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Abstract 20 

In South Asia, bacterial wilt pathogens in the Ralstonia solanacearum species complex (RSSC) 21 

impose major constraints on eggplant, tomato, and pepper production. To improve the efficacy of 22 

bacterial wilt management, the goals of this study were to (1) conduct a survey of RSSC pathogens in 23 

Bangladesh and Nepal, (2) characterize the genetic diversity of these isolates, and (3) screen 37 tomato, 24 

eggplant, and pepper accessions for resistance to six representative isolates from South Asia. We 25 

isolated 99 isolates from Bangladesh and 20 isolates from Nepal and determined that all are phylotype I 26 

isolates of the Ralstonia pseudosolanacearum species. We sequenced and assembled draft genomes for 27 

25 isolates. Phylogenomic analyses suggest that there is a wide diversity of endemic phylotype I isolates 28 
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in South Asia, and possible introductions of two clonal phylotype I lineages into Bangladesh and Nepal. 29 

We contextualize our newly described isolates based on prior reports of RSSC diversity in South Asia and 30 

global reports of RSSC pathogens on eggplant and pepper. Greenhouse trials revealed multiple tomato, 31 

eggplant, and pepper accessions that exhibit promising levels of resistance to six phylotype I isolates 32 

from South Asia.  33 

Introduction 34 

Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) cause a group of related 35 

wilt diseases by colonizing xylem and impairing water transport (Kelman 1953). RSSC comprises 36 

economically significant pathogens of agronomically important crops, such as tomato, eggplant, potato, 37 

banana, peanut, ginger and others (Hayward 1991; Savary et al. 2019). 38 

Bacterial wilt is a major constraint for production of eggplant (Solanum melongena also known as 39 

brinjal or aubergine), tomato (S. lycopersicum), and pepper (Capsicum spp.) in South Asia (Sinha, SK 40 

1986; Sood and Singh 1993; Adhikari et al. 1993; Pradhanang et al. 2000; Pradhanang and Momol 2001; 41 

Ahmed et al. 2013; Adhikari et al. 1997; Singh et al. 2010). Host resistance is the most practical and 42 

sustainable approach for management of this disease, however very few bacterial wilt-resistant cultivars 43 

are available (López and Biosca 2005) (Pandiyaraj et al. 2019). The main sources of bacterial wilt 44 

resistance in tomato breeding populations are its wild relatives such as S. pimpinellifolium, S. hirsutum 45 

and S. peruvianum (Carmeille et al. 2006). Host resistance against bacterial wilt is strain-specific due to 46 

the considerable genetic diversity of the pathogen populations (Danesh and Young 1994; Wang et al. 47 

1998; Lebeau et al. 2011). In the Check List of Commercial Varieties of Vegetables published by the 48 

Government of India, eight tomato, three eggplant, and no pepper varieties are listed as resistant to 49 

bacterial wilt (Singh 2012). The major bacterial wilt-resistant cultivars used in South Asia are tomato 50 

lines Arka Ananya, Arka Abhijit, Arka Abha, CLN2020C, All Rounder, Swarakhsha, Rakshak, and Trishul, 51 

and eggplant lines Kata Begun, Marich Begun, Pusa purple cluster, JC-2, Pant Samrat, Arka Anand, and 52 

Uttar (Dutta and Rahman 2012; Rahman et al. 2011; Singh 2012; Timila and Joshi 2007).  53 

Grafting desired commercial varieties onto resistant rootstocks is another approach to combat 54 

bacterial wilt (Rivard and Louws 2011). Bacterial wilt-resistant S. sisymbriifolium, also known as sticky 55 

nightshade, fire-and-ice plant, litchi tomato, etc., is a popular rootstock in South Asia that is also 56 

resistant to Meloidogyne spp. nematodes that cause root-knot (Miller et al. 2005). Plants grafted onto 57 

S. sisymbriifolium not only reduce bacterial wilt incidence but also increase marketable yield, even in the 58 
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absence of disease pressure. However, failures of S. sisymbriifolium resistance to bacterial wilt at several 59 

locations in Bangladesh and Nepal is a concern for researchers and growers in this region.  60 

RSSC are classified into four phylotypes (I-IV) that emerged and diversified on different continents 61 

(Villa et al. 2005). Phylotype I emerged in continental Asia, II in the Americas, III in Africa, and IV in 62 

Indonesia/Southeast Asia (Villa et al. 2005). However, movement of plants through international trade 63 

has allowed phylotypes I and II strains to become widely established in new locations. The phylotypes 64 

are consistent with the division of RSSC into three species: R. solanacearum (phylotype II), R. 65 

pseudosolanacearum (phylotypes I and III), and R. syzygii (phylotype IV) (Prior et al. 2016; Safni et al. 66 

2014). Recently, an international consortium of Ralstonia researchers reaffirmed that phylotypes I and 67 

III are two groups within the single R. pseudosolanacearum species (Lowe-Power et al. 2023). 68 

Phylotype I is the most widespread phylotype in India and Sri Lanka (Ramesh et al. 2014; Gurjar et al. 69 

