodies (magenta). (H-I) Competitive BLI assay for the RBD between
184 sybody pairs. A sensor with immobilized RBD was soaked in 200 nM of MR3 before
185 further soaked in MR3-containing buffer with (black) or without SR4/MR17 (red). As a
186 control, the SR4- and MR17-RBD interaction were monitored in the absence of MR3
187 (magenta). In (I), MR17* indicates a MR17 mutant (see below). Panels E-I share the
188 same Y-axis title.

189
190 **Sybody engineering increased affinity and neutralizing activity**

191
192 Increasing valency is a common technique to enhance potency for
193 nanobodies^{18,31}. To this end, we engineered three types of divalent sybodies, including
194 the biparatopic fusion of two different sybodies, the Fc-fusion and direct fusion of the
195 same sybody.

Fig. 3. Divalent engineering increased affinity and neutralizing activity. (A,B) Identification of two non-competing pairs, LR1/MR3 (A) and LR5/MR3 (B), for biparatopic constructs. For BLI assays, sensors coated with RBD were soaked in 200 nM of LR1 or LR5 before further soaked in LR1- or LR5-containing buffer with (magenta) or without (black) 100 nM of MR3. The MR3-RBD interaction profile was obtained in the absence of LR1 or LR5 (blue). (C) Neutralization assay of the biparatopic sybody LR5-MR3 with a GS linker of various length as indicated. Brackets indicate IC_{50} values in $\mu\text{g mL}^{-1}$. (D) Neutralization assays of divalent sybodies. The original SARS-CoV-2 was used for all assays except that the D614G mutant³³ was additionally tested for MR3-MR3 (red asterisk). (E) Summary of binding kinetics and neutralizing activities of the divalent sybodies. N.D., not determined.

For biparatopic fusion, we first identified two sybodies, namely LR1 and LR5 (Fig. 3A, 3B), that could bind RBD in addition to MR3 using the BLI assay. As LR5 showed higher affinity and neutralization activity than LR1 (Fig. 1A), we fused this non-competing sybody to the N-terminal of MR3 with various length of GS linkers ranging from 13 to 34 amino acids (Extended Data Table S1). Interestingly, the linker length had little effect on neutralization activity and these biparatopic LR5-MR3 sybodies were more potent than either sybodies alone (Fig. 1A) with an IC_{50} of 0.11 $\mu\text{g mL}^{-1}$ (Fig. 3C). LR5-MR3 may be more tolerant to escape mutants³⁴⁻³⁷ owing to its ability to recognize two distinct epitopes.

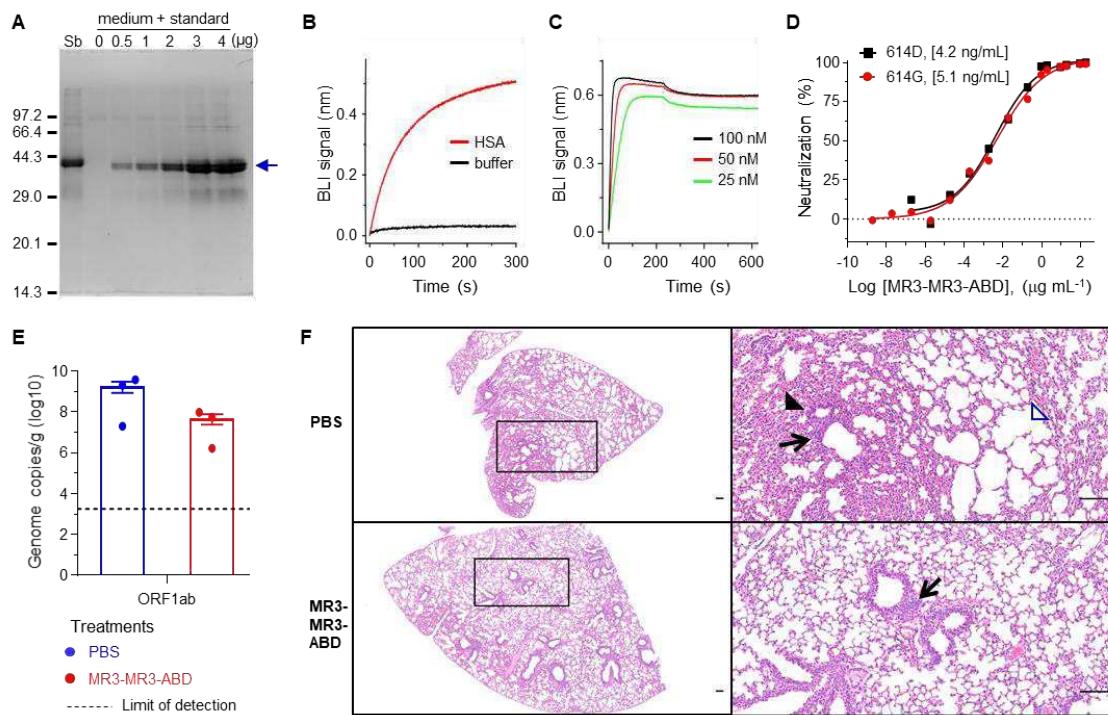
For Fc-fusion, both MR3 and MR17 were attached to the dimeric human IgG Fc. This decreased IC_{50} by 10 folds for Fc-MR3 (39 ng mL⁻¹) and 25 folds Fc-MR17 (0.48 μg

220 mL^{-1}), respectively (**Fig. 3D, 3E**). Consistently, the Fc fusion increased the apparent
221 binding affinity for both sybodies, with a K_D of 0.22 nM for Fc-MR3 and less than 1 pM
222 for Fc-MR17 (**Extended Data Fig. 4H, 4I**). Note, however, Fc-MR17 did not gain as much
223 neutralization potency as for the apparent binding affinity.

224
225 For direct fusion, MR3 and a rationally designed MR17 mutant (MR17m,
226 **Extended Data Fig. 7**) that showed comparable IC_{50} with MR3 by a single mutation
227 K99Y (0.50 $\mu\text{g mL}^{-1}$, **Extended Data Fig. 7G**) were individually linked together via GS
228 linkers with variable length ranging from 13 to 34 amino acids (**Extended Data Table**
229 **1**). The optimal construct for MR17m-MR17m had the shortest linker (13-GS) (**Fig. 3D,**
230 **3E**). By contrast, optimal neutralization activity was observed with the longest linker
231 (34-GS) for MR3-MR3 (**Fig. 3D, 3E**). Again, MR3-MR3 was superior compared to
232 MR17m-MR17m, showing a 2-fold higher neutralization activity with an IC_{50} of 12 ng mL^{-1}
233 (**Fig. 3E**). Compared to the monovalent MR3 (IC_{50} of 0.40 $\mu\text{g mL}^{-1}$), the divalent
234 engineering increased the potency by over 30 folds. Notably, MR3-MR3 showed similar
235 activity to inhibit pseudotypes harboring the original SARS-CoV-2 S or the current
236 dominant and more infectious mutant D614G S (ref. ³³) (**Fig. 3D**).
237

238 **Divalent MR3 protects mice from COVID-19**

239
240 The most potent divalent sybody (MR3-MR3) was chosen to investigate the
241 potential of nanobodies to protect mice from SARS-CoV-2 infection. Nanobodies have
242 very short serum half-lives of several minutes due to their minute size³⁸. To circumvent
243 this, we fused MR3-MR3 to the N-terminus of an albumin-binding domain (ABD)³⁹
244 which has been known to extend the circulating half-life of its fusion partners by
245 increase in size and preventing intracellular degradation³¹. Conveniently, we expressed
246 MR3-MR3-ABD in *Pichia pastoris*, which is the preferred host to express nanobody
247 therapeutics owing to its robustness and its endotoxin-free production. Small-scale
248 expression of MR3-MR3-ABD showed a secretion level of $\sim 250 \text{ mg L}^{-1}$ with an apparent
249 purity of >80% without purification (**Fig. 4A**). Note, this experiment was carried out
250 using a shaker which gave cell density of OD_{600} of 16. Given its ability to grow to OD_{600}
251 of 500 without compromising yield, the expression level of MR3-MR3-ABD may reach
252 7.5 g L^{-1} in fermenters. The potential for simple and high-yield production is especially
253 attractive for the pandemic at a global scale.


254
255 Importantly, MR3-MR3-ABD could bind to the human albumin (**Fig. 4B**) while
256 retaining its ability to bind RBD (**Fig. 4C**) and to neutralize SARS-CoV-2 pseudotypes
257 harboring either past (614D) and current (614G)³³ SARS-CoV-2 S (**Fig. 4D**). As designed,

258 a serum virus neutralization assay showed that the addition of the albumin binding
259 domain to the divalent MR3 (MR3-MR3-ABD) extended its *in vivo* stability, displaying
260 neutralization activity up to 24 h post injection contrary to the other forms (**Extended**
261 **Data Fig. 8A**). The body weight measures, and the microscopic histopathology analysis
262 did not reveal any toxicity for the nanobodies for 6 days (**Extended Data Fig. 8B, 8C**).
263

264 To test the *in vivo* antiviral efficacy of MR3-MR3-ABD, C57BL/6J female mice, aged
265 6-8 weeks old, were first sensitized to SARS-CoV-2 infection using an adenovirus
266 expressing the human ACE2 receptor⁴⁰ at 5 days before challenge. Mice were infected
267 via the intranasal route with 5×10^6 median tissue culture infectious dose (TCID₅₀) of
268 SARS-CoV-2, and then administered a single dose of 25 mg kg⁻¹ MR3-MR3-ABD via the
269 intraperitoneal route at 12 h after virus challenge. A control C57BL/6J group were
270 given PBS as a mock treatment. Compared to the control group, the lung viral titers of
271 the sybody group was 50-fold lower than the PBS group, when assessed at 3 dpi (**Fig.**
272 **4E**). This efficacy is similar to the existing human monoclonal antibody CB6 (2
273 injections, 50-fold, in rhesus macaques)⁴¹ and better than that for 1B07 (1 injection,
274 10-fold, mice)⁴² when compared under similar sampling points.
275

276 Histopathological examination revealed that the infected mice in the PBS-treated
277 group displayed moderate bronchopneumonia lesions, with a large number of
278 inflammatory cell infiltrations around the bronchioles and terminal bronchioles. The
279 alveolar walls were thickened, a large number of inflammatory cells were exuded in
280 the interstitium, accompanied by red blood cell exudation. In addition, part of the
281 alveolar cavity showed compensatory expansion (**Fig. 4F**). In contrast, the lungs of
282 sybody-treated mice showed normal alveolar wall structures, and only displayed mild
283 bronchopneumonia, with a small amount of inflammatory cell infiltration around the
284 bronchioles (**Fig. 4F**). Taken together, the significant reduction of the lung viral load
285 and the severity of lung damage demonstrated the *in vivo* efficacy of the MR3-MR3-
286 ABD against authentic SARS-CoV-2 infection.
287

288 In summary, the *in vitro* platform was efficient in generating neutralizing sybodies
289 (the selection process took 2 weeks). Structural and biochemical studies suggested an
290 antagonistic mechanism to block the ACE2-RBD interaction. Protein engineering
291 yielded various forms of sybody with higher affinity, neutralization activity, and *in vivo*
292 stability. Using the most potent construct, we have in the first time demonstrated that
293 nanobodies can provide post-exposure protection of mice from SARS-CoV-2 infection.
294 Our results should encourage development of nanobody therapeutics to fight COVID-
295 19 or future viral outbreaks.

296

297 **Fig. 4. The Divalent MR3 sybody protects mice from live SARS-CoV-2 challenge. (A)**
 298 Coomassie Blue staining of SDS-PAGE for MR3-MR3-ABD (arrow) expression in pichia.
 299 Based on the standards, the yield (Lane Sb) was semi-quantified as 0.25 g L^{-1} . (B,C) BLI
 300 binding assays show that MR3-MR3-ABD bind to human serum albumin (HSA) (B) and
 301 RBD-coated sensors were incubated with 200 nM of HSA (B) or indicated
 302 concentrations of MR3-MR3-ABD (C) for single monitoring. (D) Neutralization assay of
 303 MR3-MR3-ABD. Data are from one representative experiment of two independent
 304 experiments. (E) Lung viral loads as determined by PCR from infected mice at 3 dpi. (F)
 305 Histopathology of lungs from infected mice at 3 dpi. The arrows denote inflammatory
 306 cell infiltration. A black triangle indicates typical red blood cell exudation, and a blue
 307 triangle indicates typical compensatory expansion of the alveolar cavity. The left
 308 panels denote an overview of the lung at 10x magnification. The right panels denote
 309 the expanded view of the black boxes in the left panels, at 100x magnification. Bars =
 310 100 µm.

311 **ACKNOWLEDGMENTS**

312 We thank the staff members of the Large-scale Protein Preparation System for
313 equipment maintenance and management, and staff scientists at the SSRF-BL19U1
314 beamline at National Facility for Protein Science (Shanghai) for technical support and
315 assistance. We thank Dr. Zhipu Luo at Soochow University (China) for helpful
316 discussions regarding data processing. This work has been supported by the Strategic
317 Priority Research Program of CAS (XDB37020204, D.Li; XDB29010102 & XDA19090118,
318 Y.B.), Key Program of CAS Frontier Science (QYZDB-SSW-SMC037, D.Li), CAS Facility-
319 based Open Research Program, the National Natural Science Foundation of China
320 (31870726, D.Li; 31870153, D.La.; 32041010, Y.B.), the One Belt and One Road major
321 project for infectious diseases (2018ZX10101004-003, J.L., G.W.), National Key R&D
322 Program of China (2020YFC0845900, D.La.), CAS president's international fellowship
323 initiative (2020VBA0023, D.La.), Natural Science Foundation of Shanghai
324 (20ZR1463900, G.W.), and Shanghai Municipal Science and Technology Major Project
325 (20431900402, D.La.). Y.B. is supported by the NSFC Outstanding Young Scholars
326 (31822055) and Youth Innovation Promotion Association of CAS (2017122). G.W. is
327 supported by a G4 grant from IP, FMX and CAS.

328

329

330 **AUTHOR CONTRIBUTIONS**

331 T.L., H.C., and H.Y. selected sybodies under the supervision of C.A.J.H. and M.A.S..
332 T.L., H.C., and H.Y. purified and crystalized protein complexes with assistance from Y.L..
333 H.Y. biochemically characterized sybodies. B.Z. and Y.Z. performed neutralization
334 assays under the supervision of D.La. N.Z., Y.G. and Q.S. performed animal experiments
335 under supervision of Y.B. and G.W.. W.Q. collected X-ray diffraction data. B.J. helped
336 with molecular cloning. S.K. performed half-life assays in mice. J.L. and G.W. developed
337 reagents for the neutralizing assays. G.W. developed the mice model used for in vivo
338 studies. D.Li. conceived the project, solved the structures, analyzed data, and wrote
339 the manuscript with inputs from H.Y., T.L., H.C., B.Z., G.W., Y.B., M.A.S., and D.La.

