

# 1 Characterization of *Ralstonia pseudosolanacearum* diversity and 2 screening host resistance to manage bacterial wilt in South Asia

## 3 Authors

4 Nagendra Subedi<sup>1,4</sup>, Tabitha Cowell<sup>2</sup>, Matthew Cope-Arguello<sup>2</sup>, Pierce Paul<sup>1</sup>, Gilles Cellier<sup>3</sup>, Hashem  
5 Bkayrat<sup>2</sup>, Nicolas Bonagura<sup>2</sup>, Angela Cadatal<sup>2</sup>, Rachel Chen<sup>2</sup>, Ariana Enriquez<sup>2</sup>, Rama Parasar<sup>2</sup>, Lisa  
6 Repetto<sup>2</sup>, Aracely Hernandez Rivas<sup>2</sup>, Mahnoor Shahbaz<sup>2</sup>, Kaitlin White<sup>2</sup>, Tiffany M. Lowe-Power<sup>2\*</sup>, and  
7 Sally A. Miller<sup>1\*</sup>

## 8 Affiliations

9 <sup>1</sup> Department of Plant Pathology, The Ohio State University, CFAES Wooster Campus, 1680 Madison  
10 Ave. Wooster, OH 44691

11 <sup>2</sup> Department of Plant Pathology, University of California, Davis, Davis, CA 95616

12 <sup>3</sup>ANSES, Plant Health Laboratory, Saint Pierre, Reunion Island, France

13  
14 <sup>4</sup>Nepal Polytechnic Institute, Chitwan, Nepal

15  
16 \* Co-corresponding authors:

17 Tiffany M. Lowe-Power, [tlowepower@ucdavis.edu](mailto:tlowepower@ucdavis.edu);

18 Sally A. Miller, [miller.769@osu.edu](mailto:miller.769@osu.edu)

19

## 20 Abstract

21 In South Asia, bacterial wilt pathogens in the *Ralstonia solanacearum* species complex (RSSC)  
22 impose major constraints on eggplant, tomato, and pepper production. To improve the efficacy of  
23 bacterial wilt management, the goals of this study were to (1) conduct a survey of RSSC pathogens in  
24 Bangladesh and Nepal, (2) characterize the genetic diversity of these isolates, and (3) screen 37 tomato,  
25 eggplant, and pepper accessions for resistance to six representative isolates from South Asia. We  
26 isolated 99 isolates from Bangladesh and 20 isolates from Nepal and determined that all are phylotype I  
27 isolates of the *Ralstonia pseudosolanacearum* species. We sequenced and assembled draft genomes for  
28 25 isolates. Phylogenomic analyses suggest that there is a wide diversity of endemic phylotype I isolates

29 in South Asia, and possible introductions of two clonal phylotype I lineages into Bangladesh and Nepal.  
30 We contextualize our newly described isolates based on prior reports of RSSC diversity in South Asia and  
31 global reports of RSSC pathogens on eggplant and pepper. Greenhouse trials revealed multiple tomato,  
32 eggplant, and pepper accessions that exhibit promising levels of resistance to six phylotype I isolates  
33 from South Asia.

34 **Introduction**

35 Bacterial pathogens in the *Ralstonia solanacearum* species complex (RSSC) cause a group of related  
36 wilt diseases by colonizing xylem and impairing water transport (Kelman 1953). RSSC comprises  
37 economically significant pathogens of agronomically important crops, such as tomato, eggplant, potato,  
38 banana, peanut, ginger and others (Hayward 1991; Savary et al. 2019).

39 Bacterial wilt is a major constraint for production of eggplant (*Solanum melongena* also known as  
40 brinjal or aubergine), tomato (*S. lycopersicum*), and pepper (*Capsicum* spp.) in South Asia (Sinha, SK  
41 1986; Sood and Singh 1993; Adhikari et al. 1993; Pradhanang et al. 2000; Pradhanang and Momol 2001;  
42 Ahmed et al. 2013; Adhikari et al. 1997; Singh et al. 2010). Host resistance is the most practical and  
43 sustainable approach for management of this disease, however very few bacterial wilt-resistant cultivars  
44 are available (López and Biosca 2005) (Pandiyaraj et al. 2019). The main sources of bacterial wilt  
45 resistance in tomato breeding populations are its wild relatives such as *S. pimpinellifolium*, *S. hirsutum*  
46 and *S. peruvianum* (Carmeille et al. 2006). Host resistance against bacterial wilt is strain-specific due to  
47 the considerable genetic diversity of the pathogen populations (Danesh and Young 1994; Wang et al.  
48 1998; Lebeau et al. 2011). In the Check List of Commercial Varieties of Vegetables published by the  
49 Government of India, eight tomato, three eggplant, and no pepper varieties are listed as resistant to  
50 bacterial wilt (Singh 2012). The major bacterial wilt-resistant cultivars used in South Asia are tomato  
51 lines Arka Ananya, Arka Abhijit, Arka Abha, CLN2020C, All Rounder, Swarakhsha, Rakshak, and Trishul,  
52 and eggplant lines Kata Begun, Marich Begun, Pusa purple cluster, JC-2, Pant Samrat, Arka Anand, and  
53 Uttar (Dutta and Rahman 2012; Rahman et al. 2011; Singh 2012; Timila and Joshi 2007).

54 Grafting desired commercial varieties onto resistant rootstocks is another approach to combat  
55 bacterial wilt (Rivard and Louws 2011). Bacterial wilt-resistant *S. sisymbriifolium*, also known as sticky  
56 nightshade, fire-and-ice plant, litchi tomato, etc., is a popular rootstock in South Asia that is also  
57 resistant to *Meloidogyne* spp. nematodes that cause root-knot (Miller et al. 2005). Plants grafted onto  
58 *S. sisymbriifolium* not only reduce bacterial wilt incidence but also increase marketable yield, even in the

59 absence of disease pressure. However, failures of *S. sisymbriifolium* resistance to bacterial wilt at several  
60 locations in Bangladesh and Nepal is a concern for researchers and growers in this region.