2015; Sagar et al. 2014; Kumar et al. 2013, 2014; Ghorai et al. 2022), but phylotypes II and IV are also 70 

present in South Asia. Published studies and public genome databases indicate that isolates in the 71 

pandemic brown rot IIB-1 lineage are present as potato pathogens in India, Nepal, Bangladesh, and Sri 72 

Lanka (Pradhanang et al. 2000; Sagar et al. 2014; Gurjar et al. 2015; Cellier and Prior 2010). Additionally, 73 

phylotype IV has become established in the hills of Meghalaya, the Indian state east of Bangladesh 74 

(Gurjar et al. 2015; Sagar et al. 2014). Although RSSC are prevalent pathogens in Bangladesh and Nepal 75 

(Ahmed et al. 2013; Pradhanang et al. 2000; Hossain et al. 2022), little is known about their genetic 76 

diversity.  77 

The objectives of this study were to characterize RSSC isolates from Bangladesh and Nepal and to 78 

screen a worldwide collection of tomato, eggplant and pepper genotypes against representative RSSC 79 

isolates from India, Bangladesh, and Nepal. In 2012, we purified 119 RSSC isolates from solanaceous 80 

crops in Bangladesh and Nepal and a representative subset of 25 isolates were sequenced for their 81 

genomes. We screened 37 plant accessions for bacterial wilt resistance, including the 30 accessions 82 

proposed as Core-TEP by Lebeau et al. (2011). 83 

Methods 84 

Bacterial isolates. We conducted a survey during 2012 to collect RSSC isolates in major vegetable 85 

growing regions of Bangladesh and Nepal (Fig. 1A and Table S1). Bacterial isolates were purified from 86 

symptomatic eggplant, tomato, pepper, potato (Solanum tuberosum), and S. sisymbriifolium (used as 87 

rootstock of tomato and eggplant scions) on CPG medium (1 g / L casamino acids, 10 g / L peptone, and 88 
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5 g / L glucose) with 1% tetrazolium chloride (Kelman 1954). The identity of isolates was confirmed as 89 

RSSC based on colony morphology, RSSC-specific ImmunoStrips (Agdia Inc., Elkhart, IN), and a 90 

polymerase chain reaction (PCR) assay using the RSSC-specific primers 759/760 (Opina et al. 1997) as 91 

described previously (Lewis Ivey et al. 2007). Six Indian isolates were also included in the study. All 92 

Ralstonia isolates were imported to Ohio under APHIS permit no. P526P-11-02092. 93 

Phylotype determination. Phylotype-specific multiplex PCR (Pmx-PCR) was performed using five 94 

phylotype-specific (Fegan and Prior 2005) and two species complex-specific primers (Opina et al. 1997). 95 

Reaction mixture preparation, amplification and gel electrophoresis were performed as described 96 

previously (Fegan and Prior, 2005; Lewis Ivey et al. 2007). Genomic DNA of isolates GMI1000, K60, 97 

UW386 and UW443 were used as positive controls for phylotypes I, II, III and IV respectively. 98 

Genome sequencing and assembly and quality control. Genomic DNA was extracted with Zymo 99 

Quick-DNA kits (Zymo Research, Irvine, CA). We used short-read Illumina sequencing to sequence draft 100 

genomes of twenty-four of the isolates. Library prep was performed using the Illumina DNA Prep kit 101 

(Illumina, Inc., San Diego, CA) following their standard gDNA library prep workflow. Nextera DNA CD 102 

Indexes (Illumina, Inc.) were used for indexing during library prep. The DNA input for each sample was 103 

within 100-500 ng, so quantification of the libraries was not performed and instead the library pooling 104 

protocol for DNA inputs of 100-500 ng was followed according to the manufacturer’s specifications. An 105 

aliquot of the pooled libraries was sent for sequencing by SeqMatic (Fremont, CA). Sequencing was 106 

performed using a MiSeq V2 300-cycles format (Illumina, Inc.). All bioinformatic analyses were 107 

performed on KBase (Arkin et al. 2018). Raw reads (.fastq) were analyzed with FastQC, revealing the 108 

presence of Nextera Transposase Sequences on some reads. Reads were trimmed of adaptors and low-109 

quality reads with Trim Reads with Trimmomatic - v0.36 (Bolger et al. 2014) set to remove NexteraPE-PE 110 

adaptors. Quast v4.4 (Gurevich et al. 2013) was used to assess whether SPAdes v3.15.3 (Bankevich et al. 111 

2012) or IDBA-UD v1.1.3 (Peng et al. 2012) assembled reads in a more complete manner. SPAdes v3.15.3 112 

was chosen as it produced assemblies are composed of fewer contigs of larger N50 scores. The Illumina 113 

draft genomes yielded 83-281 contigs (Table S1). 114 

We sequenced SM743_UCD567 using an Oxford Nanopore sequencing service provided by 115 