340

341 **CONFLICT OF INTEREST**

342 The authors declare no conflict of interest.

343

344 **SUPPLEMENTARY MATERIALS**

345

346

347 Materials and Methods

348

349 Extended Data Table 1-2

350

351 Extended Data Fig. 1-8

352 **MATERIALS AND METHODS**

353 **Protein expression and purification – SARS-CoV-2 S-RBD for sybody selection**

354 The construct for the RBD with an Avi-tag for biotinylation was made by fusing
355 DNA, from 5'- to 3'-end, of the encoding sequence for the honey bee melittin signal
356 peptide (KFLVNVALVFMVVYISYIYAA), a Gly-Ser linker, residues of 330-541 of the SARS-
357 CoV-2 spike protein (Uniprot [P0DTC2](#)), a Gly-Thr linker, the 3C protease site
358 (LEVLFQGP), a Gly-Ser linker, the Avi tag (GLNDIFEAQKIEWHE), a Ser-Gly linker, and a
359 deca-His tag, into a pFastBac-backbone vector by Gibson assembly⁴³. Baculoviruses
360 were generated using standard Bac-to-Bac protocols and expression was achieved by
361 infecting *Trichoplusia ni* High Five suspension cells at 2×10^6 cells per milliliter for 48-
362 60 h at 27 °C in flasks. The medium from 1 L of culture was filtered through a 0.22-µm
363 membrane and incubated with 3.0 mL of Ni-Sepharose Excel (Cat 17-3712-03, GE
364 Healthcare) in the presence of 20 mM of imidazole for 2-3 h at 4 °C with mild agitation.
365 The beads were washed with 10 column volume (CV) of 20 mM imidazole in **Buffer A**
366 (150 mM NaCl, 20 mM Tris HCl pH 8.0). The RBD was eluted using 300 mM of imidazole
367 in **Buffer A**. For biotinylation^{26,27}, the purified RBD with the Avi-tag intact (0.8 mg mL⁻¹)
368 was incubated with 5 mM ATP, 10 mM magnesium acetate, 43.5 µM biotin, 22 µg
369 mL⁻¹ home-purified BirA in 3.2 mL volume and incubated at 4 °C for 16 h. Biotinylated
370 RBD was concentrated using a 10-kDa cut-off membrane concentrator to ~3 mg mL⁻¹
371 before loaded onto a Superdex Increase 200 10/300 GL column for size exclusion
372 chromatography. Fractions containing the RBD were pooled, aliquoted, flash-frozen in
373 liquid nitrogen, and stored at -80 °C before use.

374

375 **Protein expression and purification – SARS-CoV-2 S-RBD for crystallization**

376 For protein crystallization, the RBD was purified as above. Both the Avi-tag and
377 the His-tag were removed by 3C protease digestion as follows. The pooled elution from
378 Ni-Sepharose Excel column was desalting to remove imidazole using a desalting column
379 (Cat. 732-2010, Bio-Rad) pre-equilibrated in **Buffer A**. The desalted RBD was mixed
380 with home-purified His-tagged 3C protease at 1:100 molar ratio (3C protease : RBD) at
381 4 °C for 16 h. The mixture was then passed through a Ni-NTA column which binds 3C
382 protease, undigested RBD, and the cleaved His-tag. The flow-through fractions were
383 collected and concentrated to 8-10 mg mL⁻¹. The protein was either used directly for
384 crystallization, or flash-frozen in liquid nitrogen and stored at -80 °C before use.

385

386 For crystallization, fresh RBD or thawed from -80 °C was mixed with desired
387 sybodies at 1:1.5 molar ratio (RBD:sybody). After incubation on ice for 30 min, the
388 mixture was clarified by centrifugation before size exclusion chromatography.

389 Fractions containing the complex were pooled, concentrated to \sim 10-15 mg mL $^{-1}$ before
390 crystallization trials.

391

392 **Protein expression and purification – sybodies in *Escherichia coli***

393 Sybodies were expressed with a C-terminally His-tag in *Escherichia coli* MC1061
394 cells. Briefly, cells carrying sybody genes in the vector pSb-init^{26,27} were grown in
395 Terrific Broth (TB, 0.17 M KH₂PO₄ and 0.72 M K₂HPO₄, 1.2 % (w/v) tryptone, 2.4 % (w/v)
396 yeast extract, 0.5% (v/v) glycerol) supplemented with 25 mg L $^{-1}$ chloramphenicol to
397 OD₆₀₀ of 0.5 at 37 °C in a shaker-incubator at 220 rpm. The growth temperature was
398 lowered to 22 °C and the cells were allowed to grow for another 1.5 h before induced
399 with 0.02% (w/v) arabinose for 17 h. Cells were lysed by osmotic shock. Briefly, cells
400 from 1 L of culture were re-suspended in 20 mL of TES-high Buffer (0.5 M sucrose, 0.5
401 mM EDTA, and 0.2 M Tris-HCl pH 8.0) and incubated at 4 °C for 30 min. After this
402 dehydration step, cells were abruptly rehydrated with 40 mL of ice-cold MilliQ H₂O at
403 4 °C for 1 h. The periplasmic extract released by the osmotic shock was collected by
404 centrifugation at 20,000 \times g at 4 °C for 30 min. The supernatant was adjusted to contain
405 150 mM of NaCl, 2 mM of MgCl₂, and 20 mM of imidazole before added with Ni-NTA
406 resin that had been pre-equilibrated with 20 mM of imidazole in **Buffer A** (150 mM
407 NaCl and 20 mM Tris HCl pH 8.0). After batch-binding for 2 h, the beads were washed
408 with 30 mM imidazole, before eluted with 300 mM imidazole in **Buffer A**. The eluted
409 protein was either used directly or flash-frozen in liquid nitrogen and stored at -80 °C.

410

411 **Protein expression – sybody MR3-MR3-ABD in *Pichia pastoris***

412 The encoding gene for MR3-MR3-ABD (**Table S1**) was cloned into vector pPICZαC
413 (Invitrogen) immediately in frame with the α-factor signal peptide. To express MR3-
414 MR3-ABD in yeast, *Pichia pastoris* GS115 and SMD1168H were transformed with *SacI*-
415 linearized plasmid and selected with 0.1 and 0.5 mg mL $^{-1}$ zeocin on an YPDS agar plate
416 (1 % (w/v) yeast extract, 2 % (w/v) peptone, 2 % (w/v) glucose, 0.8 M sorbitol, 2 % (w/v)
417 agarose). Colonies (12 for each strain) were inoculated into 3 mL YPD liquid medium.
418 Cells were grown in a 30-°C incubator. After 24 h, cells were harvested, washed twice
419 with methanol-complex medium (BMMY), and suspended in BMMY medium at a final
420 OD₆₀₀ of 4-5 for induction. Methanol was supplemented to the medium to 0.5 % (v/v)
421 every 24 h. After 3 days of expression, the medium was collected by centrifugation and
422 the secreted protein was used for SDS-PAGE analysis.

423

424 To quantify the expression level, the supernatant (10 μL) was loaded together
425 with known amount of MR3-MR3-ABD (purified from *E. coli*, 0.5, 1, 2, 3, and 4 μg) that

426 had been pre-mixed with medium from culture of untransformed GS115. The band
427 intensity was semi-quantified by densitometry analysis using the Image Lab 5.2
428 software (Bio-Rad).

429

430 **Protein expression and purification – divalent sybodies in mammalian cells**

431 The encoding sequence of MR3 was cloned into a vector harboring the hinge and
432 Fc regions of IgG2 (**Table S1**, uniprot P01859) for secretion in mammalian cells. Expi293
433 cells at density of 2.3 million per milliliter were transfected with the plasmid (final
434 concentration of 2 mg L⁻¹) using linear polyethylenimine (average MW of 25 kDa, 4 mg
435 L⁻¹). Valproic acid was included at a final concentration of 2 mM. Cells were cultured in
436 a flask for 65 h. The supernatant was collected by centrifugation and filtered through
437 a 0.22-µm membrane. The filtrate from 2 L of culture was incubated with 3.2 mL
438 rProtein A beads (Cat SA012005, SmartLifesciences, China) for batch binding at 4 °C for
439 3 h. The beads were packed into a gravity column, washed with 20 CV of PBS buffer,
440 before eluted with 0.1 M glycine pH 3.0. The elution was quickly neutralized using 1 M
441 Tris HCl pH 8.0. The buffer was then exchanged to PBS using a desalt column.

442

443 **Sybody selection – ribosome display and phage display**

444 Sybody selection was performed using a combination of ribosome display and
445 phage display^{26,27}. *In vitro* translation of the ‘Concave’, ‘Loop’, and ‘Convex’ library was
446 performed according to the manufacturer’s instruction (PUREflex 2.1 kit, Cat. PF213-
447 0.25-EX, Genefrontier, Chiba, Japan). A reaction mix containing 1.8 µL of nuclease-free
448 water, 4 µL of solution I, 0.5 µL of solution II, 1 µL of solution III, 0.5 µL of 10 mM
449 cysteine, 0.5 µL of 80 mM reduced glutathione, 0.5 µL of 60 mM oxidized glutathione,
450 and 0.5 µL of 1.875 mg mL⁻¹ disulfide bond isomerase DsbC (DS supplement, Cat.
451 PF005-0.5-EX, Genefrontier) was warmed at 37 °C. After 5 min, 0.7 µL of mRNA library,
452 corresponding to 1.6×10¹² mRNA molecules, was added to the pre-warmed mix for *in*
453 *vitro* translation at 37 °C for 30 min. The reaction was diluted with 100 µL ice-cold
454 **Panning Solution** (150 mM NaCl, 50 mM magnesium acetate, 0.05 % (w/v) BSA,
455 0.1 % (w/v) Tween 20, 0.5 % (w/v) heparin, 1 µL RNaseIn, and 50 mM Tris-acetate pH
456 7.4) and cleared by centrifugation at 20,000×g for 5 min at 4 °C. Biotinylated RBD was
457 added to the supernatant and the mixture was incubated on ice for 20 min.
458 Streptavidin beads (Dynabeads Myone Streptavidin T1) were added to pull-down the
459 complex consisting of nascent sybody binders, the stalled ribosome with the mRNA
460 encoding the binders, and biotinylated RBD. Selected mRNAs were purified and
461 reverse-transcribed into single-chain DNA with the primer 5'-
462 CTTCAGTTGCCGCTTCTTG-3' using a reverse transcriptase (Cat 200436, Agilent).

463 The resulting cDNA library was purified using a DNA purification kit (Cat A740609.25,
464 Macherey-Nagel), and PCR-amplified using the primer pair 5'-
465 ATATGCTCTTAGTCAGGTTCAGCTGGTGAGAGCG-3' and 5'-
466 TATAGCTCTTCATGCGCTCACAGTCACTTGGGTACC-3' for 'Concave' and 'Loop' library,
467 and the primer pair 5'-ATATGCTCT TCTAGTCAAGTCCAGCTGGTGGAAATCG-3' and 5'-
468 TATAGCTCTTCATGCAGAACGGTAACCTGGT GCCC-3' for the 'Convex' library. The
469 product was gel-purified, digested with the Type IIS restriction enzyme *Bsp*QI, and
470 ligated into the vector pDX_init^{26,27} treated with the same enzyme. The ligation
471 product was then transformed into *E. coli* SS320 competent cells by electroporation to
472 generate libraries for phage display.

473
474 Three rounds of phage display were carried out. The first round was performed
475 in a 96-well plate coated with 60 nM neutravidin (Cat. 31000, Thermo Fisher Scientific).
476 Phage particles were incubated with 50 nM biotinylated RBD, washed, and released
477 from the plate by tryptic digestion with 0.25 mg mL⁻¹ trypsin in the buffer containing
478 150 mM NaCl and 20 mM Tris-HCl pH 7.4. The selected phage particles were amplified,
479 and the second round of selection was performed by switching the immobilizing
480 matrix to 12 µL of MyOne Streptavidin C1 beads that were pre-incubated with 50 nM
481 biotinylated RBD. Before releasing the phage particles, the binders were challenged
482 with 5 µM non-biotinylated RBD to compete off the binders with fast off-rates. The
483 second selection was repeated with 5 nM of the RBD. After three rounds of selection,
484 the phagemid was sub-cloned into pSb_init vector by fragment-exchange (FX) cloning
485 and transformed into *E. coli* MC1061 for further screening at a single-colony level^{26,27}.
486

487 **Enzyme-linked immunosorbent assay (ELISA) – sybody selection**

488 Single colonies carrying sybody-encoding genes in the vector pSb-init were
489 inoculated into 96-well plates. Cells were grown at 37 °C for 5 h in a shaking incubator
490 at 300 rpm before 1:20 diluted into 1 mL of fresh TB medium supplemented with 25
491 µg mL⁻¹ chloramphenicol. Cells were induced with arabinose as mentioned earlier at
492 22 °C for 17 h before harvested by centrifugation at 3,220 g for 30 min. Cells were
493 resuspended in TES Buffer (20 % (w/v) sucrose, 0.5 mM EDTA, 0.5 µg/mL lysozyme, 50
494 mM Tis-HCl pH 8.0) and shaken for 30 min at room temperature (RT, 22-25 °C). To the
495 lysate, 1 mL of **TBS** (150 mM NaCl, 20 mM Tris-HCl pH 7.4) with 1 mM MgCl₂ was added.
496 The mixtures, still in the plate, were then centrifuged at 3,220 g for 30 min at 4 °C. The
497 supernatant containing sybodies was used directed for ELISA or FSEC assay (below).

498
499 For ELISA, Protein A was incubated with Maxi-Sorp plate 96 well (Cat. 442404,

500 Thermo Fisher) at 4 °C for 16 h. The solution was then removed and the plate was
501 blocked by 0.5 %(w/v) bovine serum albumin (BSA) in **TBS** buffer for 30 min at RT. The
502 plate was washed three times using **TBS** before added with anti-myc antibodies at
503 1:2,000 dilution in TBS-BSA-T buffer (TBS supplemented with 0.5 %(w/v) BSA and
504 0.05 %(v/v) Tween 20). The antibody was allowed to bind to protein A for 20 min at RT.
505 The plate was then washed three times with **TBST** (TBS supplemented with 0.05%
506 Tween 20). Myc-tagged sybody prepared above was added and incubated for 20 min
507 at RT. After washing three times with **TBST**, biotinylated RBD or MBP (the maltose-
508 binding protein, as a control) was added to each well to a final concentration of 50 nM.
509 After incubation for 20 min at RT, the solution was discarded and the plate was rinsed
510 three times with **TBST**. Streptavidin conjugated with horseradish peroxidase (HRP) was
511 added to each well (1:5,000, Cat S2438, Sigma). After incubation at RT for 30 min, the
512 plate was washed three times again with **TBST**. ELISA signal (absorbance at 650 nm)
513 was developed by adding 100 µL of developing buffer (51 mM Na₂HPO₄, 24 mM citric
514 acid, 0.006 %(v/v) H₂O₂, 0.1 mg mL⁻¹ 3,3',5,5'-tetramethylbenzidine) followed by
515 incubation at RT.

