

Genetically refactored *Agrobacterium*-mediated transformation

Authors: Mitchell G. Thompson^{1,2,*}, Liam D. Kirkpatrick^{1,2,3}, Gina M. Geiselman^{4,5}, Lucas M. Waldburger^{1,2,6}, Allison N. Pearson^{1,3,7}, Matthew Szarzanowicz^{1,2,3}, Khanh M. Vuu^{1,2}, Kasey Markel^{1,2,3}, Niklas F. C. Hummel^{1,2,8}, Dennis D. Suazo³, Claudine Tahmin³, Ruoming Cui^{1,2}, Shuying Liu^{1,2}, Jasmine Cevallos^{1,2}, Hamreet Pannu^{1,2}, Di Liu^{4,5}, Jennifer W. Gin^{1,4,7}, Yan Chen^{1,4,7}, Christopher J. Petzold^{1,4,7}, John M. Gladden^{1,4,5}, Jay D. Keasling^{1,6,7,9,10,11,12}, Jeff H. Chang¹³, Alexandra J. Weisberg¹³, Patrick M. Shih^{1,2,3,14,*}

Affiliations:

¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.

²Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

³Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

⁴DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.

⁵Sandia National Laboratories, Livermore, CA, USA.

⁶Department of Bioengineering, University of California, Berkeley, California, USA

⁷Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁸Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany

⁹Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA

¹⁰QB3, University of California, Berkeley, Berkeley, CA, USA

¹¹Center for Biosustainability, Danish Technical University

¹²Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China

¹³Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA

¹⁴Innovative Genomics Institute, Berkeley, California, USA

*Correspondence should be addressed to either Mitchell C. Thompson (mthompson@lbl.gov) or

Patrick M. Shih (pmshih@berkeley.edu)

35 **Abstract**

36 Members of *Agrobacterium* are costly plant pathogens while also essential tools for plant
37 transformation. Though *Agrobacterium*-mediated transformation (AMT) has been heavily
38 studied, its polygenic nature and its complex transcriptional regulation make identifying the
39 genetic basis of transformational efficiency difficult through traditional genetic and bioinformatic
40 approaches. Here we use a bottom-up synthetic approach to systematically refactor the tumor-
41 inducing plasmid, wherein the majority of AMT machine components are encoded, into a
42 minimal set of genes capable of plant and fungal transformation that is both controllable and
43 orthogonal to its environment. We demonstrate that engineered vectors can be transferred to
44 new heterologous bacteria, enabling them to transform plants. Our reductionist approach
45 demonstrates how bottom-up engineering can be used to dissect and elucidate the genetic
46 underpinnings of complex biological traits, and may lead to the development of strains of
47 bacteria more capable of transforming recalcitrant plant species of societal importance.

48

49 **Introduction**

50 The genetic basis of pathogenesis is challenging to study due to its highly polygenic
51 nature as well as it being influenced by both host and environmental factors ¹. While advances
52 in comparative and functional genomics have generated myriad hypotheses on how virulence
53 and adaptations to specific hosts evolve ^{2,3}, it is still challenging to isolate and validate specific
54 genetic features that determine these traits ⁴. In an ideal system, one would be able to
55 systematically evaluate and build a holistic understanding of how each gene contributes and
56 influences virulence. However, epistatic effects often complicate the conclusions drawn from
57 traditional top-down approaches that rely solely on knockouts and complementation ⁵.

58 As an alternative bottom-up approach, synthetic biology enables the introduction of
59 synthetic regulatory control on a defined set of genetic elements. This is crucial for two major
60 reasons. First, the development of minimal, controllable systems allows for specific hypotheses
61 to be tested to better understand how evolution has solved a myriad of problems. Second, this
62 knowledge gained allows for subsequent data-guided engineering to optimize and leverage the
63 system for biotechnological purposes. Such a strategy has been widely implemented in
64 reconstituting relatively linear metabolic pathways ^{6,7}, but apart from a few notable exceptions, it
65 has rarely been applied to more complex biological phenomena because of the numerous and
66 tremendous intrinsic challenges associated with building up complex biological traits in a
67 reductionist manner ^{8,9}. To perform “genetic refactoring” one must identify the genes necessary
68 and sufficient for a given biological process ⁵, as well as have the appropriate genetic tools

69 applicable to the organism of study¹⁰. Given these significant hurdles, many initial designs from
70 genetic refactoring often perform poorly compared to their native system, but nonetheless offer
71 unique insights into the underlying complexities facets of biological traits^{9,11}.

72 A problem unique to studying the genetic bases of pathogenesis is that any synthetic
73 regulatory elements utilized must also be robust *in situ*, *i.e.*, in the context of the various
74 environments that the pathogen faces during infection, where very few genetic toolkits have
75 been rigorously validated. Despite these challenges, work with both plant- and mammalian-
76 associated bacteria has demonstrated that synthetic genetic constructs can be introduced to
77 promote non-native interactions^{12,13}, indicating the feasibility of a complete synthetic refactoring
78 of pathogenesis. Nonetheless, genetically recapitulating complex biological phenomena within a
79 host-associated environment has largely remained out of reach.

80 Plant pathogenic members of *Agrobacterium* and *Rhizobium* (hereafter collectively
81 referred to as *Agrobacterium tumefaciens*) are capable of causing crown gall or hairy root
82 diseases and have been extensively studied due to their unique mechanisms of virulence.
83 Virulence involves genetic transformations of eukaryotic hosts, which has been leveraged for
84 many critical biotechnological uses, *e.g.*, plant transgenesis¹⁴. Central to virulence is an
85 oncogeneic tumor-inducing plasmid (pTi) that carries a “Transfer DNA” (T-DNA) and *vir* genes.
86 The hallmark of *A. tumefaciens* virulence is the transfer of a protein-conjugated, single-stranded
87 DNA molecule into host cells and integration of the DNA into the genome. When genes from this
88 T-DNA are expressed in the genetically modified plant cell, the gene products synthesize
89 phytohormones that result in the formation of a tumor. The infecting bacterial population is
90 hypothesized to gain a fitness advantage in the tumor because of access to novel nutrients,
91 which are also encoded for on the T-DNA¹⁵. When scientists domesticated virulence by
92 swapping the tumorigenic genes within the T-DNA region with genes of interest, a new era of
93 plant genetics was ushered in. Today the T-DNA borders and genetic payloads to be delivered
94 are most often housed on a smaller plasmid referred to as a binary vector, enabling easy
95 genetic manipulation through *Agrobacterium*-mediated transformation (AMT) of multitudes of
96 plant and fungal species^{16–18}. However, many agriculturally important crops still remain difficult
97 to transform¹⁹. Thus, there remains a tremendous imperative to develop novel strains of
98 *Agrobacterium* that will enable scientists to expand the genetic potential of plants.

99 Our basic understanding of AMT and nearly all of the engineered agrobacterial strains
100 used for AMT are derived from a limited number of *A. tumefaciens* strains and pTi variants²⁰.
101 Yet, it has long been recognized that interactions among strains, Ti plasmids, and host species
102 influence the efficiency of AMT²¹. By mining this natural diversity, strains with improved plant

103 transformation properties for different plant species have previously been developed^{22,23}. More
104 recently, groups have developed strains that contain additional *vir* alleles, harbored either on the
105 binary vector (superbinary vectors) or on an additional stand-alone plasmid (ternary vectors)^{24–}
106²⁶. These strains demonstrate that altering the regulation of *vir* genes can enhance
107 transformation of otherwise recalcitrant plants^{24–26}. Precisely how these tripartite interactions
108 influence transformation efficiency remains largely unknown. The high number of possible
109 genetic interactions required for AMT complicates research efforts at improving transformation
110 by *A. tumefaciens*. Complicating studies is that oncogenic plasmids vary in the composition and
111 sequence of *vir* genes, the regulation of these genes^{27,28}, and that chromosomal genes
112 implicated in virulence vary in sequence across agrobacterial strains^{29–31}. Furthermore, the
113 impact of changes in expression level between different *vir* genes is somewhat masked by a
114 master regulator, VirA/G, which controls the expression of all known *vir* genes^{30–32}. This
115 epistatic regulatory schema makes it difficult to evaluate whether differences in virulence are a
116 consequence of the presence of a specific *vir* gene or its strength of expression^{33,34}. Thus, to
117 fully capture the impact of these many individual genetic variables involved in AMT, a bottom-up
118 synthetic genetic approach is required to precisely control genetic interactions and
119 systematically evaluate the contribution of each gene to transformation. However, due to the
120 sheer size of combinatorial genetic space within pTi that can be explored and the technical
121 challenges associated with refactoring complex biological phenomena *in planta*, no such effort
122 has been reported.

123 Despite the many technical challenges associated with engineering synthetically
124 encoded AMT, a deeper understanding of this complex process may elucidate molecular
125 constraints to the transformation of plants. Here we overcome these challenges by 1)
126 developing a set of genetic tools that allow for the reliable control of agrobacterial gene
127 expression within the plant environment, in order to 2) quantitatively characterize the genetic
128 determinants underlying AMT, to ultimately 3) design synthetic vectors, divorced from native
129 regulation, capable of plant transformation. This work represents a critical first step in better
130 understanding AMT as we lay the framework for understanding highly specific genotype-to-
131 phenotype connections in a complex host-microbe interaction.

132

133 **Results and Discussion**

134

135 Developing a genetic toolkit to control bacterial gene expression *in planta*

136 A recurring challenge in synthetic biology has been translating genetic circuits developed
137 *in vitro* into more heterogeneous environments *in situ*. Environmental changes can have
138 dramatic impact on genetically engineered organisms, as demonstrated in scaleups to large
139 fermentative tanks or living medicines in patients^{35,36}. Many *in vitro* synthetic biology designs
140 take advantage of small-molecule inducible promoters, which offer a range of expression
141 options from a single design, compared to static expression levels from a single constitutive
142 promoter. However, dynamic environments such as plant tissue may interfere with inducible
143 promoter systems by making signaling molecules biologically unavailable through degradation
144 or sequestration, thus dramatically limiting their potential usefulness. Recent work by multiple
145 groups have characterized inducible promoters in *Agrobacterium*, though not all were evaluated
146 while the bacteria was *in planta*; moreover, there has been a dearth of well characterized
147 constitutive promoters in *Agrobacterium*³⁷⁻³⁹.

148 To better understand how to control bacterial gene expression within plants, we
149 evaluated the activity of 16 synthetic constitutive, and 4 inducible promoters in bacterial cells
150 grown in rich media⁴⁰, as well as infiltrated into the leaf tissue of *Nicotiana benthamiana* and
151 *Arabidopsis thaliana*. In both plants, bacterial constitutive promoter activity correlated highly
152 between leaf tissues, and between observed *in vitro* activity (**Figure 1A, Figure S1**). We then
153 choose five constitutive promoters with a range of expression strengths (P_{J23114}, P_{J23117}, P_{J23101},
154 P_{J23100}, and P_{J23111}) to complement a *virE12* deletion mutation in the common *Agrobacterium*
155 *fabrum* (formerly *A. tumefaciens*) laboratory strain GV3101, which is derived from *A. fabrum*
156 C58. Previous work using inducible promoters showed that transformation of tobacco was highly
157 sensitive to *virE12* expression³⁹. Using transiently expressed GFP from a medium strength
158 plant promoter in *N. benthamiana* as a measure of transformation⁴¹, we observed that all
159 promoters stronger than the weakest, P_{J23114}, were able to complement leaf transformation back
160 to wild-type levels (**Figure 1B**). Proteomics analysis of the Δ *virE12* complementation strains
161 confirmed that expression of VirE12 correlated with RFP expression from the same promoters
162 (**Figure 1C**). These data reveal that relatively weak constitutive promoters may be sufficient to
163 reconstitute *vir* gene expression from pBBR1 origin plasmids.