Plasmidsaurus (Eugene, OR). The Qiagen DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD) was 116 

used for genomic DNA extraction using the manufacturer’s protocol for gram-negative bacteria. Library 117 

prep, sequencing, and assembly were all carried out by Plasmidsaurus. To briefly describe their 118 

methods, library prep is performed using the v14 library prep chemistry developed by Oxford Nanopore 119 
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Technologies (Oxford, UK). Sequencing was performed using the R10.4.1 pore on a PromethION flow 120 

cell. For assembly, the worst 5% of reads were removed using Filtlong v0.2.1 with default parameters 121 

(github.com/rrwick/Filtlong). An assembly was generated using Flye v2.9.1 (Kolmogorov et al. 2019) with 122 

parameters set for high quality Oxford Nanopore Technology reads. Genome annotation was performed 123 

using Bakta v1.6.1 (Schwengers et al. 2021); contig analysis was performed using Bandage v0.8.1 (Wick 124 

et al. 2015); genome completeness and contamination was checked using CheckM v1.2.2 (Parks et al. 125 

2015); and species identification was performed using Mash v2.3 (Ondov et al. 2016), Sourmash v4.6.1 126 

(Titus Brown and Irber 2016). 127 

To check for contamination and completeness of assemblies, CheckM (v1.0.18 for all isolates except 128 

SM743_UCD567, v1.2.2 for SM743_UCD657) was used (Parks et al. 2015). The assemblies were more 129 

than 99% complete and had less than 1% contamination, so they were used for phylogenetic analysis. 130 

Phylogenetic tree from KBase. To build a phylogenetic tree of the 25 new genomes and 398 public 131 

genomes, we used the KBase app: Insert Set of Genomes Into SpeciesTree - v2.2.0 (Arkin et al. 2018). 132 

This KBase app creates a phylogenetic tree based on a multiple sequence alignment of 49 conserved 133 

COG gene families, and creates a tree using FastTree2 (Price et al. 2010). The .newick file was uploaded 134 

into iTol to annotate the tree and modify the aesthetics (Letunic and Bork 2021). The full-length tree is 135 

available on the FigShare Repository (doi.org/10.6084/m9.figshare.23733567). 136 

Endoglucanase (egl) gene sequence analysis. We extracted the partial egl sequences from the draft 137 

genomes to assign the isolates to sequevars (Fegan and Prior 2005). We used the KBase BlastNv2.13.0+ 138 

app to identify the egl genes in each genome. In order to export the gene sequences, we ran the 139 

MUSCLE v3.8.425 App, which allowed us to export the sequences in FASTA format. We used the recently 140 

published protocol (Cellier et al. 2023b) to correctly trim the sequences according to international 141 

references. Sequences were analyzed with Geneious Prime 2021.1.1 software (Kearse et al. 2012) and 142 

aligned, along with international references, through the MUSCLE algorithm (Edgar 2004). Phylogenetic 143 

tree reconstruction was performed using PhyML v3.3.20180621 (Guindon et al. 2010). The 144 

determination of sequevars was assumed by partial egl sequence divergence values less than or equal to 145 

1% (Fegan and Prior 2005) and to international reference sequences (Cellier et al. 2023b). 146 

Host resistance screening. Seeds of 37 accessions of tomato, eggplant and pepper were obtained 147 

from AVRDC (The World Vegetable Center, Taiwan), INRAE (Institut National de Recherche pour 148 

l’Agriculture, l’Alimentation et l’Environnement, France), BARI (Bangladesh Agricultural Research 149 
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Institute, Bangladesh), and Makerere University, Uganda (Table S2). The pedigree of 30 Core-TEP 150 

accessions is described by Lebeau et al. 2011. BARI 2 and BARI 8 are resistant tomato and eggplant lines, 151 

respectively, developed by BARI. Tomato MT56 was received from Uganda but its pedigree is uncertain. 152 

Eggplant EG190, EG219 and tomato BF Okitsu were developed by AVRDC. S. sisymbriifolium is a common 153 

weed in South Asia that is used as a bacterial wilt resistant rootstock in South Asia.  154 

Seeds were sown in plastic trays with 2.5 x 2.5 cm2 cells containing planting medium (Sungro 155 

Horticulture, Agawam, MA). Four-week-old seedlings were soil-drench inoculated with a 5 ml 156 

suspension (1×108 CFU/ml) of one of six RSSC isolates from eggplant, pepper, or grafted tomato or 157 

eggplant (SM701 (eggplant), SM716 (pepper), SM732 (eggplant grafted onto S. sisymbriifolium), SM738 158 