516

517 **Sybody selection – fluorescence-detection size-exclusion chromatography (FSEC)**

518 To rapidly characterize RBD binders without purification, we have developed an
519 analytic, fluorescence-detection size exclusion chromatography (FSEC)-based assay as
520 follows. Biotinylated RBD_{avi} was bound to streptavidin (Cat 16955, AAT Bioquest) which
521 was fluorescently labeled by fluorescein via amine coupling. The complex is named as
522 FL-RBD_{avi}. To 0.5 µM of FL-RBD_{avi}, cell lysate containing unpurified sybodies were
523 added to an estimated concentration of 0.019 mg mL⁻¹, assuming expression level of
524 20 mg L⁻¹. The mixture was loaded onto an analytic gel filtration column (Cat 9F16206,
525 Sepax) connected to an HPLC system equipped with a fluorescence detector (RF-20A,
526 Shimadzu). The profile was monitored by fluorescence at the excitation/emission pair
527 of 482/508 nm. Periplasmic extract without sybodies was used as negative control.
528 Binders can be identified based on earlier retention volume, presumably reflecting the
529 bigger size of the FL-RBD_{avi}-sybody complex than the FL-RBD_{avi} alone.

530

531 **Bio-layer interferometry assay**

532 The binding kinetics were measured using a bio-layer interferometry (BLI) assay
533 with an Octet RED96 system (ForteBio). Biotinylated RBD was immobilized on a SA
534 sensor (Cat 18-5019) that was coated with streptavidin by incubating the sensor in 2
535 µg mL⁻¹ of RBD in **Kinetic Buffer** (0.005 %(v/v) Tween 20, 150 mM NaCl, 20 mM Tris

536 HCl pH 8.0) at 30 °C. The sensor was equilibrated (baseline) for 120 s, before incubating
537 with sybodies at various concentrations (association) for 120 s (for MR3) or 300 s (for
538 all the others). The concentrations for SR4 are 0, 250, 500, 1000, and 2000 nM. The
539 concentrations for MR17 are 0, 125, 250, 500, and 1000 nM. The concentrations for
540 MR3/MR4 are 0, 12.5, 25, 50, and 100 nM. The sensor was then moved into sybody-
541 free buffer for dissociation and the signal was monitored for 600 s. Data were fitted
542 for a 1:1 stoichiometry for K_D , K_{on} , and K_{off} calculations using the built-in software Data
543 Analysis 10.0.

544

545 For competition binding of the RBD between sybody and ACE2 (Cat 10108-H08B,
546 Sino Biological), the RBD was immobilized and the sensor was equilibrated as
547 abovementioned. The sensor was then saturated using 1 μ M sybody and the system
548 was equilibrated for 180 s. After saturation, the sensor was moved into sybody
549 solutions (50 nM) with or without 25 nM ACE2. The association of ACE2 was monitored
550 for 600 s. As a control, the ACE2-RBD interaction was monitored using sensors without
551 sybody incubation.

552

553 For the binding assay of MR3-MR3-ABD with HSA, the sensor was coated with RBD
554 as described earlier before saturated by incubation in 200 nM MR3-MR3-ABD before
555 soaked with 200 nM HSA for BLI signal monitoring. A control experiment was carried
556 out in parallel but the sensor was incubated in buffer without MR3-MR3-ABD.

557

558 **Thermostability assay**

559 Thermostability assay of sybodies was carried out using fluorescence-detection
560 size exclusion chromatography⁴⁴. Sybodies at 9 μ g mL⁻¹ in **Buffer A** (150 mM NaCl, 20
561 mM Tris HCl pH 8.0) were heated at 90 and 99 °C for 20 min. The heated samples and
562 the non-heated samples (4 °C) were analyzed the same way as described in the FSEC
563 assay above except that the intrinsic tryptophan fluorescence (Ex. 280 nm, Em. 350
564 nm) was monitored.

565

566 **Pseudotyped particle production and neutralizing assays**

567 The retroviral pseudotyped particles were generated by co-transfection of
568 HEK293T cells using polyethylenimine with the expression vectors encoding the
569 various viral envelope glycoproteins, the Murine leukemia virus core/packaging

570 components (MLV Gag-Pol), and a retroviral transfer vector harboring the gene
571 encoding the green fluorescent protein (GFP). The S Protein expressed by phCMV-
572 SARS-CoV and phCMV-SARS-CoV-2 has been truncated in the cytoplasmic tail by
573 adding a stop codon which removed 19 amino acids at the C-terminal. Supernatants
574 that contained pseudotyped particles were harvested 48 h post-transfection and
575 filtered through a 0.45- μ m membrane before been used for neutralizing assays.

576

577 VeroE6-hACE2 cells (10^4 cells/well) were seeded in a 48-well plate and infected
578 24 h later with 100 μ L of virus supernatant in a final volume of 150 μ L. Sybodies were
579 pre-incubated with the pseudotype samples for 1 h at 37 °C prior to cell/virus co-
580 incubation. After 6 h of co-incubation, the supernatants were removed and the cells
581 were incubated in medium for 72 h at 37 °C. GFP expression was determined by
582 fluorescence-activated flow cytometry analysis. The infectivity of pseudotyped
583 particles incubated with sybodies was compared with the infectivity observed using
584 pseudotyped particles and Dulbecco's modified Eagle's medium-2% fetal calf serum
585 only and standardized to 100%.

586

587 Average and standard deviation (SD, n=3) were plotted for the IC₅₀ experiments
588 except for Fig. 4D which reports data from two independent experiments.

589

590 **Crystallization**

591 Crystallization trials were set up using a Crystal Gryphon LCP robot as follows. To
592 a two-well sitting-drop plate, 70 μ L of precipitant solution was added to the reservoir.
593 To each well, 150 nL of protein solution was added using the LCP arm of the robot. The
594 wells were covered with 150 nL of precipitant solution using the 96-headed tips. Plates
595 were sealed using a tape (Cat HR4-506, Hampton research) and placed at 20 °C in a
596 Rocker Imager 1000 for automatic imaging.

597

598 Crystals for the SR4-RBD complex were grown in 20% (w/v) PEG 3,000, 200 mM
599 sodium chloride, 100 mM HEPES pH 7.5. Cryo protection was achieved by adding
600 20 % (v/v) glycerol to the mother liquor condition. Crystals for the MR17-RBD complex
601 were grown in 20 % (w/v) PEG 3,350, 0.2 M magnesium formate. Cryo protection was
602 achieved by adding 10 % (v/v) glycerol in the mother liquor condition. Crystals for the
603 MR3-RBD complex were obtained in 9 % (w/v) PEG 8,000, 0.1 M HEPES pH 7.5, 8 % (v/v)
604 ethylene glycol, 9.6 % (v/v) glycerol. 20% glycerol was included for cryo cooling. Crystals
605 for the MR4-RBD complex were grown in 10 % (w/v) PEG 8,000, 200 mM zinc acetate,
606 100 mM MES pH 6.0. Crystals for MR17-K99Y were grown in 0.2 M MgCl₂, 20 % (w/v)

607 PEG 3,350. Cryo protection was performed by adding 30 %(v/v) glycerol to the
608 reservoir condition. Crystals were cryo-protected, harvested using a MitGen loop, and
609 flash-cooled in liquid nitrogen before X-ray diffraction data collection.

610

611 **Data collection and structure determination**

612 X-ray diffraction data were collected at beamline BL19U1 (ref.⁴⁵) at Shanghai
613 Synchrotron Radiation Facility. Diffraction data were collected with a 50 x 50 μm beam
614 on a Pilatus detector at a distance of 300 – 500 mm, with oscillation of 0.5 - 1° and a
615 wavelength of 0.97853 \AA . Data were integrated using XDS ⁴⁶, and scaled and merged
616 using Aimless ⁴⁷. The structure was solved by molecular replacement using Phaser ⁴⁸
617 with the RBD structure from PDB 6M0J and the sybody from PDB 5M13 ²⁶ as the search
618 model. The model was built with 2F_o-F_c maps in Coot ⁴⁹, and refined using Phenix ⁵⁰.
619 Structures were visualized using PyMol ⁵¹.

620

621 **Structure-based design of sybody mutants to improve binding affinity**

622 The structure of the MR17-RBD complex was examined using Coot⁴⁹ and PyMol⁵¹.
623 A panel of 19 single mutants was designed by virtual mutation using Coot ⁴⁹ followed
624 by examining the possible increasing in numbers of H-bonds, salt bridges, or
625 hydrophobic interactions. The mutations include V31F, V31I, E35F, G47A, G47F, G47W,
626 E52F, E52M, E52Q, S53k, S53Q, H56F, H56I, H56W, H56Y, K99Y, Q103D, Q103E, and
627 Q103Y. The mutants were purified and characterized the same way as for MR17.
628 Because K99Y showed higher neutralization activity than the wild-type, K99W was
629 designed for the second round.

630

631 ***In vivo* stability of sybody in mice**

632 The female 7-week-old ICR mice weighing 27 ± 1 g were intraperitoneally injected
633 with phosphate buffered saline (PBS) or sybodies MR3, MR3-MR3, or MR3-MR3-ABD
634 at 25mg kg⁻¹ in a final volume of 100 μL in PBS. The blood samples were collected at
635 different time points (2 days preinjection, 6 h, 12h, 1 day, 3 days, 6 days and 14 days
636 postinjection) and subjected to neutralization assay using SARS-CoV-2 pseudotypes.
637 Mice weights were measured till 6 days post-injection (n=4). Mice were sacrificed at 1,
638 3, and 6 days post-injection; their vital organs (heart, liver, spleen, lung, kidney and
639 thymus) were fixed in 4% formaldehyde at 4 °C overnight and then embedded within
640 paraffin, solidified and cut to 15- μm thickness using a cryotome (Leica Microsystems).
641 Sections were stained by hematoxylin and eosin. Scale is equal to the original

642 magnification $\times 100$.

643

644 **Mice challenge experiments**

645 C57BL/6J female mice (6-8 weeks old) were treated with adenovirus serotype 5
646 expressing human angiotensin 1 converting enzyme 2 (hACE2) via the intranasal route
647 as previously described⁴⁰. At 5 days post-adenovirus treatment, the mice were
648 intranasally infected with SARS-CoV-2 strain hCoV-19/China/CAS-B001/2020 (National
649 Microbiology Data Center *NMDCN0000102-3*, GISAID databases *EPI_ISL_514256-7*)
650 with a high dose of 5×10^6 TCID₅₀ in a volume of 50 μ L. After 12 h, the mice of MR3-
651 MR3-ABD group (n=6) was given 200 μ L of sybody each (25 mg kg⁻¹ body weight) by
652 intraperitoneal injection. The infection control group (n=3) was treated with PBS buffer.
653 Three days post-infection (d.p.i), three mice were euthanized, and the lung tissues
654 (~1/8 of the total lungs) were fixed in 4 % (v/v) paraformaldehyde for histopathological
655 analysis using hematoxylin-eosin staining. The rest of the lungs were weighted and
656 homogenized for RNA extraction and virus titration by quantitative reverse
657 transcription PCR (qRT-PCR) using a kit (Mabsky Biotech Co., Ltd.) following
658 manufacturer protocols. Average and standard deviation of all three individual data
659 points were reported.

660

661 **Ethics Statement**

662 The animal experiments were approved by the Institutional Animal Care and Use
663 Committee of the Institut Pasteur of Shanghai, Chinese Academy of Sciences (Animal
664 protocol No. A2020009) for in vivo stability assays, and by the Ethics Committees of
665 Institute of Microbiology, Chinese Academy of Sciences (SQIMCAS2020010) for the live
666 virus-related work. The study was conducted in strict accordance with the
667 recommendations provided in the Guide for the Care and Use of Laboratory Animals
668 of the Ministry of Science and Technology of the People's Republic of China. All
669 experiments with live viruses and animals were performed in a biosafety level 3
670 laboratory and complied with the instructions of the institutional biosafety manual.

671

672 **Data availability**

673 The structure factors and coordinates are available through the protein data bank
674 (PDB) under accession codes 7C8V (SR4-RBD), 7C8W (MR17-RBD), and 7CAN (MR17-
675 K99Y in complex with the RBD).

Table S1. Sequences and FSEC results of sybody binders for the SARS-CoV-2 RBD.

Sybody	FSEC shift ^a	Sequence ^b
Concave		
SR1	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVAAAYEMEWRQAPGKEREWVAAINSMDQTY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR2	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVKQQEMTWYRQAPGKEREWVAAIESNGHTEY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR3	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVWQEEMEWRQAPGKEREWVAAITSYGDTTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR4	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVYSWNMWWYRQAPGKEREWVAAIESHGDSTR YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGHTYYGQGTQVTVS
SR5	Y	QVQLVESGGGLVQAGGSLRLCAASGFPVETTEMEMEWRQAPGKEREWVAAISSYGETYYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR6	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVGQQEMTWYRQAPGKEREWVAAILSEGNGTEY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVYVGATYIGQGTQVTVS
SR7	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVWSNEMEWRQAPGKEREWVAAITSYGTTEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR8	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVYKREMTWYRQAPGKEREWVAAISSKGVHTEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR9	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVIAYEMEWRQAPGKEREWVAAITSSGTSTYYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR10	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVNKREMTWYRQAPGKEREWVAAITSEGRSTEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR11	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVYSMEMEWRQAPGKEREWVAAISSWGNETH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR12	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVNMQEMEWRQAPGKEREWVAAISSTGWVTY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR13	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVDYMEMEMEWRQAPGKEREWVAAITSNGRETYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR14	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVDSEEMTWYRQAPGKEREWVAAITSNGDITEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR15	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVKAEMEWRQAPGKEREWVAAISSNGSETYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR16	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVKKYEMTWYRQAPGKEREWVAAITSKGTYTYYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR17	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVEGSEMEWRQAPGKEREWVAAIESNGTHTHY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGAGYIGQGTQVTVS
SR18	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPWFQEMEWRQAPGKEREWVAAISSQGTHTY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR19	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVNTMEMEMEWRQAPGKEREWVAAINSSGQETY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR20	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVTSYEMEWRQAPGKEREWVAAIASWGYHTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR21	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVSKTEMEMEWRQAPGKEREWVAAIASAGAETYYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGFSYIGQGTQVTVS
SR22	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVASHMEMEWRQAPGKEREWVAAIASGGQWTYY

			ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGQSYIGQGTQVTVS
SR23	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVYTSEMEWYRQAPGKEREWVAIASTGAETAYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGRSYIGQGTQVTVS
SR24	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVNAMEMTWYRQAPGKEREWVAAIMSEGWTW EYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGASYIGQGTQVTVS
SR25	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVNTAEMWYRQAPGKEREWVAAIYSEGPITEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSSYIGQGTQVTVS
SR26	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVNREMEWYRQAPGKEREWVAIISNGHKTY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGRSYIGQGTQVTVS
SR27	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVWEAEMEWYRQAPGKEREWVAIISIGTSTAYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCIVYVGKTYIGQGTQVTVS
SR28	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVKMAEMEWYRQAPGKEREWVAIQSAGRETYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGAGYIGQGTQVTVS
SR29	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVSQREMTWYRQAPGKEREWVAIIESEGEQTEY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGRSYIGQGTQVTVS
SR30	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVRKHEMEWYRQAPGKEREWVAIISKGSNTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGASYIGQGTQVTVS
SR31	Y		QVQLVESGGGLVQAGGSLRLSCAASGFPVWQGEMAWYRQAPGKEREWVAIISMGYKTY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVMGFWYAGQGTQVTVS
SR32	N.D.		QVQLVESGGGLVQAGGSLRLSCAASGFPVNVAKMAWYRQAPGKEREWVAIDSHGAQTH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVGFWYAGQGTQVTVS
SR33	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVGSNEMEWYRQAPGKEREWVAIQQSGVFTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSSYLGQGTQVTVS
SR34	Y		QVQLVESGGGLVQAGGSLRLSCAAGGFPVKDHEMEWYRQAPGKEREWVAITSSGWGTN TYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSSYIGQGTQVTVS
SR35	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVKHQTMEWYRQAPGKEREWVAAIMSKGRKTEY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYHCHVYVGATYFGQGTQVTVS
SR36	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVYMEEMEWYRQAPGKEREWVAIASYGSETYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGQSYIGQGTQVTVS
SR37	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVSTAEMTWYRQAPGKEREWVAIIESYGNSTEYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSYIGQGTQVTVS
SR38	Y		QVQLVESGGGLVQAGGSLRLSCAASGFPVNQEEMEWYRQAPGKEREWVAIKSWGTLTAY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVHGQTYIGQGTQVTVS
SR39	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVDASEMEWYRQAPGKEREWVAIIESQGYETYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSSYIGQGTQVTVS
SR40	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVDSQEMEWYRQAPGKEREWVAIISNGKSTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSLYIGQGTQVTVS
SR41	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVGSTEMEWYRQAPGKEREWVAISSTGHYTHYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGSSYLGQGTQVTVS
SR42	N		QVQLVESGGGLVQAGGSLRLSCAASGFPVQQREMTWYRQAPGKEREWVAIIMSKGVHTE YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCHVYVGASYFGQGTQVTVS
SR43	N.D.		QVQLVESGGGLVQAGGSLRLSCAASGFPVKKHEMEWYRQAPGKEREWVAIQSKGYTTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVGESYIGQGTQVTVS
SR44	N.D.		QVQLVESGGGLVQAGGSLRLSCAASGFPVGTAQMAWYRQAPGKEREWVAITSYGEYTLA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVGFWYTQGTQVTVS
SR45	N.D.		QVQLVESGGGLVQAGGSLRLSCAASGFPVDNATMAWYRQAPGKEREWVAIHSIGGYTTY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCVGVGKHYYGQGTQVTVS

SR46	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVFTENMHWYRQAPGKEREWVAIYSYGVWTL ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCVVQVGEWYEGQGTQTV
SR47	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVKTETMHWYRQAPGKEREWVAIYSYGTLYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCEVQVGEWYEGQGTQTV
SR48	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVNQNNMHWYRQAPGKEREWVAIYSSGFTLY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCEVQVGFWTGQGTQTV
SR49	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVFHAYMAWYRQAPGKEREWVAIIESDGSTHY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTSVYYCAVLVGFYAGQGTQTV
SR50	N.D.	QVQLVESGGGLVQAGGSLRLNCAASGFPVQAQVMAWYRQALGKEREWVAAMHSTGYTA YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVGFYAGQGTQTV
SR51	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVWESYMRWYRQAPGKEREWVAIQSNGNNT WYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCVVYVGYEYHGQGTQTV
SR52	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVNNMEMTWYRQAPGKEREWVAIASDGSYTE YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYVVVGSKYIGQGTQTV
SR53	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVYSQHMHWYRQAPGKEREWVAIYSNGTLY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCEVNQGEWYEGQGTQTV
SR54	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVSQARMHWYRQAPGKEREWVAIGSSGDFTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCEVQVQWYEGQGTQTV
SR55	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVDDTNMHWYRQAPGKEREWVAIYSSGGFTLY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCTVWVGDWYEGQGTQTV
SR56	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVEHYGMWYRQAPGKEREWVAIRSDGQWTH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCTVGVSNNYQGTQTV
SR57	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVEQAEMAWYRQAPGKEREWVAIVSYGHSTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVFVGFYAGQGTQTV
SR58	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVKQENMHWYRQAPGKEREWVAIYSTGNFTLY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAVQVGQWYEGQGTQTV
SR59	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVKTSRMYWYRQAPGKEREWVAIISYGSVTFYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCYYVGAQYWGQGTQTV
SR60	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVEHAQMAWYRQAPGKEREWVAIQSYGSTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVGFYAGQGTQTV
SR61	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVDIAEMAWYRQAPGKEREWVAIGSQGMTTH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAHVGFYAGQGTQTV
SR62	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVFQENMHWYRQAPGKEREWVAIYSQGSYTL ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCEVNQWYQWYQGTQTV

Loop

MR1	N	QVQLVESGGGLVQVGGSLRLSCAASGFPVYHSIMHWYRQAPGKEREWVAIYSSGAHTYY DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDGGNWDTYDYGQGTQTV
MR2	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVYFSYMAWYRQAPGKEREWVAIINSEGDTYYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGWYNQYDYGQGTQTV
MR3	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIISYGRTLYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDFTGHQAYYDYGQGTQTV
MR4	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPMYAWEMAWYRQAPGKEREWVAIRSMGVHT HYSDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDFTGHQAYYDYGQGTQTV VS
MR5	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVDAWEMAWYRQAPGKEREWVAIRSGRRTH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDFTGHQAYYDYGQGTQTV

MR6	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVEDTMEWYRQAPGKEREWVAAITSWGFKTY YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGDTSSASYDYWGQGTQVTVS
MR7	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVNSWMEWYRQAPGKEREWVAITSYGYKTYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGYFSDEYDYWGQGTQVTVS
MR8	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVEWAHMHWYRQAPGKEREWVAIVSAGHYTV YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDWGSSNQYYDYWGQGTQVTVS
MR9	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVASTWMEWYRQAPGKEREWVAITSYGYHTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGYFSTNYDYWGQGTQVTVS
MR10	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVANTWMEWYRQAPGKEREWVAITSYGYRTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGATTKVYDYWGQGTQVTVS
MR11	N.D.	QVQLVESGGGLVQAGGSLRLSCAASGFPVEWTSMVWYRQAPGKEREWVAIYSAGHHTKY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGYFSTNYDYWGQGTQVTVS
MR12	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVEWSHMHWYRQAPGKEREWVAIVSTGEYTKY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDWYGQAKSYDYWGQGTQVTVS
MR13	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVKNMNMHWYRQAPGKEREWVAIYSYGVETH YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDWGSSYMNWYDYWGQGTQVT VS
MR14	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVMYTHMHHWYRQAPGKEREWVAIVSLGEYTTY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDWGAANKYYDYWGQGTQVTVS
MR15	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVDTWMEWYRQAPGKEREWVAITSYGYKTYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDFGYASTYYDYWGQGTQVTVS
MR16	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVERTWMEWYRQAPGKEREWVAITSYGYRTYY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDEGSASSAYDYWGQGTQVTVS
MR17	Y	QVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREGVAIESYGHGTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDDGQLAYHYDYWGQGTQVTVS
MR18	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVWEHHMAWYRQAPGKEREWVAITSKGRYTTY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCHVKDAGYFDAQYDYWGQGTQVTVS
MR19	N	QVQLVESGGGLVQAGGSLRLSCAASGFPVRNTEHMYWYRQAPGKEREWVAIFSMGRFTK YADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDTGSFSEGDYWGQGTQVTVS

Convex

LR1	Y	QVQLVESGGGSVQAGGSLRLSCAASGSISSITYLGWFRQAPGKEREGVAALITDSGRTYYADS VKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAAEWGYEWPLYASSWYWGQGTQVT VS
LR2	Y	QVQLVESGGGSVQAGGSLRLSCAASGDINAIGYLGWFRQAPGKEREGVAALDTDEGQTYA DSVKGRTFVSLDNAKNTVYLQMNSLKPEDTALYYCAAMNGYNEPLSYDYEWYGQGTQVT VS
LR3	Y	QVQLVESGGGSVQAGGSLRLSCAASGTINNITYLGWFRQAPGKEREGVAALITSGYTYA VKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAASWGYEWPLVYDDYWYWGQGTQVT VS
LR4	N	QVQLVESGGGSVQAGGSLRLSCAASGFIHSIYYLGWFRQAPGKEREGVAALNTQHGTTYYAD SVKGRTFVSLDNAKNTVYLQMNSLKPEDTALYYCAAARGRNYPNLYWQSYWGQGTQVT VS
LR5	Y	QVQLVESGGGSVQAGGSLRLSCAASGSISSITYLGWFRQAPGKEREGVAALITSNGRTYYADS VKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAATWGYHWPLGAWDYWYWGQGTQV TVS
LR6	Y	QVQLVESGGGSVQAGGSLRLSCAASGSISSITYLGWFRQAPGKEREGVAALVTTSGNTYYADS

		VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAATWGYSWPLEHDEYWYWGQGTQVT VS
LR7	Y	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALITNWGHTYYAD SVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAFAHGEQYPLYTNKYHYWGQGTQVT S
LR8	Y	QVQLVESGGSVQAGGSLRLSCAASGTIAYIKLGWFRQAPGKEREGVAALMTRWGETYYA DSVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAANYGANFPLQANTYFYWGQGTQVT TVS
LR9	N	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALITARGRTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAANWGNWPLAYSDYWYWGQGTQVT VS
LR10	N	QVQLVESGGSVQAGGSLRLSCAASGTISSITYLGWFRQAPGKEREGVAALTTNGHTYYAD SVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAADWGYDWPLDRYHYWYWGQGTQVT TVS
LR11	Y	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALVTHSGSTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAAYWGWDWPLNSQDYWYWGQGTQVT TVS
LR12	N	QVQLVESGGSVQAGGSLRLSCAAGSIASIKYLWGFRQAPGKEREGVAALMTRWGETYYA DSVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAEEGANSPLHAKDYSYWGQGTQVT VS
LR13	N	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALITHAGRTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAADWGWYWPLVIDHYEWYWGQGTQVT VS
LR14	N	QVQLVESGGSVQAGGSLRLSCAAGSIPGITYLGWFRQAPGKEREGVAALVTSNIGHTYYAD SVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAADWGYQWPLDKAEYWYWGQGTQVT TVS
LR15	Y	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALKTASGQTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAADWGYNWLIREEYEYWGQGTQVT S
LR16	Y	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALYTHGYTYYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAADWGYNIPLNITDYWYWGQGTQVT S
LR17	N	QVQLVESGGSVQAGGSLRLSCAAGSIAHIKYLWGFRQAPGKEREGVAALMTRHGQTYYA DSVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAAYYGANFPLFQTGYTYWGQGTQVT VS
LR18	N	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALVTENGHTYYAD SVKGRFTVSLDNAKNTVYLQMNSLKPEDTALYYCAAATWGYEWPLSNDYFYWGQGTQVT VS

Divalent, bispecific

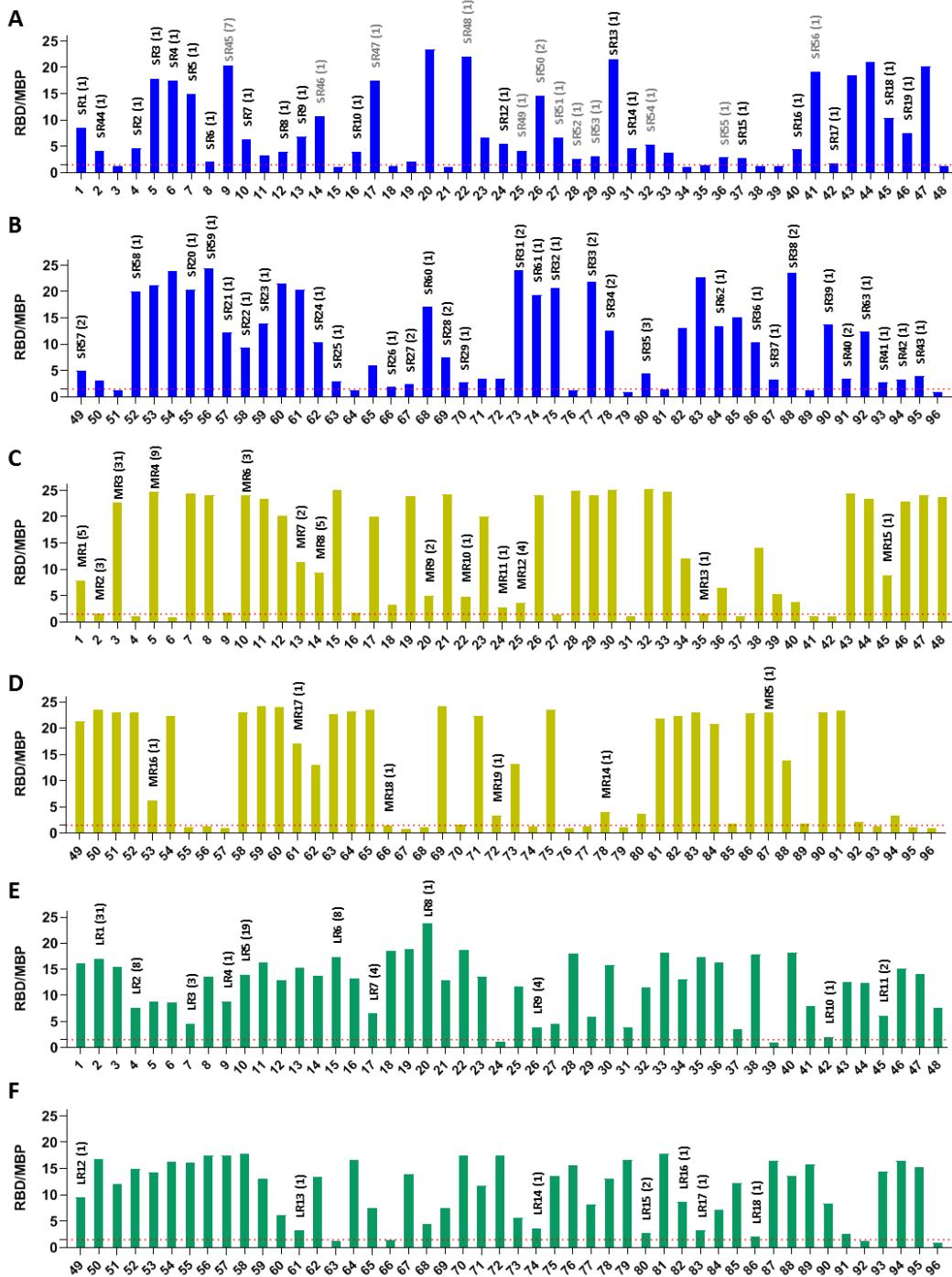
LR5-MR3 [13 GS]	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALITSNGRTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAATWGHWPLGAWDYWYWGQGTQVT TVSGGGGGSGGGSGSSSQVQLVESGGGLVQAGGSLRLSCAASGFVNNAHFMYWYRQAPGKE REWVAAIYSYGRTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWE YDYWGQGTQVTVS
LR5-MR3 [19 GS]	QVQLVESGGSVQAGGSLRLSCAAGSISSITYLGWFRQAPGKEREGVAALITSNGRTYYADS VKGRTVSLDNAKNTVYLQMNSLKPEDTALYYCAAATWGHWPLGAWDYWYWGQGTQVT TVSGGGGGSGGGSGGGSGSSSQVQLVESGGGLVQAGGSLRLSCAASGFVNNAHFMYWY RQAPGKEREWVAAIYSYGRTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKD

	YGAASWEYDYWGQGTQTVVS
LR5-MR3 [34 GS]	QVQLVESGGSVQAGGSLRLSCAASGSISSITYLGWFRQAPGKEREGVAALITSNGRTYYADS VKGRFTVSLNAKNTVYLQMNSLKPEDTALYYCAAATWGYHWPLGAWDYWYWGQGTQV TVSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGSSSQVQLVESGGGLVQAGGSLRLSC AASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQM NSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVVS
Divalent, monospecific	
Fc-MR3	GSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSG QTVTSERKCCVECPPCPAPPVAGPSVFLPPPKDTLMSRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTPREEQFNSTFRVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISK TKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPMlds DGSFFLYSKLTVDKSRWQQGNVFCSCVMHEALHNHTQKSLSLSPGK
MR3-MR3 [13 GS]	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSG GGGSGGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREW VAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDY WGQGTQTVS
MR3-MR3 [19 GS]	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSG GGGSGGGGGGGGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAP GKEREWVAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGA ASWEYDYWGQGTQTVS
MR3-MR3 [24 GS]	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSG GGGSGGGGGGGGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMY WYRQAPGKEREWVAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCN VKDYGAASWEYDYWGQGTQTVS
MR3-MR3 [34 GS]	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAIYSYGRFTLYA DSVKGRTFISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSG GGGSGGGGGGGGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMY WYRQAPGKEREWVAIYSYGRFTLYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCN VKDYGAASWEYDYWGQGTQTVS
Fc-MR17	GSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREGVAAIESYGHTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDDGQLAYHYDYWGQ GTQTVTSERKCCVECPPCPAPPVAGPSVFLPPPKDTLMSRTPEVTCVVVDVSHEDPEVQFN WYVDGVEVHNAKTPREEQFNSTFRVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISK TKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPMlds DGSFFLYSKLTVDKSRWQQGNVFCSCVMHEALHNHTQKSLSLSPGK
MR17m-MR17m (13 GS)	QVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREGVAAIESYGHTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLAYHYDYWGQGTQTVS GGGGSGGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKERE GVAIIESYGHTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLAYHY DYWGQGTQTVS
MR17m-MR17m (16 GS)	QVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREGVAAIESYGHTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLAYHYDYWGQGTQTVS GGGGSGGGGGSGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGK EREGVAAIESYGHTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLA

	YHYDYWGQGTQTVS
MR17m-MR17m (19GS)	QVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREVGAAIESYGHGTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLAYHYDYWGQGTQTVS GGGGSGGGGGSGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQ APGKEREVGAAIESYGHGTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDD GQLAYHYDYWGQGTQTVS
MR17m-MR17m (24 GS)	QVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQAPGKEREVGAAIESYGHGTRY ADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVYDDGQLAYHYDYWGQGTQTVS GGGGSGGGGGSGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVEVWRMEWYRQ APGKEREVGAAIESYGHGTRYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCN VYDDGQLAYHYDYWGQGTQTVS
ABD conjugation	
MR3-MR3-ABD	QVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAAIYSYGRTLYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVS GGGGSGGGGGSGGGGSSSQVQLVESGGGLVQAGGSLRLSCAASGFPVNAHFMYWYRQAPGKEREWVAAIYSYGRTLYA DSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNVKDYGAASWEYDYWGQGTQTVSAGRAGGGGGSGGGGSGGGSGTIDEW LILKEAKEKAIEELKKAGITS ^{DYYFDLINKAKTVEGVNALKDEILKA}

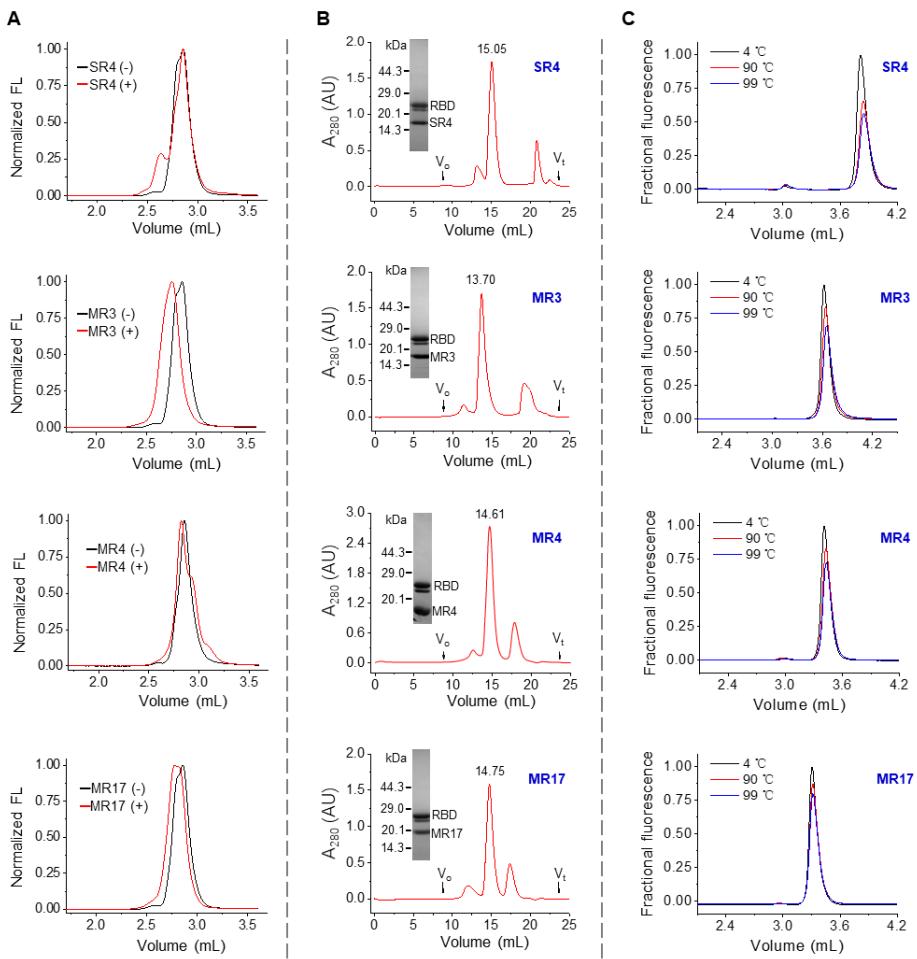
677

678 ^aFluorescence-detection size exclusion chromatography (FSEC) assay for RBD binders.
 679 Periplasmic extraction was directly mixed with 0.5 μ M of fluorescently labeled RBD
 680 and the mixture was loaded onto an analytic gel filtration column. Sybodies that
 681 caused earlier retention volume (peak shift) are labeled 'Y' and colored red. Sybodies
 682 that did not peak shift are indicated with 'N'. Sybodies that were not determined for
 683 FSEC peak-shift are labeled with 'N.D.'. ^bThe sequences include 'GSSS' at the N-terminal,
 684 and 'AGRAGEQKLISEEDLNSAVDHHHHHH' at the C-terminal which contains a myc-tag
 685 (italic) for ELISA and a hexahistidine tag for purification. GS linker are highlighted in
 686 italic, when applicable.

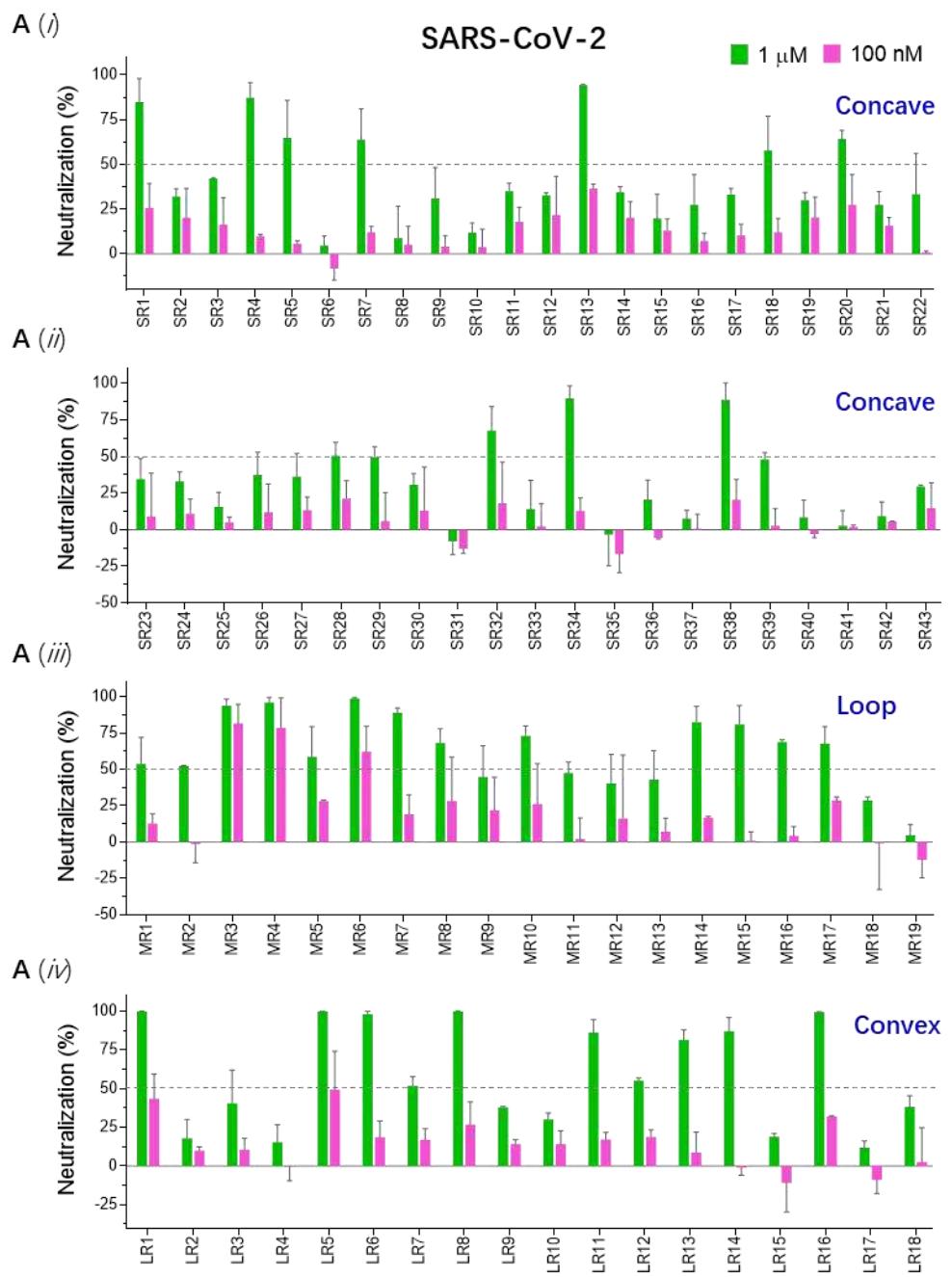

687 **Table S2. Data collection and refinement statistics.**

688

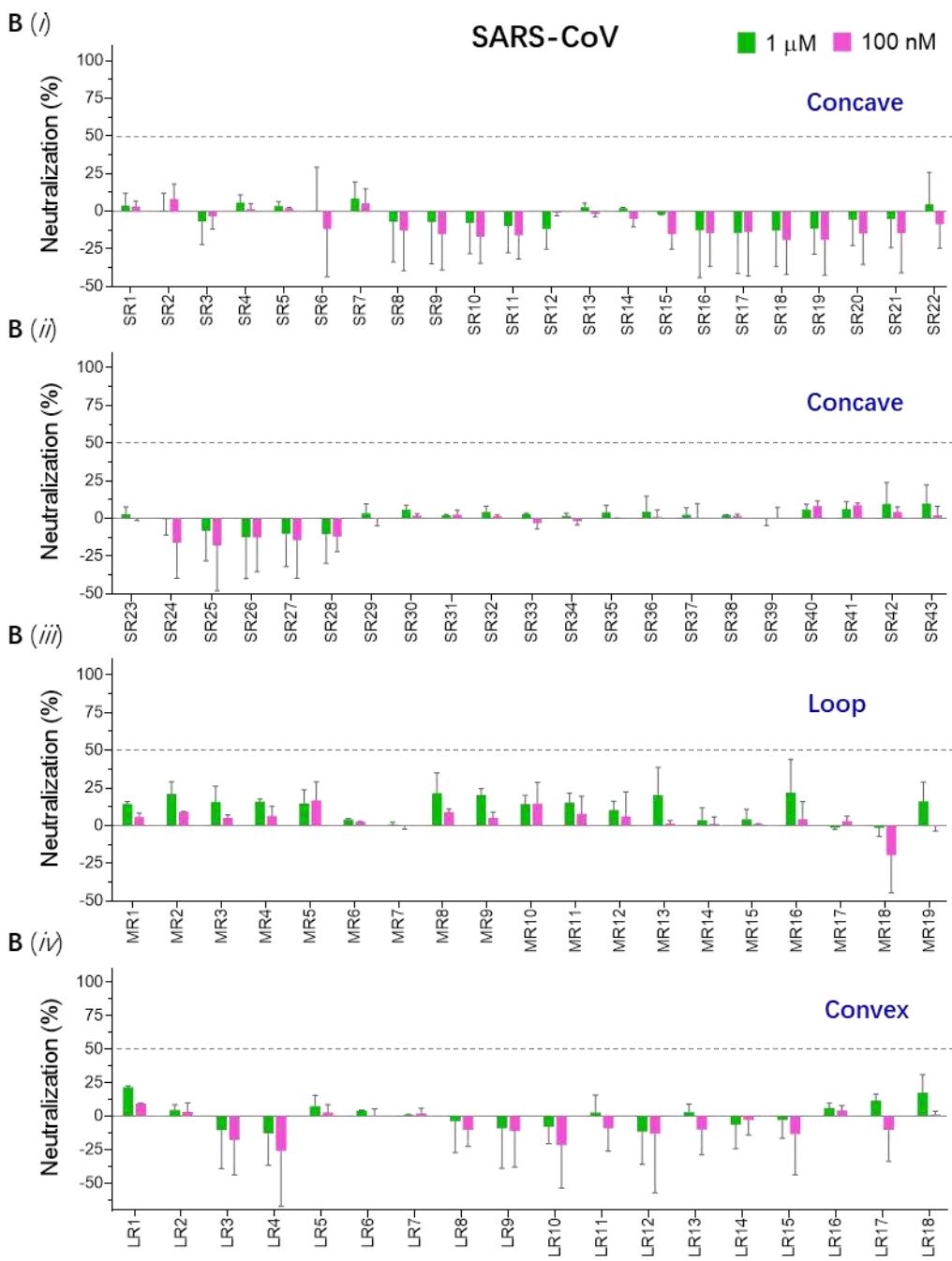
	SR4-RBD	MR17-RBD	MR17(K99Y)-RBD
Data collection			
Space group	P 6 ₅ 2 2	P3 ₂ 2 1	P3 ₂ 2 1
Cell dimensions			
<i>a, b, c</i> (Å)	65.55, 65.55, 344.53	73.69, 73.69, 158.58	74.19, 74.19, 158.40
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 90, 120
Wavelength (Å)	0.97853	0.97853	0.97853
Resolution (Å)	47.40 - 2.15 (2.23 - 2.15) ^a	49.71 - 2.77 (2.89 - 2.77)	49.90 - 2.94 (3.12 - 2.94)
<i>R</i> _{merge}	0.161 (1.203)	0.276 (2.222)	0.218 (1.666)
<i>R</i> _{pim}	0.054 (0.395)	0.062 (0.494)	0.052 (0.385)
<i>I</i> / <i>σI</i>	11.4 (2.0)	11.1 (1.5)	12.4 (1.9)
Completeness (%)	99.8 (99.9)	100 (99.9)	99.9 (99.6)
Multiplicity	9.5 (9.9)	21.0 (20.8)	18.4 (19.3)
<i>CC*</i> ^b	0.999 (0.970)	0.997 (0.927)	0.998 (0.920)
Refinement			
Resolution (Å)	47.40 - 2.15	49.71 - 2.77	49.90 - 2.94
No. reflections	25,148	13,256	11,264
<i>R</i> _{work} / <i>R</i> _{free}	0.1836 / 0.2239	0.2029 / 0.2659	0.2149 / 0.2676
No. atoms	2,810	2,536	2,509
Protein	2,510	2,482	2,465
Ligands	62	54	44
Water	238	0	0
No. residues	322	315	312
B-factors (Å ²)	35.13	73.28	79.38
Protein	34.16	72.27	78.53
Ligand/ion	55.11	119.79	126.90
Water	40.22		
R.m.s deviations			
Bond lengths (Å)	0.007	0.011	0.004
Bond angles (°)	0.850	1.10	0.68
Ramachandran			
Favoured (%)	98.06	96.12	96.08
Allowed (%)	1.94	3.88	3.59
Outlier (%)	0	0	0.33
PDB ID	7C8V	7C8W	7CAN


689

^aHighest resolution shell is shown in parenthesis. ^b $CC^* = \sqrt{\frac{2CC_{1/2}}{1+CC_{1/2}}}$


690

691 **Extended Data Fig. 1. Identification of RBD binders using ELISA. (A,B)** Results for the
692 Concave library. **(C,D)** Results for the Loop library. **(E,F)** Results for the Convex library.
693 The ratio between the ELISA signal (A_{650}) of wells with the RBD and of wells with the
694 unrelated maltose-binding protein (MBP) is plotted. The signal for MBP is typically
695 between 0.04-0.09. A red dashed line guides the cut-off at a ratio of 1.5. Unique
696 clones are labeled with the redundancy shown in brackets.