61 RSSC are classified into four phylotypes (I-IV) that emerged and diversified on different continents  
62 (Villa et al. 2005). Phylotype I emerged in continental Asia, II in the Americas, III in Africa, and IV in  
63 Indonesia/Southeast Asia (Villa et al. 2005). However, movement of plants through international trade  
64 has allowed phylotypes I and II strains to become widely established in new locations. The phylotypes  
65 are consistent with the division of RSSC into three species: *R. solanacearum* (phylotype II), *R.*  
66 *pseudosolanacearum* (phylotypes I and III), and *R. syzygii* (phylotype IV) (Prior et al. 2016; Safni et al.  
67 2014). Recently, an international consortium of *Ralstonia* researchers reaffirmed that phylotypes I and  
68 III are two groups within the single *R. pseudosolanacearum* species (Lowe-Power et al. 2023).

69 Phylotype I is the most widespread phylotype in India and Sri Lanka (Ramesh et al. 2014; Gurjar et al.  
70 2015; Sagar et al. 2014; Kumar et al. 2013, 2014; Ghorai et al. 2022), but phylotypes II and IV are also  
71 present in South Asia. Published studies and public genome databases indicate that isolates in the  
72 pandemic brown rot IIB-1 lineage are present as potato pathogens in India, Nepal, Bangladesh, and Sri  
73 Lanka (Pradhanang et al. 2000; Sagar et al. 2014; Gurjar et al. 2015; Cellier and Prior 2010). Additionally,  
74 phylotype IV has become established in the hills of Meghalaya, the Indian state east of Bangladesh  
75 (Gurjar et al. 2015; Sagar et al. 2014). Although RSSC are prevalent pathogens in Bangladesh and Nepal  
76 (Ahmed et al. 2013; Pradhanang et al. 2000; Hossain et al. 2022), little is known about their genetic  
77 diversity.

78 The objectives of this study were to characterize RSSC isolates from Bangladesh and Nepal and to  
79 screen a worldwide collection of tomato, eggplant and pepper genotypes against representative RSSC  
80 isolates from India, Bangladesh, and Nepal. In 2012, we purified 119 RSSC isolates from solanaceous  
81 crops in Bangladesh and Nepal and a representative subset of 25 isolates were sequenced for their  
82 genomes. We screened 37 plant accessions for bacterial wilt resistance, including the 30 accessions  
83 proposed as Core-TEP by Lebeau et al. (2011).

## 84 **Methods**

85 **Bacterial isolates.** We conducted a survey during 2012 to collect RSSC isolates in major vegetable  
86 growing regions of Bangladesh and Nepal (Fig. 1A and Table S1). Bacterial isolates were purified from  
87 symptomatic eggplant, tomato, pepper, potato (*Solanum tuberosum*), and *S. sisymbriifolium* (used as  
88 rootstock of tomato and eggplant scions) on CPG medium (1 g / L casamino acids, 10 g / L peptone, and

89 5 g / L glucose) with 1% tetrazolium chloride (Kelman 1954). The identity of isolates was confirmed as  
90 RSSC based on colony morphology, RSSC-specific ImmunoStrips (Agdia Inc., Elkhart, IN), and a  
91 polymerase chain reaction (PCR) assay using the RSSC-specific primers 759/760 (Opina et al. 1997) as  
92 described previously (Lewis Ivey et al. 2007). Six Indian isolates were also included in the study. All  
93 *Ralstonia* isolates were imported to Ohio under APHIS permit no. P526P-11-02092.

94 **Phylotype determination.** Phylotype-specific multiplex PCR (Pmx-PCR) was performed using five  
95 phylotype-specific (Fegan and Prior 2005) and two species complex-specific primers (Opina et al. 1997).  
96 Reaction mixture preparation, amplification and gel electrophoresis were performed as described  
97 previously (Fegan and Prior, 2005; Lewis Ivey et al. 2007). Genomic DNA of isolates GMI1000, K60,  
98 UW386 and UW443 were used as positive controls for phylotypes I, II, III and IV respectively.

99 **Genome sequencing and assembly and quality control.** Genomic DNA was extracted with Zymo  
100 Quick-DNA kits (Zymo Research, Irvine, CA). We used short-read Illumina sequencing to sequence draft  
101 genomes of twenty-four of the isolates. Library prep was performed using the Illumina DNA Prep kit  
102 (Illumina, Inc., San Diego, CA) following their standard gDNA library prep workflow. Nextera DNA CD  
103 Indexes (Illumina, Inc.) were used for indexing during library prep. The DNA input for each sample was  
104 within 100-500 ng, so quantification of the libraries was not performed and instead the library pooling  
105 protocol for DNA inputs of 100-500 ng was followed according to the manufacturer's specifications. An  
106 aliquot of the pooled libraries was sent for sequencing by SeqMatic (Fremont, CA). Sequencing was  
107 performed using a MiSeq V2 300-cycles format (Illumina, Inc.). All bioinformatic analyses were  
108 performed on KBase (Arkin et al. 2018). Raw reads (.fastq) were analyzed with FastQC, revealing the  
109 presence of Nextera Transposase Sequences on some reads. Reads were trimmed of adaptors and low-  
110 quality reads with Trim Reads with Trimmomatic - v0.36 (Bolger et al. 2014) set to remove NexteraPE-PE  
111 adaptors. Quast v4.4 (Gurevich et al. 2013) was used to assess whether SPAdes v3.15.3 (Bankevich et al.  
112 2012) or IDBA-UD v1.1.3 (Peng et al. 2012) assembled reads in a more complete manner. SPAdes v3.15.3  
113 was chosen as it produced assemblies are composed of fewer contigs of larger N50 scores. The Illumina  
114 draft genomes yielded 83-281 contigs (Table S1).