(eggplant), SM743 (tomato grafted onto S. sisymbriifolium), and MB1 (eggplant)) selected based on host, 159 

origin, and genetic diversity, determined as described above. Inoculum was prepared in sterile distilled 160 

water from 48 hr-old cultures growing on casamino acid, peptone, glucose (CPG) agar at 28°C. Seedlings 161 

were inoculated following root wounding with a sterile scalpel blade. Wilt incidence was recorded twice 162 

weekly for 5 weeks after inoculation. The experiment was conducted twice as a randomized complete 163 

block design with three replications (blocked by time) of 15 plants per replication, with a split-plot 164 

arrangement. R. pseudosolanacearum isolates were applied as the main plot effect and seedlings were 165 

arranged in sub-plots. 166 

Results 167 

RSSC isolates in South Asia. We isolated 99 RSSC isolates from nine major solanaceous vegetable 168 

growing regions of Bangladesh and 20 RSSC isolates from five regions of Nepal. In Bangladesh, 77 169 

isolates from eggplant, nine from grafted eggplant/S. sisymbriifolium, and 13 from pepper. In Nepal, ten 170 

isolates were recovered from eggplant, four from tomato, two from potato, and four from grafted 171 

tomato/S. sisymbriifolium. An additional six isolates were obtained from four states in India (Fig 1A and 172 

Table S1). The phylotype-specific multiplex PCR (Pmx-PCR) was applied on all isolates. All reactions 173 

yielded the RSSC-specific amplicon (282 bp) and the phylotype I-specific amplicon (144 bp), indicating 174 

that all isolates belong to the R. pseudosolanacearum species (Fegan and Prior 2005; Safni et al. 2014). 175 

Although all newly described isolates in this study belong to phylotype I, it is known that other RSSC 176 

lineages are present in South Asia. We queried the Ralstonia Diversity Database version 4 (Lowe-Power 177 

et al. 2022) for isolates isolated in the South Asian countries: Bangladesh, Nepal, India, and Sri Lanka. 178 

RSSC isolates were frequently reported on potato (n=185), eggplant (n=95), tomato (n=42), pepper 179 

(n=33), and ginger (n=17) (Fig 1B). Of the 477 isolates reported in the literature, the phylotype was 180 
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identified for 245 isolates (Cellier and Prior 2010; Ghorai et al. 2022; Ramesh et al. 2014; Gurjar et al. 181 

2015; Sagar et al. 2014; Kumar et al. 2014; Patil et al. 2017; Cellier et al. 2012). In the available data, 182 

phylotype I accounts for all of the published reports of RSSC on eggplant, tomato, and pepper in South 183 

Asia. More RSSC lineages have been reported on potato in South Asia: the pandemic IIB-1 lineage 184 

(n=87), phylotype IV (n=29), and phylotype I (n=23).  185 

Genome analysis. We sequenced the genomes of 20 isolates from Bangladesh and five isolates from 186 

Nepal. We built a phylogenetic tree of these 25 isolates and 398 publicly available RSSC genomes (Fig 2 187 

and Fig S1). Most of the Bangladesh and Nepal isolates (n=18 and n=3, respectively) clustered together 188 

in nine clonal groups on four major branches with phylotype I isolates from India (n=1), Sri Lanka (n=1), 189 

China (n=1), and Brazil (n=1). The Bangladesh isolates were isolated from eggplant (n=16) and pepper 190 

(n=2) in Bogra (n=2), Jamalpur (n=3), Brahmanbaria (n=2), Cumilla (n=4), Jashore (n=2), Joydebpur (n=1), 191 

and Narsingdi (n=4). The Nepal isolates were isolated from eggplant in Chitwan (n=3).  192 

The remaining four isolates clustered in two distant branches. Two isolates isolated in Syangja, 193 

Nepal from tomato grafted onto S. sisymbriifolium (SM743 and SM744) formed a clonal group with 194 

three tomato isolates from China and an isolate from Mandevilla ornamentals imported into the U.S. 195 

The two isolates isolated in Tangail, Bangladesh from eggplant and eggplant grafted onto 196 

S. sisymbriifolium (SM734 and SM732, respectively) formed a clonal group that clustered close to 197 

isolates isolated from diverse locations (India, Benin, Mauritius, Japan, and unknown locations).  198 

Endoglucanase gene sequence analysis. We extracted the partial egl sequence from the genomes of 199 

the 25 isolates to assign these isolates to sequevars. The sequevars are listed on Fig 2 and the full egl 200 

tree is available on the FigShare Repository (doi.org/10.6084/m9.figshare.23733567). The egl tree and 201 

sequevar assignments were largely congruent. The majority of the isolates were assigned to sequevar 202 

48, and the clonal SM743/744 isolates were assigned to sequevar 14. The clonal SM732/734 isolates 203 

were assigned to sequevar 18 although they have a relatively low whole-genome average nucleotide 204 

identity with the reference sequevar 18 isolate GMI1000 (estimated 98.80-98.88% by FastANI (Jain et al. 205 

2018)). Based on egl sequence, SM1851 would be assigned to sequevar 17 even though it clusters within 206 

the 21 sequevar 48 isolates on the 49-gene tree (Fig 2).  207 

Host resistance phenotyping. We tested the resistance of 37 tomato, eggplant, pepper, and 208 