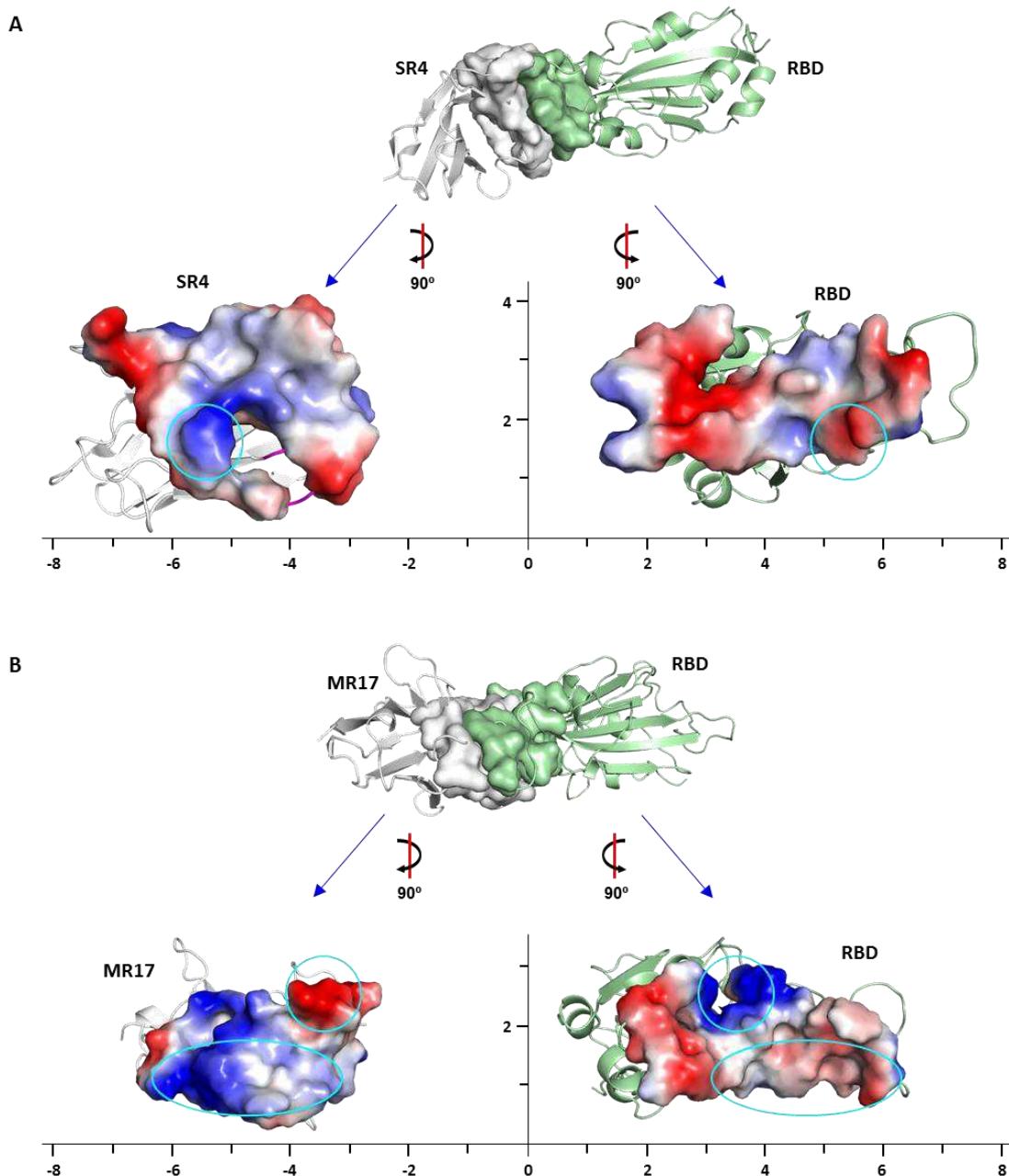

697

698 **Extended Data Fig. 2. Characterization and purification of sybody-RBD complexes. (A)**
 699 Fluorescence-detector size exclusion chromatography (FSEC) of the RBD in the absence
 700 (black, -) and presence (red, +) of crude periplasmic extract from sybody clones.
 701 Biotinylated RBD was fluorescently labeled through binding to streptavidin that was
 702 conjugated with an amine-reactive fluorescein variant. The concentration of RBD was
 703 0.5 μ M. Fluorescence (Ex. 482 nm, Em. 508 nm) was normalized before plotting. The
 704 extent of peak shift follows the order of SR4<MR4<MR17<MR3. Fluorescence trace
 705 before the void volume (V_o , 1.78 mL) is not shown. (B) Preparative size exclusion
 706 chromatography of the indicated sybody-RBD complexes. SDS-PAGE images of the
 707 main-peak fraction for all four sybodies are shown in the inset. Numbers label the
 708 elution volume for the main peak. The results for SR34, SR38, MR6, LR1, and LR5 were
 709 similar to the 4 sybodies here and are not shown. (C) Fluorescence-detection size
 710 exclusion chromatography (FSEC) profile of the thermostability assay. Sybodies SR4,
 711 MR17, MR3, and MR4 were incubated at indicated temperatures for 20 min before
 712 loading on to an analytical size exclusion chromatography column. The elution profile
 713 was monitored using the intrinsic tryptophan fluorescence. Fluorescence intensities
 714 were normalized to the peak value of the unheated sample.

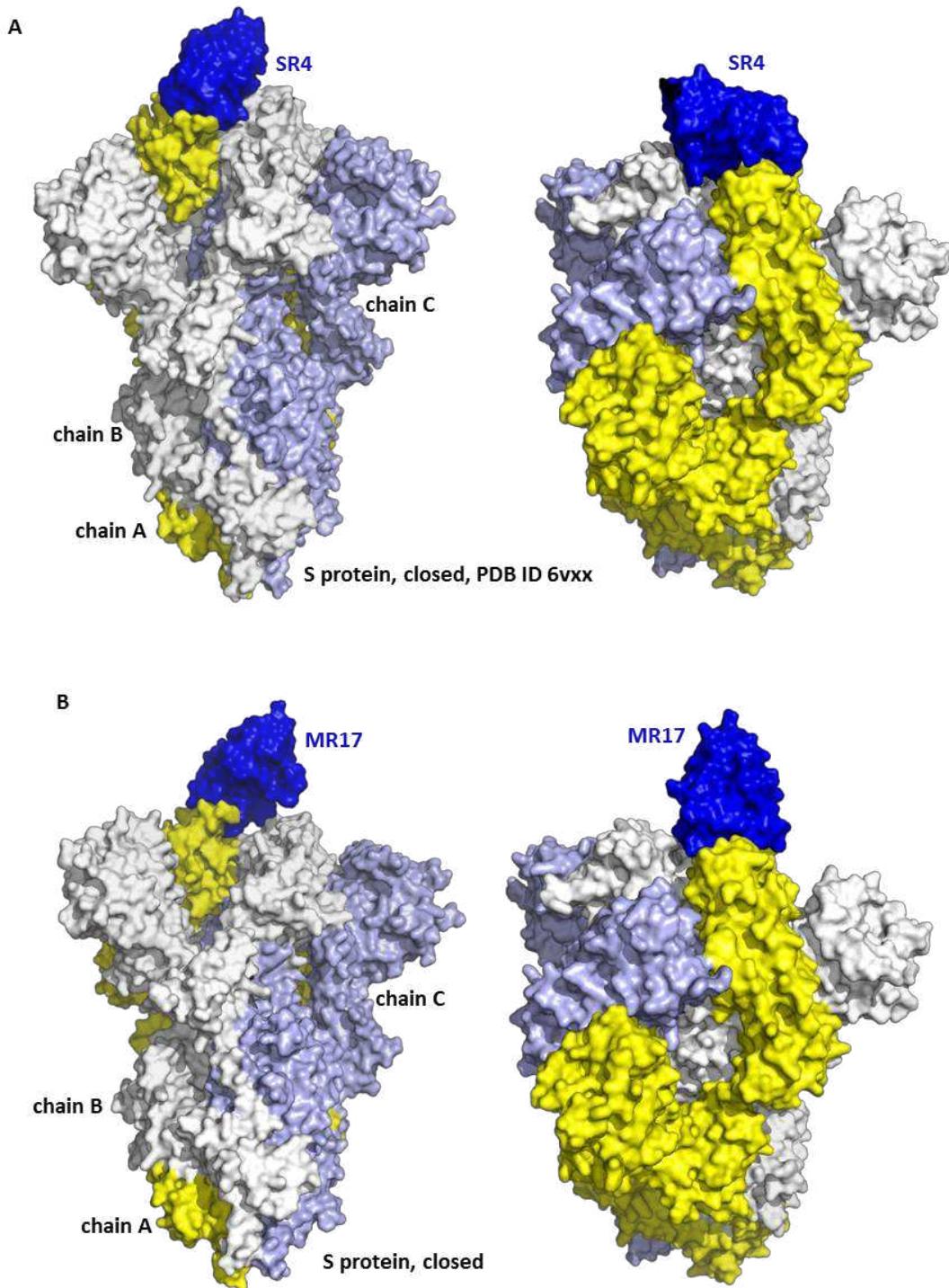
Extended Data Fig. 3 - to be continued on the next page


Extended Data Fig. 3 - continued from the previous page

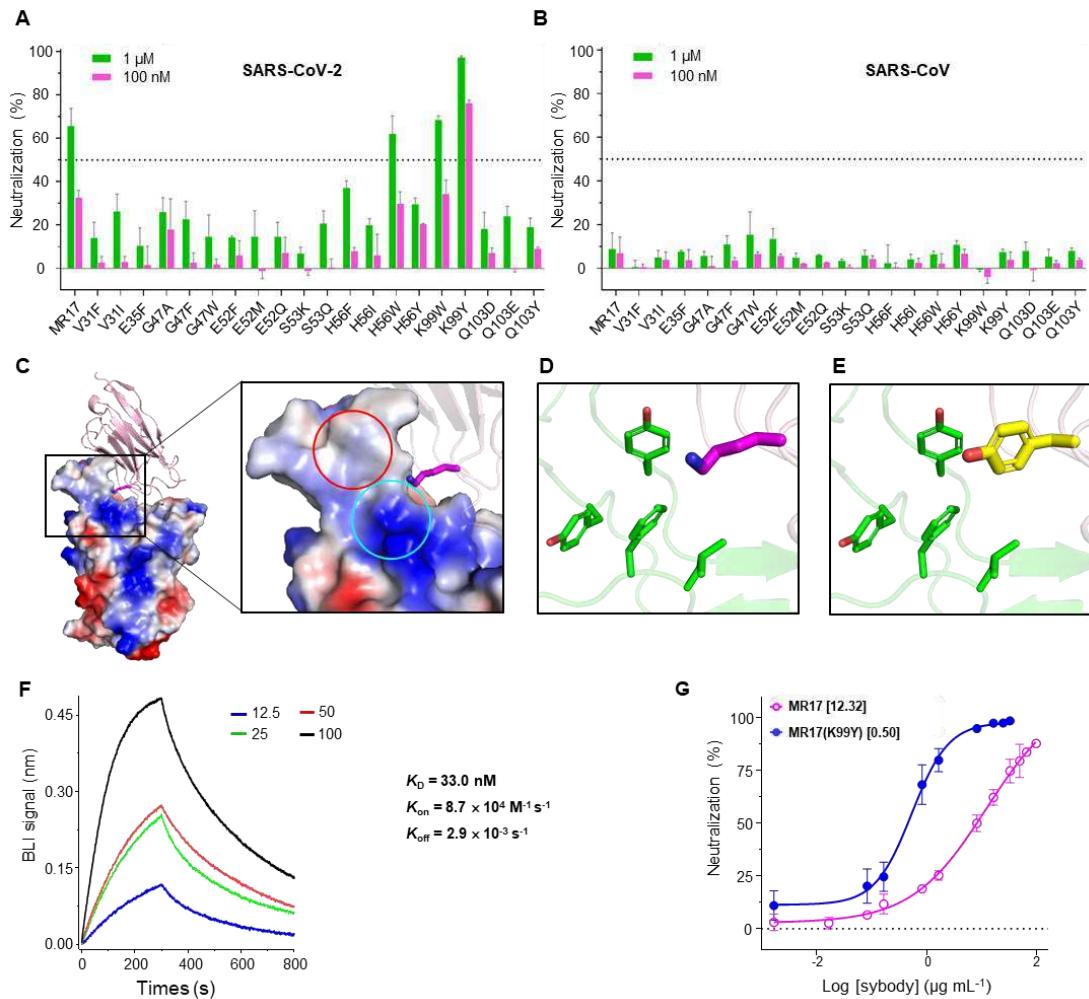
716


717

718 **Extended Data Fig. 3. Neutralization activity of 80 sybodies. (A)** Neutralization assay
 719 results for SARS-CoV-2 pseudovirus. **(B)** Neutralization assay results for SARS-CoV
 720 pseudovirus. VeroE6-hACE2 cells were infected with a premix of pseudotypes and
 721 sybodies at two concentrations (1 μ M and 100 nM). Infectivity were measured after 3
 722 days using FACS and the percentage of neutralization was calculated for each sybody.

