

1 REFINING THE TRANSCRIPTIONAL LANDSCAPES FOR DISTINCT
2 CLADES OF VIRULENT PHAGES INFECTING *PSEUDOMONAS*
3 *AERUGINOSA*

4 **Authors:**

5 Leena Putzeys¹, Laura Wicke^{1,2}, Maarten Boon¹, Vera van Noort^{3,4}, Jörg Vogel^{2,5} & Rob Lavigne^{1,#}

6 **Affiliations**

7 ¹Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium

8 ² Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg,
9 Germany

10 ³ Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium

11 ⁴ Institute of Biology, Leiden University, Leiden, Netherlands

12 ⁵ Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection
13 Research (HZI), Würzburg, Germany

14 [#] Corresponding author: Rob Lavigne, rob.lavigne@kuleuven.be

15 **Keywords (6):** Transcriptomics, nanopore sequencing, bacteriophages, *Pseudomonas aeruginosa*,
16 transcription regulation, regulatory RNAs

17

18

19

20

21

22

23

24

25

26

27

28

29 Abstract

30 The introduction of high-throughput sequencing has resulted in a surge of available bacteriophage
31 genomes, unveiling their tremendous genomic diversity. However, our current understanding of the
32 complex transcriptional mechanisms that dictate their gene expression during infection is limited to a
33 handful of model phages. Here, we applied ONT-cappable-seq to reveal the transcriptional
34 architecture of six different clades of virulent phages infecting *Pseudomonas aeruginosa*. This long-
35 read microbial transcriptomics approach is tailored to globally map transcription start and termination
36 sites, transcription units and putative RNA-based regulators on dense phage genomes. Specifically,
37 the full-length transcriptomes of LUZ19, LUZ24, 14-1, YuA, PAK_P3 and giant phage phiKZ during early,
38 middle and late infection were collectively charted. Beyond pinpointing traditional promoter and
39 terminator elements and transcription units, these transcriptional profiles provide insights in
40 transcriptional attenuation and splicing events and allow straightforward validation of Group I intron
41 activity. In addition, ONT-cappable-seq data can guide genome-wide discovery of novel regulatory
42 element candidates, including non-coding RNAs and riboswitches. This work substantially expands the
43 number of annotated phage-encoded transcriptional elements identified to date, shedding light on
44 the intricate and diverse gene expression regulation mechanisms in *Pseudomonas* phages, which can
45 ultimately be sourced as tools for biotechnological applications in phage and bacterial engineering.

46

47

48

49

50

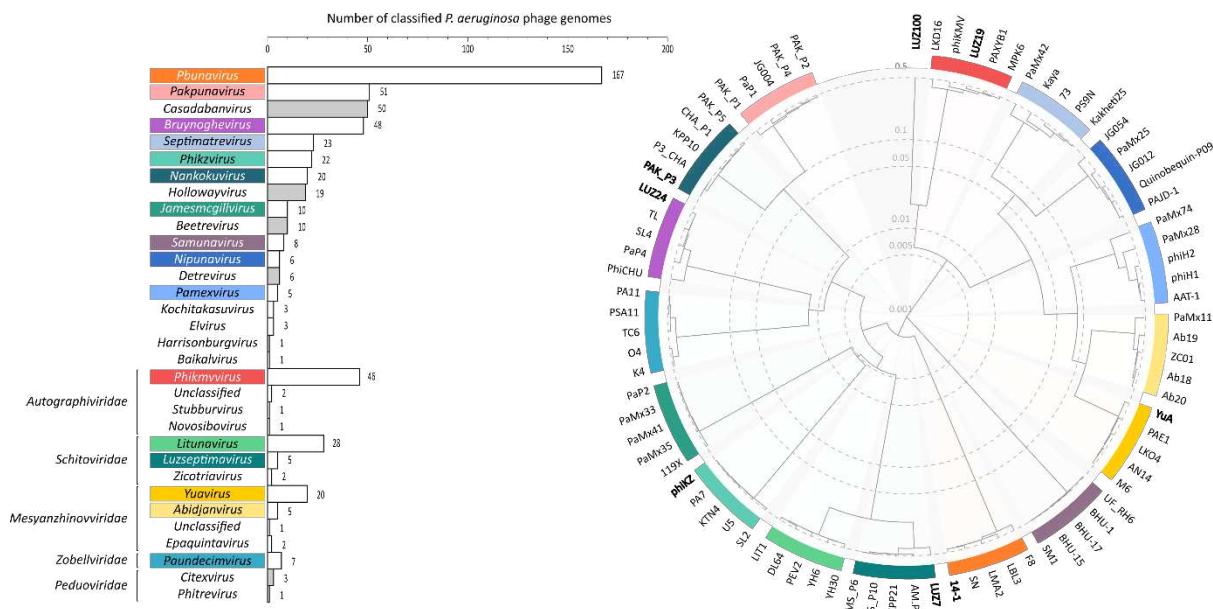
51

52

53

54

55 Introduction


56 Bacteriophages, viruses that infect bacteria, are the most abundant biological entities on our planet.
57 The introduction of high-throughput sequencing technologies, has unveiled their ubiquitous nature
58 and exceptional genomic diversity, which in turn has produced a growing catalogue of phage genomic
59 sequences (Dion, Oechslin and Moineau 2020). According to the National Center for Biotechnology
60 Information (NCBI), as of May 2023, more than 900 *Pseudomonas* phage genomes have been
61 sequenced. The majority of these phages belong to the *Caudoviricetes* class of tailed phages and infect
62 the human opportunistic pathogen *Pseudomonas aeruginosa*.

63

64 Based on the 2022 International Committee on Taxonomy of Viruses (ICTV) report, *Pseudomonas*
65 *aeruginosa* phages now span over 20 different genera, further reflecting the widespread and diverse
66 nature of their bacterial host (De Smet *et al.* 2017; Turner *et al.* 2023). *Pbunavirus*, *Pakpunavirus*, and
67 *Phikmvirus* currently represent the three lytic genera with the most members (Figure 1). Despite the
68 large number of available phage genomes, in-depth knowledge on their transcriptional landscapes
69 and gene regulation mechanisms remain scarce beyond a limited number of model phages (Yang *et*
70 *al.* 2014). Yet, charting the transcriptome architectures of phages is key to fully understand the
71 different layers of gene regulation during the infection process (Salmond and Fineran 2015; Hör,
72 Gorski and Vogel 2018; Ofir and Sorek 2018).

73

74

77 **Figure 1: Classification and phylogenetic tree of lytic *Pseudomonas aeruginosa* phages.** As of May 2023, the genomes of *P.*
78 *aeruginosa*-infecting phages are classified in over 20 different genera according to the current ICTV taxonomy release (2022)
79 (Turner *et al.* 2023). The bar plot (left panel) shows the number of classified *P. aeruginosa* phages in each genus with their
80 respective family-level taxa, excluding phage families with less than two members. Genera associated with temperate phages
81 are indicated in grey and are not shown in the phylogenetic tree. For the lytic phage genera with at least five members, five
82 representative were selected and their genomes were used to construct a protein-level phylogenetic tree using VipTree
83 (Nishimura *et al.* 2017) (right panel). Colours in the tree represent the corresponding genus in the bar plot. Branch lengths
84 are logarithmically scaled and represent the genomic similarity scores (S_G) of the phage genomes (normalized scores by
85 TBLASTX). Representative phages used in this study, or sequenced previously using ONT-cappable-seq (LUZ7 and LUZ100),
86 are indicated in bold.

87 In the last decade, phage transcriptomics research has largely been limited to classical short-read RNA-
88 sequencing (RNA-seq) experiments, providing valuable insights in phage temporal gene expression
89 patterns and host responses (Ceyssens *et al.* 2014; Blasdel *et al.* 2017; Yang *et al.* 2019; Kornienko *et*
90 *al.* 2020; Li *et al.* 2020; Lood *et al.* 2020; Brandão *et al.* 2021). However, RNA-seq generally lacks the
91 capacity to distinguish between primary and processed transcripts, which obscures the discovery of
92 key transcriptional initiation and termination events at the original 5' and 3' boundaries of primary
93 transcripts. To this end, specialised transcriptomic approaches have been developed that allow
94 targeted sequencing of either 5' or 3' transcript ends (Sharma *et al.* 2010; Boutard *et al.* 2016; Dar *et*
95 *al.* 2016; Ettwiller *et al.* 2016), or enable the profiling of primary prokaryotic transcripts in full-length
96 (Yan *et al.* 2018; Putzeys *et al.* 2022). Of these, ONT-cappable-seq is a recent, long-read, nanopore-
97 based cDNA sequencing method that permits end-to-end sequencing of primary prokaryotic
98 transcripts, concurrently delineating both 5' and 3' RNA extremities, and revealing operon structures.
99 Recently, ONT-cappable-seq was successfully introduced to study the transcriptomes and RNA biology
100 of *Pseudomonas aeruginosa* phages LUZ7 (*Luzseptimavirus*) and LUZ100 (unclassified
101 *Autographiviridae*) (Putzeys *et al.* 2022, 2023) and *Thermus thermophilus* phage P23-45 (*Oshimavirus*)
102 (Chaban *et al.* 2022), yielding high-resolution genome-wide maps of their transcription start sites
103 (TSS), transcription terminator sites (TTS) and transcription unit (TU) architectures.

104 In this work, ONT-cappable-seq is applied to profile the full-length transcriptomes of virulent *P.*
105 *aeruginosa* phage representatives of major taxonomic clades (Figure 1), including LUZ19
106 (*Phikmvirus*), LUZ24 (*Bruynoghevirus*), 14-1 (*Pbunavirus*), YuA (*Yuavirus*), PAK_P3 (*Nankokuvirus*) and
107 giant phage phiKZ (*Phikzvirus*) (Ceyssens *et al.* 2008a, 2008b, 2009, 2014; Lavigne *et al.* 2013;
108 Chevallereau *et al.* 2016). The transcriptional strategies of these phages are highly diverse and show
109 various levels of dependency on the host transcriptional apparatus. While the majority of phages used
110 in this study rely almost exclusively on the machinery of their host to initiate gene transcription, LUZ19
111 and phiKZ are equipped with their own RNA polymerase(s) and phage-specific promoter sequences.
112 Using ONT-cappable-seq, we refined their distinct transcriptional architectures and discovered novel
113 phage-encoded regulatory features, shedding light on the diversified and intricate transcriptional
114 regulation mechanisms that *Pseudomonas* phages use to orchestrate their gene expression.

115 Materials & methods

116 *Bacterial strains, growth conditions and bacteriophage propagation*

117 *P. aeruginosa* strains PAO1 (DSM 22644) (Oberhardt *et al.* 2008), PAK (Takeya and Amako 1966) and
118 Li010 (Pirnay *et al.* 2002) were cultured in Lysogeny Broth (LB) medium at 37°C. Six different lytic *P.*
119 *aeruginosa* phages from different genera were selected to represent a diverse set of characterised
120 phages (Table 1). PAO1 was used to amplify phages LUZ19, YuA, 14-1 and phiKZ. Alternatively, phages
121 PAK_P3 and LUZ24 were amplified on host strains PAK and Li010, respectively. For phage
122 amplification, the bacterial host was grown to early exponential phase (optical density of OD₆₀₀ = 0.3)
123 and infected with a high-titer lysate of the appropriate phage. Following overnight incubation at 37°C,
124 the phage lysate was purified and concentrated using polyethylene glycol 8000 (PEG8000)
125 precipitation. The resulting phage stocks were stored in phage buffer (10 mM NaCl, 10 mM MgSO₄, 10
126 mM Tris-HCl, pH 7.5) at 4°C.

127 *P. aeruginosa Li010 genome extraction, sequencing and hybrid assembly*

128 The full genome of *P. aeruginosa* strain Li010 was sequenced using a combination of Illumina short-
129 read sequencing and Nanopore sequencing technology. For this, High-molecular weight genomic DNA
130 (gDNA) of Li010 was extracted using the DNeasy UltraClean Microbial Kit (Qiagen) according to the
131 manufacturer's guidelines. Afterwards, the DNA sample was prepared using the Illumina DNA prep kit
132 (Illumina, USA) and sequenced on an Illumina MiniSeq device. Raw read quality of the Illumina data
133 was assessed using FastQC (v0.11.8) (bioinformatics.babraham.ac.uk), after which adapters and poor-
134 quality bases were removed using Trimmomatic (v0.39) (Bolger, Lohse and Usadel 2014). The Rapid
135 Barcoding Sequencing Kit (SQK-RBK004) was used to prepare the DNA for nanopore sequencing, which
136 was subsequently loaded on a MinION flow cell (FLO-MIN106, R9.4.1) and sequenced for 24–48h. The
137 nanopore data was basecalled in high-accuracy mode using Guppy (v6.3.8) and processed using
138 Porechop (v0.2.3). Next, both short-read and long-read sequencing datasets were integrated to
139 perform *de novo* hybrid assembly of the Li010 genome using Unicycler (v0.4.8) with default settings
140 (Wick *et al.* 2017). Finally, the resolved genome of Li010 was deposited in NCBI GenBank (CP124600)
141 and used as the host reference for ONT-cappable-seq data analysis of phage LUZ24.