115 We sequenced SM743\_UCD567 using an Oxford Nanopore sequencing service provided by  
116 Plasmidsaurus (Eugene, OR). The Qiagen DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD) was  
117 used for genomic DNA extraction using the manufacturer's protocol for gram-negative bacteria. Library  
118 prep, sequencing, and assembly were all carried out by Plasmidsaurus. To briefly describe their  
119 methods, library prep is performed using the v14 library prep chemistry developed by Oxford Nanopore

120 Technologies (Oxford, UK). Sequencing was performed using the R10.4.1 pore on a PromethION flow  
121 cell. For assembly, the worst 5% of reads were removed using Filtlong v0.2.1 with default parameters  
122 (github.com/rrwick/Filtlong). An assembly was generated using Flye v2.9.1 (Kolmogorov et al. 2019) with  
123 parameters set for high quality Oxford Nanopore Technology reads. Genome annotation was performed  
124 using Bakta v1.6.1 (Schwengers et al. 2021); contig analysis was performed using Bandage v0.8.1 (Wick  
125 et al. 2015); genome completeness and contamination was checked using CheckM v1.2.2 (Parks et al.  
126 2015); and species identification was performed using Mash v2.3 (Ondov et al. 2016), Sournash v4.6.1  
127 (Titus Brown and Irber 2016).

128 To check for contamination and completeness of assemblies, CheckM (v1.0.18 for all isolates except  
129 SM743\_UCD567, v1.2.2 for SM743\_UCD657) was used (Parks et al. 2015). The assemblies were more  
130 than 99% complete and had less than 1% contamination, so they were used for phylogenetic analysis.

131 **Phylogenetic tree from KBase.** To build a phylogenetic tree of the 25 new genomes and 398 public  
132 genomes, we used the KBase app: Insert Set of Genomes Into SpeciesTree - v2.2.0 (Arkin et al. 2018).  
133 This KBase app creates a phylogenetic tree based on a multiple sequence alignment of 49 conserved  
134 COG gene families, and creates a tree using FastTree2 (Price et al. 2010). The .newick file was uploaded  
135 into iTol to annotate the tree and modify the aesthetics (Letunic and Bork 2021). The full-length tree is  
136 available on the FigShare Repository (doi.org/10.6084/m9.figshare.23733567).

137 **Endoglucanase (*egl*) gene sequence analysis.** We extracted the partial *egl* sequences from the draft  
138 genomes to assign the isolates to sequevars (Fegan and Prior 2005). We used the KBase BlastNv2.13.0+  
139 app to identify the *egl* genes in each genome. In order to export the gene sequences, we ran the  
140 MUSCLE v3.8.425 App, which allowed us to export the sequences in FASTA format. We used the recently  
141 published protocol (Cellier et al. 2023b) to correctly trim the sequences according to international  
142 references. Sequences were analyzed with Geneious Prime 2021.1.1 software (Kearse et al. 2012) and  
143 aligned, along with international references, through the MUSCLE algorithm (Edgar 2004). Phylogenetic  
144 tree reconstruction was performed using PhyML v3.3.20180621 (Guindon et al. 2010). The  
145 determination of sequevars was assumed by partial *egl* sequence divergence values less than or equal to  
146 1% (Fegan and Prior 2005) and to international reference sequences (Cellier et al. 2023b).

147 **Host resistance screening.** Seeds of 37 accessions of tomato, eggplant and pepper were obtained  
148 from AVRDC (The World Vegetable Center, Taiwan), INRAE (Institut National de Recherche pour  
149 l'Agriculture, l'Alimentation et l'Environnement, France), BARI (Bangladesh Agricultural Research

150 Institute, Bangladesh), and Makerere University, Uganda (Table S2). The pedigree of 30 Core-TEP  
151 accessions is described by Lebeau et al. 2011. BARI 2 and BARI 8 are resistant tomato and eggplant lines,  
152 respectively, developed by BARI. Tomato MT56 was received from Uganda but its pedigree is uncertain.  
153 Eggplant EG190, EG219 and tomato BF Okitsu were developed by AVRDC. *S. sisymbriifolium* is a common  
154 weed in South Asia that is used as a bacterial wilt resistant rootstock in South Asia.

155 Seeds were sown in plastic trays with 2.5 x 2.5 cm<sup>2</sup> cells containing planting medium (Sungro  
156 Horticulture, Agawam, MA). Four-week-old seedlings were soil-drench inoculated with a 5 ml  
157 suspension (1×10<sup>8</sup> CFU/ml) of one of six RSSC isolates from eggplant, pepper, or grafted tomato or  
158 eggplant (SM701 (eggplant), SM716 (pepper), SM732 (eggplant grafted onto *S. sisymbriifolium*), SM738  
159 (eggplant), SM743 (tomato grafted onto *S. sisymbriifolium*), and MB1 (eggplant)) selected based on host,  
160 origin, and genetic diversity, determined as described above. Inoculum was prepared in sterile distilled  
161 water from 48 hr-old cultures growing on casamino acid, peptone, glucose (CPG) agar at 28°C. Seedlings  
162 were inoculated following root wounding with a sterile scalpel blade. Wilt incidence was recorded twice  
163 weekly for 5 weeks after inoculation. The experiment was conducted twice as a randomized complete  
164 block design with three replications (blocked by time) of 15 plants per replication, with a split-plot  
165 arrangement. *R. pseudosolanacearum* isolates were applied as the main plot effect and seedlings were  
166 arranged in sub-plots.