164 Inducible promoters enable the dynamic control of gene expression strength, and thus
165 could reduce the number of genetic designs needed to evaluate the impact of gene expression
166 on AMT. Therefore, we then evaluated the expression of RFP from four inducible promoter
167 systems (P_{LacO}, P_{TetR}, P_{Jungle Express}, and P_{NahR}) in culture media as well as in *N. benthamiana* and
168 *A. thaliana* leaves, where the inducing compound was mixed with a bacterial suspension before
169 infiltration into leaf tissue. While each of these systems displayed inducible expression in culture

170 media (**Figure S2**), only P_{LacO} and P_{TetR} showed consistent inducibility in both host plant species
171 (**Figures 1D-G, Figure S3**). Conversely, the $P_{Jungle\ Express}$ promoter showed poor induction in
172 both plant species, and P_{NahR} was expressed even in the absence of an added inducer within *A.*
173 *thaliana* leaf tissue. These results demonstrate the importance of validating each promoter in its
174 intended environment. For example, though functional *in vitro*, $P_{Jungle\ Express}$ performed extremely
175 poorly *in planta*. Similar results were observed for $P_{Jungle\ Express}$, as it is possible the crystal violet
176 inducer may be rapidly bound to plant tissue and thus not biologically available. Conversely, the
177 salicylic acid inducer of P_{NahR} can be endogenously produced by plants as an immune response
178 to pathogens such as *A. fabrum*, and thus may not be ideal for exerting orthogonal control of
179 gene expression within different plants⁴².

180 After testing all four promoter systems to complement a *ΔvirE12* mutation, only the LacI
181 inducible promoter, with the highest amount of added ligand tested, was able to recover
182 transformation back to wild type levels (**Figure 1D**). As P_{LacO} showed the best plant
183 orthogonality and ability to complement a *virE12* mutation, further designs requiring inducibility
184 utilized the IPTG inducible promoter. While proteomics from cultures indicated that the levels of
185 VirE2 expressed from inducible promoters were similar to the constitutive promoters (**Figures**
186 **1C-G**), the plant-specific utility of individual promoters suggests that they may be less useful for
187 designing general functioning genetic circuits across plant environments.

188

189 A quantitative understanding of the genetic contributions to AMT

190 To systematically assess the contributions individual *vir* genes have on plant
191 transformation, we developed a quantitative virulence assay to measure the efficiency of T-DNA
192 transfer into plant cells. To accomplish this, we first generated internal, in-frame deletion
193 mutants of known functional non-regulatory *vir* gene clusters in *A. fabrum* GV3101: *virB1-11*,
194 *virC12*, *virD12*, *virD3*, *virD4*, *virD5*, *virE12*, *virE3*, *virF*, *virH1*, *virH2*, and *virK* (**Figure 2A**). Using
195 a transient GFP expression assay in *N. benthamiana* leaves, we observed that deletion of *virB1-11*,
196 *virC12*, *virD12*, *virD4*, or *virE12* resulted in over 90% reduction in transformation efficiency
197 (**Figures 2B**). Furthermore, loss of *virD5*, *virE3*, *virH1*, *virH2*, or *virK* significantly reduced
198 transformation efficiency compared to wild-type, while deletion of *virD3* or *virF* showed no
199 significant reduction in transformation efficiency (**Figure 2B**). Plasmid complementation of
200 these deletions using the relatively weak promoter P_{J23117} restored wild-type transformation
201 efficiencies in all deletion strains except *virB1-11*, *virD4*, *virD5*, and *virK* (**Figure 2B**). These
202 results thus serve as a benchmark that, for the first time, allow for relative comparison of *vir*
203 gene importance in AMT.

204 To explore the effect of different expression levels on transformation efficiency, we then
205 complemented each mutation with the inducible P_{LacO} promoter. Three phenotypes were
206 observed: 1) the *virB1-11*, *virC12*, *virD12*, and *virE12* complementation strains had increasing
207 transformation efficiency with increased induction; 2) the *virD3*, *virD4*, and *virD5*
208 complementation strains had decreasing transformation efficiency as induction increased; and
209 3) the *virE3*, *virF*, *virH1*, *virH2*, and *virK* complementation strains showed no response to
210 increasing induction (**Figure 2C, S4**). Some of the relative decrease in transformation observed
211 as *virD5* expression increases may be due to toxicity to the bacterium; however, similar toxicity
212 was not observed with increased expression of *virD3* or *virD4* (**Figure S5**). Previous work has
213 shown that overexpression of *virD5* resulted in acute toxicity in eukaryotes, where it is localized
214 to the nucleus, and may cause DNA damage^{43,44}. Based on these results, we used constitutive
215 promoters stronger or weaker than P_{J23117} to tune and optimize the expression of each *vir* gene
216 cassette (**Figure 2D**). Strong expression of *virD12* improved transformation compared to wild-
217 type by 135%. These results are in line with previous reports that overexpression of *virD12*
218 improves transformation⁴⁵. Conversely, lower expression of *virD4* improved transformation 72%
219 over wild-type. There was no significant improvement of transformation by increasing the
220 expression of *virC12*, though expression from the stronger P_{J23100} and P_{J23101} promoters
221 decreased transformation. Expression of *virD5* and *virK* from the weak P_{J23114} promoter was
222 able to restore wild-type level transformation efficiency. Overall, these results demonstrate that
223 transformation efficiency is highly sensitive to the expression strength of nearly all *vir* genes we
224 evaluated, necessitating precise tuning for optimal DNA transfer.

225 Unlike other gene clusters, which were all complemented back to at least wild-type
226 levels of transformation, we were only able to achieve ~2% of wild-type transformation in a
227 $\Delta virB1-11$ genetic background. Expressing *virB1-11* from the strong P_{J23101} promoter improved
228 transformation over complementation using P_{J23117} . However, complementation from the
229 strongest promoter tested, P_{J23111} , resulted in a significant reduction in transformation,
230 suggesting that high-level expression may be toxic to the bacterium. The *virB* operon encodes
231 the type 4 secretion system (T4SS), and previous studies genetically reconstructing secretion
232 systems demonstrated the difficulty associated with engineering efficient transport¹¹.,
233 suggesting that engineering the T4SS may represent the bottleneck in engineering efforts.

234 In an attempt to improve *virB* complementation, we explored whether breaking the
235 cluster into segments would improve our ability to complement the *virB* cluster. We knocked out
236 *virB1-5* and *virB6-11* individually and attempted to complement these smaller mutations. Both of
237 the smaller mutations predictably abolished transformation (**Figure S6A**). Using the P_{LacO}

238 inducible promoter, *virB1-5* showed a linear improvement of transformation with increased IPTG
239 concentrations. However, *virB6-11* complementation plateaued at the median inducer
240 concentration tested, with the highest level of induction causing a sharp decrease in
241 transformation (**Figure S6B**). The decrease in transformation is likely due to the extreme toxicity
242 associated with *virB6-11* being expressed without the other T4SS genes, which greatly
243 compromised growth (**Figure S6C**). Constitutive complementation assays revealed the optimal
244 promoters for complementing these deletions were the middle strength P_{J23101} for *virB1-5* which
245 yielded ~60% of wild-type transformation, and the relatively weak P_{J23117} for *virB6-11* which
246 yielded ~25% complementation (**Figure S6D**). Based on this data we designed synthetic *virB1-*
247 *11* complementation vectors that express *virB1-5* using three different promoters (weak- P_{J23117} ,
248 medium- P_{J23101} , and strong- P_{J23100}), and *virB6-11* from the weak constitutive promoter, P_{J23117} ,
249 with this cassette both downstream and upstream of *virB1-5* (**Figure S7A**).

250 However, none of these vectors could complement as well as when *virB1-11* was
251 expressed in its entirety. The vectors driving *virB1-5* from the strong P_{J23100} performed
252 particularly poorly (**Figure S7A**). To assess the performance of our synthetic complementation
253 of *virB1-11* against the native P_{virB} , we cloned the entire *virB1-11* operon in addition to its
254 intergenic upstream and downstream DNA into a promoterless vector backbone. While this
255 vector was able to complement transformation above the $\Delta virB1-11$ parent, it was still
256 significantly less than both *virB1-11* expressed from P_{LacO} , as well as *virB1-11* driven from
257 P_{J23101} (**Figure S7B**). These results may suggest that the *virB* cluster and other *vir* genes must
258 be expressed from the same vector for efficient transformation.

259

260 Screening natural diversity to assess the impact of disparate *vir* gene homologs on AMT

261 In many synthetically engineered metabolic pathways, multiple homologs of an enzyme
262 are often evaluated to identify the optimal design needed to enhance flux towards the final
263 product. To take a similar approach, we sampled the natural diversity of agrobacteria and then
264 systematically tested homologs of non-regulatory *vir* genes for their ability to potentially improve
265 transformation efficiency. It has recently been shown that at least 9 distinct lineages of pTi/pRi
266 plasmids exist across the diversity of agrobacteria^{46,47}. (**Figure 3A**). To measure the effect
267 allelic variation plays in plant transformation, we synthesized phylogenetically diverse alleles
268 from each of the 9 pTi/pRi (**Table S1**) families and evaluated their ability to complement
269 GV3101 deletion mutants of *virB1-11*, *virC12*, *virD12*, *virD4*, *virD5*, *virE12*, *virE3*, *virH1*, *virH2*,
270 and *virF* in a tobacco transient expression system (**Figures 3B-K**).

271 Of these clusters, we identified replacement alleles of *virC12* (91% improvement), *virD4*
272 (13% improvement), *virD5* (35% improvement), and *virE3* (76% improvement) that resulted in
273 improved complementation compared to the wild-type allele (C58). For *virD5*, 4 out of 9 alleles
274 improved upon the wild type (**Figure 3F**). For *virE3*, 4 out of 9 tested also improved
275 transformation compared to the native strain (**Figure 3H**). However, for the critical *vir* genes –
276 *i.e.*, *virC12* (**Figure 3C**), *virD12* (**Figure 3D**), and *virE12* (**Figure 3G**) – the majority of homologs
277 significantly reduced transformation. These results suggest that while homologs exist that can
278 potentially improve transformation rates, AMT relies on multiple interactions between *vir* genes.
279 Co-evolution between *vir* genes may limit the ability of distantly related homologs from
280 functioning with one another.

281 To more specifically test whether phylogenetic distance from the wild-type allele impacts
282 the ability for a *vir* gene to function in a non-native system, we correlated phylogenetic distance
283 to the ability of a homolog to complement the C58 deletion mutant. With the exception of *virE12*,
284 there were no significant correlations between phylogenetic distance and ability to complement
285 (**Figure S8**). Surprisingly, distantly related alleles were able to complement many of the *vir* gene
286 mutants to the level of the wild-type allele. Many of the *vir* genes appear to be under purifying
287 selection ($d_N/d_S < 1$) across much of their coding sequence (**Figure S9**). This selective pressure
288 may keep critical residues needed for protein-protein interactions intact across evolutionary
289 time, but further analysis will be required to identify whether such residues exist.