S. sisymbriifolium accessions against six South Asian isolates from distinct regions (Fig 3A and Table S2). 209 

The mean incidence of wilt in the susceptible tomato (L390), eggplant (MM136) and pepper (Yolo 210 
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Wonder) controls was 85.5, 83.6 and 50%, respectively. Six tomato accessions demonstrated 211 

consistently high resistance (mean wilted plants < 10% with no isolate causing > 20% wilting) against all 212 

six isolates: L285, Mt56, Hawaii 7996, CLN1463, TML46, and R3034. Four additional tomato accessions 213 

displayed a bimodal phenotype of susceptibility to SM738, MB1, and SM732 and resistance to SM743, 214 

SM716, and SM701: IRATL3, NC72 TR4-4, CRA66, and BF Okitsu. Bari2 was susceptible to SM738, MB1, 215 

and SM732, and moderately resistant to SM743, SM716, and SM701. In addition to L390, Okitsu Sozai 216 

no. 1 was highly susceptible to all isolates. Eight eggplant accessions displayed high resistance to all six 217 

isolates: Eg190, S56B, MM853, Bari8, MM643, EG203, MM152, and Eg219. Three accessions had 218 

moderate resistance: MM931, MM195, and MM960. In addition to MM136, MM738 was highly 219 

susceptible. Except for PM702, all pepper accessions were resistant to two of the isolates: MB1 and 220 

SM732. Three pepper accessions displayed high resistance: PBC631A, PBC66, and 0209-4. The responses 221 

of PM659 and PBC384 trended towards resistance. PM1022, PM1443, PM687, and Yolo Wonder were 222 

susceptible to the four pepper-virulent isolates. The S. sisymbriifolium accession displayed no symptoms 223 

after inoculation with four of the isolates, including SM732, which had been isolated from eggplant 224 

grafted to this rootstock. Isolates SM743, isolated from grafted tomato, and SM716, isolated from 225 

pepper, caused wilt incidences of 19.5% and 33.2%, respectively.  226 

Comparative virulence of South Asian isolates. Aggressiveness of the R. pseudosolanacearum 227 

isolates varied with host species, and among accessions within a species (Fig 3B-C and Table S2). The 228 

SM738 isolate was the most aggressive, causing more than 20% wilt incidence on seven of 13 tomato, 229 

five of 13 eggplant, and seven of 10 pepper accessions. Isolates SM716, SM743, and SM701 displayed 230 

consistent patterns of virulence and wilted most pepper accessions. They had no-to-low virulence on 231 

tomato accessions, including five tomato accessions that were moderately susceptible to the other 232 

three isolates. Additionally, SM716 and SM743 were the only isolates that caused wilting in 233 

S. sisymbriifolium. Two isolates were largely non-pathogenic on pepper: MB1 and SM732. The genomes 234 

of SM732 and SM743 are sequenced. Unfortunately, as of 2022, stocks of the other four isolates were 235 

not culturable anymore under standard culture conditions so we were unable to sequence their 236 

genomes. 237 

Discussion 238 

Bacterial wilt is one of the most important diseases of tomato, eggplant, and pepper in South Asia. 239 

This disease is difficult to manage due to the diversity, adaptability, and environmental survivability of 240 

the Ralstonia wilt pathogens. Host resistance is one of the best options available to manage this disease. 241 
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However, the strain specificity of host resistance limits utility of this approach (Wang et al. 2013; Lebeau 242 

et al. 2011; Méline et al. 2023). Only pathogen-targeted management approaches, which require prior 243 

knowledge of local pathogen populations, can provide satisfactory and sustainable control of this 244 

disease. Therefore, we characterized the diversity of RSSC isolates collected from South Asia and 245 

screened a worldwide collection of resistant tomato, pepper, and eggplant accessions against 246 

representative South Asian isolates to identify suitable hosts that can potentially be used to manage 247 

bacterial wilt in the region. 248 

Although several phylotypes are present in the region, all isolates in this study were identified as R. 249 

pseudosolanacearum phylotype I. It is possible that this outcome is because the majority of the isolates 250 

from this study were purified from wilted pepper and eggplant.  Prior studies, including our meta-251 

analysis of 8,000 RSSC isolations, have shown that phylotype I isolates are the most common etiological 252 

agents of bacterial wilt on eggplant and pepper while all RSSC phylotypes are commonly isolated from 253 

tomato plants (Gurjar et al. 2015; Sagar et al. 2014; Ramesh et al. 2014; Kumar et al. 2014; Hossain et al. 254 

2022; Lowe-Power et al. 2022). Globally, phylotypes II and III have both been occasionally isolated from 255 

eggplant and pepper (Cellier and Prior 2010; Ravelomanantsoa et al. 2016; Lee et al. 2020; Deberdt et al. 256 

2014; Bihon et al. 2020; N’guessan et al. 2013; Sedighian et al. 2020; Safni et al. 2014), while phylotype 257 