142 *Phage infection conditions and RNA extraction*

143 Bacterial cultures were grown to an OD₆₀₀ of 0.3 and infected at high multiplicity of infection (MOI,
144 see Table 1) of the appropriate phages to ensure a high infection rate of the bacterial cells, before
145 incubation at 37°C (Table 1) (Chevallereau *et al.* 2016; De Smet *et al.* 2016; Brandão *et al.* 2021; Wicke
146 *et al.* 2021). Phage-infected culture samples were collected at multiple timepoints during the infection

147 cycle of each phage, as indicated in Table 1. The collected samples were treated with stop mix solution
148 (95% ethanol, 5% phenol, saturated, pH 4.5) and immediately snap-frozen in liquid nitrogen. Next,
149 samples were thawed on ice and centrifuged for 20 minutes at 4°C at 4,000 g. The pellets were
150 resuspended in 0.5 mg/mL lysozyme in Tris-EDTA solution (pH 8) to lyse the cells, after which RNA was
151 isolated using hot phenol extraction. The crude RNA samples were subsequently purified using ethanol
152 precipitation and subjected to DNase I treatment, followed by another round of ethanol precipitation
153 and spin-column purification. Successful removal of genomic DNA was verified by PCR using a specific
154 primer pair that targets *P. aeruginosa* (Supplementary Table S1). Finally, the RNA sample integrity was
155 assessed on an Agilent 2100 Bioanalyzer using the RNA 6000 Pico kit. Samples with an RNA integrity
156 number (RIN) greater than 9 were used for downstream processing and sequencing.

157 **Table 1: Overview of the lytic *P. aeruginosa* phages used in this work.** For each phage, infection conditions and RNA
158 sampling timepoints used for ONT-cappable-seq are indicated. MOI: multiplicity of infection.

Phage	Genus	host strain	MOI	Sampling timepoints post-infection (min)	Reference
LUZ19	<i>Phikmvirus</i>	PAO1	75	5, 10, 15	(Lavigne <i>et al.</i> 2013)
YuA	<i>Yuavirus</i>	PAO1	75	5, 15, 25, 45, 65	(Ceyssens <i>et al.</i> 2008b)
phiKZ	<i>Phikzvirus</i>	PAO1	15	5, 10, 15, 20, 30, 40, 50, 60, 70, 80	(Ceyssens <i>et al.</i> 2014)
14-1	<i>Pbunavirus</i>	PAO1	25	3, 6, 9, 12	(Ceyssens <i>et al.</i> 2009)
LUZ24	<i>Bruynoghevirus</i>	Li010	50	5, 15, 25, 35	(Ceyssens <i>et al.</i> 2008a)
PAK_P3	<i>Nankokuvirus</i>	PAK	40	3.5, 6.5, 10, 13, 16.5	(Chevallereau <i>et al.</i> 2016)

159

160 *ONT-cappable-seq library preparation*

161 For each phage, individual RNA samples were pooled together in equal amounts to a final
162 concentration of 5 µg prior to library preparation. The resulting samples were supplemented with 1
163 ng of a control RNA spike-in, which was transcribed *in vitro* using the HiScribe T7 high-yield RNA
164 synthesis kit (New England Biolabs). Afterwards, ONT-cappable-seq library preparation was carried
165 out for all six phage samples as described in prior work (Putzeys *et al.* 2022), resulting for each phage
166 in a cDNA sample that was enriched for primary transcripts and a control cDNA sample that did not
167 undergo discrimination between primary and processed transcripts (Putzeys *et al.* 2022). Equimolar
168 amounts of the twelve cDNA samples (LUZ19_{enriched}, LUZ19_{control}, YuA_{enriched}, YuA_{control}, phiKZ_{enriched},
169 phiKZ_{control}, 14-1_{enriched}, 14-1_{control}, LUZ24_{enriched}, LUZ24_{control}, PAK_P3_{enriched}, PAK_P3_{control}) were pooled to
170 a total of 100 fmol in a 23 µL sample volume. Finally, nanopore sequencing adapters were added to
171 the cDNA library, which was subsequently loaded on a PromethION flow cell (R9.4.1). The flow cell

172 was run on the PromethION 24 platform with live base-calling and demultiplexing enabled. After ~24h,
173 the flow cell was reloaded and refuelled, after which sequencing carried on until all pores were
174 exhausted (>48h).

175 *ONT-cappable-seq data analysis*

176 After base-calling, only raw reads which passed the default Phred-like quality score threshold (≥ 7)
177 were retained for downstream analysis. The passed raw sequencing data was evaluated in terms of
178 sequencing yield, quality and read length using NanoComp (v1.11.2) (De Coster *et al.* 2018). Next,
179 reads from each sample were mapped to their reference phage genomes, LUZ19 (NC_010326.1); YuA
180 (NC_010116.1); phiKZ (NC_004629.1); 14-1 (NC_011703.1); LUZ24 (NC_010325.1); PAK_P3
181 (NC_022970.1) and host (PAO1 (NC_002516.2); PAK (LR657304.1); Li010 (CP124600) as described
182 previously (Putzeys *et al.* 2022). The genomic alignments were visually inspected using Integrated
183 Genomics Viewer (IGV) (Thorvaldsdóttir, Robinson and Mesirov 2013). For each sample, a summary
184 of the sequencing output, read lengths and mapping data is provided in Supplementary Table S2.

185 Afterwards, identification of viral TSSs and TTSSs was carried out using our ONT-cappable-seq data
186 analysis workflow (<https://github.com/LoGT-KULeuven/ONT-cappable-seq>) (Putzeys *et al.* 2022),
187 tailored to the phages in this dataset. Briefly, TSSs were identified by finding genomic positions with a
188 local maxima of 5' read ends using a peak calling algorithm. Afterwards, for each peak position, the
189 enrichment ratio was calculated by dividing the read count per million mapped reads (RPM) in the
190 enriched sample by the corresponding RPM in the control sample. Peak positions that surpassed the
191 enrichment ratio threshold (T_{TSS}) and had at least 30 reads starting at that position in the enriched
192 sample, followed by manual curation, were annotated as a TSS. The enrichment ratio thresholds varied
193 for the individual phages (T_{TSS} LUZ19 = 212.7; T_{TSS} YuA = 86.6; T_{TSS} phiKZ = 30; T_{TSS} 14-1 = 5.1; T_{TSS} LUZ24
194 = 5; T_{TSS} PAK_P3 = 29.8), depending on the enrichment ratio observed for the TSS of the T7 promoter
195 in the RNA spike-in in each sample (Putzeys *et al.* 2022). Next, regions upstream of the annotated TSSs
196 were uploaded in MEME (-50 to +1) and SAPPHIRE.CNN (-100 to +1) to identify motifs and
197 *Pseudomonas* σ 70 promoter sequences, respectively (Bailey *et al.* 2015; Coppens, Wicke and Lavigne
198 2022). Similarly, phage TTSSs were annotated by determining genomic positions with a local
199 accumulation of 3' read ends that showed an average read reduction of at least 20% across the
200 termination site, as described by Putzeys *et al.* (2022). For each TTSS identified by ONT-cappable-seq,
201 the -60 to +40 terminator region was analysed with ARNold to predict intrinsic, factor-independent
202 transcriptional terminators (Naville *et al.* 2011). RNAfold (v2.4.13) was used to predict and calculate
203 the secondary structure and minimum free energy of the annotated terminator regions (Lorenz *et al.*
204 2011). Finally, transcription units (TUs) for each phage were delineated by adjacent TSS and TTSS

205 annotated on the same strand, upon validating that at least one ONT-cappable-seq read spans the
206 candidate TU. Where no clear TSS-TTS pair could be defined, the longest read was used for TU
207 boundary determination.

208 *In vivo promoter activity assay*

209 A subset of the phage-encoded host-specific promoters was experimentally validated *in vivo* using the
210 SEVAtile-based expression system, as described previously (Lammens *et al.* 2021; Putzeys *et al.* 2023).
211 In short, promoters were cloned in a pBGDes vector backbone upstream of a standardised ribosomal
212 binding site (*BCD2*) and an *msfGfp* reporter gene (Mutalik *et al.* 2013; Lammens *et al.* 2021). A
213 construct without a promoter sequence (pBGDes *BCD2-msfGFP*) and a construct with a constitutive
214 promoter (pBGDes *Pem7-BCD2-msfGFP*) were included as controls. The resulting vectors were
215 introduced to *Escherichia coli* PIR2 cells using heat-shock transformation and selectively plated on LB
216 supplemented with kanamycin (50 µg/µL) (Hanahan 1983). In addition, the genetic constructs were
217 transformed to *P. aeruginosa* PAO1 host cells by co-electroporation with a pTNS2 helper plasmid and
218 subsequent plating on LB supplemented with gentamicin (30 µg/mL) (Choi, Kumar and Schweizer
219 2006). All primers and genetic parts used in this work are listed in Supplementary Table S1. Next, four
220 biological replicates of each sample were inoculated in M9 minimal medium (1× M9 salts (BD
221 Biosciences), 2 mM MgSO₄, 0.1 mM CaCl₂ (Sigma-Aldrich), 0.5% casein amino acids (LabM, Neogen),
222 and 0.2% citrate (Sigma-Aldrich)), complemented with the appropriate antibiotic, and incubated at
223 37°C. The following day, samples were diluted 1:10 in fresh M9 medium in a 96-well black polystyrene
224 COSTAR plate (Corning) with a clear flat bottom and transferred to a CLARIOstar® *Plus* Microplate
225 Reader (BMG Labtech). OD₆₀₀ and msfGFP fluorescence intensity levels (485 nm (ex)/528 nm (em))
226 were measured every 15 min for 12 h, while incubating at 37 °C. The relative msfGFP measurements
227 were normalised for their respective OD600 values and subsequently converted to absolute units of
228 the calibrant 5(6)-carboxyfluorescein (5(6)-FAM) (Sigma-Aldrich). Finally, the data was visualised and
229 analysed using the statistical software JMP 16 Pro (SAS Institute Inc.).

230 *PCR-based splicing validation*

231 Purified RNA samples of LUZ24 collected 5 min, 15 min, 25 min, and 35 min post-infection were used
232 to confirm the presence of a second putative intron in the LUZ24 genome. For this, 200 ng of total
233 RNA was mixed with 100 pmol of a sequence-specific primer (P_{RT,intron2}). Reverse transcription was
234 carried out with 100 units of Maxima H Minus Reverse Transcriptase (Thermo Fisher), after incubation
235 for 10 min at 25°C, 30 min at 50°C, and heat inactivation for 5 min at 85°C. Next, the resulting cDNA,
236 LUZ24 genomic DNA, and LUZ24 phage lysate was used for PCR amplification (primers P_{F,PCR,intron2} and
237 P_{R,PCR,intron2}; Supplementary Table S1) and visually compared on a 1.5% agarose gel. As a control, the

238 same experiment was carried out for the previously identified group I intron using a different set of
239 primers ($P_{F,PCR,intron1}$, $P_{R,PCR,intron1}$ and $P_{RT,intron1}$) (Supplementary Figure S1) (Ceyssens *et al.* 2008a).

240 *Northern blotting*

241 To visualize specific RNA transcripts of interest, 5 μ g of total RNA of each sample was
242 electrophoretically resolved on a 6% polyacrylamide gel containing 7M urea. After blotting on an
243 Amersham Hybond-XL (GE Healthcare, Chicago, IL, USA) membrane at 50 V, 4 °C for 1 h, transcripts
244 were detected by gene-specific ^{32}P -labeled oligonucleotides (Supplementary Table S1) in hybridization
245 buffer (G-Biosciences, Saint Louis, MI, USA) and exposed to a phosphor screen overnight. Images were
246 visualized using a Typhoon 9400 (Variable Mode Imager, Amersham Biosciences, Amersham, United
247 Kingdom). The pUC8 ladder reference was size matched and cut from their corresponding membrane
248 after the first read out. This was due to gradual fading of the signal after multiple exposures.