## 167 Results

168 **RSSC isolates in South Asia.** We isolated 99 RSSC isolates from nine major solanaceous vegetable  
169 growing regions of Bangladesh and 20 RSSC isolates from five regions of Nepal. In Bangladesh, 77  
170 isolates from eggplant, nine from grafted eggplant/*S. sisymbriifolium*, and 13 from pepper. In Nepal, ten  
171 isolates were recovered from eggplant, four from tomato, two from potato, and four from grafted  
172 tomato/*S. sisymbriifolium*. An additional six isolates were obtained from four states in India (Fig 1A and  
173 Table S1). The phylotype-specific multiplex PCR (Pmx-PCR) was applied on all isolates. All reactions  
174 yielded the RSSC-specific amplicon (282 bp) and the phylotype I-specific amplicon (144 bp), indicating  
175 that all isolates belong to the *R. pseudosolanacearum* species (Fegan and Prior 2005; Safni et al. 2014).

176 Although all newly described isolates in this study belong to phylotype I, it is known that other RSSC  
177 lineages are present in South Asia. We queried the Ralstonia Diversity Database version 4 (Lowe-Power  
178 et al. 2022) for isolates isolated in the South Asian countries: Bangladesh, Nepal, India, and Sri Lanka.  
179 RSSC isolates were frequently reported on potato (n=185), eggplant (n=95), tomato (n=42), pepper  
180 (n=33), and ginger (n=17) (Fig 1B). Of the 477 isolates reported in the literature, the phylotype was

181 identified for 245 isolates (Cellier and Prior 2010; Ghorai et al. 2022; Ramesh et al. 2014; Gurjar et al.  
182 2015; Sagar et al. 2014; Kumar et al. 2014; Patil et al. 2017; Cellier et al. 2012). In the available data,  
183 phylotype I accounts for all of the published reports of RSSC on eggplant, tomato, and pepper in South  
184 Asia. More RSSC lineages have been reported on potato in South Asia: the pandemic IIB-1 lineage  
185 (n=87), phylotype IV (n=29), and phylotype I (n=23).

186 **Genome analysis.** We sequenced the genomes of 20 isolates from Bangladesh and five isolates from  
187 Nepal. We built a phylogenetic tree of these 25 isolates and 398 publicly available RSSC genomes (Fig 2  
188 and Fig S1). Most of the Bangladesh and Nepal isolates (n=18 and n=3, respectively) clustered together  
189 in nine clonal groups on four major branches with phylotype I isolates from India (n=1), Sri Lanka (n=1),  
190 China (n=1), and Brazil (n=1). The Bangladesh isolates were isolated from eggplant (n=16) and pepper  
191 (n=2) in Bogra (n=2), Jamalpur (n=3), Brahmanbaria (n=2), Cumilla (n=4), Jashore (n=2), Joydebpur (n=1),  
192 and Narsingdi (n=4). The Nepal isolates were isolated from eggplant in Chitwan (n=3).

193 The remaining four isolates clustered in two distant branches. Two isolates isolated in Syangja,  
194 Nepal from tomato grafted onto *S. sisymbriifolium* (SM743 and SM744) formed a clonal group with  
195 three tomato isolates from China and an isolate from Mandevilla ornamentals imported into the U.S.  
196 The two isolates isolated in Tangail, Bangladesh from eggplant and eggplant grafted onto  
197 *S. sisymbriifolium* (SM734 and SM732, respectively) formed a clonal group that clustered close to  
198 isolates isolated from diverse locations (India, Benin, Mauritius, Japan, and unknown locations).

199 **Endoglucanase gene sequence analysis.** We extracted the partial *egl* sequence from the genomes of  
200 the 25 isolates to assign these isolates to sequevars. The sequevars are listed on Fig 2 and the full *egl*/  
201 tree is available on the FigShare Repository ([doi.org/10.6084/m9.figshare.23733567](https://doi.org/10.6084/m9.figshare.23733567)). The *egl* tree and  
202 sequevar assignments were largely congruent. The majority of the isolates were assigned to sequevar  
203 48, and the clonal SM743/744 isolates were assigned to sequevar 14. The clonal SM732/734 isolates  
204 were assigned to sequevar 18 although they have a relatively low whole-genome average nucleotide  
205 identity with the reference sequevar 18 isolate GMI1000 (estimated 98.80-98.88% by FastANI (Jain et al.  
206 2018)). Based on *egl* sequence, SM1851 would be assigned to sequevar 17 even though it clusters within  
207 the 21 sequevar 48 isolates on the 49-gene tree (Fig 2).

208 **Host resistance phenotyping.** We tested the resistance of 37 tomato, eggplant, pepper, and  
209 *S. sisymbriifolium* accessions against six South Asian isolates from distinct regions (Fig 3A and Table S2).  
210 The mean incidence of wilt in the susceptible tomato (L390), eggplant (MM136) and pepper (Yolo

211 Wonder) controls was 85.5, 83.6 and 50%, respectively. Six tomato accessions demonstrated  
212 consistently high resistance (mean wilted plants  $\leq$  10% with no isolate causing > 20% wilting) against all  
213 six isolates: L285, Mt56, Hawaii 7996, CLN1463, TML46, and R3034. Four additional tomato accessions  
214 displayed a bimodal phenotype of susceptibility to SM738, MB1, and SM732 and resistance to SM743,  
215 SM716, and SM701: IRATL3, NC72 TR4-4, CRA66, and BF Okitsu. Bari2 was susceptible to SM738, MB1,  
216 and SM732, and moderately resistant to SM743, SM716, and SM701. In addition to L390, Okitsu Sozai  
217 no. 1 was highly susceptible to all isolates. Eight eggplant accessions displayed high resistance to all six  
218 isolates: Eg190, S56B, MM853, Bari8, MM643, EG203, MM152, and Eg219. Three accessions had  
219 moderate resistance: MM931, MM195, and MM960. In addition to MM136, MM738 was highly  
220 susceptible. Except for PM702, all pepper accessions were resistant to two of the isolates: MB1 and  
221 SM732. Three pepper accessions displayed high resistance: PBC631A, PBC66, and 0209-4. The responses  
222 of PM659 and PBC384 trended towards resistance. PM1022, PM1443, PM687, and Yolo Wonder were  
223 susceptible to the four pepper-virulent isolates. The *S. sisymbriifolium* accession displayed no symptoms  
224 after inoculation with four of the isolates, including SM732, which had been isolated from eggplant  
225 grafted to this rootstock. Isolates SM743, isolated from grafted tomato, and SM716, isolated from  
226 pepper, caused wilt incidences of 19.5% and 33.2%, respectively.