IV has been isolated from pepper but has not been reported on eggplant (Safni et al. 2014). Including 258 

this study, phylotype I accounts for 92.8% and 90.4% of the global RSSC isolations on eggplant (n=446) 259 

and Capsicum sp. pepper (n=365), respectively. If we had collected more tomato and potato isolates, we 260 

may have found more phylotype II and IV isolates in our survey because these phylotypes are known to 261 

be present in the region on these crops. A survey for RSSC in potato growing regions of Bangladesh 262 

purified RSSC isolates of undetermined phylotype(s) in Jamalpur, Nilphamari, and Munshigonj, while the 263 

disease was not detected in four other states during that survey (Ahmed et al. 2013).  Further work is 264 

needed to investigate Ralstonia diversity in the region.  265 

Regardless of the original host, all six isolates tested in this study were highly virulent on wilt-266 

susceptible tomato and eggplant accessions, while two of six isolates (from eggplant or grafted 267 

eggplant) were avirulent on the wilt-susceptible pepper variety Yolo Wonder. The remaining four 268 

isolates were highly virulent on this variety.  The isolate SM743, originally isolated from a wilted tomato 269 

scion grafted onto S. sisymbriifolium rootstock, was highly or moderately virulent on two eggplant and 270 

five pepper accessions. This suggests that, despite one-third of the isolates tested being avirulent on all 271 
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but one pepper accession, recommendations for crop rotations away from solanaceous species should 272 

be followed, particularly when wilt-susceptible varieties are deployed. 273 

Based on the genome sequences from this study, genomes from other studies (Patil et al. 2017, 274 

2020) and prior studies with single gene markers (Ramesh et al. 2014), it is clear that there is 275 

considerable diversity of phylotype I RSSC in South Asia, consistent with the theory that phylotype I 276 

originated in Asia (Villa et al. 2005). In addition to the diverse, presumably endemic population of 277 

phylotype I isolates, we identified at least two lineages that may have been more recently introduced to 278 

Nepal and Bangladesh: SM743/744 and SM732/734, respectively. Isolates from these two genetically 279 

distant lineages were isolated from crops grafted onto S. sisymbriifolium rootstocks, and we confirmed 280 

that one isolate (SM743) caused wilting of S. sisymbriifolium in our greenhouse trial. There are anecdotal 281 

reports that the S. sisymbriifolium rootstocks are no longer providing effective mitigation of bacterial 282 

wilt in some locations in Bangladesh and Nepal (Subedi 2015). It is plausible that the reason for the 283 

breakdown of this host resistance is that exotic lineages have been introduced, and those exotic lineages 284 

happen to have genotypes that evade the immune surveillance of S. sisymbriifolium. However, the 285 

sample size of our study is too small to robustly test this hypothesis. Further studies are needed to 286 

understand the epidemiology of bacterial wilt in the region.  287 

Sanger sequencing of a portion of the egl marker gene remains a popular way to classify isolates 288 

into sequevars based on the sequences. egl-based diversity analyses of phylotype I isolates should be 289 

treated with caution because there are instances where egl trees are incongruent with analyses using 290 

multiple genetic markers (Cellier et al. 2023a; Sharma et al. 2022; Rasoamanana et al. 2020). Because 291 

the egl trees rely on a short sequence, impeccable sequence quality and consistent methodology are 292 

essential for generating trustworthy conclusions. Here we compared our isolates to the established 293 

reference sequences for sequevars and used the recommended analytical methods (Cellier et al. 2023b). 294 

This allowed us to confidently assign sequevar 48 to 20 genomes, sequevar 14 to two genomes 295 

(SM743/744), and sequevar 18 to two genomes (SM732/734). We identified one conflict case (SM1851) 296 

where sequevar assignments based on the egl marker contradicted the position of the genome in the 297 

49-gene tree. Hence, we have low confidence when assigning SM1851 into sequevar 17, knowing that 298 

our prior analysis also indicated that this sequevar has a polyphyletic nature within phylotype I (Sharma 299 

et al. 2022). 300 

Due to the decade-long time frame of this study, we used classical and contemporary methods to 301 

characterize diversity of RSSC isolates from South Asia. At the time this study was initiated, the biovar 302 
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system and genomic fingerprinting were common methods for RSSC diversity studies (Fonseca et al. 303 

2014; Lewis Ivey et al. 2007; Norman et al. 2009; Xue et al. 2011; Zulperi et al. 2014; Ramsubhag et al. 304 

2012). However, fingerprinting profiles cannot be compared between laboratories, which inhibits the 305 

utility of this approach to compare RSSC populations with published data. Consistent with the current 306 

paradigm, we found that both biovar and Rep-PCR classifications (data not shown) were discordant with 307 

phylogenetic clustering based on DNA sequence data. Similar inadequacies of Rep-PCR fingerprinting 308 

were recently reported for analyzing diversity of a different set of RSSC isolates from Bangladesh 309 

(Hossain et al. 2022). Currently, neither the biovar nor DNA fingerprinting is recommended for RSSC 310 

diversity analyses.  311 

For RSSC diversity studies, we recommend always assigning the phylotype with the multiplex Pmx-312 