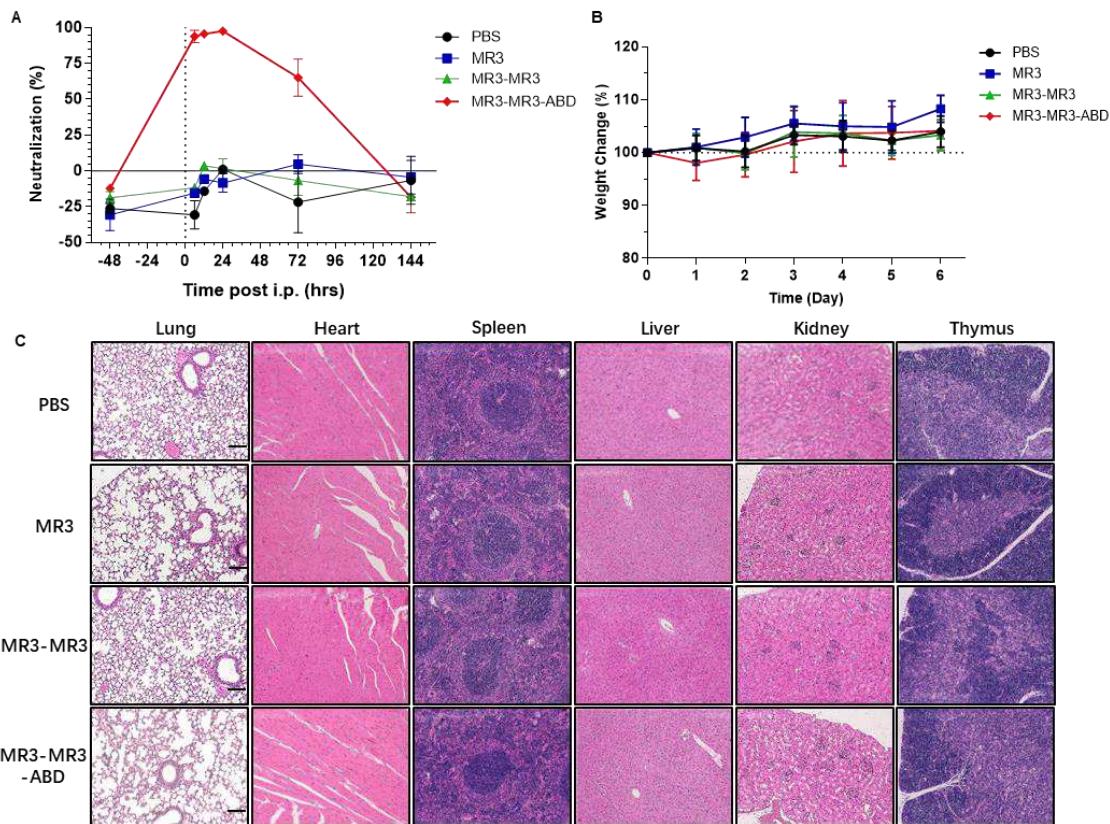

723

724 **Extended Data Fig. 4. Kinetics for sybody-RBD binding.** (A-I) Biotinylated RBD
 725 immobilized on a streptavidin-coated sensor was titrated with various concentrations
 726 (nM) of sybodies as indicated. Bio-layer interferometry (BLI) data were fitted with a 1:1
 727 stoichiometry.



728

729 **Extended Data Fig. 5. Electrostatic complementarity of the sybody-RBD binding**
 730 **surface. (A,B)** ‘Open-book’ view of molecular electrical potential surfaces of the
 731 interface between the RBD and SR4 (A) and between the RBD and MR17 (B). The
 732 electrical potential maps were calculated by Adaptive Poisson-Boltzmann Solver (APBS)
 733 ⁵² built-in in PyMol. The unitless ruler guides the view of the relative distances between
 734 the opened surface pairs. Cyan circles highlight electrostatic complementarity.



737 **Extended Data Fig. 6. SR4 and MR17 may bind to the SARS-CoV-2 S RBD in the 'closed'**
 738 **conformation. (A,B)** The structure of SR4-RBD (A) and MR17-RBD (B) were aligned to
 739 the closed conformation (PDB ID 6VXX)² of SARS-CoV-2 S protein. No significant clashes
 740 were observed for both sybodies. The three chains of S are colored yellow, white, and
 741 pale blue. Sybodies are colored blue.

742

743 **Extended Data Fig. 7. Structure-based design of a MR17 mutant (MR17m) with**
 744 **improved affinity and potency.** (A,B) Neutralization assay for SARS-CoV-2 (A) or SARS-
 745 CoV (B) pseudotypes by the wild-type MR17 sybody and the 20 rationally designed
 746 single-mutants (See **Methods**). Sybody concentrations were used at 1 μ M (green) and
 747 100 nM (magenta) concentrations. Data are from three independent experiments.
 748 (C,D) Rational for the design of K99Y. The positively charged Lys99 pokes to an area
 749 (boxed) that contains a hydrophobic patch (red cycle) and a positively-charged surface
 750 (cyan cycle). Electrostatic repel and hydrophobic mismatch would make Lys99
 751 unfavorable at this position. According to the original library design, Lys99 was
 752 unvaried²⁶, meaning that Lys99 was not *selected* and hence opportunities for
 753 optimization. (E) The K99Y mutation fits the hydrophobic microenvironment well, as
 754 revealed by the crystal structure of MR17m (**Extended Data Table 2**). (F) Binding
 755 kinetics of MR17m binding to RBD. BLI signals were recorded under indicated MR17m
 756 concentrations (nM). (G) Comparison of neutralization activity of MR17 and MR17m.
 757 IC₅₀ values (μ g mL⁻¹) for SARS-CoV-2 are indicated in brackets. Data for MR17 are from
 758 **Fig. 1B**. Data are from three independent experiments.

759

760 **Extended Data Fig. 8. Evaluation of *in vivo* stability and toxicity of nanobodies. (A).**
 761 Neutralization activity of sera from mice injected with sybodies. Sera were collected
 762 from mice injected with sybodies MR3, MR3-MR3, MR3-MR3-ABD, or PBS at the
 763 indicated time points. For neutralization assay, sera were preincubated with SARS-CoV-
 764 2 pseudovirus for 1 h before infection at 1/200 dilution. The infection rates on VeroE6-
 765 hACE2 were measure by FACS 3 days post infection. (B) Body weight changes. The body
 766 weight data are presented as means \pm the SD of mice in each group (n= 4). No
 767 significant differences are observed. (C) Representative histopathology of the lungs,
 768 heart, liver, spleen, lungs, kidney, and thymus for the different sybodies injected. At
 769 day 3, the organ were collected, fixed, sliced and stain with hematoxylin and eosin.
 770 The images and areas of interest are magnified 100 \times . Bars indicate 100 μ m.

771 **REFERENCES**

772

773 1 Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health
774 concern. *Lancet* **395**, 470-473, doi:10.1016/S0140-6736(20)30185-9 (2020).

775 2 Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
776 *Cell* **181**, 281-292.e286, doi:<https://doi.org/10.1016/j.cell.2020.02.058> (2020).

777 3 Wrapp, D. *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
778 *Science* **367**, 1260-1263, doi:10.1126/science.abb2507 (2020).

779 4 Lan, J. *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2
780 receptor. *Nature* **581**, 215-220, doi:10.1038/s41586-020-2180-5 (2020).

781 5 Shang, J. *et al.* Structural basis of receptor recognition by SARS-CoV-2. *Nature* **581**, 221-224,
782 doi:10.1038/s41586-020-2179-y (2020).

783 6 Wang, Q. *et al.* Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. *Cell*
784 **181**, 894-904.e899, doi:<https://doi.org/10.1016/j.cell.2020.03.045> (2020).

785 7 Yan, R. *et al.* Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.
786 *Science* **367**, 1444-1448, doi:10.1126/science.abb2762 (2020).

787 8 Wu, Y. *et al.* A noncompeting pair of human neutralizing antibodies block COVID-19 virus
788 binding to its receptor ACE2. *Science*, eabc2241, doi:10.1126/science.abc2241 (2020).

789 9 Cao, Y. *et al.* Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput
790 single-cell sequencing of convalescent patients' B cells. *Cell*,
791 doi:<https://doi.org/10.1016/j.cell.2020.05.025> (2020).

792 10 Ju, B. *et al.* Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature*,
793 doi:10.1038/s41586-020-2380-z (2020).

794 11 Vincke, C. *et al.* General strategy to humanize a camelid single-domain antibody and
795 identification of a universal humanized nanobody scaffold. *The Journal of biological chemistry*
796 **284**, 3273-3284, doi:10.1074/jbc.M806889200 (2009).

797 12 Rogers, T. F. *et al.* Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from
798 disease in a small animal model. *Science*, eabc7520, doi:10.1126/science.abc7520 (2020).

799 13 Hansen, J. *et al.* Studies in humanized mice and convalescent humans yield a SARS-CoV-2
800 antibody cocktail. *Science*, eabd0827, doi:10.1126/science.abd0827 (2020).

801 14 Hanke, L. *et al.* An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction.
802 *bioRxiv*, 2020.2006.2002.130161, doi:10.1101/2020.06.02.130161 (2020).

803 15 Huo, J. *et al.* Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with
804 ACE2. *Nature Structural & Molecular Biology*, doi:10.1038/s41594-020-0469-6 (2020).

805 16 Custodio, T. *et al.* Selection, biophysical and structural analysis of synthetic nanobodies that
806 effectively neutralize SARS-CoV-2. (2020).

807 17 Walter, J. D. *et al.* Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain.
808 *bioRxiv*, 2020.2004.2016.045419, doi:10.1101/2020.04.16.045419 (2020).

809 18 Schoof, M. *et al.* An ultra-high affinity synthetic nanobody blocks SARS-CoV-2 infection by
810 locking Spike into an inactive conformation. *bioRxiv*, 2020.2008.2008.238469,
811 doi:10.1101/2020.08.08.238469 (2020).

812 19 Van Heeke, G. *et al.* Nanobodies® as inhaled biotherapeutics for lung diseases. *Pharmacology
813 & therapeutics* **169**, 47-56, doi:10.1016/j.pharmthera.2016.06.012 (2017).

814 20 Nicola, M. *et al.* The socio-economic implications of the coronavirus pandemic (COVID-19): A

815 review. *Int J Surg* **78**, 185-193, doi:<https://doi.org/10.1016/j.ijsu.2020.04.018> (2020).

816 21 Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. *Proc Natl Acad Sci USA* **117**, 11727-11734, doi:10.1073/pnas.2003138117 (2020).

817 22 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280.e278, doi:<https://doi.org/10.1016/j.cell.2020.02.052> (2020).

818 23 Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. *Nature* **584**, 437-442, doi:10.1038/s41586-020-2456-9 (2020).

819 24 Muyldeermans, S. Nanobodies: Natural Single-Domain Antibodies. *Annu Rev Biochem* **82**, 775-797, doi:10.1146/annurev-biochem-063011-092449 (2013).

820 25 McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. *Nat Struct Mol Biol* **25**, 289-296, doi:10.1038/s41594-018-0028-6 (2018).

821 26 Zimmermann, I. et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. *eLife* **7**, e34317, doi:10.7554/eLife.34317 (2018).

822 27 Zimmermann, I. et al. Generation of synthetic nanobodies against delicate proteins. *Nat Protoc* **15**, 1707-1741, doi:10.1038/s41596-020-0304-x (2020).

823 28 Moutel, S. et al. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. *eLife* **5**, e16228, doi:10.7554/eLife.16228 (2016).

824 29 Uchański, T. et al. An improved yeast surface display platform for the screening of nanobody immune libraries. *Scientific Reports* **9**, 382, doi:10.1038/s41598-018-37212-3 (2019).

825 30 Custódio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. *bioRxiv*, 2020.2006.2023.165415, doi:10.1101/2020.06.23.165415 (2020).

826 31 Jovčevska, I. & Muyldeermans, S. The Therapeutic Potential of Nanobodies. *BioDrugs : clinical immunotherapy, biopharmaceuticals and gene therapy* **34**, 11-26, doi:10.1007/s40259-019-00392-z (2020).

827 32 Krissinel, E. & Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. *J Mol Biol* **372**, 774-797, doi:<https://doi.org/10.1016/j.jmb.2007.05.022> (2007).

828 33 Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. *Cell* **182**, 812-827.e819, doi:<https://doi.org/10.1016/j.cell.2020.06.043> (2020).

829 34 Doud, M. B., Hensley, S. E. & Bloom, J. D. Complete mapping of viral escape from neutralizing antibodies. *PLoS Pathog* **13**, e1006271-e1006271, doi:10.1371/journal.ppat.1006271 (2017).

830 35 Doud, M. B., Lee, J. M. & Bloom, J. D. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. *Nat Commun* **9**, 1386-1386, doi:10.1038/s41467-018-03665-3 (2018).

831 36 Rockx, B. et al. Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. *J Virol* **82**, 3220-3235, doi:10.1128/JVI.02377-07 (2008).

832 37 ter Meulen, J. et al. Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. *PLOS Medicine* **3**, e237, doi:10.1371/journal.pmed.0030237 (2006).

833 38 Tijink, B. M. et al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology.

859 *Molecular cancer therapeutics* **7**, 2288-2297, doi:10.1158/1535-7163.Mct-07-2384 (2008).

860 39 Jacobs, S. *et al.* Fusion to a highly stable consensus albumin binding domain allows for tunable
861 pharmacokinetics. *Protein engineering, design & selection : PEDS* **28**,
862 doi:10.1093/protein/gzv040 (2015).

863 40 Sun, J. *et al.* Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination,
864 and Treatment. *Cell* **182**, 734-743.e735, doi:<https://doi.org/10.1016/j.cell.2020.06.010> (2020).

865 41 Shi, R. *et al.* A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2.
866 *Nature* **584**, 120-124, doi:10.1038/s41586-020-2381-y (2020).

867 42 Hassan, A. O. *et al.* A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by
868 Neutralizing Antibodies. *Cell* **182**, 744-753.e744,
869 doi:<https://doi.org/10.1016/j.cell.2020.06.011> (2020).

870 43 Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat
871 Methods* **6**, 343-345, doi:10.1038/nmeth.1318 (2009).

872 44 Hattori, M., Hibbs, R. E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-
873 based thermostability assay for membrane protein precrystallization screening. *Structure* **20**,
874 1293-1299, doi:10.1016/j.str.2012.06.009 (2012).

875 45 Zhang, W.-Z. *et al.* The protein complex crystallography beamline (BL19U1) at the Shanghai
876 Synchrotron Radiation Facility. *Nucl Sci Tech* **30**, 170, doi:10.1007/s41365-019-0683-2 (2019).

877 46 Kabsch, W. XDS. *Acta Crystallogr D Biol Crystallogr* **66**, 125-132,
878 doi:10.1107/S0907444909047337 (2010).

879 47 Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? *Acta
880 Crystallgr D* **69**, 1204-1214, doi:10.1107/S0907444913000061 (2013).

881 48 McCoy, A. J. *et al.* Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674,
882 doi:doi:10.1107/S0021889807021206 (2007).