290 Given that we identified multiple homologs across 4 *vir* gene clusters that could improve
291 transformation, we then asked if these homologs could be combined to further improve
292 transformation. To this end, we generated a suite of plasmids, called pLoki, that contained either
293 the critical genes *virC12*, *virD12*, *virD4*, and *virE12* (pLoki1) or these critical genes with the
294 addition of *virD5* and *virE3* (pLoki2) (**Figure S10A-C**). We constructed a total of 20 variants of
295 both pLoki1 and pLoki2 that explored all possible combinations of both wild-type alleles (C58)
296 and the alleles of *virC12*, *virD4*, *virD5*, and *virE3* that performed best from our initial screen
297 under the control of promoters that optimally complemented deletions. These vectors were used
298 to complement a deletion that spanned *virC2* to *virE3* in *A. fabrum* GV3101 (**Figure S10D**).

299 The pLoki1 variant containing all C58 alleles restored ~25% of wild-type transformation
300 in a transient tobacco expression assay, whereas the pLoki2 variant containing all C58 alleles
301 restored ~65% (**Figure S10E**). Across all pLoki variants, none that contained a non-native allele
302 outperformed the pLoki plasmids that only contained wild-type genes (**Figure S10D**). Looking
303 across pLoki variants, we observed that vectors containing *virD5* derived from pTiBo542 were
304 significantly superior to those harboring the wild-type (**Figure S10F**), though the improvement

305 was relatively minimal. Strains that contained *virD4* from pTiBo542 or *virE3* from pTiT60/94,
306 however, were both worse than strains with the corresponding wild-type allele (**Figure S10G-H**).
307 Further understanding the molecular basis and evolutionary constraints in swapping *vir* genes
308 may help direct future studies in harnessing the natural diversity of *vir* genes to improve AMT.
309

310 Engineering a synthetic pTi enables orthogonal control of AMT

311 To exert predictable phenotypic control over AMT, the genotypic and regulatory makeup
312 of a synthetic pTi must be composed of a defined set of genes controlled by promoters that are
313 orthogonal to regulatory influence exerted by the plant environment. Based on our quantitative
314 assessment of *vir* gene importance for tobacco transformation (**Figure 2**) and using optimal
315 promoters previously identified (**Figure 1**), we first sought to identify the minimal set of genetic
316 elements capable of plant transformation. Our initial design (pDimples0) contained a minimal set
317 of essential *vir* genes (i.e., *virB1-11*, *virD12*, and *virD4*) based on both our findings and previous
318 work, which expressed the *virB* genes as a single operon controlled by P_{LacO} , and the other
319 genes controlled by optimally determined constitutive promoters (**Figure 4A**). This vector was
320 then introduced into *A. fabrum* C58C1, a strain of *A. fabrum* which has been cured of its pTi,
321 also harboring a binary vector expressing GFP on the T-DNA.

322 When this strain was introduced into tobacco leaves, there was no measurable increase
323 in GFP signal when compared to leaves infiltrated with *A. fabrum* C58C1 carrying only the
324 binary vector (**Figure 4B**). To further explore the minimal genetic requirements, we then
325 generated two additional variants, which added either critical genes *virC12* (pDimples0.5-
326 *virC12*) or *virE12* (pDimples0.5-*virE12*) upstream of the *virB* cluster. While pDimples0.5-*virC12*
327 was unable to achieve any measurable tobacco transformation, pDimples0.5-*virE12* generated
328 GFP above the control (**Figure 4B**). This finding was corroborated by experiments which
329 expressed a nuclear localized mScarlet from the T-DNA. C58C1 containing the minimal
330 pDimples0.5-*virE12* were able to form bright nuclear fluorescence in tobacco leaves, indicating
331 successful T-DNA transfer into plant nuclei (**Figure 4C**). These findings experimentally define a
332 minimal set of genes required for AMT of tobacco leaves and a starting point for rational
333 engineering of synthetic pTi vectors.

334 To iterate upon and further optimize this design, we added both *virC12* and *virE12*
335 upstream of the *virB* cluster (pDimples1.0) which dramatically improved transformation
336 efficiency to 6.3% of wild type (**Figure 4B-C**). We then sought to evaluate whether the addition
337 of either effector *vir* genes *virE3* or *virD5*, both of which significantly decreased transformation
338 when deleted in *A. fabrum* GV3101, could improve transformation compared to pDimples1.0.

339 Either gene was cloned in between *virC12* and *virB* clusters to generate pDimples1.5. While
340 pDimples1.5-*virE3* improved transformation over pDimples1.0 to 8.3% of wild-type,
341 pDimples1.5-*virD5* did not improve over pDimples1.0 (**Figure 4B**). When both *virE3* and *virD5*
342 were added to create pDimples 2.0, transformation efficiency reached 9.1% of wild-type. While
343 this was significantly improved from pDimples1.0, it was not significantly better than the addition
344 of *virE3* alone (**Figure 4B**). These vectors were introduced into GV3101 with a deletion from
345 *virA-virE3* constituting the majority of the *vir* genes and their essential positive regulators. When
346 these complementation strains were compared to pDimples vectors harbored in C58C1, there
347 was no significant difference in the transformation ability of strains with each vector (**Figure**
348 **S11A**). This suggests that – at least in the context of transient expression within tobacco – other
349 genes on pTi may not play a significant role in the transformation process.

350 Attempts to optimize the expression of *virB* via complementation assays showed that
351 P_{LacO} was an optimal choice to control the expression of the T4SS. The choice of the inducible
352 P_{LacO} also allowed us to control the magnitude of transformation with the amount of IPTG that
353 was co-infiltrated (**Figure S11B**). As the ability of pDimples vectors to restore transformation
354 was significantly less than that of the pLoki vectors (~10% versus 75% restoration of wild-type
355 *A. farbrum* GV3101 transformation), we concluded that suboptimal expression of the T4SS was
356 likely a limiting factor. A possible bottleneck could be the availability of *virD4* which acts as a
357 bridge between VirD2-conjugated T-DNA and the rest of the T4SS.

358 As *virD4* acts in concert with the T4SS to extrude the T-DNA, we sought to see if *virD4*
359 expression limited transformation by replacing the very weak P_{J23114} promoter with the slightly
360 stronger P_{J23117} promoter. However, this resulted in a significant decrease in transformation,
361 indicating the bottleneck exists elsewhere (**Figure S11C**). While no pDimples vector was able to
362 restore wild-type level transformation to *A. farbrum* C58C1, pDimples1 and pDimples2
363 outperformed any attempt to complement a *virB1-11* deletion. These results are consistent with
364 our hypothesis that a specific ratio between the T4SS genes and other *vir* genes needs to be
365 maintained for optimal transformation. Exploring this relationship further will likely be key in
366 debottlenecking future engineering efforts.

367 Because *Agrobacterium* is also a critical tool for the transformation of many fungi ⁴⁸, we
368 evaluated the ability of the pDimples vectors to transform the oleaginous yeast *Rhodosporidium*
369 *toruloides*. Unlike in tobacco, a small number of transformants were observed with pDimples0.5-
370 *virC12* strains added, while no transformants were observed with pDimples0.5-*virE12* (**Figure**
371 **4D**). This is consistent with reports that *virE12* is not as important for fungal transformation as it
372 is for plant transformation ⁴⁹. While only 5% of wild type transformation efficiency was achieved

373 with pDimples1.0, the addition of *virD5* dramatically increased transformation efficiency to 40%
374 of wild-type (**Figure 4D**). This is intriguing because while VirD5 has been shown to localize to
375 the nucleus of fungi⁴³, it was thought to be completely dispensable for fungal transformation⁴⁹.
376 Contrary to previous thought, it is likely that *virD5* has a far more fundamental role in AMT than
377 simply as a determinant of host range. Moreover, the addition of *virE3* by itself did not improve
378 transformation, nor did it improve transformation efficiency when added in combination with
379 *virD5*. As with tobacco experiments, fungal transformation was dependent on the presence of
380 IPTG to induce *virB1-11* expression (**Figure S11D**), with *R. toruloides* transformants being
381 confirmed by colony PCR (**Figure S11E**). Our synthetic pTi with differing minimal sets of *vir*
382 genes demonstrate how a bottom-up engineering approach can define how AMT of fungi and
383 plants differ, offering new opportunities to further dissect the contributory role of each *vir* gene in
384 fungal AMT.

385 To test whether a synthetic pTi is sufficient to impart AMT outside of its native host
386 context, we sought to test our engineered designs in a bacterium beyond *A. fabrum*. To this end
387 we introduced pDimples1.0 into *Rhizobium rhizogenes* D108/85, a non-pathogenic strain
388 without a native pRi or pTi plasmid and diverged from *A. fabrum* ~200 million years ago⁴⁶.
389 When *R. rhizogenes* was infiltrated into tobacco leaves carrying a binary vector expressing
390 nuclear-localized mScarlet, no red nuclei were observed (**Figure 4E**). Yet with the addition of
391 pDimples1.0, red nuclei were observed that produced significantly more fluorescent signal than
392 the parent strain (**Figure 4E, Figure S11F**). Together, our results demonstrate that the design
393 and construction of synthetic pTi can be used to: 1) identify the core set of genes that are
394 necessary and sufficient for AMT, 2) describe the contributory role of accessory *vir* genes, 3)
395 divorce AMT from its native regulation, and 4) transfer this complex trait into other bacteria.
396

397 Conclusion

398 Here, we leveraged a comprehensive and quantitative understanding of each *vir* gene
399 cluster to build synthetic pTi plasmids that define the minimal transferable set required for AMT
400 of both plants and fungi. Optimization of this set will allow us to better understand host-
401 specificity between natural strains of *Agrobacterium* and to engineer laboratory strains with
402 superior transformation properties. Furthermore, our analysis of how allelic variation of *vir* genes
403 impacts transformation suggests there are likely untapped genetic resources to improve AMT.
404 Overall, this work will also serve to guide related research studying host-microbe interactions,
405 specifically those of plant-associated bacteria. For example, recent research that developed
406 minimized versions of the nitrogen fixing pSymA in the root nodule-associated legume symbiont

407 *Sinorhizobium meliloti* could be furthered by evaluating the impact of gene expression on
408 individual genes¹³.

409 We compared bacterial synthetic biology parts both *in vitro* and *in planta*, revealing that
410 while constitutive synthetic promoters will likely perform similarly in different environments, the
411 performance of inducible systems may be highly variable. Further characterization of synthetic
412 regulatory elements *in situ* will enable more precise engineering. However, by using these tools
413 to replace the master regulatory VirA/G system with synthetic regulation, we not only gained
414 precise control of individual gene expression, but also insulated the bacteria from host
415 mechanisms that interfere with gene expression, which has been previously observed^{50,51}. In
416 fungi, current methods require long *vir* gene induction times in conditions that may not be
417 optimal for the growth of certain fungi, which could be bypassed using synthetic pTi^{49,52}. Thus,
418 separating AMT induction from its native inducing conditions (*i.e.*, low pH, sugar, and phenolic
419 compounds) may also provide unique opportunities in improving fungal transformations.