PCR to all isolates. For more detailed analysis of RSSC diversity, we recommend egl sequence analysis 313 

according to the standardized protocol (Cellier et al. 2023b), using schemes with validated discriminating 314 

power (e.g. the RS1-MLVA13 scheme from (Cellier et al. 2023a)), or using whole genome analysis. Of 315 

these technologies, RS1-MLVA13 is best suited for phylotype I epidemiological studies because it has a 316 

demonstrably high discriminatory power that is sufficiently cost-effective to be applied to the large 317 

numbers of isolates and enable meaningful and thorough epidemiological surveys (Cellier et al. 2023a).   318 

Host resistance to bacterial wilt is quantitative, polygenic, strain-specific, and greatly influenced by 319 

the environment, including temperature, soil moisture, and pH (Acosta 1978; Hanson et al. 1996; Scott 320 

et al. 2005; Wang et al. 2013). Resistance against all bacterial wilt pathogens is unlikely to be bred or 321 

engineered into solanaceous hosts due to the high genetic diversity of RSSC pathogens. For example, 322 

most of the tomato accession Hawaii 7996’s quantitative trait loci for bacterial wilt resistance are strain-323 

specific (Wang et al. 2013; Carmeille et al. 2006; Danesh et al. 1994; Mangin et al. 1999; Shin et al. 2020; 324 

Méline et al. 2023). Variation in RSSC host range is very common because each isolate wields 60-80 325 

plant-manipulating effectors, and fewer than 10 effectors are broadly conserved among diverse RSSC 326 

isolates (Landry et al. 2020). Nevertheless, host resistance can be a part of effective, integrated bacterial 327 

wilt management because RSSC isolates are slow to spread to new locations in the absence of human-328 

mediated movement of infected plant material. Thus, once it is possible to predict pathogen host range 329 

based on genomic sequence, it could be possible to deploy targeted host resistance based on knowledge 330 

of the RSSC genotypes in different regions. 331 

An objective of AVRDC’s research on bacterial wilt resistance was to develop resistant lines with 332 

more than 90% survival rate (Hanson et al. 1996). With this framework, we identified 18 accessions with 333 
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less than 10% wilt incidence to at least one RSSC isolate. However, among these 18 accessions, only one-334 

third were highly resistant (< 10% wilting) to all six isolates: three tomato accessions (CLN1463, TML46, 335 

and R3034) in addition to the reference resistant line Hawaii 7996, one eggplant accession (EG219), and 336 

one pepper accession (0209-04). Among the INRAE accessions, three tomato accessions (CLN1463, 337 

TML46, and R3034) and no eggplant or pepper accessions were highly resistant all six isolates.  Neither 338 

BARI accession nor the Mt56 accession were highly resistant to all isolates. In addition to breeding lines 339 

with polygenic bacterial wilt resistance, there is considerable promise in using transgenic approaches to 340 

move immune receptors from diverse plant species into crops. For example, transgenic tomatoes and 341 

potatoes expressing Efr, a pattern recognition receptor from Arabidopsis thaliana, demonstrate 342 

bacterial wilt resistance in field and greenhouse trials (Lacombe et al. 2010; Boschi et al. 2017; Kunwar 343 

et al. 2018). Additionally, cytoplasmic immune receptors like ZAR1 and Ptr1 can recognize effectors from 344 

some RSSC isolates and other pathogens (Ahn et al. 2023), leading to interest in transforming tomato 345 

and eggplant with Ptr1 to better manage bacterial wilt with host resistance (Haefner et al. 2023). 346 

To effectively manage bacterial wilt with host resistance, there is a need for large-scale research 347 

that identifies the geographic distributions of RSSC genotypes and statistical/artificial intelligence 348 

models to predict host range from RSSC genotype. To reach these goals, funding is needed for (1) 349 

epidemiological surveys of pathogen populations in different regions, (2) quantitatively comparisons of 350 

disease outcomes with diverse pairings of host genotypes vs. pathogen genotypes, and (3) generation of 351 

host and pathogen genomic data to allow functional genomics and population genomics studies. 352 

Genomic data and phenotypic data should be published in both summarized and raw formats to make 353 

the data most valuable for future meta-analysis. For this reason, we recently published raw host-range 354 

and whole genome sequence data on 19 phylotype IIB-4 RSSC isolates (Beutler et al. 2022). In this study, 355 

we quantified wilt incidence on a panel of Solanaceae accessions that have previously been phenotyped 356 

against 12 global RSSC isolates and six RSSC isolates from Louisiana, U.S (Lebeau et al. 2011; Lewis Ivey 357 

et al. 2021). Across these studies, genomes are available for eight out of 24 Ralstonia isolates. 358 

Unfortunately, genomes cannot be sequenced for 14 of the phenotyped isolates, including four isolates 359 

from this study, due to a combination of regulatory hurdles and lost viability of stocks.  360 

Overall, we characterized the diversity of RSSC isolates from solanaceous hosts in South Asia and 361 

identified the most resistant tomato, eggplant and pepper accessions that can potentially be used to 362 

manage bacterial wilt in South Asia. As the resistance of these tomato, eggplant, and pepper accessions 363 

were evaluated under greenhouse conditions in Ohio, U.S., they must be assessed in field conditions of 364 
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South Asia before employing them at large scale. This study contributes valuable knowledge on the 365 

genetic diversity and host range of RSSC populations infecting solanaceous hosts in Bangladesh and 366 