249

250

251

252

253

254

255

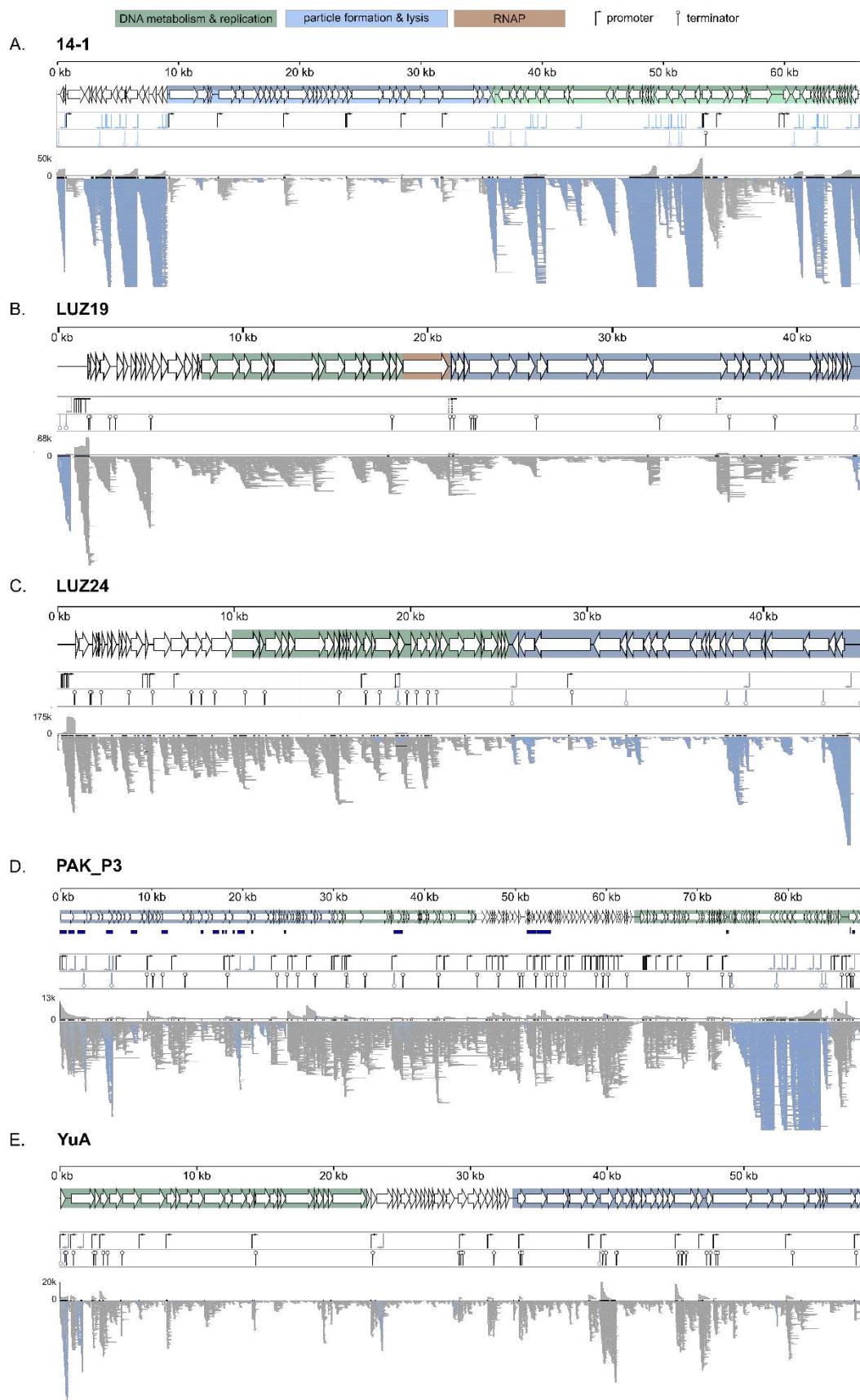
256

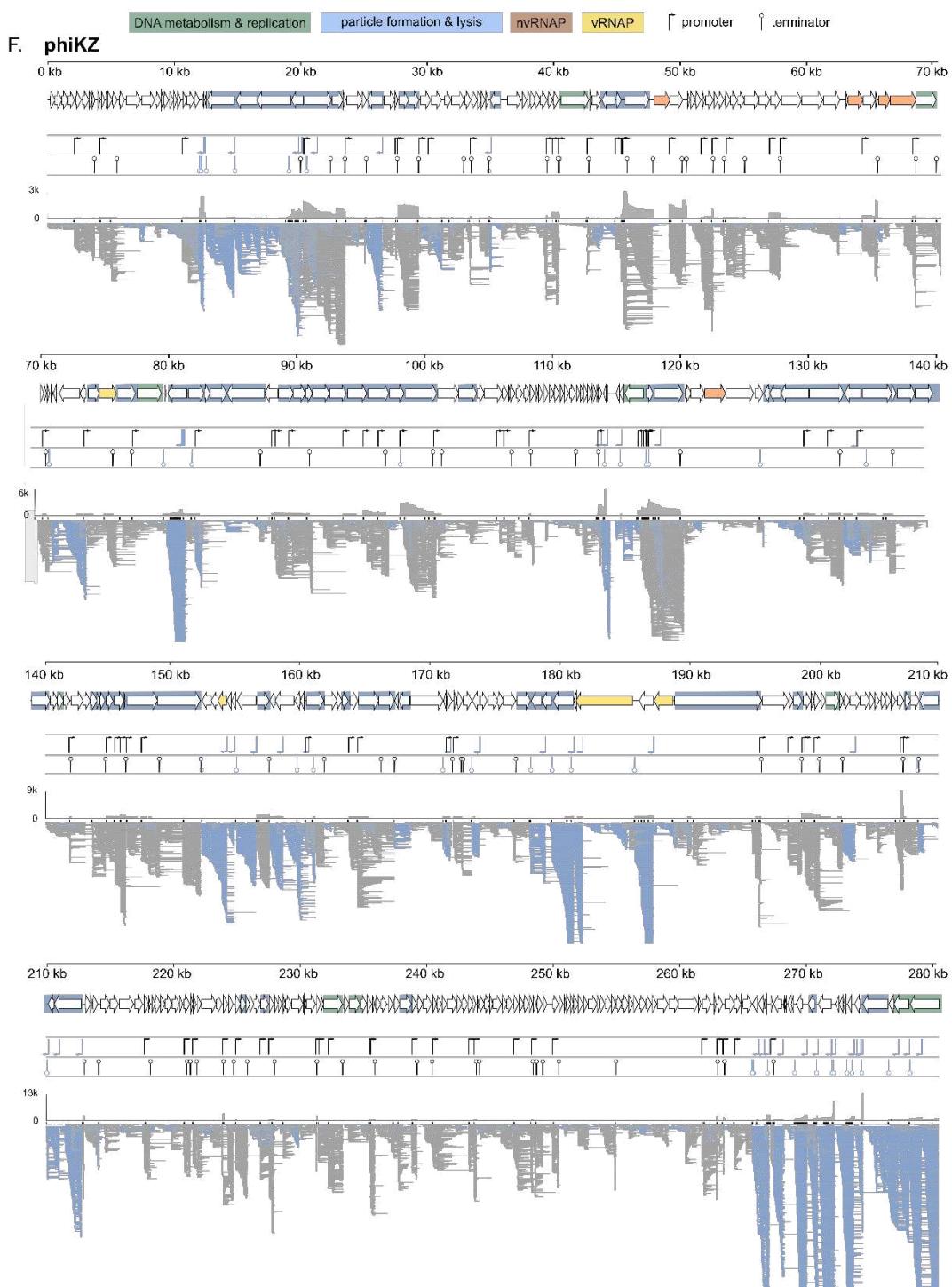
257

258

259

260


261


262 Results & discussion

263 *The global transcriptional landscapes of P. aeruginosa phages*

264 ONT-cappable-seq enables end-to-end sequencing of primary prokaryotic transcripts, allowing the
265 simultaneous delineation of 5' and 3' transcript boundaries (Putzeys *et al.* 2022). During the ONT-
266 cappable-seq library preparation, primary transcripts are enriched by capping their hallmarking
267 triphosphorylated 5' RNA ends with a desthiobiotin tag that can be captured by streptavidin beads. In
268 parallel, a non-enriched control sample is prepared where the streptavidin enrichment step is omitted,
269 retaining all processed RNA species. As such, comparative transcriptomics between the enriched and
270 control samples allows discrimination between transcription start sites (TSSs) and processed 5' ends.
271 In addition, full-length transcriptional profiling by ONT-cappable-seq can discover transcription
272 termination sites (TTS), as primary transcripts are more likely to have their original 3' end intact (Yan
273 *et al.* 2018; Putzeys *et al.* 2022). For each individual phage, cellular transcripts from multiple infection
274 stages were pooled prior to library preparation, after which the resulting enriched and control samples
275 ($n = 12$) were multiplexed and sequenced on a PromethION device, generating 0.7-22 million reads
276 per sample (Supplementary Table S2).

277 Using this approach, we obtained comprehensive transcriptional maps of taxonomically distinct
278 phages 14-1 (66.2 kb), LUZ19 (43.5 kb), LUZ24 (45.6 kb), PAK_P3 (88.1 kb), YuA (58.7 kb) and phiKZ
279 (280.3 kb), shedding light on their distinct transcriptional patterns and architectures (Figure 2). In
280 addition, we identified transcription initiation and terminator sites across the genome for each phage,
281 allowing the discovery of novel regulatory elements and refined phage genome annotations
282 (Supplementary Tables S3-S5).

284

Figure 2: Genomic overview and transcriptional landscape of *Pseudomonas* phages 14-1 (A.), LUZ19 (B.), LUZ24 (C.), PAK_P3 (D.), YuA (E.) and phiKZ (F.), as obtained by ONT-cappable-seq. For each phage, the upper panel shows the annotated coding sequences of the phage genome. The genomic regions with genes involved in phage DNA metabolism (green), and virion morphogenesis and lysis (blue) are highlighted. The phage-encoded RNAPs of LUZ19 and phiKZ (nvRNAP) are indicated in orange. The subunits of the virion RNAP of phiKZ are depicted in yellow. Previously annotated anti-sense RNA species in PAK_P3 are indicated in dark blue underneath. The panel underneath displays the position and orientation of the promoters (arrows) and terminators (line with circle) identified in this work (Supplementary Tables S3-S5). For phage LUZ19, phage-specific promoters are indicated with a dotted arrow. The lower panel displays the ONT-cappable-seq data track, as visualised by IGV (down sampling with a 50 base window size, 50 reads per window). Reads aligning on the Watson and the Crick strand are indicated in grey and blue, respectively.

285

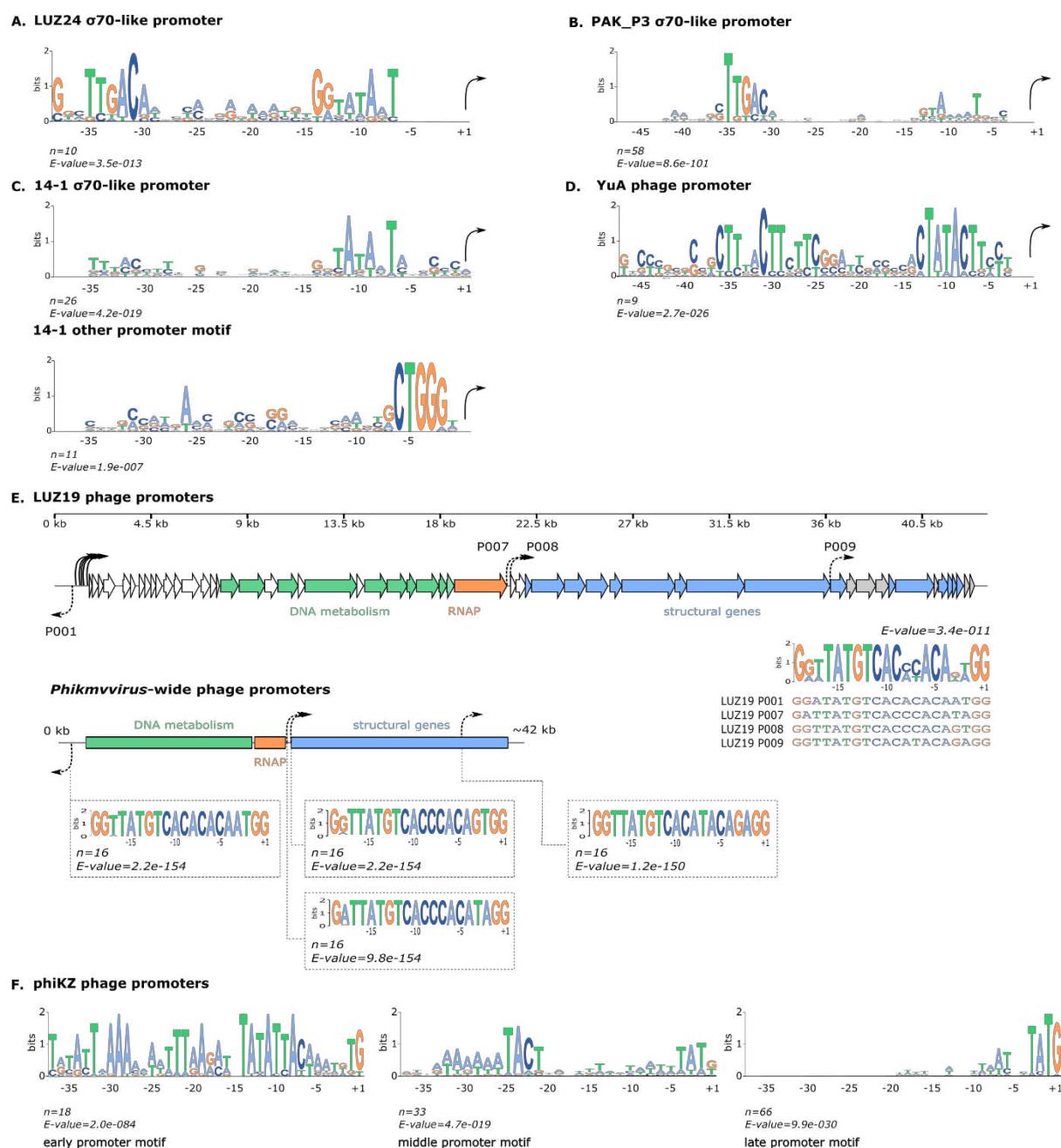
286 Delineation of phage regulatory elements