420 By mobilizing the transformation phenotype via pDimples into *R. rhizogenes*, we open
421 the door to another promising avenue of AMT engineering: transferring the complex *vir*
422 machinery to other bacteria. As *A. fabrum* can elicit plant immunity that impede transformation,
423 multiple efforts have been made recently to circumvent this either through mutation of known
424 immunogenic loci⁵³ or the addition of immune suppressing systems⁵⁴. This work lays the
425 foundation to developing synthetic pTi that function in bacteria that elicit minimal immune
426 responses across plant species, potentially enabling the transformation of those that have
427 traditionally been recalcitrant to genetic modification.

428 In synthetic biology, our inability to efficiently transform new organisms represents the
429 biggest bottleneck to dramatically expanding the scope and range of species that can be
430 utilized. Given the wide diversity of eukaryotes that can be transformed by *Agrobacterium*,
431 future synthetic pTi may be optimized to target currently untransformable organisms and enable
432 entirely new areas of biotechnology.

433

434 **Materials and Methods**

435 Media, chemicals, and culture conditions

436 Routine bacterial cultures were grown in Luria-Bertani (LB) Miller medium (BD
437 Biosciences, USA). *E. coli* was grown at 37 °C, while *A. fabrum* was grown at 30 °C unless
438 otherwise noted. Cultures were supplemented with kanamycin (50 mg/L, Sigma Aldrich, USA),
439 gentamicin (30 mg/L, Fisher Scientific, USA), or spectinomycin (100mg/L, Sigma Aldrich, USA),

440 when indicated. All other compounds unless otherwise specified were purchased through Sigma
441 Aldrich. Bacterial kinetic growth curves were performed as described previously⁴⁰.

442

443 Strains and plasmids

444 All bacterial strains and plasmids used in this work are listed in **Supplemental Table 1**
445 and **2**. All strains and plasmids created in this work are viewable through the public instance of
446 the JBEI registry. (<https://public-registry.jbei.org/folders/814>). All plasmids generated in this
447 paper were designed using Device Editor and Vector Editor software, while all primers used for
448 the construction of plasmids were designed using j5 software⁵⁵⁻⁵⁷. Synthetic DNA was
449 synthesized from Twist Biosciences. Plasmids were assembled via Gibson Assembly using
450 standard protocols⁵⁸, Golden Gate Assembly using standard protocols⁵⁹, or restriction digest
451 followed by ligation with T4 ligase as previously described⁶⁰. Plasmids were routinely isolated
452 using the Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were purchased from
453 Integrated DNA Technologies (IDT, Coralville, IA). Plasmid sequences were verified using
454 whole plasmid sequencing (Primordium Labs, Monrovia, CA). *Agrobacterium* was routinely
455 transformed via electroporation as described previously⁶¹.

456

457 Construction of deletion mutants

458 Deletion mutants in *A. fabrum* GV3101 were constructed by homologous recombination
459 and *sacB* counterselection using the allelic exchange as described previously⁶². Briefly,
460 homology fragments of 1 kbp up- and downstream of the target gene, including the start and
461 stop codons respectively, were cloned into pMQ30K - a kanamycin resistance-bearing
462 derivative of pMQ30⁶³. Plasmids were then transformed via electroporation into *E. coli* S17 and
463 then mated into *A. fabrum* via conjugation. Transconjugants were selected for on LB Agar plates
464 supplemented with kanamycin 50 mg/mL, and rifampicin 100 mg/mL. Transconjugants were
465 then grown overnight on LB media also supplemented with 50 mg/mL kanamycin, and 100
466 mg/mL rifampicin, and then plated on LB Agar with no NaCl supplemented with 10% w/v
467 sucrose. Putative deletions were restreaked on LB Agar with no NaCl supplemented with 10%
468 w/v sucrose, and then were screened via PCR with primers flanking the target gene to confirm
469 gene deletion.

470

471 Synthetic part characterization

472 Characterization of pGinger vectors harbored by *A. fabrum* *in vitro* was performed as
473 previously described for other bacteria⁴⁰. Briefly, *A. fabrum* C58C1 with different pGinger

474 vectors were grown overnight in 10mL of LB supplemented with kanamycin overnight at 30°C
475 with 250 rpm shaking and then diluted 1:100 into 500 μ L of fresh LB media with kanamycin in a
476 deep-well 96-well plate (Corning) For inducible promoters, chemical inducers were added in
477 two-fold dilutions before incubation. Cells were then grown at 30°C for 24-hours while shaking at
478 250 rpm, and then 100 μ L was measured for absorbance at OD₆₀₀ as well as for RFP
479 fluorescence using an excitation wavelength of 590 nm and an emission wavelength of 635 nm
480 with a gain setting of 75 on a BioTek Synergy H1 microplate reader (Agilent).

481 To evaluate the performance of synthetic promoters *in planta*, strains were grown in 5mL
482 LB media with kanamycin at 30°C with 250 rpm shaking overnight, and then diluted 1:5 with
483 fresh media then grown for an additional 3 hours at 30°C with 250 rpm shaking. Cultures were
484 then adjusted to an absorbance at OD₆₀₀ of 1.0 in agroinfiltration buffer (10mM MgCl₂, 10mM
485 MES, 200 μ M acetosyringone, pH 5.6), and infiltrated into either *N. benthamiana* or *A. thaliana*
486 leaf tissue. When appropriate chemical inducers were added to the agroinfiltration media
487 immediately before leaf infiltration. Either one, or three days post-infiltration 6mm leaf disks
488 were excised from each Agro-infiltrated leaf using a hole puncher and placed atop 300 μ L of
489 water in a black, clear-bottom, 96-well microtiter plate (Corning). GFP fluorescence of each leaf
490 disk was then measured using a BioTek Synergy H1 microplate reader (Agilent) with an
491 excitation wavelength of 488 nm and measurement wavelength of 520 nm.

492 Plant Growth Conditions

493 *A. thaliana* were germinated and grown in Sunshine Mix #1 soil (Sungro) in a Percival
494 growth chamber at 22°C and 60% humidity using a 8/16 hour light/dark cycle with a daytime
495 PPFD of ~200 μ mol/m²s. *N. benthamiana* plants were grown according to a previously
496 described standardized lab protocol ⁴¹. All tobacco growth was conducted in an indoor growth
497 room at 25°C and 60% humidity using a 16/8 hour light/dark cycle with a daytime PPFD of ~120
498 μ mol/m²s. Plants were maintained in Sunshine Mix #4 soil (Sungro) supplemented with
499 Osmocote 14-14-14 fertilizer (ICL) at 5mL/L and agroinfiltrated 29 days after seed sowing.

500 Tobacco Infiltration and Leaf Punch Assay:

501 *A. fabrum* strains were grown in LB liquid media containing necessary antibiotics (50
502 μ g/mL rifampicin, 30 μ g/mL gentamicin, 50 μ g/mL kanamycin, and 100 μ g/mL spectinomycin for
503 most strains) to an OD600 between 0.6 and 1.0 before pelletting. Cells were then prepared for
504 infiltration by resuspension in agroinfiltration buffer (10mM MgCl₂, 10mM MES, 200 μ M
505 acetosyringone, pH 5.6) to a final OD600 of 1.0 and were allowed to induce for 2 hours in
506 infiltration buffer at room temperature. When appropriate, chemical inducers (i.e. IPTG) were
507 added during the 2 hour induction period. Each strain was then infiltrated into the fourth and fifth

508 leaf (counting down from the top) of eight biological replicate tobacco plants. GFP transgene
509 expression in agroinfiltrated leaves was then assessed by a leaf disk fluorescence assay three
510 days post-infiltration. Four 6mm leaf disks were excised from each agroinfiltrated leaf using a
511 hole puncher and placed atop 300 μ L of water in a black, clear-bottom, 96-well microtiter plate
512 (Corning). GFP fluorescence of each leaf disk was then measured using a BioTek Synergy H1
513 microplate reader (Agilent) with an excitation wavelength of 488 nm and measurement
514 wavelength of 520 nm.

515

516 Rhodospordium toruloides Transformation

517 *Agrobacterium tumefaciens* mediated transformation was performed on *Rhodospordium*
518 *toruloides* IFO0880 with a codon optimized epi-isozaene synthase from *Streptomyces*
519 *coelicolor* A3(2) (JPUB_013523)⁶⁴ as previously described⁶⁵. When appropriate 2mM IPTG
520 was added to agrobacterium induction media. Transformants were confirmed via colony PCR
521 specific to the integrated T-DNA.

522

523 Proteomic Analysis

524 Proteins from *A. fabrum* samples were extracted using a previously described
525 chloroform/methanol precipitation method⁶⁶. Extracted proteins were resuspended in the 100
526 mM ammonium bicarbonate buffer supplemented with 20% methanol, and protein concentration
527 was determined by the DC assay (BioRad). Protein reduction was accomplished using 5 mM tris
528 2-(carboxyethyl)phosphine (TCEP) for 30 min at room temperature, and alkylation was
529 performed with 10 mM iodoacetamide (IAM; final concentration) for 30 min at room temperature
530 in the dark. Overnight digestion with trypsin was accomplished with a 1:50 trypsin:total protein
531 ratio. The resulting peptide samples were analyzed on an Agilent 1290 UHPLC system coupled
532 to a Thermo scientific Orbitrap Exploris 480 mass spectrometer for discovery proteomics⁶⁷.
533 Briefly, 20 μ g of tryptic peptides were loaded onto an Ascentis® (Sigma–Aldrich) ES-C18
534 column (2.1 mm \times 100 mm, 2.7 μ m particle size, operated at 60°C) and were eluted from the
535 column by using a 10 minute gradient from 98% buffer A (0.1 % FA in H₂O) and 2% buffer B
536 (0.1% FA in acetonitrile) to 65% buffer A and 35% buffer B. The eluting peptides were
537 introduced to the mass spectrometer operating in positive-ion mode. Full MS survey scans were
538 acquired in the range of 300-1200 m/z at 60,000 resolution. The automatic gain control (AGC)
539 target was set at 3e6 and the maximum injection time was set to 60 ms. Top 10 multiply
540 charged precursor ions (2-5) were isolated for higher-energy collisional dissociation (HCD)
541 MS/MS using a 1.6 m/z isolation window and were accumulated until they either reached an

542 AGC target value of 1e5 or a maximum injection time of 50 ms. MS/MS data were generated
543 with a normalized collision energy (NCE) of 30, at a resolution of 15,000. Upon fragmentation
544 precursor ions were dynamically excluded for 10 s after the first fragmentation event. The
545 acquired LCMS raw data were converted to mgf files and searched against the latest uniprot *A.*
546 *tumefaciens* protein database with Mascot search engine version 2.3.02 (Matrix Science). The
547 resulting search results were filtered and analyzed by Scaffold v 5.0 (Proteome Software Inc.).
548 The normalized spectra count of identified proteins were exported for relative quantitative
549 analysis.

550

551 Bioinformatic Analyses

552 Sequences of individual *vir* genes from genomes of all sequenced *Agrobacterium* were
553 identified and extracted as previously described ⁶⁸. MACSE v. 2.07 with the parameter “-prog
554 alignSequences” was used to generate codon alignments for each *vir* gene dataset ⁶⁹. The
555 HYPHY v2.2 program “cln” was used to remove identical sequences and stop codons from each
556 alignment ⁷⁰. IQ-TREE v. 1.6.12 with the default parameters was used to generate a phylogeny
557 for each dataset ⁷¹. The HYPHY program FUBAR with the codon alignment, phylogeny, and a
558 probability threshold of 0.9 was used to calculate per-site d_N/d_S and detect signals of positive or
559 purifying selection.