Nepal.  367 

Data availability statement 368 

The genome data are available on NCBI Assembly and NCBI SRA under BioProject PRJNA989236. 369 
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PDF format figures are available on FigShare (doi.org/10.6084/m9.figshare.23733567).    371 
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Figures and Tables 646 

647 

 648 

Fig 1. Ralstonia solanacearum species complex (RSSC) isolates in South Asia. (A) Origins of South Asian R.649 

pseudosolanacearum phylotype I isolates characterized in this study. Stars indicate the sampling 650 

locations, and light blue shading indicates districts (Bangladesh/Nepal) and states (India) where isolates 651 

originated. Abbreviations: Ss-E, eggplant grafted on S. sisymbriifolium rootstock; Ss-T, tomato grafted on652 

S. sisymbriifolium rootstock. (B) Meta-analysis of RSSC lineages isolated in South Asia in this study and 653 

the literature, adapted from Lowe-Power et al. 2022. This study included Bangladesh isolates (77 from 654 

eggplant, nine from grafted eggplant/S. sisymbriifolium, and 13 from pepper) and Nepal isolates (ten 655 

eggplant, four from tomato, two from potato, and two from grafted tomato/S. sisymbriifolium). 656 
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Fig 2. Phylogeny of South Asian and global RSSC. The phylogenetic tree was built with the KBase 662 

SpeciesTree tool, which creates a multiple sequence alignment of 49 conserved bacterial genes and 663 

generates a tree using FastTree. Analysis of the egl sequence suggested that the R. pseudosolanacearum 664 

genomes sequenced in this study belong to sequevar 48, 14, 18, and 17. Because the sole sequevar 17 665 

assignment to SM1851 was incongruent with the KBase tree, we indicate uncertainty in this assignment 666 

with <(17?)=. Grey shading indicates isolates from South Asia. Bold indicates genomes sequenced in this 667 

study. Purple, red, and light green rectangles identify isolates isolated from eggplant, pepper, or tomato. 668 

White stars indicate isolates isolated from crop hosts that were grafted onto Solanum sisymbriifolium 669 

rootstock. Phylotype I clades without South Asian isolates were collapsed to triangles that reflect the 670 

amount of genetic diversity within the collapsed clade. Per triangle, one representative genome from 671 

the clade is listed. Additionally, phylotype II, III, and IV clades were collapsed. Bootstrap values are only 672 

listed if less than 0.70. A searchable PDF of the full tree is available on the FigShare repository 673 

(doi.org/10.6084/m9.figshare.23733567).  674 
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Fig 3. Disease interactions of 13 tomato accessions, 13 eggplant accessions, ten pepper accessions, and 678 

one Solanum sisymbriifolium (Ss) accession against six South Asian phylotype I isolates. Four-week-old 679 

seedlings were soil drench-inoculated with 5 ml of bacterial suspension (108 CFU/ml) following root 680 

injury. The experiment was conducted twice as a randomized complete block design with three 681 

replications (blocked by time) of 15 plants per replication. Each point represents the average wilt 682 

incidence of two experiments recorded five weeks after inoculation. Isolates were SM701 (eggplant in 683 

Jessore, Bangladesh), SM716 (pepper in Comilla, Bangladesh), SM732 (eggplant grafted on S. 684 

sisymbriifolium in Tangail, Bangladesh), SM738 (eggplant in Bogra, Bangladesh), SM743 (tomato grafted 685 

on S. sisymbriifolium in Syangja, Nepal), and MB1 (eggplant in India).  (A) Relative resistance of tomato, 686 

eggplant, and pepper accessions. Asterisks indicate significance compared to the most susceptible 687 

cultivar (L390 tomato, MM136 eggplant, and Yolo Wonder pepper) based on p<0.05 with Friedman test 688 

and Dunn’s multiple comparison correction. (B) Relative virulence of the six isolates across the 689 

accessions. Each symbol indicates the mean incidence of the isolate on a single accession.  Letters 690 

indicate significance groups (p<0.05) by Friedman test and Dunn’s multiple comparison correction. (C) 691 

Origins of the six South Asian isolates.  692 
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 695 

 696 

Fig S1. Comparison of phylogeny, isolation location, and host for the isolates with genomes 697 

sequenced in this study.  Regions from which RSSC isolates originated from in this study are shown with 698 

black boundaries. The number of genomes sequenced from each region are shown with symbols, based 699 

on the host of isolation (eggplant, star; pepper, crescent moon; crops grafted to Solanum 700 

sisymbriifolium, diamond). Colors of symbols correspond to the clades as shown on the phylogenetic 701 

tree. Ss-T = tomato grafted onto S. sisymbriifolium; Ss-E = eggplant grafted onto Solanum 702 

sisymbriifolium.  703 
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