287 *Identification of phage TSS and promoter sequences*

288 The phages in this work have distinct strategies to regulate their gene expression and display various
289 degrees of dependency on the host transcriptional machinery. For example, phages 14-1, LUZ24, YuA
290 and PAK_P3 rely fully on their bacterial host for progeny production, as they do not encode their own
291 RNAP (Ceyssens *et al.* 2008a, 2008b, 2009; Chevallereau *et al.* 2016). As a consequence, the phages
292 harbour strong promoter sequences and/or encode additional factors to hijack the host RNAP and
293 alter its specificity. By contrast, phage phiKZ is equipped with two non-canonical multi-subunit RNAPs
294 that recognise distinct promoters, supporting a phage transcriptional program that is completely
295 independent of the host (Ceyssens *et al.* 2014). Conversely, LUZ19 encodes its own single-subunit
296 RNAP, but relies on the host RNAP to carry out transcription of early and middle phage genes,
297 resembling the characteristic transcriptional program of T7 (Ceyssens *et al.* 2006; Lavigne *et al.* 2013).

298 To uncover the dependency of the different phage genes on specific RNAPs, we mapped the TSSs of
299 each phage individually (as specified in the M&M section), together with their associated promoter
300 sequences. For this, phage genomes were screened for enriched positions with a local accumulation
301 of 5' read ends. Collectively, we identified a total of 320 TSS spread across the genomes of 14-1 (50),
302 LUZ24 (16), LUZ19 (9), PAK_P3 (75), YuA (21), and phiKZ (149) (Supplementary Table S3). To assess
303 whether the promoters encoded on phages that rely exclusively on the host transcription apparatus
304 are similar to canonical σ 70 promoters, the -50 to +1 regions upstream the annotated TSSs were
305 analysed using the *Pseudomonas* promoter prediction tool SAPPHIRE.CNN (Coppens and Lavigne
306 2020; Coppens, Wicke and Lavigne 2022). Indeed, the majority of promoters from LUZ24 (62.5%),
307 PAK_P3 (78.7%), and 14-1 (52%) show significant similarity to the σ 70 promoter consensus of
308 *Pseudomonas* (Figure 3A-C). Previous *in vivo* promoter trap experiments of LUZ24 revealed the
309 presence of seven bacterial promoters (Ceyssens *et al.* 2008a). In this experiment, the phage genome
310 was randomly sheared and the resulting fragments (200-400 bp) were cloned upstream a *lacZ* reporter
311 gene to screen for promoter activity. Using ONT-cappable-seq, we confirm and refine the annotation
312 of four of these reported promoters (LUZ24 P004-P006, P016), and identified six additional promoter
313 sequences with a *P. aeruginosa* σ 70 consensus motif. To make sure that no sequence motifs were
314 overlooked, the remaining promoter elements from each phage were subjected to an additional motif
315 search using MEME (Bailey *et al.* 2015). In the case of phage 14-1, this revealed the presence of a
316 second motif in eleven viral promoter elements (E-value = 1.9e-007), which is characterised by a 5'-
317 CTGGG-3' core region located ~5 bp from the TSS (Figure 3C).

318 YuA is dependent on both σ 70 and σ 54 binding factors to initiate transcription (Ceyssens *et al.* 2008b).
319 Here, we identified two YuA promoters that can be associated with σ 70-like (YuA P014) and σ 54-like
320 promoters regions (YuA P015), consistent with a previously performed fragment library promoter trap
321 assay (Ceyssens *et al.* 2008b). In addition, nine promoter regions of YuA display a highly conserved
322 sequence motif (MEME, E-value = 2.7e-026) (Figure 3D). Four of these phage promoters were reported
323 previously, albeit no *in vivo* promoter activity could be observed, suggesting the need for additional
324 (phage-encoded) factors to initiate transcription from these promoter regions (Ceyssens *et al.* 2008b).
325 All but three of the remaining YuA promoters identified by ONT-cappable-seq were predicted to be
326 σ 70-like promoter sequences (Supplementary Table S3).


327 LUZ19 transcription is driven by successive actions of both the host-encoded and phage-encoded
328 RNAP from their cognate promoter sequences. Based on ONT-cappable-seq data, we identified five
329 strong promoters (LUZ19 P002-P006) near the leftmost region of the Watson strand of the LUZ19
330 genome, located upstream of gene *gp0.1*, consistent with the T7-archetypal transcriptional scheme.
331 All but one of these promoters show significant sequence similarity to the characteristic bacterial
332 promoter consensus, confirming the host-dependent transcription program of LUZ19 at the early
333 infection stage (Lavigne *et al.* 2013). In addition, we identified four promoter sequences that share a
334 highly conserved 20bp motif 5'-GgtTATGTCACacACAnnGG-3' (lowercase letters represent lower level
335 of conservation) (E-value = 3.4e-011), which is likely specifically recognised by the LUZ19 RNAP (Figure
336 3E). Two of the phage-specific LUZ19 promoters (P007-P008) are positioned directly downstream of
337 the RNAP gene, while another one is located in the structural region (P009), in agreement with the
338 promoter locations reported in phiKMV-like phage KP34 (Lu *et al.* 2019). However, interestingly, one
339 of the phage-specific LUZ19 promoters (P001) is located on the opposite orientation of the coding
340 sequences of the phage, which are generally found exclusively on the Watson strand. The antisense
341 transcripts that originate from this promoter extend all the way towards the rightmost end of the
342 genome, overlapping with structural genes *gp47-gp49*. One may hypothesize that this antisense
343 transcription from phage-specific promoter P001 in the middle/late infection stage could play a role
344 in preventing transcription elongation to early genes on the circularised phage genome.

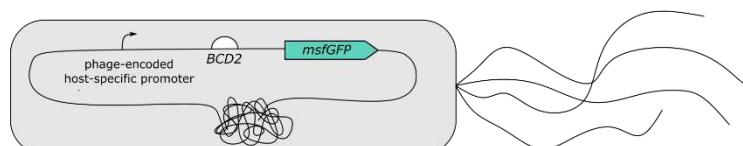
345 Based on the promoter motif found in LUZ19, we assessed whether we could pinpoint the phage-
346 specific promoters of other *Phikmvirus* phage relatives infecting *Pseudomonas*, which have proven
347 challenging to identify in the past (Ceyssens *et al.* 2006; Lavigne *et al.* 2013). For this, we screened the
348 genomes of the 15 additional *Phikmvirus* species according to the 2022 ICTV classification
349 (Supplementary Table S6). Indeed, all phages contained almost identical 20 bp motifs at genomic
350 positions that match the corresponding phage-specific promoters observed in LUZ19, including an

351 antisense promoter in the early genomic region. This finding highlights a near perfect conservation of
352 the sequence and genomic distribution of single-subunit RNAP promoters among the *Phikmvirus*
353 (Figure 3E). Notably, compared to T7-like phages, these viruses seemingly harbour a relatively small
354 number of phage-specific promoters that are spread across the genome, suggesting that phiKMV-like
355 phage transcription might be sustained by long-range processivity of RNAPs.

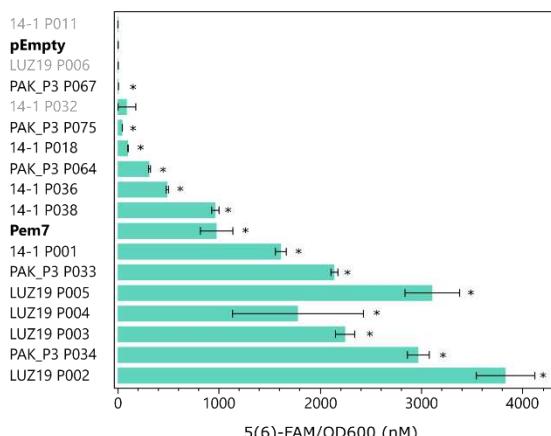
356 Finally, the transcriptional program of the giant *Pseudomonas* phage phiKZ is host-independent and
357 relies exclusively on two distinct phage-encoded RNAPs. Upon infection, the phage co-injects its DNA
358 along with a virion RNAP, which initiates transcription from 32 early phage promoters with a AT-rich
359 consensus element, as revealed by primer extensions and (differential) RNA-seq profiling of PAO1 cells
360 infected with phiKZ [23], [26]. Among the 149 phiKZ TSS and promoters identified by ONT-cappable-
361 seq data, we recovered 16 AT-rich early promoters that were described previously, and find two
362 additional promoters that share the phiKZ early promoter motif (Figure 3F, Supplementary Table S3).
363 PhiKZ middle and late genes are transcribed by the non-virion-associated RNAP (nvRNAP), encoded
364 among the phiKZ early genes. Here, we identified 33 and 66 viral TSS with upstream sequences that
365 resemble the middle and late promoter motifs of phiKZ, respectively, of which 31 have been reported
366 previously [23], [26] (Figure 3F, Supplementary Table S3). No significant motif could be associated with
367 the 32 remaining upstream regions of the phiKZ TSS delineated by ONT-cappable-seq.

368

Figure 3: Phage promoter identification and motif analyses. Consensus sequences of σ 70-like promoters encoded on the genomes of phages LUZ24 (A.), PAK_P3 (B.) and 14-1 (C. upper motif), as derived from 10, 58, and 26 sequences, respectively. Different promoter motifs were found for 11 and 9 TSS of phage 14-1 (C. lower motif) and YuA (D.), that do not resemble bacterial promoters. (E.) Phage promoters across the genome of LUZ19 (upper panel) and phiKMV-like relatives (lower panel). The phage RNAP is indicated in orange and genes involved in DNA metabolism and virion structure are depicted in green and blue, respectively. LUZ19 phage-specific promoters are indicated with dotted arrows (P001, P007-P009) and share a 20bp motif. The panel below represents the schematic genome organisation of *Phikmvirus* species. Using the LUZ19 phage-specific promoter motif, we identified highly similar 20bp sequences in fifteen other *Phikmvirus* species at genomic locations that match the LUZ19 promoter distribution. (F.) ONT-cappable-seq revealed respectively 18, 33 and 66 TSS that resemble the early, middle and late promoter motif of phage phiKZ. Motif analyses were carried out using MEME with the -50 to +1 region respective to the TSS.