560

561 Statistical analyses and data presentation

562 All numerical data were analyzed using custom Python scripts. All graphs were
563 visualized using either Seaborn or Matplotlib ^{72,73}. Calculation of 95% confidence intervals,
564 standard deviations, and T-test statistics were conducted via the Scipy library ⁷⁴. Bonferroni
565 corrections were calculated using the MNE python library ⁷⁵.

566 Alleles of homologous *vir* genes were aligned using MAFFT v. 7.508 ⁷⁶ and converted
567 into phylogenetic trees using FastTree v. 2.1.11 ⁷⁷. Phylogenetic distance was calculated using
568 dendropy v. 4.6.1 ⁷⁸.

569

570 **Acknowledgements**

571 We would like to thank Catharine Adams, Adam Arkin, and William Moore for helpful
572 discussions during the preparation of this manuscript. We would like to thank Sasilada
573 Sirirungruang and Simon Alamos for help with plant growth and microscopy. We would also like
574 to thank Rachel Li, Nick Harris, Charles Denby, and Jutta Dalton for their support during the
575 Covid-19 pandemic. *A. fabrum* C58C1 was received from John Zupan at UC Berkeley. MGT_is a

576 Simons Foundation Awardee of the Life Sciences Research Foundation. LMW is funded
577 through the National Science Foundation Graduate Research Fellowship. AJW was funded in
578 part by startup funding from the Department of Botany and Plant Pathology at Oregon State
579 University. JHC is supported in part by the National Institute of Food and Agriculture, US
580 Department of Agriculture (2022-67013-36883). Synthesis of *vir* gene alleles was supported by
581 the JGI BRC proposal WIP# 507140: Synthetic minimal redesign of plant transformation
582 plasmids. This work was part of the DOE Joint BioEnergy Institute (<https://www.jbei.org>)
583 supported by the U. S. Department of Energy, Office of Science, Office of Biological and
584 Environmental Research, supported by the U.S. Department of Energy, Energy Efficiency and
585 Renewable Energy, Bioenergy Technologies Office, through contract DE-AC02-05CH11231
586 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The
587 funders had no role in manuscript preparation or the decision to publish. The views and opinions
588 of the authors expressed herein do not necessarily state or reflect those of the United States
589 Government or any agency thereof. Neither the United States Government nor any agency
590 thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any
591 legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
592 apparatus, product, or process disclosed, or represents that its use would not infringe privately
593 owned rights. The United States Government retains and the publisher, by accepting the article
594 for publication, acknowledges that the United States Government retains a nonexclusive, paid-
595 up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript,
596 or allow others to do so, for United States Government purposes. The Department of Energy will
597 provide public access to these results of federally sponsored research in accordance with the
598 DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).
599

600 **Contributions**

601 Conceptualization, M.G.T., P.M.S.; Methodology, M.G.T., L.D.K, A.N.P., L.W., A.W., G.M.G.;
602 Investigation, M.G.T., L.D.K., G.M.G., L.M. W., A.N.P., M.S., K.V., S.S., K.M., S.A, N.F.C.H,
603 D.S., C.T., R.C., S.L., J.C., H.P., J.W.G, Y.C., A.J.W.; Writing – Original Draft, M.G.T.; Writing –
604 Review and Editing, All authors.; Resources and supervision, D.L., C.J.P. ,J.M.G., H.V.S A.W.,
605 J.H.C., J.D.K., P.M.S.

606 **Competing Interests**

607

608 A patent on the minimized refactoring of AMT has been filed by Lawrence Berkeley National
609 Laboratory with M.G.T., A.N.P., and P.M.S. as inventors. J.D.K. has financial interests in
610 Amyris, Ansa Biotechnologies, Apertor Pharma, Berkeley Yeast, Demetrix, Lygos, Napigen,
611 ResVita Bio, and Zero Acre Farms.

612

613 **References**

- 614 1. Scholthof, K.-B.G. (2007). The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5, 152–156. 10.1038/nrmicro1596.
- 615 2. Laabei, M., and Massey, R. (2016). Using functional genomics to decipher the complexity of microbial pathogenicity. Curr. Genet. 62, 523–525. 10.1007/s00294-016-0576-4.
- 616 3. Merhej, V., Georgiades, K., and Raoult, D. (2013). Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief. Funct. Genomics 12, 291–304. 10.1093/bfgp/elt015.
- 617 4. Pfeilmeier, S., Caly, D.L., and Malone, J.G. (2016). Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology. Mol. Plant Pathol. 17, 1298–1313. 10.1111/mpp.12427.
- 618 5. Deutscher, D., Meiljison, I., Schuster, S., and Ruppin, E. (2008). Can single knockouts accurately single out gene functions? BMC Syst. Biol. 2, 50. 10.1186/1752-0509-2-50.
- 619 6. Calgaro-Kozina, A., Vuu, K.M., Keasling, J.D., Loqué, D., Sattely, E.S., and Shih, P.M. (2020). Engineering plant synthetic pathways for the biosynthesis of novel antifungals. ACS Cent. Sci. 6, 1394–1400. 10.1021/acscentsci.0c00241.
- 620 7. Ro, D.-K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943. 10.1038/nature04640.
- 621 8. Budin, I., and Keasling, J.D. (2019). Synthetic biology for fundamental biochemical discovery. Biochemistry 58, 1464–1469. 10.1021/acs.biochem.8b00915.
- 622 9. Temme, K., Zhao, D., and Voigt, C.A. (2012). Refactoring the nitrogen fixation gene cluster from *Klebsiella oxytoca*. Proc Natl Acad Sci USA 109, 7085–7090. 10.1073/pnas.1120788109.
- 623 10. Kim, N.M., Sinnott, R.W., and Sandoval, N.R. (2020). Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr. Opin. Biotechnol. 64, 39–46. 10.1016/j.copbio.2019.09.009.
- 624 11. Song, M., Sukovich, D.J., Ciccarelli, L., Mayr, J., Fernandez-Rodriguez, J., Mirsky, E.A., Tucker, A.C., Gordon, D.B., Marlovits, T.C., and Voigt, C.A. (2017). Control of type III protein secretion using a minimal genetic system. Nat. Commun. 8, 14737. 10.1038/ncomms14737.

645 12. Sorg, R.A., Gallay, C., Van Maele, L., Sirard, J.-C., and Veening, J.-W. (2020). Synthetic
646 gene-regulatory networks in the opportunistic human pathogen *Streptococcus pneumoniae*.
647 *Proc Natl Acad Sci USA* 117, 27608–27619. 10.1073/pnas.1920015117.

648 13. Geddes, B.A., Kearsley, J.V.S., Huang, J., Zamani, M., Muhammed, Z., Sather, L.,
649 Panchal, A.K., diCenzo, G.C., and Finan, T.M. (2021). Minimal gene set from
650 *Sinorhizobium (Ensifer) meliloti* pSymA required for efficient symbiosis with *Medicago*. *Proc
651 Natl Acad Sci USA* 118. 10.1073/pnas.2018015118.

652 14. Nester, E.W. (2014). Agrobacterium: nature's genetic engineer. *Front. Plant Sci.* 5, 730.
653 10.3389/fpls.2014.00730.

654 15. Dessaix, Y., Petit, A., Farrand, S.K., and Murphy, P.J. (1998). Opines and Opine-Like
655 Molecules Involved in Plant-Rhizobiaceae Interactions. In *The Rhizobiaceae*, H. P. Spaink,
656 A. Kondorosi, and P. J. J. Hooykaas, eds. (Springer Netherlands), pp. 173–197.
657 10.1007/978-94-011-5060-6_9.

658 16. Lee, L.-Y., and Gelvin, S.B. (2008). T-DNA binary vectors and systems. *Plant Physiol.* 146,
659 325–332. 10.1104/pp.107.113001.

660 17. Bndock, P., den Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J. (1995). Trans-
661 kingdom T-DNA transfer from *Agrobacterium tumefaciens* to *Saccharomyces cerevisiae*.
662 *EMBO J.* 14, 3206–3214. 10.1002/j.1460-2075.1995.tb07323.x.

663 18. de Groot, M.J., Bndock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998).
664 *Agrobacterium tumefaciens*-mediated transformation of filamentous fungi. *Nat. Biotechnol.*
665 16, 839–842. 10.1038/nbt0998-839.

666 19. Thompson, M.G., Moore, W.M., Hummel, N.F.C., Pearson, A.N., Barnum, C.R., Scheller,
667 H.V., and Shih, P.M. (2020). *Agrobacterium tumefaciens*: A Bacterium Primed for Synthetic
668 Biology. *BioDesign Research* 2020, 1–16. 10.34133/2020/8189219.

669 20. De Saeger, J., Park, J., Chung, H.S., Hernalsteens, J.-P., Van Lijsebettens, M., Inzé, D.,
670 Van Montagu, M., and Depuydt, S. (2021). Agrobacterium strains and strain improvement:
671 Present and outlook. *Biotechnol. Adv.* 53, 107677. 10.1016/j.biotechadv.2020.107677.

672 21. Thomashow, M.F., Panagopoulos, C.G., Gordon, M.P., and Nester, E.W. (1980). Host
673 range of *Agrobacterium tumefaciens* is determined by the Ti plasmid. *Nature* 283, 794–796.
674 10.1038/283794a0.

675 22. Hood, E.E., Fraley, R.T., and Chilton, M.D. (1987). Virulence of *Agrobacterium tumefaciens*
676 Strain A281 on Legumes. *Plant Physiol.* 83, 529–534. 10.1104/pp.83.3.529.

677 23. Ooms, G., Hooykaas, P.J., Moolenaar, G., and Schilperoort, R.A. (1981). Grown gall plant
678 tumors of abnormal morphology, induced by *Agrobacterium tumefaciens* carrying mutated
679 octopine Ti plasmids; analysis of T-DNA functions. *Gene* 14, 33–50. 10.1016/0378-
680 1119(81)90146-3.

681 24. Anand, A., Bass, S.H., Wu, E., Wang, N., McBride, K.E., Annaluru, N., Miller, M., Hua, M.,
682 and Jones, T.J. (2018). An improved ternary vector system for *Agrobacterium*-mediated
683 rapid maize transformation. *Plant Mol. Biol.* 97, 187–200. 10.1007/s11103-018-0732-y.

684 25. Anand, A., Che, P., Wu, E., and Jones, T.J. (2019). Novel ternary vectors for efficient
685 sorghum transformation. *Methods Mol. Biol.* 1931, 185–196. 10.1007/978-1-4939-9039-
686 9_13.

687 26. Komari, T., Takakura, Y., Ueki, J., Kato, N., Ishida, Y., and Hiei, Y. (2006). Binary vectors
688 and super-binary vectors. *Methods Mol. Biol.* 343, 15–41. 10.1385/1-59745-130-4:15.

689 27. Doty, S.L., Yu, M.C., Lundin, J.I., Heath, J.D., and Nester, E.W. (1996). Mutational analysis
690 of the input domain of the VirA protein of *Agrobacterium tumefaciens*. *J. Bacteriol.* 178,
691 961–970. 10.1128/jb.178.4.961-970.1996.

692 28. Heath, J.D., Boulton, M.I., Raineri, D.M., Doty, S.L., Mushegian, A.R., Charles, T.C.,
693 Davies, J.W., and Nester, E.W. (1997). Discrete regions of the sensor protein virA
694 determine the strain-specific ability of *Agrobacterium* to agroinfect maize. *Mol. Plant*
695 *Microbe Interact.* 10, 221–227. 10.1094/MPMI.1997.10.2.221.