227 **Comparative virulence of South Asian isolates.** Aggressiveness of the *R. pseudosolanacearum*  
228 isolates varied with host species, and among accessions within a species (Fig 3B-C and Table S2). The  
229 SM738 isolate was the most aggressive, causing more than 20% wilt incidence on seven of 13 tomato,  
230 five of 13 eggplant, and seven of 10 pepper accessions. Isolates SM716, SM743, and SM701 displayed  
231 consistent patterns of virulence and wilted most pepper accessions. They had no-to-low virulence on  
232 tomato accessions, including five tomato accessions that were moderately susceptible to the other  
233 three isolates. Additionally, SM716 and SM743 were the only isolates that caused wilting in  
234 *S. sisymbriifolium*. Two isolates were largely non-pathogenic on pepper: MB1 and SM732. The genomes  
235 of SM732 and SM743 are sequenced. Unfortunately, as of 2022, stocks of the other four isolates were  
236 not culturable anymore under standard culture conditions so we were unable to sequence their  
237 genomes.

## 238 **Discussion**

239 Bacterial wilt is one of the most important diseases of tomato, eggplant, and pepper in South Asia.  
240 This disease is difficult to manage due to the diversity, adaptability, and environmental survivability of  
241 the *Ralstonia* wilt pathogens. Host resistance is one of the best options available to manage this disease.

242 However, the strain specificity of host resistance limits utility of this approach (Wang et al. 2013; Lebeau  
243 et al. 2011; Méline et al. 2023). Only pathogen-targeted management approaches, which require prior  
244 knowledge of local pathogen populations, can provide satisfactory and sustainable control of this  
245 disease. Therefore, we characterized the diversity of RSSC isolates collected from South Asia and  
246 screened a worldwide collection of resistant tomato, pepper, and eggplant accessions against  
247 representative South Asian isolates to identify suitable hosts that can potentially be used to manage  
248 bacterial wilt in the region.

249 Although several phylotypes are present in the region, all isolates in this study were identified as *R.*  
250 *pseudosolanacearum* phylotype I. It is possible that this outcome is because the majority of the isolates  
251 from this study were purified from wilted pepper and eggplant. Prior studies, including our meta-  
252 analysis of 8,000 RSSC isolations, have shown that phylotype I isolates are the most common etiological  
253 agents of bacterial wilt on eggplant and pepper while all RSSC phylotypes are commonly isolated from  
254 tomato plants (Gurjar et al. 2015; Sagar et al. 2014; Ramesh et al. 2014; Kumar et al. 2014; Hossain et al.  
255 2022; Lowe-Power et al. 2022). Globally, phylotypes II and III have both been occasionally isolated from  
256 eggplant and pepper (Cellier and Prior 2010; Ravelomanantsoa et al. 2016; Lee et al. 2020; Deberdt et al.  
257 2014; Bihon et al. 2020; N'guessan et al. 2013; Sedighian et al. 2020; Safni et al. 2014), while phylotype  
258 IV has been isolated from pepper but has not been reported on eggplant (Safni et al. 2014). Including  
259 this study, phylotype I accounts for 92.8% and 90.4% of the global RSSC isolations on eggplant (n=446)  
260 and *Capsicum* sp. pepper (n=365), respectively. If we had collected more tomato and potato isolates, we  
261 may have found more phylotype II and IV isolates in our survey because these phylotypes are known to  
262 be present in the region on these crops. A survey for RSSC in potato growing regions of Bangladesh  
263 purified RSSC isolates of undetermined phylotype(s) in Jamalpur, Nilphamari, and Munshigonj, while the  
264 disease was not detected in four other states during that survey (Ahmed et al. 2013). Further work is  
265 needed to investigate *Ralstonia* diversity in the region.

266 Regardless of the original host, all six isolates tested in this study were highly virulent on wilt-  
267 susceptible tomato and eggplant accessions, while two of six isolates (from eggplant or grafted  
268 eggplant) were avirulent on the wilt-susceptible pepper variety Yolo Wonder. The remaining four  
269 isolates were highly virulent on this variety. The isolate SM743, originally isolated from a wilted tomato  
270 scion grafted onto *S. sisymbriifolium* rootstock, was highly or moderately virulent on two eggplant and  
271 five pepper accessions. This suggests that, despite one-third of the isolates tested being avirulent on all

272 but one pepper accession, recommendations for crop rotations away from solanaceous species should  
273 be followed, particularly when wilt-susceptible varieties are deployed.

274 Based on the genome sequences from this study, genomes from other studies (Patil et al. 2017,  
275 2020) and prior studies with single gene markers (Ramesh et al. 2014), it is clear that there is  
276 considerable diversity of phylotype I RSSC in South Asia, consistent with the theory that phylotype I  
277 originated in Asia (Villa et al. 2005). In addition to the diverse, presumably endemic population of  
278 phylotype I isolates, we identified at least two lineages that may have been more recently introduced to  
279 Nepal and Bangladesh: SM743/744 and SM732/734, respectively. Isolates from these two genetically  
280 distant lineages were isolated from crops grafted onto *S. sisymbriifolium* rootstocks, and we confirmed  
281 that one isolate (SM743) caused wilting of *S. sisymbriifolium* in our greenhouse trial. There are anecdotal  
282 reports that the *S. sisymbriifolium* rootstocks are no longer providing effective mitigation of bacterial  
283 wilt in some locations in Bangladesh and Nepal (Subedi 2015). It is plausible that the reason for the  
284 breakdown of this host resistance is that exotic lineages have been introduced, and those exotic lineages  
285 happen to have genotypes that evade the immune surveillance of *S. sisymbriifolium*. However, the  
286 sample size of our study is too small to robustly test this hypothesis. Further studies are needed to  
287 understand the epidemiology of bacterial wilt in the region.