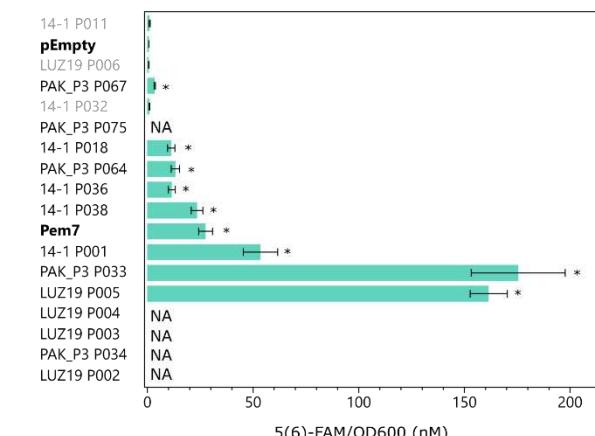

369

370


371 *In vivo* validation of host-specific phage promoters

372 Previous promoter trap studies demonstrated the presence of bacterial promoters encoded on the
373 genomes of phage YuA and LUZ24 (Ceyssens *et al.* 2008b, 2008a). Using ONT-cappable-seq, we
374 identified numerous promoters of 14-1, PAK_P3, and LUZ19 predicted to be recognised by the host
375 transcriptional apparatus. As an experimental validation, the activity of a subset of promoters from
376 14-1, PAK_P3 and LUZ19 was evaluated *in vivo* using a fluorescence expression assay. For this, phage
377 promoters were cloned in front of a standardised ribosome binding site (RBS) and a green fluorescent
378 reporter protein (monomeric superfolder green fluorescent protein, msfGFP) gene, after which the
379 genetic constructs were transformed to both *E. coli* and *P. aeruginosa* (Figure 4A). In addition, we
380 created a construct without a promoter element (pEmpty) and a construct with the strong Pem7
381 constitutive promoter to serve as a negative and positive control, respectively. Interestingly, all σ 70-
382 like phage-encoded promoters (14-1 P001, P018, P036, P038; PAK_P3 P033, P034, P064, P067, P075;
383 LUZ19 P002-P005), predicted by SAPPHIRE.CNN, are able to drive significant expression of the msfGFP
384 reporter gene in *E. coli*, compared the negative control (Wilcoxon test, $p < 0.05$), even though the *in*
385 *vivo* activity of PAK_P3 promoters P067 and P075 is limited (Figure 4B). These data further validate
386 the accuracy and efficacy of the SAPPHIRE.CNN tool. In addition, in *E. coli*, the majority of the host-
387 specific phage promoters outperform the Pem7 control promoter, which is routinely used in microbial
388 synthetic biology applications (Zobel *et al.* 2015). Unlike the phage-encoded promoters that resemble
389 the canonical bacterial promoter consensus sequence, 14-1 promoters P011 and P032, and LUZ19
390 promoter P006 do not seem to drive transcription in *E. coli*, as no significant fluorescent signal could
391 be observed. Instead, P011 and P032 contain the alternative promoter motif found in 14-1 (Figure 3C,
392 lower motif) and no motif could be associated with LUZ19 P006. Our results suggest that additional
393 phage-encoded transcriptional factors might be required for gene expression regulation from these
394 promoters. Given that gp12 of 14-1 is thought to redirect the bacterial RNAP towards phage-specific
395 promoters by interacting with the RNAP α -subunit (Bossche *et al.* 2014), P011 and P032 might rely on
396 gp12 for transcription initiation, although this requires further investigation (unpublished results).
397 Alternatively, other host-encoded factors, which are only expressed at specific phage-induced
398 conditions, might also be needed for the activity of 14-1 P011, 14-1 P032 and LUZ19 P006. Finally, the
399 majority of the promoters included in this fluorescence assay behave similarly in *P. aeruginosa* and in
400 *E. coli*, displaying significant msfGFP expression exclusively for the σ 70-like promoters (14-1 P001,
401 P018, P036, P038; PAK_P3 P033, P064, P067; LUZ19 P005-P006) (Wilcoxon test, $p < 0.05$), although no
402 *in vivo* data could be gathered for LUZ19 P002-P004, PAK_P3 P034 and P075 in *P. aeruginosa* (Figure
403 4C). Collectively, LUZ19 P005, PAK_P3 P033 and 14-1 P001 display potent activity in both bacterial
404 hosts.

A.



B.

405

C.

406 **Figure 4: In vivo validation of the phage-encoded host-specific promoter activity of a subset promoters from 14-1, LUZ19**

407 and PAK_P3. (A.) Schematic representation of the promoter trap construct used for *in vivo* promoter activity measurements.

408 Phage-encoded host-specific promoters (arrow) are cloned upstream of a ribosomal binding site (BCD2) and *msfGFP* reporter

409 gene. Bar plots showing the *in vivo* promoter activity in *E. coli* (B.) and in *P. aeruginosa* (C.). The *in vivo* activity of the phage-

410 encoded host-specific promoters was determined by measuring the *msfGFP* expression levels. The fluorescence intensity

411 was normalised for OD and converted to an equivalent concentration of 5(6)-FAM (nM). Control *msfGFP* reporter constructs

412 without promoter sequence (pEmpty) and with a constitutive promoter (Pem7) are indicated in bold. Phage promoters that

413 could not be associated with σ 70 bacterial promoters (14-1 P011, P032 and LUZ19 P005), as predicted by SAPPHIRE.CNN,

414 are indicated in grey. Bars and error bars display the mean expression value (5(6)-FAM/OD₆₀₀) and standard error of four

415 biological replicates after 12h growth, respectively. Significant differences in promoter activity in comparison to the empty

416 control construct are indicated with an ‘*’ (Wilcoxon test, $p < 0.05$).

417 *Identification of phage transcription terminators*

418 In addition to mapping transcription initiation sites, the ONT-cappable-seq data was leveraged to

419 detect the 3' boundaries of phage transcripts and annotate key transcription termination events in a

420 global manner (Putzeys *et al.* 2022). This way, we located a total of 268 distinct transcription

421 termination regions across the six phage genomes (14-1 (14), LUZ19 (18), LUZ24 (26), Yua (34), PAK_P3

422 (43), phiKZ (133)), validating 54 terminators that were predicted previously (Supplementary Table S4).

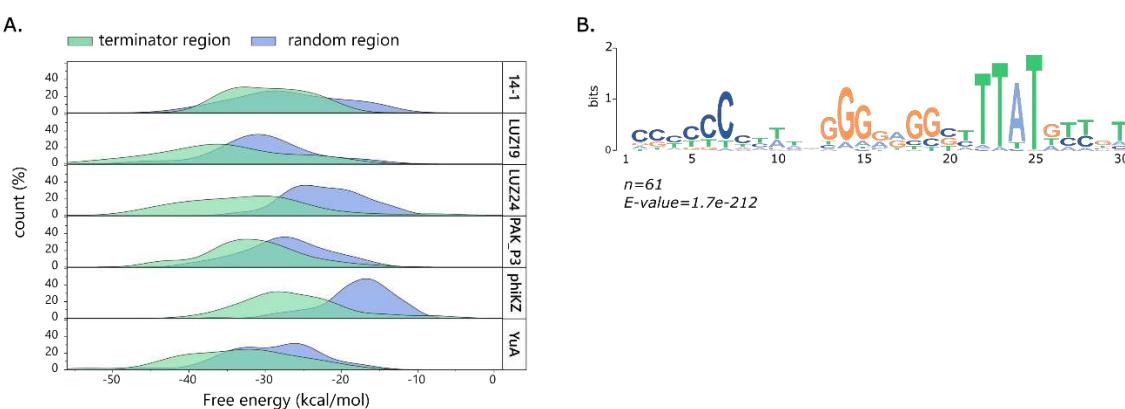
423 Analysis of the -60 to +40 regions flanking the TTSs revealed that most of the phage terminators are

424 prone to form energetically stable secondary structures upon transcription (Figure 5A). In general,

425 there are two main prokaryotic transcription termination mechanisms: intrinsic termination and

426 factor-dependent termination (Roberts 2019). Among the identified phage terminators, 84 were

427 predicted by ARNold to be intrinsic, factor-independent transcription terminators (Naville *et al.* 2011),


428 characterised by a canonical GC-rich hairpin structure followed by a polyuridine stretch. Interestingly,

429 the vast majority of predicted intrinsic terminator sequences are encoded by phiKZ (>70%) and display

430 a conserved nucleotide motif with a distinct stem-loop structure followed by a 5'-TTAT-3' region (5'-

431 BCCYCCCCHWWWDGGGRRGGBYTTATKYYGT-3', hairpin underlined, E-value = 1.7e-212), suggesting a

432 shared mode of action at the RNA level (Figure 5B). Most of the termination sites either reside in
433 intergenic regions (63%) or in a neighbouring gene sequence downstream (28%). The remaining phage
434 terminators (9%) are located in antisense orientation relative to the genes encoded on the phage
435 genome. We find that the distances between the transcription termination signals and the stop codon
436 of the preceding gene varies extensively among all phages, although the length of most 3' untranslated
437 regions (3'UTRs) does not exceed 100 nt (58.2%) (Supplementary Table S4). In addition, seven
438 overlapping bidirectional transcriptional terminator regions were discovered in the genomes of phiKZ
439 (6) and PAK_P3 (1). Each of these bidirectional termination regions reside between a pair of
440 convergent genes and contain two oppositely oriented TTSs located within 23-183 nt from each other.

441

442 **Figure 5: Phage terminator identification.** (A.) Distribution of the minimum free energy (kcal/mol) of the -60 to +40 region
443 surrounding the identified TTS of each phage (green) compared to an equal amount of randomised sequences of the same
444 length selected across the corresponding phage genomes (blue). (B.) Conserved terminator motif identified for 61 terminator
445 regions on the genome of phiKZ, which were predicted to act as intrinsic, factor-independent transcription terminators at
446 the RNA level, as predicted by ARNold.

447

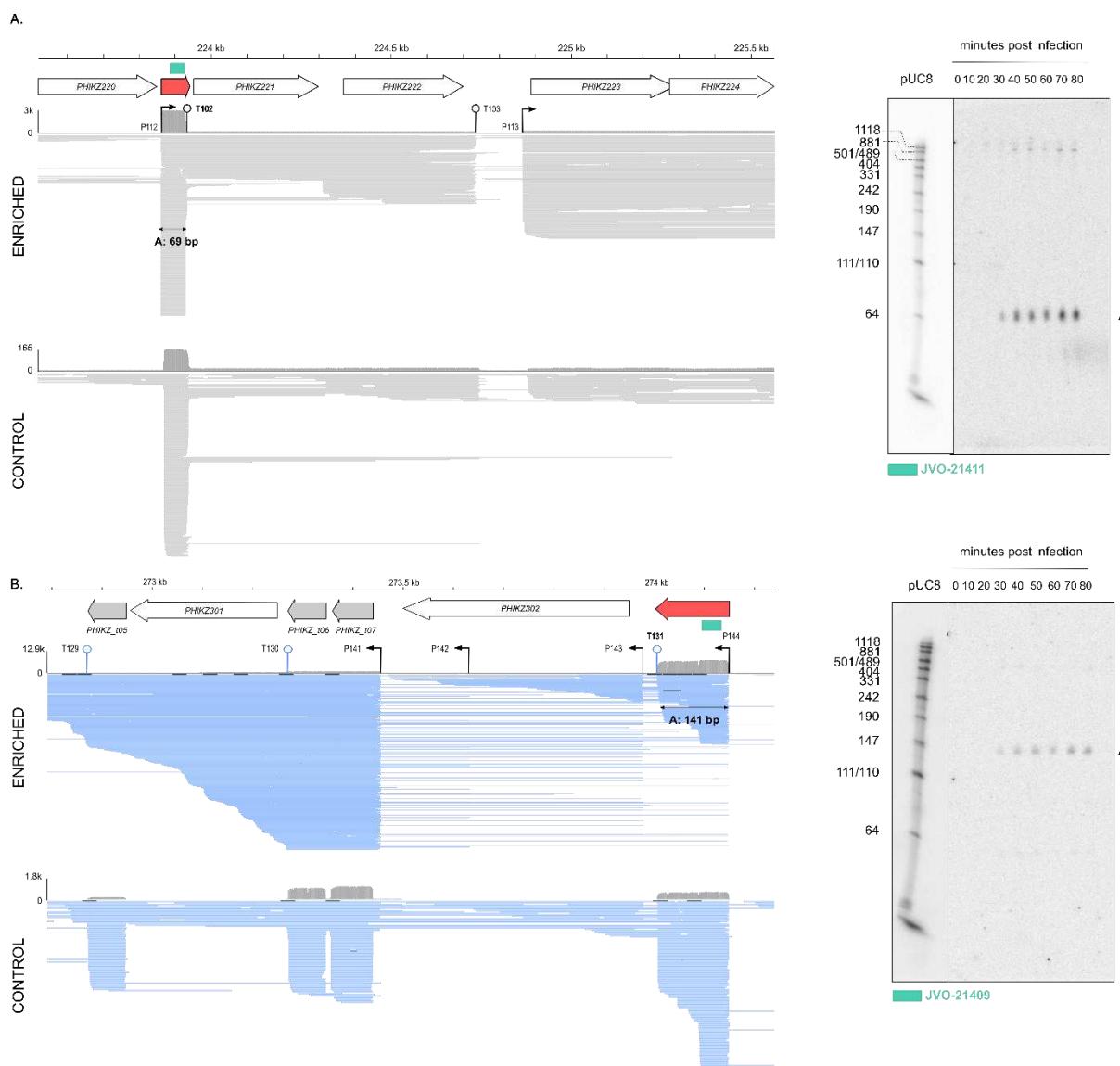
448 *Delineation of phage transcription units*

449 In addition to the identification of transcriptional signals that mark the start and end point of
450 transcription, the long-read ONT-cappable-seq data can be leveraged to elucidate the transcription
451 unit architectures of the individual phages. Transcription units (TUs) were annotated based on
452 neighbouring TSSs and TTSs delineated in this work, resulting in a total of 520 TUs encoded in the
453 genomes of 14-1 (55), LUZ19 (25), LUZ24 (22), PAK_P3 (130), phiKZ (247) and YuA (40) (Supplementary
454 Table S5). Depending on the number of genes the TU encompasses, 134 (25.8%) and 257 (49.5%) TUs
455 were classified as monocistronic or polycistronic, respectively. The remaining TUs (24.7%) did not fully
456 span any genomic feature annotated on the phage genomes. On average, the TUs of LUZ19 and 14-1
457 are 0.8-1.2 kb and cover between one and two genes (Supplementary Figure S2). The TUs of YuA and
458 LUZ24 are seemingly shorter (average TU length 483-722 bp), and do not encode more than two or

459 three genes, respectively. By contrast, the TUs of phiKZ and PAK_P3 have an average length of 1.6-2
460 kb and can comprise up to 10-16 annotated genes.