696 29. Jarchow, E., Grimsley, N.H., and Hohn, B. (1991). *virF*, the host-range-determining
697 virulence gene of *Agrobacterium tumefaciens*, affects T-DNA transfer to *Zea mays*. *Proc*
698 *Natl Acad Sci USA* 88, 10426–10430. 10.1073/pnas.88.23.10426.

699 30. Hansen, G., Das, A., and Chilton, M.D. (1994). Constitutive expression of the virulence
700 genes improves the efficiency of plant transformation by *Agrobacterium*. *Proc Natl Acad Sci*
701 *USA* 91, 7603–7607. 10.1073/pnas.91.16.7603.

702 31. Turk, S.C., Nester, E.W., and Hooykaas, P.J. (1993). The *virA* promoter is a host-range
703 determinant in *Agrobacterium tumefaciens*. *Mol. Microbiol.* 7, 719–724. 10.1111/j.1365-
704 2958.1993.tb01162.x.

705 32. Raineri, D.M., Boulton, M.I., Davies, J.W., and Nester, E.W. (1993). VirA, the plant-signal
706 receptor, is responsible for the Ti plasmid-specific transfer of DNA to maize by
707 *Agrobacterium*. *Proc Natl Acad Sci USA* 90, 3549–3553. 10.1073/pnas.90.8.3549.

708 33. Krishnamohan, A., Balaji, V., and Veluthambi, K. (2001). Efficient *vir* gene induction in
709 *Agrobacterium tumefaciens* requires *virA*, *virG*, and *vir* box from the same Ti plasmid. *J.*
710 *Bacteriol.* 183, 4079–4089. 10.1128/JB.183.13.4079-4089.2001.

711 34. Lin, Y.-H., Gao, R., Binns, A.N., and Lynn, D.G. (2008). Capturing the VirA/VirG TCS of
712 *Agrobacterium tumefaciens*. *Adv. Exp. Med. Biol.* 631, 161–177. 10.1007/978-0-387-
713 78885-2_11.

714 35. Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T.R., and Mukhopadhyay, A. (2019).
715 Engineering Robust Production Microbes for Large-Scale Cultivation. *Trends Microbiol.* 27,
716 524–537. 10.1016/j.tim.2019.01.006.

717 36. Cubillos-Ruiz, A., Guo, T., Sokolovska, A., Miller, P.F., Collins, J.J., Lu, T.K., and Lora, J.M.
718 (2021). Engineering living therapeutics with synthetic biology. *Nat. Rev. Drug Discov.* 20,
719 941–960. 10.1038/s41573-021-00285-3.

720 37. Schuster, L.A., and Reisch, C.R. (2021). A plasmid toolbox for controlled gene expression
721 across the Proteobacteria. *Nucleic Acids Res.* 49, 7189–7202. 10.1093/nar/gkab496.

722 38. Qian, Y., Kong, W., and Lu, T. (2021). Precise and reliable control of gene expression in

723 Agrobacterium tumefaciens. Biotechnol. Bioeng. 118, 3962–3972. 10.1002/bit.27872.

724 39. Denkovskienė, E., Paškevičius, Š., Werner, S., Gleba, Y., and Ražanskienė, A. (2015).
725 Inducible Expression of Agrobacterium Virulence Gene VirE2 for Stringent Regulation of T-
726 DNA Transfer in Plant Transient Expression Systems. Mol. Plant Microbe Interact. 28,
727 1247–1255. 10.1094/MPMI-05-15-0102-R.

728 40. Pearson, A.N., Thompson, M.G., Kirkpatrick, L.D., Ho, C., Vu, K.M., Waldburger, L.M.,
729 Keasling, J.D., and Shih, P.M. (2023). The pGinger Family of Expression Plasmids.
730 Microbiol. Spectr. 11, e0037323. 10.1128/spectrum.00373-23.

731 41. Zhou, A., Kirkpatrick, L.D., Ornelas, I.J., Washington, L.J., Hummel, N.F.C., Gee, C.W.,
732 Tang, S.N., Barnum, C.R., Scheller, H.V., and Shih, P.M. (2023). A suite of constitutive
733 promoters for tuning gene expression in plants. ACS Synth. Biol. 12, 1533–1545.
734 10.1021/acssynbio.3c00075.

735 42. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., and Felix, G.
736 (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts
737 Agrobacterium-mediated transformation. Cell 125, 749–760. 10.1016/j.cell.2006.03.037.

738 43. Zhang, X., Hooykaas, M.J.G., van Heusden, G.P., and Hooykaas, P.J.J. (2022). The
739 translocated virulence protein VirD5 causes DNA damage and mutation during
740 Agrobacterium-mediated transformation of yeast. Sci. Adv. 8, eadd3912.
741 10.1126/sciadv.add3912.

742 44. Zhang, X., van Heusden, G.P.H., and Hooykaas, P.J.J. (2017). Virulence protein VirD5 of
743 Agrobacterium tumefaciens binds to kinetochores in host cells via an interaction with Spt4.
744 Proc Natl Acad Sci USA 114, 10238–10243. 10.1073/pnas.1706166114.

745 45. Wang, K., Herrera-Estrella, A., and Van Montagu, M. (1990). Overexpression of virD1 and
746 virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant
747 transformation. J. Bacteriol. 172, 4432–4440. 10.1128/jb.172.8.4432-4440.1990.

748 46. Weisberg, A.J., Davis, E.W., Tabima, J., Belcher, M.S., Miller, M., Kuo, C.-H., Loper, J.E.,
749 Grünwald, N.J., Putnam, M.L., and Chang, J.H. (2020). Unexpected conservation and
750 global transmission of agrobacterial virulence plasmids. Science 368.
751 10.1126/science.aba5256.

752 47. Weisberg, A.J., Wu, Y., Chang, J.H., Lai, E.M., and Kuo, C.H. (2023). Virulence and
753 Ecology of Agrobacteria in the Context of Evolutionary Genomics. Annu. Rev. Phytopathol.
754 61.

755 48. Idnurm, A., Bailey, A.M., Cairns, T.C., Elliott, C.E., Foster, G.D., Ianiri, G., and Jeon, J.
756 (2017). A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-
757 mediated transformation of fungi. Fungal Biol. Biotechnol. 4, 6. 10.1186/s40694-017-0035-
758 0.

759 49. Hooykaas, P.J.J., van Heusden, G.P.H., Niu, X., Reza Roushan, M., Soltani, J., Zhang, X.,
760 and van der Zaal, B.J. (2018). Agrobacterium-Mediated Transformation of Yeast and Fungi.
761 Curr. Top. Microbiol. Immunol. 418, 349–374. 10.1007/82_2018_90.

762 50. Lang, J., Gonzalez-Mula, A., Taconnat, L., Clement, G., and Faure, D. (2016). The plant

763 GABA signaling downregulates horizontal transfer of the *Agrobacterium tumefaciens*
764 virulence plasmid. *New Phytol.* 210, 974–983. 10.1111/nph.13813.

765 51. Liu, P., and Nester, E.W. (2006). Indoleacetic acid, a product of transferred DNA, inhibits vir
766 gene expression and growth of *Agrobacterium tumefaciens* C58. *Proc Natl Acad Sci USA*
767 103, 4658–4662. 10.1073/pnas.0600366103.

768 52. Michielse, C.B., Hooykaas, P.J.J., van den Hondel, C.A.M.J.J., and Ram, A.F.J. (2005).
769 Agrobacterium-mediated transformation as a tool for functional genomics in fungi. *Curr.*
770 *Genet.* 48, 1–17. 10.1007/s00294-005-0578-0.

771 53. Yang, F., Li, G., Felix, G., Albert, M., and Guo, M. (2023). Engineered *Agrobacterium*
772 improves transformation by mitigating plant immunity detection. *New Phytol.* 237, 2493–
773 2504. 10.1111/nph.18694.

774 54. Raman, V., Rojas, C.M., Vasudevan, B., Dunning, K., Kolape, J., Oh, S., Yun, J., Yang, L.,
775 Li, G., Pant, B.D., et al. (2022). *Agrobacterium* expressing a type III secretion system
776 delivers *Pseudomonas* effectors into plant cells to enhance transformation. *Nat. Commun.*
777 13, 2581. 10.1038/s41467-022-30180-3.

778 55. Ham, T.S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N.J., and Keasling, J.D. (2012).
779 Design, implementation and practice of JBEI-ICE: an open source biological part registry
780 platform and tools. *Nucleic Acids Res.* 40, e141. 10.1093/nar/gks531.

781 56. Chen, J., Densmore, D., Ham, T.S., Keasling, J.D., and Hillson, N.J. (2012). DeviceEditor
782 visual biological CAD canvas. *J. Biol. Eng.* 6, 1. 10.1186/1754-1611-6-1.

783 57. Hillson, N.J., Rosengarten, R.D., and Keasling, J.D. (2012). j5 DNA assembly design
784 automation software. *ACS Synth. Biol.* 1, 14–21. 10.1021/sb2000116.

785 58. Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A., and Smith, H.O.
786 (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat.*
787 *Methods* 6, 343–345. 10.1038/nmeth.1318.

788 59. Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning
789 method with high throughput capability. *PLoS ONE* 3, e3647.
790 10.1371/journal.pone.0003647.

791 60. Green, M.R., and Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual* (Fourth
792 Edition), Volume 1, 2 & 3 4th ed. (Cold Spring Harbor Laboratory Press).

793 61. Kámán-Tóth, E., Pogány, M., Dankó, T., Szatmári, Á., and Bozsó, Z. (2018). A simplified
794 and efficient *Agrobacterium tumefaciens* electroporation method. *3 Biotech* 8, 148.
795 10.1007/s13205-018-1171-9.

796 62. Thompson, M.G., Blake-Hedges, J.M., Cruz-Morales, P., Barajas, J.F., Curran, S.C., Eiben,
797 C.B., Harris, N.C., Benites, V.T., Gin, J.W., Sharpless, W.A., et al. (2019). Massively
798 Parallel Fitness Profiling Reveals Multiple Novel Enzymes in *Pseudomonas putida* Lysine
799 Metabolism. *MBio* 10. 10.1128/mBio.02577-18.

800 63. Shanks, R.M.Q., Kadouri, D.E., MacEachran, D.P., and O'Toole, G.A. (2009). New yeast
801 recombineering tools for bacteria. *Plasmid* 62, 88–97. 10.1016/j.plasmid.2009.05.002.

802 64. Geiselman, G.M., Kirby, J., Landera, A., Otoupal, P., Papa, G., Barcelos, C., Sundstrom,
803 E.R., Das, L., Magurudeniya, H.D., Wehrs, M., et al. (2020). Conversion of poplar biomass
804 into high-energy density tricyclic sesquiterpene jet fuel blendstocks. *Microb. Cell Fact.* 19,
805 208. 10.1186/s12934-020-01456-4.

806 65. Zhang, S., Skerker, J.M., Rutter, C.D., Maurer, M.J., Arkin, A.P., and Rao, C.V. (2016).
807 Engineering *Rhodosporidium toruloides* for increased lipid production. *Biotechnol. Bioeng.*
808 113, 1056–1066. 10.1002/bit.25864.