288 Sanger sequencing of a portion of the *egl* marker gene remains a popular way to classify isolates  
289 into sequevars based on the sequences. *egl*-based diversity analyses of phylotype I isolates should be  
290 treated with caution because there are instances where *egl* trees are incongruent with analyses using  
291 multiple genetic markers (Cellier et al. 2023a; Sharma et al. 2022; Rasoamanana et al. 2020). Because  
292 the *egl* trees rely on a short sequence, impeccable sequence quality and consistent methodology are  
293 essential for generating trustworthy conclusions. Here we compared our isolates to the established  
294 reference sequences for sequevars and used the recommended analytical methods (Cellier et al. 2023b).  
295 This allowed us to confidently assign sequevar 48 to 20 genomes, sequevar 14 to two genomes  
296 (SM743/744), and sequevar 18 to two genomes (SM732/734). We identified one conflict case (SM1851)  
297 where sequevar assignments based on the *egl* marker contradicted the position of the genome in the  
298 49-gene tree. Hence, we have low confidence when assigning SM1851 into sequevar 17, knowing that  
299 our prior analysis also indicated that this sequevar has a polyphyletic nature within phylotype I (Sharma  
300 et al. 2022).

301 Due to the decade-long time frame of this study, we used classical and contemporary methods to  
302 characterize diversity of RSSC isolates from South Asia. At the time this study was initiated, the biovar

303 system and genomic fingerprinting were common methods for RSSC diversity studies (Fonseca et al.  
304 2014; Lewis Ivey et al. 2007; Norman et al. 2009; Xue et al. 2011; Zulperi et al. 2014; Ramsuhag et al.  
305 2012). However, fingerprinting profiles cannot be compared between laboratories, which inhibits the  
306 utility of this approach to compare RSSC populations with published data. Consistent with the current  
307 paradigm, we found that both biovar and Rep-PCR classifications (data not shown) were discordant with  
308 phylogenetic clustering based on DNA sequence data. Similar inadequacies of Rep-PCR fingerprinting  
309 were recently reported for analyzing diversity of a different set of RSSC isolates from Bangladesh  
310 (Hossain et al. 2022). Currently, neither the biovar nor DNA fingerprinting is recommended for RSSC  
311 diversity analyses.

312 For RSSC diversity studies, we recommend always assigning the phylotype with the multiplex Pmx-  
313 PCR to all isolates. For more detailed analysis of RSSC diversity, we recommend *egl* sequence analysis  
314 according to the standardized protocol (Cellier et al. 2023b), using schemes with validated discriminating  
315 power (e.g. the RS1-MLVA13 scheme from (Cellier et al. 2023a)), or using whole genome analysis. Of  
316 these technologies, RS1-MLVA13 is best suited for phylotype I epidemiological studies because it has a  
317 demonstrably high discriminatory power that is sufficiently cost-effective to be applied to the large  
318 numbers of isolates and enable meaningful and thorough epidemiological surveys (Cellier et al. 2023a).

319 Host resistance to bacterial wilt is quantitative, polygenic, strain-specific, and greatly influenced by  
320 the environment, including temperature, soil moisture, and pH (Acosta 1978; Hanson et al. 1996; Scott  
321 et al. 2005; Wang et al. 2013). Resistance against all bacterial wilt pathogens is unlikely to be bred or  
322 engineered into solanaceous hosts due to the high genetic diversity of RSSC pathogens. For example,  
323 most of the tomato accession Hawaii 7996's quantitative trait loci for bacterial wilt resistance are strain-  
324 specific (Wang et al. 2013; Carmeille et al. 2006; Danesh et al. 1994; Mangin et al. 1999; Shin et al. 2020;  
325 Méline et al. 2023). Variation in RSSC host range is very common because each isolate wields 60-80  
326 plant-manipulating effectors, and fewer than 10 effectors are broadly conserved among diverse RSSC  
327 isolates (Landry et al. 2020). Nevertheless, host resistance can be a part of effective, integrated bacterial  
328 wilt management because RSSC isolates are slow to spread to new locations in the absence of human-  
329 mediated movement of infected plant material. Thus, once it is possible to predict pathogen host range  
330 based on genomic sequence, it could be possible to deploy targeted host resistance based on knowledge  
331 of the RSSC genotypes in different regions.

332 An objective of AVRDC's research on bacterial wilt resistance was to develop resistant lines with  
333 more than 90% survival rate (Hanson et al. 1996). With this framework, we identified 18 accessions with

334 less than 10% wilt incidence to at least one RSSC isolate. However, among these 18 accessions, only one-  
335 third were highly resistant ( $\leq 10\%$  wilting) to all six isolates: three tomato accessions (CLN1463, TML46,  
336 and R3034) in addition to the reference resistant line Hawaii 7996, one eggplant accession (EG219), and  
337 one pepper accession (0209-04). Among the INRAE accessions, three tomato accessions (CLN1463,  
338 TML46, and R3034) and no eggplant or pepper accessions were highly resistant all six isolates. Neither  
339 BARI accession nor the Mt56 accession were highly resistant to all isolates. In addition to breeding lines  
340 with polygenic bacterial wilt resistance, there is considerable promise in using transgenic approaches to  
341 move immune receptors from diverse plant species into crops. For example, transgenic tomatoes and  
342 potatoes expressing Efr, a pattern recognition receptor from *Arabidopsis thaliana*, demonstrate  
343 bacterial wilt resistance in field and greenhouse trials (Lacombe et al. 2010; Boschi et al. 2017; Kunwar  
344 et al. 2018). Additionally, cytoplasmic immune receptors like ZAR1 and Ptr1 can recognize effectors from  
345 some RSSC isolates and other pathogens (Ahn et al. 2023), leading to interest in transforming tomato  
346 and eggplant with Ptr1 to better manage bacterial wilt with host resistance (Haefner et al. 2023).