461 In general, genes that are co-transcribed in the same TU are likely to be functionally related. This also
462 seems to be the case for the *Pseudomonas* phages in this study. For example, whereas 14-1 TU015,
463 LUZ19 TU025, phiKZ TU137, and PAK_P3 TU12 contain genes that are involved in virion structure and
464 morphogenesis, the genes encompassed by LUZ24 TU016 and PAK_P3 TU040 play key roles in viral
465 genome replication. In addition, the gene content of the phage TUs shows significant overlap, sharing
466 at least one or more genes between individual TUs. In the case of 14-1 (52%), phiKZ (67%) and PAK_P3
467 (77%), the majority of genes in the defined TUs are transcribed in at least two different transcriptional
468 contexts, which represents the number of unique gene combinations encoded by the TUs (Yan *et al.*
469 2018). Similar observations were made for *P. aeruginosa* phages LUZ7 and LUZ100 (Putzeys *et al.* 2022,
470 2023). Taken together, the widespread identification of overlapping TUs in diverse *P. aeruginosa*
471 phages suggests that the alternative use of TU variants might be a common regulatory strategy to
472 adjust gene expression of individual genes during phage infection.

473 The genomes of phages, including the *Pseudomonas* phages in this study, are endowed with a
474 multitude of genes that lack functional annotation, often referred to as the 'viral dark matter' (Hatfull
475 2008, 2015). As the functional elucidation of these hypothetical proteins is a time-consuming and
476 challenging endeavour (Roucourt and Lavigne 2009; Wan *et al.* 2021), ONT-cappable-seq data could
477 be a first step to infer their role during phage infection. Knowledge of the transcriptional context of
478 TUs encompassing such hypothetical genes could be leveraged to obtain clues on their function. For
479 example, the longest version of PAK_P3 TU046 spans genes *gp65-gp69*, which are involved in
480 thymidylate synthesis (*gp65*, *gp66*) or code for a putative ribonucleotide-diphosphate reductase
481 (*gp67*, *gp69*) (Chevallereau *et al.* 2016). By contrast, PAK_P3 *gp68* lacks any amino acid sequence
482 similarity to other proteins in the databases, and hence, its function remains elusive. However, the
483 transcriptional context of PAK_P3 *gp68*, as derived from ONT-cappable-seq data, suggests that it is
484 likely involved in nucleotide biosynthesis as well. In addition, the nuclear shell protein of phiKZ,
485 *PHIKZ054* (Chaikeeratisak, Birkholz and Pogliano 2021), appears to be transcribed in many different
486 TUs and transcriptional contexts (Supplementary Table S5), including phiKZ TU038. In phiKZ TU038,
487 the phage shell protein is co-transcribed with a gene of unknown function, *PHIKZ053*, hinting towards
488 a related role in the formation of the phage nucleus-like structure upon infection.


489 In contrast to genes encoded on polycistronic transcripts, phage morons are independently acquired
490 autonomous genetic modules that generally contain their own promoter and terminator elements
491 (Juhala *et al.* 2000). These nonessential moron genes are mainly associated with prophages and confer

492 a fitness advantage for the bacterial host, including *P. aeruginosa* (Tsao *et al.* 2018; Taylor *et al.* 2019).
493 Given that roughly 25% of the phage TUs identified by ONT-cappable-seq encompass a single gene
494 flanked by a TSS and TTS, investigation of these TUs could point to similar portable transcription units
495 in virulent phages. For example, phiKZ TU118, TU129, and TU123 respectively harbour hypothetical
496 protein-coding genes *PHIKZ153*, *PHIKZ_p52*, and *PHIKZ169*, which are all embedded within another
497 gene cluster encoded on the opposite strand, suggesting that they were acquired individually. In
498 addition, phage 14-1 TU021 solely contains gene of unknown function *gp48* and has a slightly different
499 G+C base composition (51%) compared to the 14-1 genome (56% G+C) and up- and downstream
500 flanking genes with 60% and 57% G+C, respectively. Although the origin and function of the phage
501 genes remains to be elucidated, these examples illustrate the potential of TU analysis to pinpoint
502 transcriptionally independent loci, which could ultimately unveil moron-like sequences in (pro)phage
503 genomes.

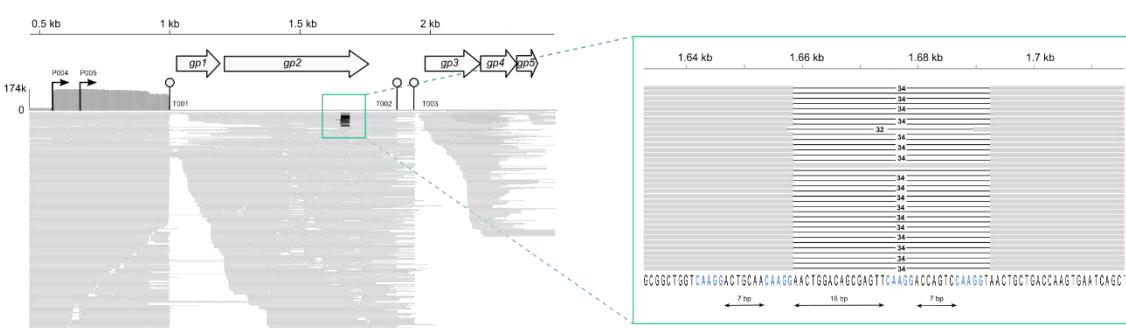
504 ONT-cappable-seq guides the discovery of putative regulatory RNAs
505 Interestingly, TU analysis revealed that ~25% of the phage TUs do not contain any previously predicted
506 genomic features. Among these, a considerable number of TUs are the apparent result of premature
507 transcription termination events, as their cognate TTSs were found immediately downstream of
508 promoter elements, which could be reflective of regulatory events (Adams *et al.* 2021). Collectively,
509 we identified 42 phage TTS that reside within 5'UTR regions, as defined by ONT-cappable-seq. Based
510 on the global phage transcriptional profiles, 34 of these terminators (81%) appear to have two strict
511 modes of transcriptional read-through, which either result in a long transcripts that span one or
512 multiple genes, or a predominant short transcript version of less than 250 nt with the same 5'
513 extremity. For example, phiKZ T102 is located within the 5'UTR of *PHIKZ221*, downstream of the TSS
514 associated with phiKZ P112. While some transcripts that start at this position fully cover genes
515 *PHIKZ221* and *PHIKZ222*, the majority (>90%) is aborted prematurely by T102, resulting in high levels
516 of a short RNA species of ~71 nt (Figure 6A). Similarly, phiKZ TU237 gives rise to a small intergenic
517 transcript of 141 nt in length, delineated at its 3' end by terminator T131, upstream of gene *PHIKZ302*
518 (Figure 6B). In addition, the abundance and length of these two short RNA species was confirmed by
519 northern blot probing, which also captured the full-length transcript version, consistent with the
520 associated ONT-cappable-seq cDNA reads (Figure 6). Given their abundance and size, these short
521 structured fragments, which appear tightly controlled by conditional termination, might have a
522 regulatory function (Dar *et al.* 2016; Adams *et al.* 2021; Felden and Augagneur 2021).

523 Among the small 5'UTR-residing RNA species discovered by ONT-cappable-seq, two were previously
524 reported as putative non-coding RNAs (ncRNA), and serve as a first validation of the ONT-cappable-

525 seq approach for ncRNA discovery. Indeed, grad-seq data of *P. aeruginosa* cells infected with phiKZ
526 revealed two phage-encoded ncRNA candidates associated with the 5'UTR and 3'UTR region of *p40*
527 and *PHIKZ298*, respectively (Gerovac *et al.* 2021). These putative ncRNAs were predicted to be 89 nt
528 (3'UTR_PHIKZ298) and 196 nt (5'UTR_gp40) in length, respectively. However, closer inspection of the
529 ONT-cappable-seq reads associated with 3'UTR_PHIKZ298, together with northern blot probing,
530 justifies re-annotation of the transcript boundaries (270595-270485(-)). In addition, comparison of the
531 3'UTR_PHIKZ298 transcriptional profiles in the enriched and control datasets, together with the
532 identified TSS associated with this transcript, suggests that it is likely generated by 5'UTR processing
533 of the *PHIKZ297* mRNA as well (Supplementary Figure S3). After manual screening, the small RNA
534 species for potential open reading frames (≥ 10 AA) preceded by a canonical Shine-Dalgarno sequence,
535 ONT-cappable-seq data hints towards the presence of 29 5'UTR-derived ncRNA candidates in the
536 genomes of 14-1 (1), LUZ19 (2), LUZ24 (2), YuA (3), PAK_P3 (4), and phiKZ (17) (Supplementary Table
537 S7), significantly expanding the number of putative regulatory ncRNAs produced by virulent phages
538 (Bloch *et al.* 2021). In addition, at the sequence level, these ncRNA candidates appear to be conserved
539 across *P. aeruginosa* phage relatives within the same genus. For example, the sequence of the short
540 RNA species identified upstream the PAK_P3 DNA primase/helicase gene (*gp49*) (fragment 31147-
541 31308(+)), is also found upstream of the corresponding gene in other *Nankokuvirus* members,
542 including KPP10 (NC_015272.2) and P3_CHA (KC862296.1) (BLASTN >90% identity, E-value < 2e-65)
543 (Supplementary Figure S4). Similarly, a ncRNA candidate of YuA (39396-39519(+)) is located in the
544 5'UTR of the phage major head protein gene (*gp56*) and shows sequence conservation to the
545 upstream region of the equivalent gene in *Yuavirus* relatives, such as M6 and LKO4 (BLASTN >97%, E-
546 value < 5e-57). In conclusion, our results indicate that this technique provides the means to identify
547 novel ncRNA candidates at a genome-wide scale, as well as offering clues towards their biogenesis.

548

549 **Figure 6: Example of transcription patterns in 5'UTR regions in phiKZ that reveal putative small non-coding RNA**
 550 **candidates.** IGV data tracks of ONT-cappable-seq enriched and control datasets indicating the abundance of short RNA
 551 species in the 5'UTR region of *PHIKZ221* (A.) and *PHIKZ302* (B.), suggesting that they play a regulatory role. The production
 552 of the small transcripts is seemingly controlled by premature transcription termination. Reads mapped on the Watson and
 553 Crick strand are indicated in grey and blue, respectively. The alignment view in panel B was down sampled in IGV for
 554 visualisation (window size = 25, number of reads per window = 50). Genes, tRNAs and ncRNA candidates are displayed as
 555 white arrows, grey arrows, and red filled arrows, respectively. The position and orientation of the promoters (arrows) and
 556 terminators (line with circle) are indicated. Northern blot probing (probe position in genome indicated with green rectangle)
 557 confirms the length and abundance of the ncRNA candidates, in agreement with the transcriptional profile.


558 Previous standard RNA-sequencing experiments of PAK_P3 predicted two putative ncRNAs, named
 559 ncRNA1 (89 nt) and ncRNA2 (132 nt), which were highly expressed during the late infection stages
 560 (Chevallereau *et al.* 2016). Using ONT-cappable-seq, we recovered both RNA species and refined their
 561 transcriptional boundaries with single nucleotide precision (ncRNA1: 85,248-85,458(+); ncRNA2:
 562 86,307-86,426(+)). In addition, both RNA species lack an associated TSS, suggesting they are derived
 563 from extensive processing of the 3'UTR of the upstream gene. This also becomes apparent when
 564 comparing the PAK_P3 ONT-cappable-seq data tracks of the enriched and control datasets. These

565 indicate that the small RNA species are predominantly present in the control dataset, which mainly
566 contains processed transcripts (Supplementary Figures S5-S6). These results are in agreement with
567 northern blot probing of ncRNA1 and ncRNA2, displaying several processed intermediates and a highly
568 abundant RNA species of ~210 nt and ~120 nt in length, respectively, of which the signal becomes
569 stronger over the course of infection (Supplementary Figures S5-S6). In addition to pointing out
570 putative 5'UTR- and 3'UTR-derived ncRNAs, ONT-cappable-seq reveals twenty phage-encoded
571 antisense RNA species of varying lengths with a defined TSS (LUZ19 (2), LUZ24 (2), YuA (4), PAK_P3 (8),
572 phiKZ (4) (Supplementary Table S5). Among these, seven can be associated with anti-sense transcripts
573 discovered in PAK_P3 by previous RNA-seq analysis (Chevallereau *et al.* 2016). Collectively, these
574 results illustrate the potential of ONT-cappable-seq to finetune transcript annotation and discern
575 novel RNA species that were previously overlooked by classic RNA-seq experiments. We envision that
576 further functional studies on this extensive set of antisense transcripts and putative ncRNAs can offer
577 valuable insights in their regulatory role and importance during phage infection (Bloch *et al.* 2021).