809 66. Gin, J., Chen, Y., and J Petzold, C. (2020). Chloroform-Methanol Protein Extraction for
810 Gram-negative Bacteria (High Throughput) v1. 10.17504/protocols.io.bfx6jpre.

811 67. Chen, Y., Gin, J., and J Petzold, C. (2021). Discovery proteomic (DDA) LC-MS/MS data
812 acquisition and analysis v2. 10.17504/protocols.io.buthnwj6.

813 68. Weisberg, A.J., Wu, Y., Chang, J.H., Lai, E.-M., and Kuo, C.-H. (2023). Virulence and
814 ecology of agrobacteria in the context of evolutionary genomics. *Annu. Rev. Phytopathol.*
815 61, 1–23. 10.1146/annurev-phyto-021622-125009.

816 69. Ranwez, V., Douzery, E.J.P., Cambon, C., Chantret, N., and Delsuc, F. (2018). MACSE v2:
817 toolkit for the alignment of coding sequences accounting for frameshifts and stop codons.
818 *Mol. Biol. Evol.* 35, 2582–2584. 10.1093/molbev/msy159.

819 70. Pond, S.L.K., Frost, S.D.W., and Muse, S.V. (2005). HyPhy: hypothesis testing using
820 phylogenies. *Bioinformatics* 21, 676–679. 10.1093/bioinformatics/bti079.

821 71. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast
822 and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol.*
823 *Evol.* 32, 268–274. 10.1093/molbev/msu300.

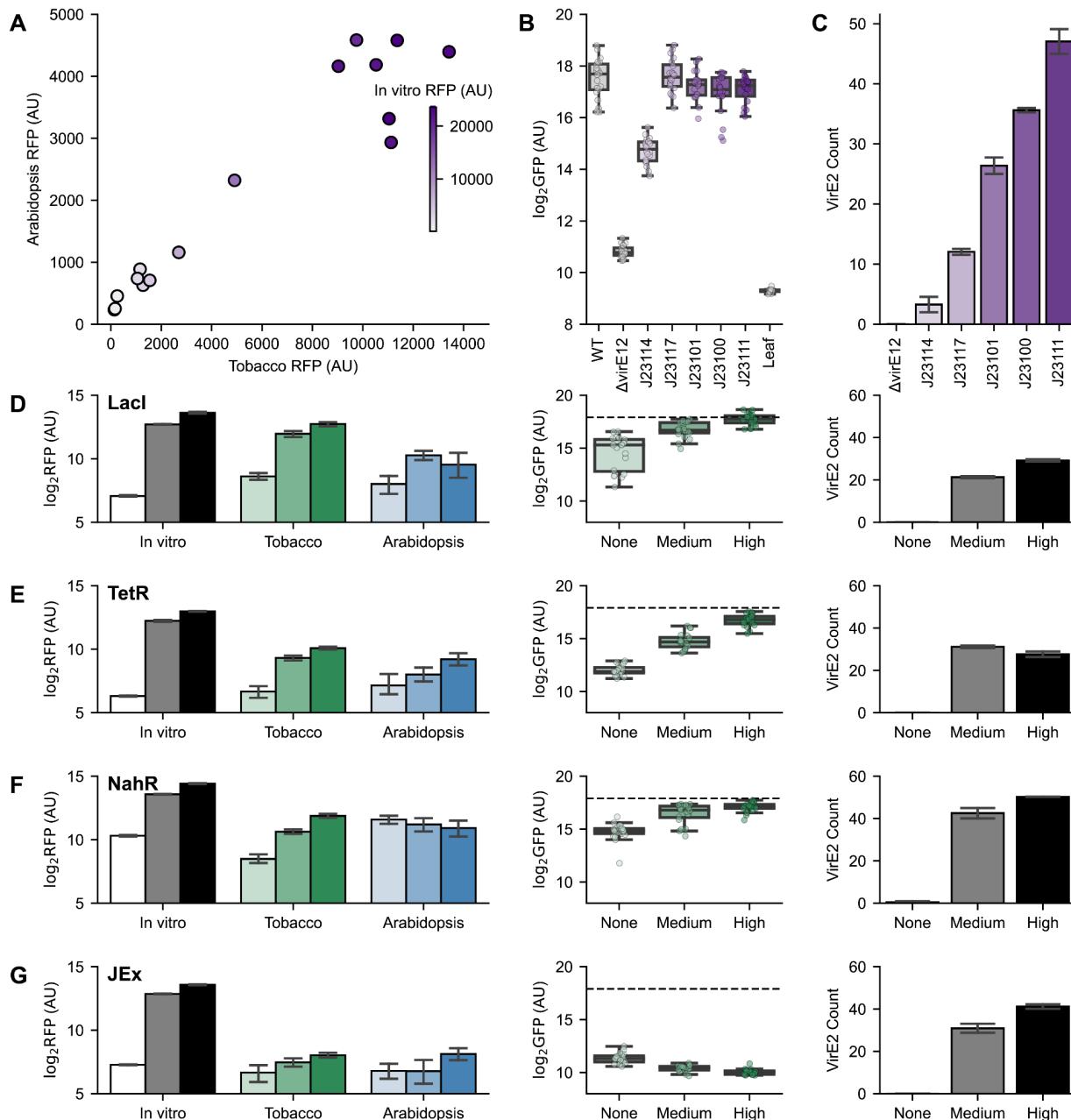
824 72. mwaskom/seaborn: v0.9.0 (July 2018) | Zenodo <https://doi.org/10.5281/zenodo.1313201>.

825 73. Matplotlib: A 2D Graphics Environment - IEEE Journals & Magazine
826 <https://doi.org/10.1109/MCSE.2007.55>.

827 74. Jones, E., Oliphant, T., Peterson, P., and Others SciPy: Open source scientific tools for
828 Python.

829 75. Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C.,
830 Parkkonen, L., and Hämäläinen, M.S. (2014). MNE software for processing MEG and EEG
831 data. *Neuroimage* 86, 446–460. 10.1016/j.neuroimage.2013.10.027.

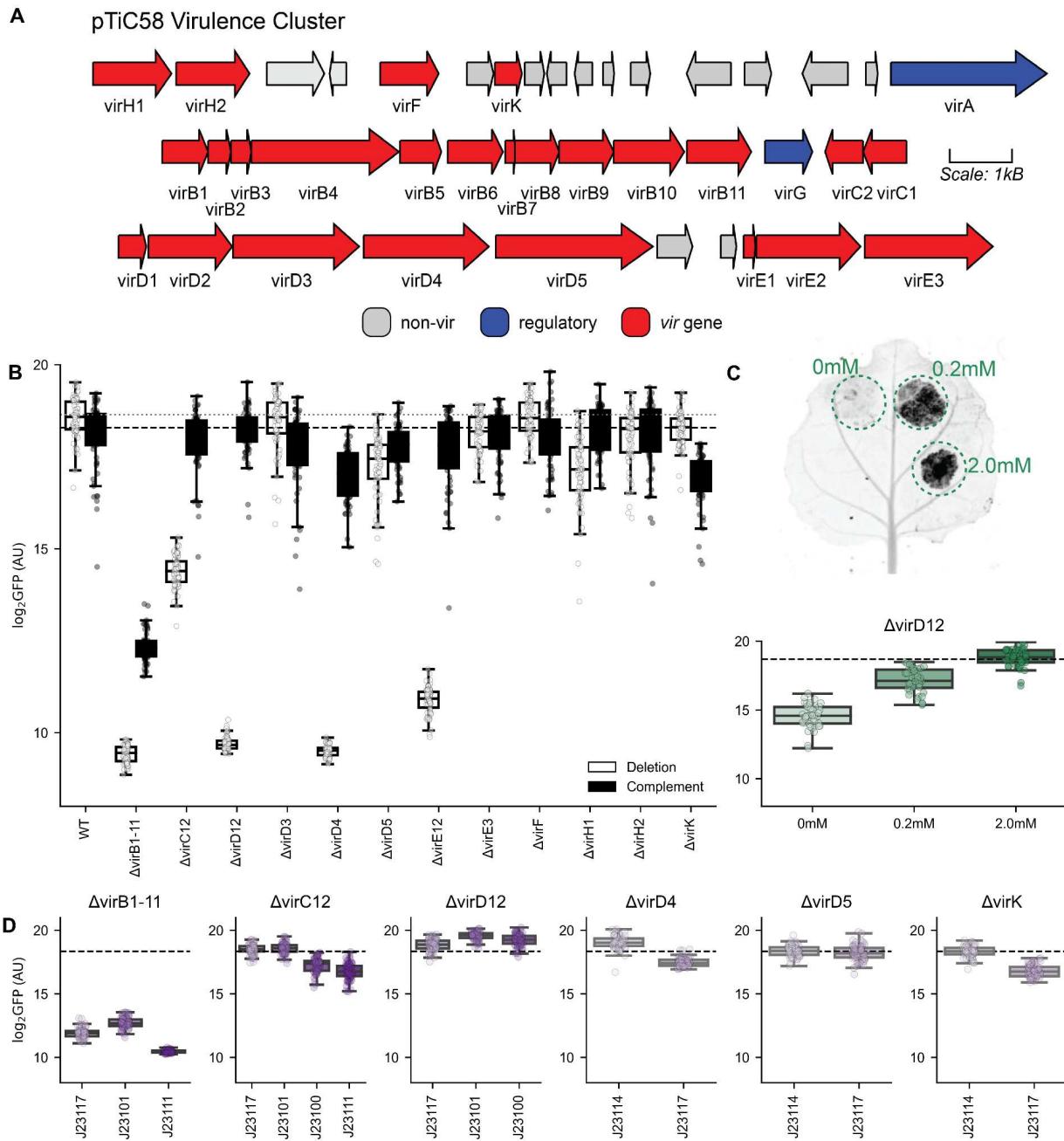
832 76. Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software
833 version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780.
834 10.1093/molbev/mst010.


835 77. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2 — approximately maximum-
836 likelihood trees for large alignments. *PLoS ONE* 5, e9490. 10.1371/journal.pone.0009490.

837 78. Sukumaran, J., and Holder, M.T. (2010). DendroPy: a Python library for phylogenetic
838 computing. *Bioinformatics* 26, 1569–1571. 10.1093/bioinformatics/btq228.