347 To effectively manage bacterial wilt with host resistance, there is a need for large-scale research  
348 that identifies the geographic distributions of RSSC genotypes and statistical/artificial intelligence  
349 models to predict host range from RSSC genotype. To reach these goals, funding is needed for (1)  
350 epidemiological surveys of pathogen populations in different regions, (2) quantitatively comparisons of  
351 disease outcomes with diverse pairings of host genotypes vs. pathogen genotypes, and (3) generation of  
352 host and pathogen genomic data to allow functional genomics and population genomics studies.  
353 Genomic data and phenotypic data should be published in both summarized and raw formats to make  
354 the data most valuable for future meta-analysis. For this reason, we recently published raw host-range  
355 and whole genome sequence data on 19 phylotype IIB-4 RSSC isolates (Beutler et al. 2022). In this study,  
356 we quantified wilt incidence on a panel of Solanaceae accessions that have previously been phenotyped  
357 against 12 global RSSC isolates and six RSSC isolates from Louisiana, U.S (Lebeau et al. 2011; Lewis Ivey  
358 et al. 2021). Across these studies, genomes are available for eight out of 24 *Ralstonia* isolates.  
359 Unfortunately, genomes cannot be sequenced for 14 of the phenotyped isolates, including four isolates  
360 from this study, due to a combination of regulatory hurdles and lost viability of stocks.

361 Overall, we characterized the diversity of RSSC isolates from solanaceous hosts in South Asia and  
362 identified the most resistant tomato, eggplant and pepper accessions that can potentially be used to  
363 manage bacterial wilt in South Asia. As the resistance of these tomato, eggplant, and pepper accessions  
364 were evaluated under greenhouse conditions in Ohio, U.S., they must be assessed in field conditions of

365 South Asia before employing them at large scale. This study contributes valuable knowledge on the  
366 genetic diversity and host range of RSSC populations infecting solanaceous hosts in Bangladesh and  
367 Nepal.

### 368 **Data availability statement**

369 The genome data are available on NCBI Assembly and NCBI SRA under BioProject PRJNA989236.  
370 Isolates that are indicated as viable in Table S1 are available from the Lowe-Power lab. High-resolution  
371 PDF format figures are available on FigShare (doi.org/10.6084/m9.figshare.23733567).

### 372 **Acknowledgements**

373 We thank Dr. Jaw-Fen Wang, AVRDC, Taiwan, Dr. Marie Christine Daunay, INRAE, France, and Dr.  
374 Yousof Mian, BARI, Bangladesh, for providing seeds for this study; and BARI and Nepal Agricultural  
375 Research Council (NARC) for providing laboratory facilities in Bangladesh and Nepal, respectively. This  
376 work was supported by the Agriculture Office within the Bureau for Economic Growth, Agriculture, and  
377 Trade (EGAT) of the U.S. Agency for International Development, under the terms of the IPM-CRSP  
378 (Award EPP-A-00-04-00016-00). We thank Gauri Achari, ICAR Research Complex for Goa, India for  
379 providing the Indian isolates and Caitlyn Allen, University of Wisconsin, for providing genomic DNA of  
380 reference isolates GMI1000, K60, UW386, and UW443. We thank Kimberly Grulla, Kasey Miqueo, and Su  
381 Tun (UC Davis) for technical assistance with DNA extractions and preliminary analysis of Illumina  
382 sequencing data. We thank Angela Nanes (OSU) for technical assistance.

383  
384

### 385 **References**

386

387 Acosta, J. C. 1978. Genetic analysis for bacterial wilt resistance in a tomato cross, *Lycopersicon*  
388 *esculentum* Mill. × *L. pimpinellifolium* Mill. Philipp. J Crop sci. 3:1–4.

389 Adhikari, T. B., Manandhar, J. B., and Hartman, G. L. 1993. Characterisation of *Pseudomonas*  
390 *solanacearum* and evaluation of tomatoes in Nepal. In *Bacterial Wilt (Proceedings from an*  
391 *International Conference held in Taiwan)*, 45, ed. Hartman, G. L. and Hayward, A. C. ACIAR  
392 *Proceedings Series*, p. 132–137.

393 Adhikari, T., Basnyat, R., and Robinson-Smith, A. 1997. Current Status of *Pseudomonas solanacearum*  
394 Research in Nepal. In *Pseudomonas syringae Pathovars and Related Pathogens*, eds. K. Rudolph,

395 T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian, and J. von Kietzell. Dordrecht: Springer  
396 Netherlands, p. 49–52.

397 Ahmed, N., Islam, M., Hossain, M., Meah, M., and Hossain, M. 2013. Determination of races and biovars  
398 of *Ralstonia solanacearum* causing bacterial wilt disease of potato. *J. Agric. Sci.* 5:86–93.

399 Ahn, Y. J., Kim, H., Choi, S., Mazo-Molina, C., Prokchorchik, M., Zhang, N., et al. 2023. Ptr1 and ZAR1  
400 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. *New  
401 Phytol.* Available at: <http://dx.doi.org/10.1111/nph.19073>.

402 Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S., et al. 2018. KBase:  
403 The United States Department of Energy Systems Biology Knowledgebase. *Nat. Biotechnol.*  
404 36:566–569.