578 Full-length transcriptional profiling enables straightforward detection of splicing activity
579 Group I introns, intervening sequences capable of self-splicing, are widespread in the genomes of
580 bacteria and phages, including *Pseudomonas* phage LUZ24 (Ceyssens *et al.* 2008a; Lavigne and
581 Vandersteegen 2013; Hausner, Hafez and Edgell 2014). The LUZ24 intron interrupts the coding
582 sequence of the phage DNA polymerase, and restores the reading frame upon excision from the
583 corresponding primary transcripts. The presence of bacteriophage group I introns is generally
584 predicted from genomic surveys, and can be subsequently confirmed after PCR amplification of the
585 cDNA. Given that ONT-cappable-seq allows full-length cDNA sequencing, we evaluated whether this
586 intron can also be detected in our global transcriptome data of LUZ24. Indeed, visual inspection of the
587 phage transcriptome data showed a considerable number of transcripts that lack the 669-bp fragment
588 (19,143-19,811) which matches the Group I intron embedded in the DNA polymerase of LUZ24,
589 confirming its *in vivo* splicing activity (Supplementary Figure S7). In addition, the relative number of
590 spliced cDNA read alignments in this region is significantly lower in the sample enriched for primary
591 transcripts (0.03%) compared to the control sample which was predominantly composed of processed
592 transcripts (0.9%), as expected. Previous studies demonstrated that environmental cues can impact
593 group I intron splicing efficiency (Sandegren and Sjöberg 2007; Belfort 2017). The observed occurrence
594 of both spliced and unspliced cDNA is consistent with the experimental design in which multiple
595 timepoints have been pooled, also hinting at condition-dependent splicing events. In addition, the full-
596 length 669-bp fragment is relatively more abundant in the enriched dataset, representing 46.5% of
597 the mapped reads in this region, compared to the control sample (1%). This suggests that its 5' end
598 holds a triphosphate group, which is enriched for during library preparation. Indeed, group I intron

599 splicing is initiated through hydrophilic attack of the 5' splice site by a free guanosine-5'-triphosphate,
600 the latter of which is subsequently linked to the 5' end of the intron (Cech 1990; Hausner, Hafez and
601 Edgell 2014). Based on these data, it should be noted that the 5' and 3' ends associated with this
602 fragment most likely do not represent genuine TSS (LUZ24 P011) and TTS (LUZ4 T016), respectively
603 (highlighted in red in Supplementary Tables S3-S5). Previous genomic analysis of phiKZ also predicted
604 the presence of Group I intron-containing endonucleases in the genes encoding gp56, gp72 and gp179
605 (Mesyanzhinov *et al.* 2002). However, careful surveillance of the phiKZ full-length transcriptional
606 landscape did not provide evidence to support this hypothesized self-splicing activity under the
607 growth conditions tested here.

608 In contrast, ONT-cappable-seq data revealed a considerable number of spliced cDNA reads in another
609 LUZ24 gene, *gp2*. LUZ24 *gp2* is a conserved hypothetical protein that was shown to be non-inhibitory
610 in terms of host growth and biofilm formation (Wagemans *et al.* 2015). More specifically, a 34-bp
611 fragment (1,659-1,692) appears to be removed near the 3' end of 3.9% and 4.3% of the cDNA reads
612 aligned to *gp2* in the enriched and control transcriptomic samples of LUZ24, respectively (Figure 7).
613 Interestingly, we identified four 'CAAGG' repeats, paired two by two, at the boundaries of the spliced
614 sequence. The pairs reside 16-bp from each other and the repeats in each pair lie seven base pairs
615 apart. Moreover, the five nucleotides immediately downstream the intron sequence (AACTG) are
616 identical to the 5' sequence of the excised fragment. Manual inspection of individual reads indicated
617 high mapping accuracy, which supports the hypothesis that the spliced cDNA reads are biologically
618 relevant, and not the result of alignment errors due to error-prone nanopore reads. In addition, PCR
619 of first-strand cDNA derived from *P. aeruginosa* cells infected with LUZ24, followed by gel
620 electrophoresis, reveals the presence of a smaller, less intense fragment, suggesting that a short,
621 intervening sequence is removed from a portion of the transcripts throughout infection
622 (Supplementary Figure S1A). Although the molecular underpinnings of this short intervening sequence
623 remain to be uncovered, these findings demonstrate that ONT-cappable-seq can be a valuable
624 strategy to confirm, identify and elucidate splicing events in bacteriophages, and could readily be
625 extended to their bacterial hosts.

626

627 **Figure 7: ONT-cappable-seq data suggests splicing activity in LUZ24 gp2 transcripts.** IGV visual representation of ONT-
628 cappable-seq datatrack of a region of the LUZ24 genome spanning gp1-gp5. Read alignments show splicing of a 34-bp
629 fragment in cDNA reads that map to gp2. Closer inspection of the boundaries of the putatively spliced fragment reveals four
630 regularly interspaced 'CAAGG' repeats, paired two by two. The position and orientation of the promoters (arrows) and
631 terminators (line with circle) are indicated. Reads mapping on the Watson and Crick strand are indicated in grey and blue,
632 respectively.

633 Conclusions & perspectives

634 In the last decade, classic RNA sequencing has been the main method to profile the transcriptional
635 landscape of phage-infected bacteria, providing insights in temporal gene expression levels and host
636 responses. However, these short-read methods are generally not suited to gain in-depth knowledge
637 of the transcriptional regulatory mechanisms involved in phage infection, as they lack the ability to
638 differentiate between primary and processed transcripts and information on transcript continuity is
639 lost. By contrast, differential RNA-seq (dRNA-seq) performs differential treatment of the RNA sample
640 with 5'P-dependent terminator exonuclease (TEX) to enrich primary transcripts prior to short-read
641 sequencing, and is considered the golden standard for global prokaryotic TSS mapping (Sharma *et al.*
642 2010; Sharma and Vogel 2014). Alternatively, Cappable-seq is based on targeted enrichment for the
643 5'-PPP end of primary transcripts, followed by Illumina sequencing (Ettwiller *et al.* 2016). Here, we
644 applied ONT-cappable-seq to profile the full-length primary transcriptomes of a diverse set of lytic
645 phages infecting *P. aeruginosa*. Using this method, we pinpointed key regulatory elements that mark
646 the start and end of transcription and delineated transcription units across the genomes of LUZ19,
647 LUZ24, YuA, 14-1, PAK_P3 and phiKZ, significantly refining their transcriptional maps and highlighting
648 the extensive diversity and complexity of transcriptional strategies across *Pseudomonas* phages.
649 Compared to dRNA-seq, which has been applied to map early TSSs of phiKZ at single-nucleotide
650 resolution (Wicke *et al.* 2021), we demonstrated extensive overlap with the phiKZ TSSs defined by
651 ONT-cappable-seq, with a positional difference limited to 2 nt. Furthermore, we find that individual
652 phage TUs are highly interconnected, suggesting that alternative TU usage might be a widespread
653 regulatory strategy in *Pseudomonas* phages to balance and finetune gene expression levels in their

654 densely coded genomes in response to different stimuli (Lee *et al.* 2019; Putzeys *et al.* 2022, 2023). In
655 bacteria, 5'UTR conditional premature transcription is an important regulatory mechanism to
656 modulate gene expression levels under different environmental stressors and conditions (Merino and
657 Yanofsky 2005; Adams *et al.* 2021; Konikkat *et al.* 2021). ONT-cappable-seq data of the different
658 phages also revealed numerous 5'UTR premature transcription termination events, pointing to 29
659 potential phage-encoded 5'UTR-derived ncRNA candidates, two of which were previously detected by
660 phiKZ dRNA-seq and grad-seq experiments (Gerovac *et al.* 2021; Wicke *et al.* 2021). To our knowledge,
661 this is the first study to source putative phage-encoded ncRNA at this scale. Finally, we find that ONT-
662 cappable-seq offers a straightforward approach to study splicing events, as illustrated by the
663 confirmed 669-bp Group I intron and the observed splicing activity in *gp2* in the LUZ24 genome.
664 Collectively, this work highlights the wealth of information that can be gained from global ONT-
665 cappable-seq experiments, uncovering transcript boundaries and transcriptome architectures, as well
666 as introns and ncRNA candidates, all of which have remained largely understudied in phages to date.

667 However, while ONT-cappable-seq is a powerful standalone method to obtain a birds-eye view of
668 phage transcriptomes and their regulatory features; classic, temporally-resolved RNA-seq
669 experiments remain imperative for quantitative evaluations of gene expression in phage-infected
670 cells. Notably, temporal gene expression information combined with global ONT-cappable-seq data
671 could help infer preferential TSS and TTS usage of individual genes in specific infection stages, as well
672 as reveal discrepancies that might point to interesting RNA processing events. Indeed, these methods
673 collectively provide the means to globally examine gene expression and transcript boundaries, yet
674 information on transcript modification, structure and interaction cannot be inferred and requires the
675 adoption of other specialized transcriptomic methods (Hör, Gorski and Vogel 2018). We envision that
676 the routine application of state-of-the-art transcriptomics approaches in the phage field, including but
677 not limited to ONT-cappable-seq, will shed light on the RNA biology of non-model phages, to
678 ultimately help bridge the existing knowledge gaps in the complex molecular mechanisms at play
679 during phage infection.

680 Data availability

681 The resolved genome of *P. aeruginosa* strain Li010 was deposited in NCBI GenBank (accession number
682 CP124600). Raw and processed RNA sequencing files were made available under GEO accession
683 number GSE231702. Any additional information is accessible from the authors upon request.

684

685 Funding

686 This work was supported by the European Research Council (ERC) under the European Union's Horizon
687 2020 research and innovation programme [819800]. LW holds a predoctoral fellowship from FWO-
688 fundamental research (11D8920N). MB is funded by a grant from the Special Research Fund
689 [iBOF/21/092].

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707 References

708 Adams PP, Baniulyte G, Esnault C *et al.* Regulatory roles of *Escherichia coli* 5' UTR and ORF-internal
709 RNAs detected by 3' end mapping. *Elife* 2021;10, DOI: 10.7554/eLife.69260.

710 Bailey TL, Johnson J, Grant CE *et al.* The MEME Suite. *Nucleic Acids Res* 2015;43:39–49.

711 Belfort M. Mobile self-splicing introns and inteins as environmental sensors. *Curr Opin Microbiol*
712 2017;38:51–8.

713 Blasdel BG, Chevallereau A, Monot M *et al.* Comparative transcriptomics analyses reveal the
714 conservation of an ancestral infectious strategy in two bacteriophage genera. *ISME J*
715 2017;11:1988–96.

716 Bloch S, Lewandowska N, Węgrzyn G *et al.* Bacteriophages as sources of small non-coding RNA
717 molecules. *Plasmid* 2021;113, DOI: 10.1016/j.plasmid.2020.102527.

718 Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data.
719 *Bioinformatics* 2014;30:2114–20.

720 Bossche A Van Den, Ceyssens P, Smet J De *et al.* Systematic Identification of Hypothetical
721 Bacteriophage Proteins Targeting Key Protein Complexes of *Pseudomonas aeruginosa*. *J*
722 *Proteome Res* 2014;13:4446–4456.

723 Boutard M, Ettwiller L, Cerisy T *et al.* Global repositioning of transcription start sites in a plant-
724 fermenting bacterium. *Nat Commun* 2016;7, DOI: 10.1038/ncomms13783.

725 Brandão A, Pires DP, Coppens L *et al.* Differential transcription profiling of the phage LUZ19 infection
726 process in different growth media. *RNA Biol* 2021;18:1778–90.

727 Cech TR. Self-splicing of group I introns. *Annu Rev Biochem* 1990;59:543–68.

728 Ceyssens P-J, Lavigne R, Mattheus W *et al.* Genomic Analysis of *Pseudomonas aeruginosa* Phages
729 LKD16 and LKA1 : Establishment of the KMV Subgroup within the T7 Superfamily. *J Bacteriol*
730 2006;188:6924–31.