839

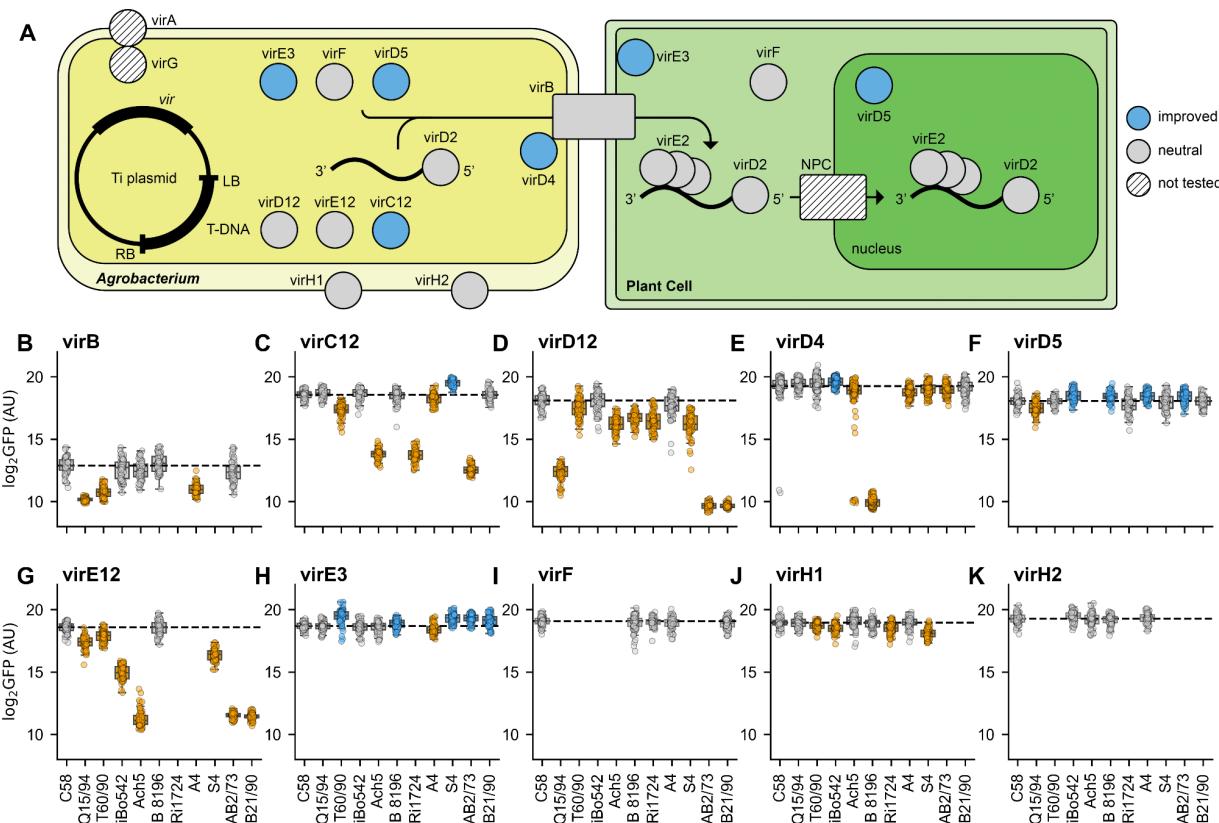
840 **Figures**


841

842

843 **Figure 1: Characterizing a Synthetic Biology Toolkit *in planta*:** A) Activity of constitutive
 844 promoters driving RFP from pGingerBK plasmid backbone. The x- and y-axes show RFP
 845 production from *A. fabrum* C58C1 3 days after infiltration in tobacco or *Arabidopsis* respectively
 846 (n=12). The color palette displays the activity of the same promoter *in vitro* (n=8). B) Transient
 847 expression of GFP from agroinfiltrated tobacco leaves (AU) log2 transformed is shown on the y-
 848 axis. Different constitutive promoters used to complement a *virE12* deletion mutant are shown

849 as box and whisker plots with individual data points overlaid (n=64). Transformation by wild-type
850 GV3101 and tobacco leaf without infiltration controls are shown. C) Proteomic spectral counts of
851 VirE12 are shown when *virE12* is expressed from different constitutive synthetic promoters *in*
852 *vitro* (n=3) Rows D-G show characterization of P_{LacO} , P_{TetR} , P_{NahR} , $P_{JungleExpress}$ respectively. From
853 left to right Activity of inducible promoters driving RFP from pGingerBK plasmid backbone in
854 tobacco (n=12), *Arabidopsis* (n=12), and *in vitro* (n=8). Inducer either not added ("None"), added
855 at the half maximal induction concentration determined *in vitro* ("Mid"), or at the maximal
856 induction concentration ("High"). The middle panel show the complementation of a *virE12*
857 deletion by different inducible promoters as measured by transient GFP expression shown on
858 the y-axis after log2 transformation(n=64). Inducer either not added ("None"), added at the half
859 maximal induction concentration determined *in vitro* ("Mid"), or at the maximal induction
860 concentration ("High"). The right panel shows proteomic spectral counts of VirE12 when
861 expressed from different inducible promoters (n=3). Inducer either not added ("None"), added at
862 the half maximal induction concentration determined *in vitro* ("Mid"), or at the maximal induction
863 concentration ("High").

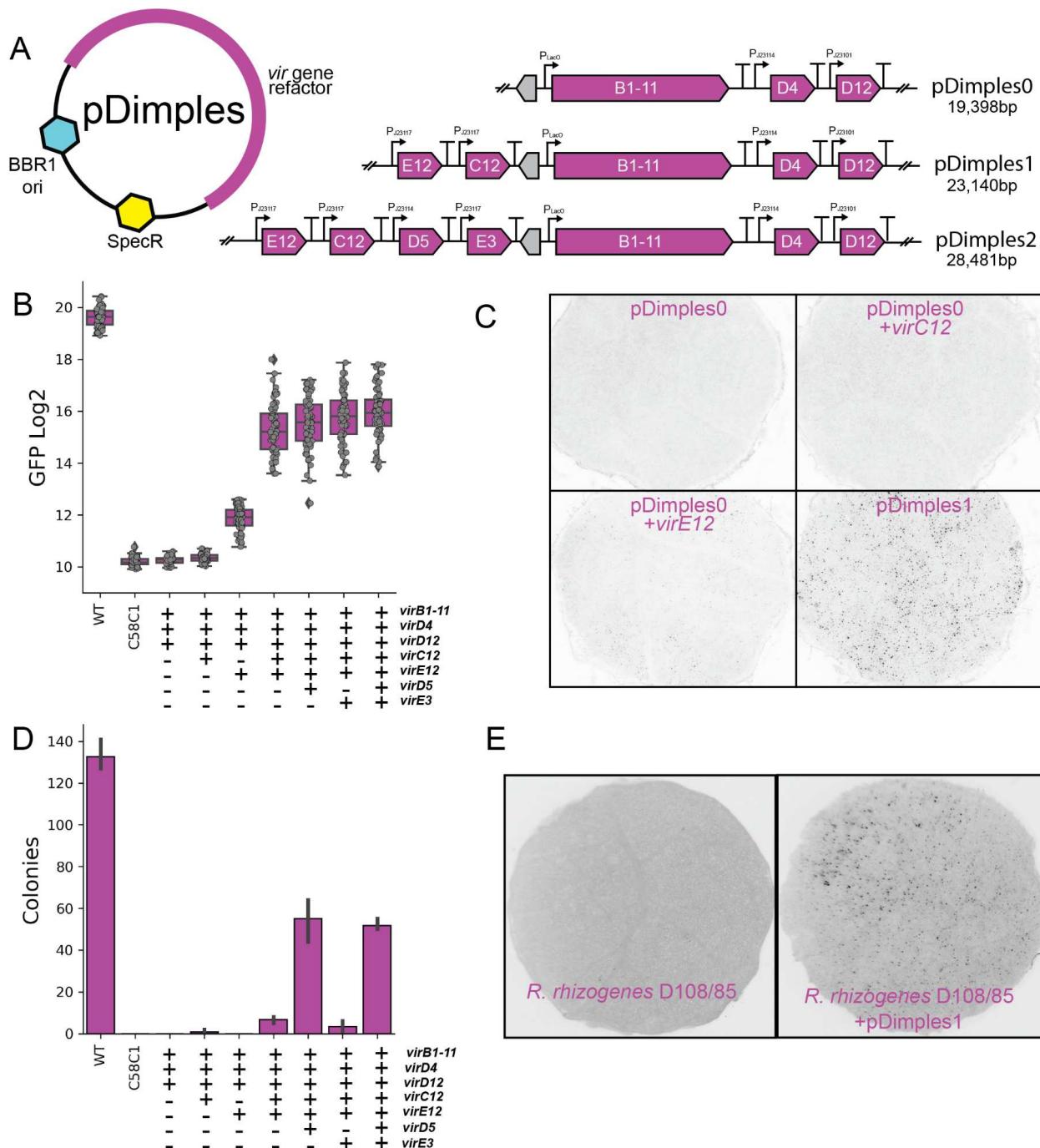


864
865
866
867
868
869
870
871
872

Figure 2: Quantitative assessment of *vir* gene impact on transformation: A) The *virulence* gene cluster from pTiC58. Known non-regulatory *vir* genes are shown in red, while regulatory *vir* genes are shown in blue. All other genes are grey. B) Effect of individual *vir* gene cluster deletion on tobacco transformation is measured by transient expression of GFP shown in log2 transformed AU in white, and complementation of the phenotype driven by P_{J23117} is shown in black (n=64). Dashed gray line shows transformation by wild-type GV3101, while dashed black line shows transformation by GV3101 expressing RFP from P_{J23117} as a control. C) Picture of a tobacco leaf expressing GFP delivered by a *virD12*

873 deletion mutant complemented from an IPTG inducible promoter with varying levels of
874 induction indicated. Below shows transient GFP expressed in tobacco when transformed
875 by *virD12* deletion with different IPTG levels shown in log2 transformed AU is shown on the
876 y-axis, with the concentration of IPTG used to induce the promoter on the x-axis (n=64).
877 Dashed line shows wild-type level transformation D) Complementation of *vir* gene deletion
878 mutants that showed trends from Figure S4 using different strength constitutive promoters.
879 Transient tobacco-expressed GFP shown in log2 transformed AU is shown on the y-axis
880 (n=64). Dashed line shows wild-type level transformation, colors of boxplots represent
881 strength of constitutive promoters from Figure 1A.
882

883



884

885

886 **Figure 3: Impact of vir gene allele on tobacco transformation:** A) Cartoon shows the localization
887 of different *vir* gene products within the bacterial and plant cell during the AMT process. Gene
888 products colored blue represent *vir* genes for homologs that outperformed wild-type in
889 complementation assays. B-K) Plots show the effects of alleles of the indicated gene clusters in
890 *A. fabrum* GV3101 deletion mutants complemented with constitutive promoters from a BBR1
891 origin plasmid. Box plots in yellow show alleles that are statistically worse than the wild-type
892 allele, box plots in blue show alleles that are statistically superior than the wild-type allele, and
893 box plots in white show alleles that are statistically indistinguishable from the wild-type allele.
894 Statistical significance was determined using a Bonferroni corrected T-test (p-value < 0.05,
895 n=64).

896

897

898 **Figure 4: Synthetic refactoring of pTi**: A) Genetic design of pDimples vectors. Variants of
 899 pDimples1 that only have either *virC12* or *virE12* (pDimples0.5), as well as variants of
 900 pDimples2 that have only *virE3* or *virD5* (pDimples1.5) were also constructed. B) GFP produced
 901 by transient transformation of tobacco leaves via synthetic pTi plasmids harbored in *A. fabrum*
 902 C58C1 (n=64). The Y-axis shows log2 transformed GFP (AU). C) Fluorescent microscopy of
 903 6mM tobacco leaf punches infiltrated with *A. fabrum* C58C1 harboring minimal refactored pTi

904 plasmids as well as a binary vector for the expression of a nuclear localized mScarlet. D)
905 Transformation of *R. toruloides* by synthetically refactored pTi plasmids harbored in *A. fabrum*
906 C58C. The average number of transformants obtained in three transformations is shown by
907 refactored strains, as well as a wild-type strain of *A. fabrum* GV3101 and *A. fabrum* C58C1
908 harboring a binary vector but no refactored pTi. E) Fluorescent microscopy of 6mm tobacco leaf
909 punches infiltrated with *R. rhizogenes* D108/85 harboring a binary vector for the expression of a
910 nuclear localized mScarlet without (top) or with (bottom) pDimples1.0.
911