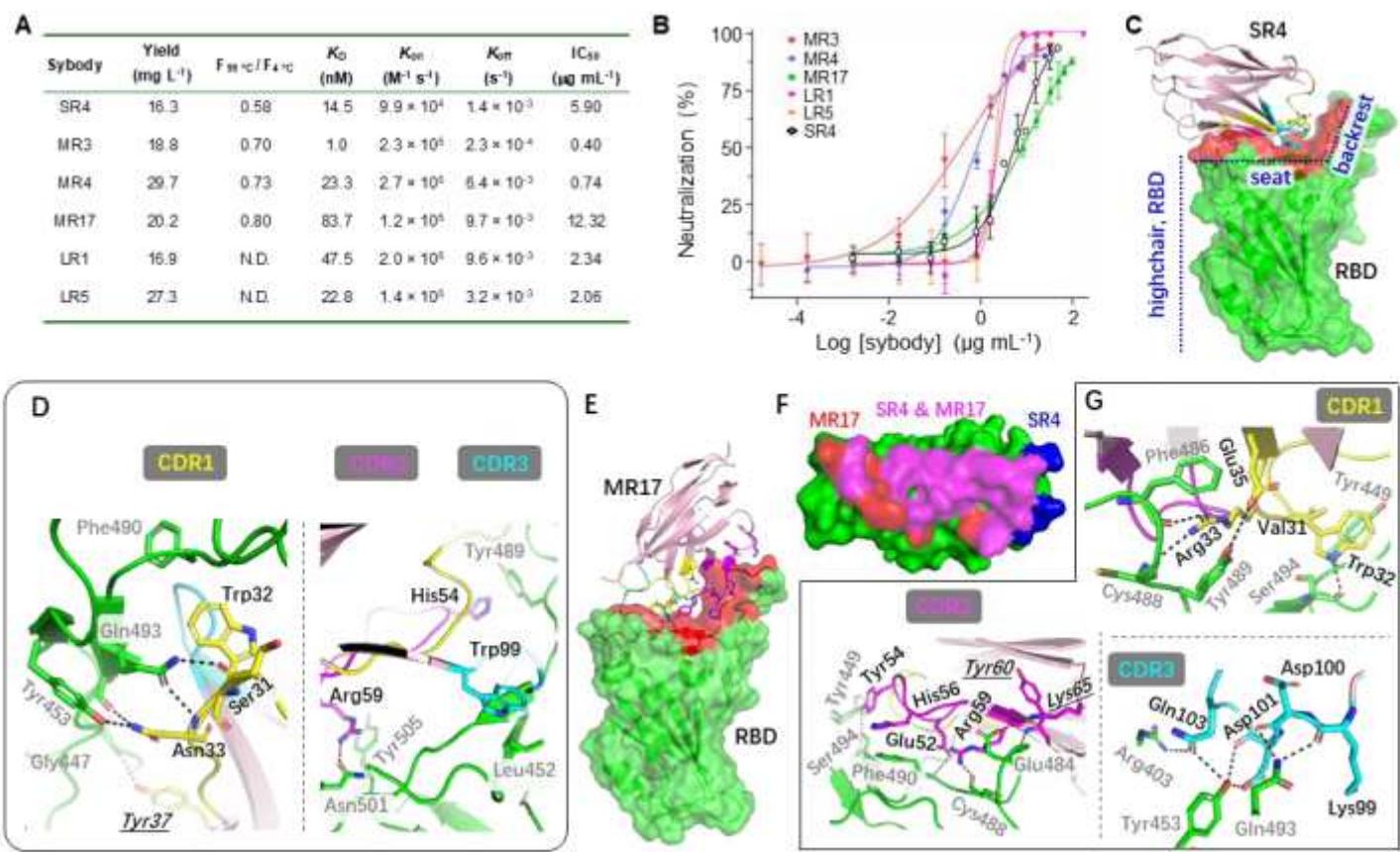
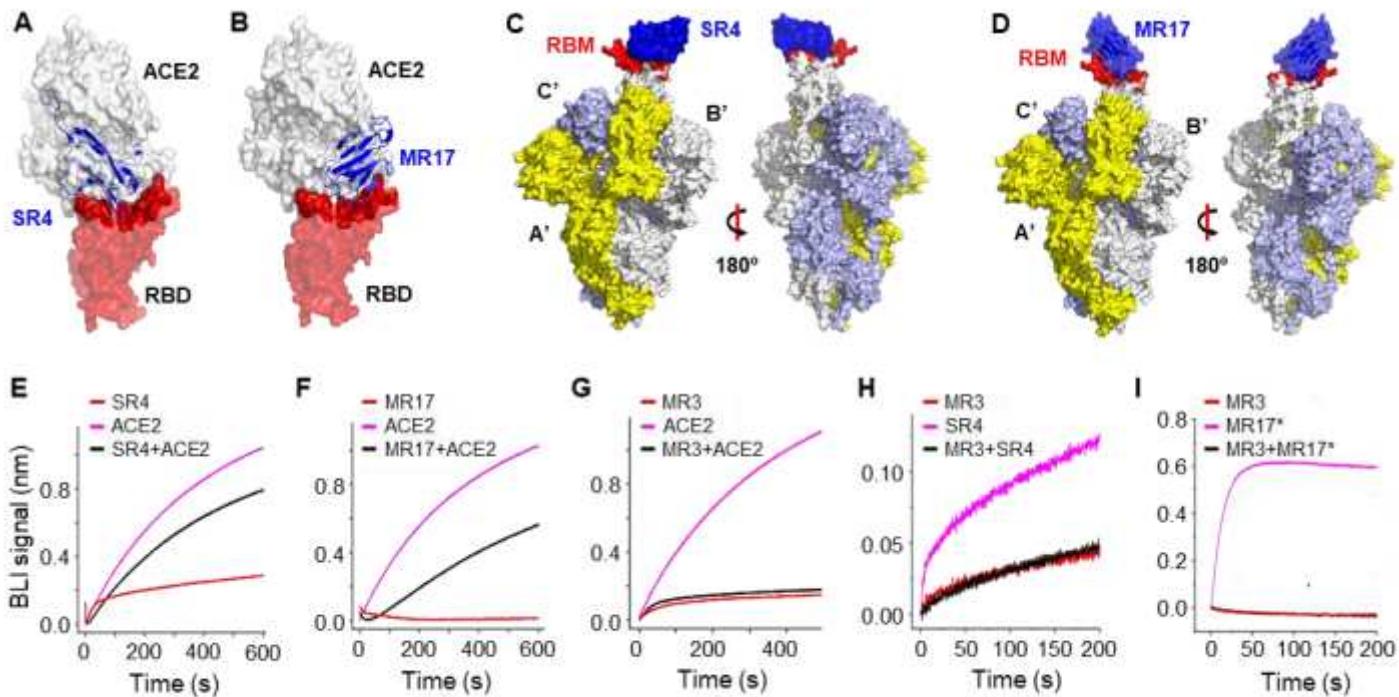
883 49 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta
884 Crystallgr D* **66**, 486-501, doi:10.1107/s0907444910007493 (2010).

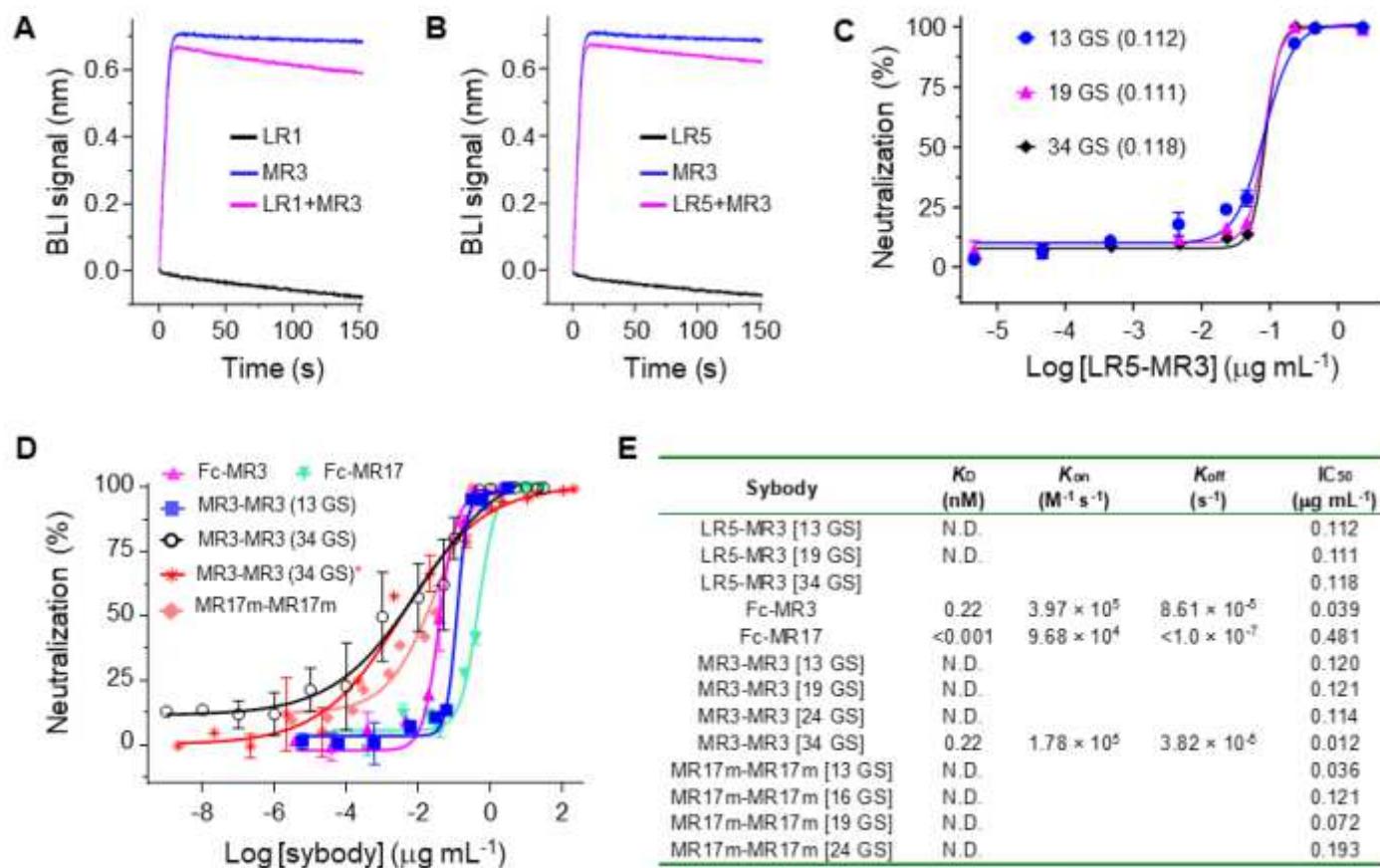
885 50 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
886 structure solution. *Acta Crystallgr D* **66**, 213-221, doi:doi:10.1107/S0907444909052925
887 (2010).

888 51 The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. (Schrödinger, 2015).

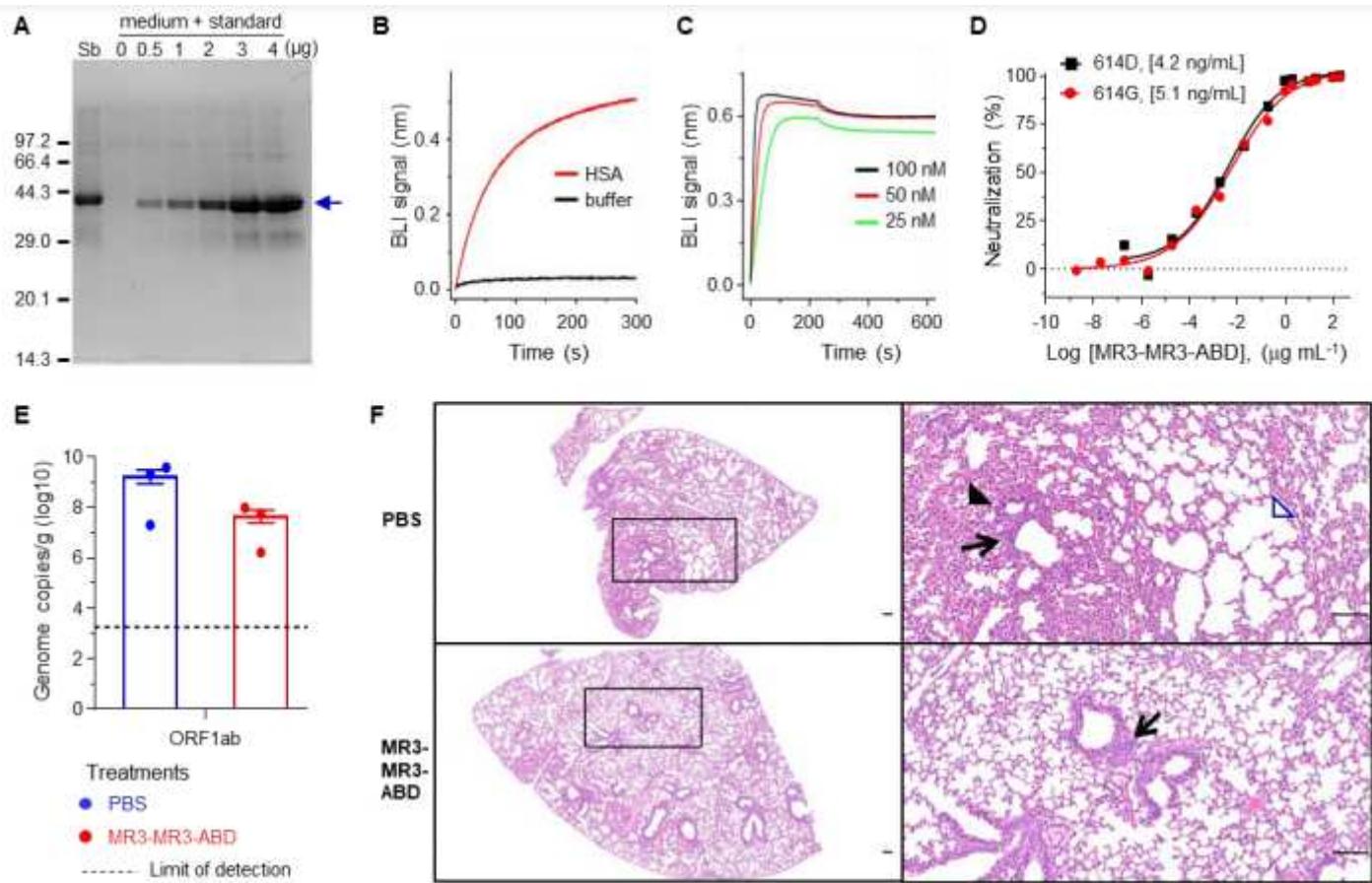
889 52 Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems:
890 Application to microtubules and the ribosome. *Proc Natl Acad Sci USA* **98**, 10037-10041,
891 doi:10.1073/pnas.181342398 (2001).

Figures


Figure 1

[Please see the manuscript file to view the figure caption.]


Figure 2

[Please see the manuscript file to view the figure caption.]

Figure 3

[Please see the manuscript file to view the figure caption.]

Figure 4

[Please see the manuscript file to view the figure caption.]