731 Ceyssens P-J, Minakhin L, Van den Bossche A *et al.* Development of Giant Bacteriophage φKZ Is
732 Independent of the Host Transcription Apparatus. *J Virol* 2014;88:10501–10.

733 Ceyssens PJ, Hertveldt K, Ackermann HW *et al.* The intron-containing genome of the lytic
734 *Pseudomonas* phage LUZ24 resembles the temperate phage PaP3. *Virology* 2008a;377:233–8.

735 Ceyssens PJ, Mesyanzhinov V, Sykilinda N *et al.* The genome and structural proteome of YuA, a new
736 *Pseudomonas aeruginosa* phage resembling M6. *J Bacteriol* 2008b;190:1429–35.

737 Ceyssens PJ, Miroshnikov K, Mattheus W *et al.* Comparative analysis of the widespread and
738 conserved PB1-like viruses infecting *Pseudomonas aeruginosa*. *Environ Microbiol*
739 2009;11:2874–83.

740 Chaban A, Minakhin L, Goldobina E *et al.* Tail-Tape-Fused Virion and Non-Virion RNA Polymerases of
741 a Thermophilic Virus. *bioRxiv* 2022, DOI: <https://doi.org/10.1101/2022.12.01.518664>.

742 Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of

743 the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. *Front Microbiol*
744 2021;12:641317.

745 Chevallereau A, Blasdel BG, De Smet J *et al.* Next-Generation “-omics” Approaches Reveal a Massive
746 Alteration of Host RNA Metabolism during Bacteriophage Infection of *Pseudomonas*
747 *aeruginosa*. *PLoS Genet* 2016;12:1–20.

748 Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent
749 *Pseudomonas aeruginosa* cells: Application for DNA fragment transfer between chromosomes
750 and plasmid transformation. *J Microbiol Methods* 2006;64:391–7.

751 Coppens L, Lavigne R. SAPPHIRE: A neural network based classifier for σ70 promoter prediction in
752 *Pseudomonas*. *BMC Bioinformatics* 2020;21:1–7.

753 Coppens L, Wicke L, Lavigne R. SAPPHIRE.CNN: Implementation of rRNA-seq-driven, species-specific
754 promoter prediction using convolutional neural networks. *Comput Struct Biotechnol J*
755 2022;20:4969–74.

756 De Coster W, D’Hert S, Schultz DT *et al.* NanoPack: Visualizing and processing long-read sequencing
757 data. *Bioinformatics* 2018;34:2666–9.

758 Dar D, Shamir M, Mellin JR *et al.* Term-seq reveals abundant ribo-regulation of antibiotics resistance
759 in bacteria. *Science (80-)* 2016;352, DOI: 10.1126/science.aad9822.

760 Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. *Nat Rev Microbiol*
761 2020;18:125–38.

762 Ettwiller L, Buswell J, Yigit E *et al.* A novel enrichment strategy reveals unprecedented number of
763 novel transcription start sites at single base resolution in a model prokaryote and the gut
764 microbiome. *BMC Genomics* 2016;17:1–14.

765 Felden B, Augagneur Y. Diversity and Versatility in Small RNA-Mediated Regulation in Bacterial
766 Pathogens. *Front Microbiol* 2021;12, DOI: 10.3389/fmicb.2021.719977.

767 Gerovac M, Wicke L, Chihara K *et al.* A grad-seq view of RNA and protein complexes in *Pseudomonas*
768 *aeruginosa* under standard and bacteriophage predation conditions. *MBio* 2021;12:1–26.

769 Hanahan D. Studies on transformation of *Escherichia coli* with plasmids. *J Mol Biol* 1983;166:557–80.

770 Hatfull GF. Bacteriophage genomics. *Curr Opin Microbiol* 2008;11:447–53.

771 Hatfull GF. Dark Matter of the Biosphere : the Amazing World of Bacteriophage Diversity. *J Virol*
772 2015;89:8107–10.

773 Hausner G, Hafez M, Edgell DR. Bacterial group I introns: Mobile RNA catalysts. *Mob DNA* 2014;5,
774 DOI: 10.1186/1759-8753-5-8.

775 Hör J, Gorski SA, Vogel J. Bacterial RNA Biology on a Genome Scale. *Mol Cell* 2018;70:785–99.

776 Juhala RJ, Ford ME, Duda RL *et al.* Genomic Sequences of Bacteriophages HK97 and HK022: Pervasive
777 Genetic Mosaicism in the Lambda Bacteriophages. *J Mol Biol* 2000;299:27–51.

778 Konikkat S, Scribner MR, Eutsey R *et al.* Quantitative mapping of mRNA 3' ends in *Pseudomonas*

779 *aeruginosa* reveals a pervasive role for premature 3' end formation in response to
780 azithromycin. *PLoS Genet* 2021;17, DOI: 10.1371/journal.pgen.1009634.

781 Kornienko M, Fisunov G, Bespiatykh D *et al.* Transcriptional landscape of *Staphylococcus aureus*
782 Kayvirus Bacteriophage vB_SauM-515A1. *Viruses* 2020;12:1–15.

783 Lammens EM, Boon M, Grimon D *et al.* SEVAtile: a standardised DNA assembly method optimised
784 for *Pseudomonas*. *Microb Biotechnol* 2021, DOI: 10.1111/1751-7915.13922.

785 Lavigne R, Lecoutere E, Wagemans J *et al.* A multifaceted study of *Pseudomonas aeruginosa*
786 shutdown by virulent podovirus LUZ19. *MBio* 2013;4.

787 Lavigne R, Vandersteegen K. Group I introns in *Staphylococcus* bacteriophages. *Future Virol*
788 2013;8:997–1005.

789 Lee Y, Lee N, Jeong Y *et al.* The Transcription Unit Architecture of *Streptomyces lividans* TK24. *Front*
790 *Microbiol* 2019;10:1–13.

791 Li T, Zhang Y, Dong K *et al.* Isolation and Characterization of the Novel Phage JD032 and Global
792 Transcriptomic Response during JD032 Infection of *Clostridioides difficile* Ribotype 078. 2020,
793 DOI: 10.1128/mSystems.00017-20.

794 Lood C, Danis-Włodarczyk K, Blasdel BG *et al.* Integrative omics analysis of *Pseudomonas aeruginosa*
795 virus PA5oct highlights the molecular complexity of jumbo phages. *Environ Microbiol*
796 2020;22:2165–81.

797 Lorenz R, Berhnhart SH, Hoener zu Siederdissen C *et al.* ViennaRNA Package 2.0. *Algorithms Mol Biol*
798 2011;6.

799 Lu X, Wu H, Xia H *et al.* *Klebsiella* Phage KP34 RNA Polymerase and Its Use in RNA Synthesis. *Front*
800 *Microbiol* 2019;10:1–10.

801 Merino E, Yanofsky C. Transcription attenuation: a highly conserved regulatory strategy used by
802 bacteria. *Trends Genet* 2005;21:260–4.

803 Mesyanzhinov V V., Robben J, Grymonpre B *et al.* The genome of bacteriophage φKZ of
804 *Pseudomonas aeruginosa*. *J Mol Biol* 2002;317:1–19.

805 Mutualik VK, Guimaraes JC, Cambray G *et al.* Precise and reliable gene expression via standard
806 transcription and translation initiation elements. *Nat Methods* 2013;10:354–60.

807 Naville M, Ghuillot-Gaudeffroy A, Marchais A *et al.* ARNold: A web tool for the prediction of rho-
808 independent transcription terminators. *RNA Biol* 2011;8:11–3.

809 Nishimura Y, Yoshida T, Kuronishi M *et al.* ViPTree: the viral proteomic tree server. *Bioinformatics*
810 2017;33:2379–2380.

811 Oberhardt MA, Puchałka J, Fryer KE *et al.* Genome-scale metabolic network analysis of the
812 opportunistic pathogen *Pseudomonas aeruginosa* PAO1. *J Bacteriol* 2008;190:2790–803.

813 Ofir G, Sorek R. Contemporary Phage Biology: From Classic Models to New Insights. *Cell*
814 2018;172:1260–70.

815 Pirnay J, Vos D De, Cochez C *et al.* *Pseudomonas aeruginosa* displays an epidemic population
816 structure. *Enviro* 2002;4:898–911.

817 Putzeys L, Boon M, Lammens E-M *et al.* Development of ONT-cappable-seq to unravel the
818 transcriptional landscape of *Pseudomonas* phages. *Comput Struct Biotechnol J* 2022;20:2624–
819 38.

820 Putzeys L, Poppeliers J, Boon M *et al.* Transcriptomics-Driven Characterization of LUZ100, a T7-like
821 *Pseudomonas* phage with Temperate Features. *mSystems* 2023;8.

822 Roberts JW. Mechanisms of Bacterial Transcription Termination. *J Mol Biol* 2019;431:4030–9.

823 Roucourt B, Lavigne R. The role of interactions between phage and bacterial proteins within the
824 infected cell: A diverse and puzzling interactome. *Environ Microbiol* 2009;11:2789–805.

825 Salmond GPC, Fineran PC. A century of the phage: past, present and future. *Nat Rev Microbiol*
826 2015;13:777–86.

827 Sandegren L, Sjöberg BM. Self-splicing of the bacteriophage T4 group I introns requires efficient
828 translation of the pre-mRNA in vivo and correlates with the growth state of the infected
829 bacterium. *J Bacteriol* 2007;189:980–90.

830 Sharma CM, Hoffmann S, Darfeuille F *et al.* The primary transcriptome of the major human pathogen
831 *Helicobacter pylori*. *Nature* 2010;464:250–5.

832 Sharma CM, Vogel J. Differential RNA-seq: The approach behind and the biological insight gained.
833 *Curr Opin Microbiol* 2014;19:97–105.

834 De Smet J, Hendrix H, Blasdel BG *et al.* *Pseudomonas* predators: Understanding and exploiting
835 phage-host interactions. *Nat Rev Microbiol* 2017;15:517–30.

836 De Smet J, Zimmermann M, Kogadeeva M *et al.* High coverage metabolomics analysis reveals phage-
837 specific alterations to *Pseudomonas aeruginosa* physiology during infection. *ISME J*
838 2016;10:1823–35.

839 Takeya K, Amako K. A rod-shaped *Pseudomonas* phage. *Virology* 1966;28:163–5.

840 Taylor VL, Fitzpatrick AD, Islam Z *et al.* The Diverse Impacts of Phage Morons on Bacterial Fitness and
841 Virulence. *Adv Virus Res* 2019;103:1–31.

842 Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance
843 genomics data visualization and exploration. *Brief Bioinform* 2013;14:178–92.

844 Tsao YF, Taylor VL, Kala S *et al.* Phage morons play an important role in *Pseudomonas aeruginosa*
845 phenotypes. *J Bacteriol* 2018;200, DOI: 10.1128/JB.00189-18.

846 Turner D, Shkoporov AN, Lood C *et al.* Abolishment of morphology-based taxa and change to
847 binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee.
848 *Arch Virol* 2023;168, DOI: 10.1007/s00705-022-05694-2.

849 Wagemans J, Delattre AS, Uytterhoeven B *et al.* Antibacterial phage ORFans of *Pseudomonas*
850 *aeruginosa* phage LUZ24 reveal a novel MvaT inhibiting protein. *Front Microbiol* 2015;6, DOI:
851 10.3389/fmicb.2015.01242.

852 Wan X, Hendrix H, Skurnik M *et al.* Phage-based target discovery and its exploitation towards novel
853 antibacterial molecules. *Curr Opin Biotechnol* 2021;68:1–7.

854 Wick RR, Judd LM, Gorrie CL *et al.* Unicycler: Resolving bacterial genome assemblies from short and
855 long sequencing reads. *PLoS Comput Biol* 2017;13:1–22.

856 Wicke L, Ponath F, Coppens L *et al.* Introducing differential RNA-seq mapping to track the early
857 infection phase for *Pseudomonas* phage φKZ. *RNA Biol* 2021;18:1099–110.

858 Yan B, Boitano M, Clark TA *et al.* SMRT-Cappable-seq reveals complex operon variants in bacteria.
859 *Nat Commun* 2018;9, DOI: 10.1038/s41467-018-05997-6.

860 Yang H, Ma Y, Wang Y *et al.* Transcription regulation mechanisms of bacteriophages. *Bioengineered*
861 2014;5:300–4.

862 Yang Z, Yin S, Li G *et al.* Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and
863 Extensively Drug-Resistant *Acinetobacter baumannii*. *Am Soc Microbiol* 2019;4:1–12.

864 Zobel S, Benedetti I, Eisenbach L *et al.* Tn7-Based Device for Calibrated Heterologous Gene
865 Expression in *Pseudomonas putida*. *ACS Synth Biol* 2015;4:1341–51.

866