405 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. 2012. SPAdes: a new  
406 genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.*  
407 19:455–477.

408 Beutler, J., Holden, S., Georgoulis, S. J., Williams, D., Norman, D., and Lowe-Power, T. 2022. Whole  
409 genome sequencing suggests that “non-pathogenicity on banana (NPB)” is the ancestral state of  
410 the *Ralstonia solanacearum* IIB-4 lineage. *PhytoFrontiers*. Available at:  
411 <https://doi.org/10.1094/PHYTOFR-06-22-0068-SC>.

412 Bihon, W., Chen, J.-R., and Kenyon, L. 2020. Identification and characterization of *Ralstonia* spp. causing  
413 bacterial wilt disease of vegetables in Mali. *J. Plant Pathol.* 102:1029–1039.

414 Bolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence  
415 data. *Bioinformatics*. 30:2114–2120.

416 Boschi, F., Schwartzman, C., Murchio, S., Ferreira, V., Siri, M. I., Galván, G. A., et al. 2017. Enhanced  
417 bacterial wilt resistance in potato through expression of *Arabidopsis* EFR and introgression of  
418 quantitative resistance from *Solanum commersonii*. *Front. Plant Sci.* 8:1642.

419 de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive  
420 intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the  
421 genomes of *Rhizobium meliloti* isolates and other soil bacteria. *Appl. Environ. Microbiol.*  
422 58:2180–2187.

423 Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J., and Besse, P. 2006. Evaluation of resistance to  
424 race 3, biovar 2 of *Ralstonia solanacearum* in tomato germplasm. *J. Phytopathol.* 154:398–402.

425 Cellier, G., Nordey, T., Cortada, L., Gauche, M., Rasoamanana, H., Yahiaoui, N., et al. 2023a. Molecular  
426 Epidemiology of *Ralstonia pseudosolanacearum* Phylotype I Strains in the Southwest Indian  
427 Ocean Region and Their Relatedness to African Strains. *Phytopathology*. 113:423–435.

428 Cellier, G., Pecrix, Y., Gauche, M. M., and Cheon, J. J. 2023b. *Ralstonia solanacearum* species complex egl  
429 reference database. CIRAD Dataverse. Available at: <http://dx.doi.org/10.18167/DVN1/CUWA5P>.

430 Cellier, G., and Prior, P. 2010. Deciphering phenotypic diversity of *Ralstonia solanacearum* strains  
431 pathogenic to potato. *Phytopathology*. 100:1250–1261.

432 Cellier, G., Remenant, B., Chiroleu, F., Lefeuve, P., and Prior, P. 2012. Phylogeny and population  
433 structure of brown rot- and Moko disease-causing strains of *Ralstonia solanacearum* phylotype  
434 II. *Appl. Environ. Microbiol.* 78:2367–2375.

435 Danesh, D., Aarons, S., McGill, G. E., and Young, N. D. 1994. Genetic dissection of oligogenic resistance to  
436 bacterial wilt in tomato. *Mol. Plant. Microbe. Interact.* 7:464–471.

437 Danesh, D., and Young, N. D. 1994. Partial resistance loci for tomato bacterial wilt show differential race  
438 specificity. *Tomato Cooperative Extension Report*. 44:12–13.

439 Deberdt, P., Guyot, J., Coranson-Beaudu, R., Launay, J., Noreskal, M., Rivière, P., et al. 2014. Diversity of  
440 *Ralstonia solanacearum* in French Guiana expands knowledge of the “Emerging Ecotype.”  
441 *Phytopathology*. 104:586–596.

442 Dutta, P., and Rahman, B. 2012. Varietal screen of tomato against bacterial wilt disease under  
443 subtropical humid climate of Tripura. *Int. J. Farm.* 2:40–43.

444 Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.  
445 *Nucleic Acids Res.* 32:1792–1797.

446 Fegan, M., and Prior, P. 2005. How complex is the *Ralstonia solanacearum* species complex. In *Bacterial*  
447 *wilt disease and the Ralstonia solanacearum species complex*, APS press St. Paul, p. 449–461.

448 Fonseca, N. R., Guimarães, L. M. S., Hermenegildo, P. S., Teixeira, R. U., Lopes, C. A., and Alfenas, A. C.  
449 2014. Molecular characterization of *Ralstonia solanacearum* infecting *Eucalyptus* spp. in Brazil.  
450 *For. Pathol.* 44:107–116.

451 Ghorai, A. K., Dutta, S., and Roy Barman, A. 2022. Genetic diversity of *Ralstonia solanacearum* causing  
452 vascular bacterial wilt under different agro-climatic regions of West Bengal, India. *PLoS One*.  
453 17:e0274780.

454 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. 2010. New algorithms  
455 and methods to estimate maximum-likelihood phylogenies: assessing the performance of  
456 PhyML 3.0. *Syst. Biol.* 59:307–321.

457 Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. 2013. QUAST: quality assessment tool for genome  
458 assemblies. *Bioinformatics*. 29:1072–1075.

459 Gurjar, M. S., Sagar, V., Bag, T. K., Singh, B. P., Sharma, S., Jeevalatha, A., et al. 2015. Genetic diversity of  
460 *Ralstonia solanacearum* strains causing bacterial wilt of potato in the Meghalaya state of India.  
461 *J. Plant Pathol.* 97:135–142.

462 Haefner, B. J., McCrudden, T. H., and Martin, G. B. 2023. Ptr1 is a CC-NLR immune receptor that  
463 mediates recognition of diverse bacterial effectors in multiple solanaceous plants. *Physiol. Mol.*  
464 *Plant Pathol.* 125:101997.

465 Hanson, P. M., Wang, J.-F., Licardo, O., Hanudin, Mah, S. Y., Hartman, G. L., et al. 1996. Variable reaction  
466 of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. *HortScience*.  
467 31:143–146.

468 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by *Pseudomonas solanacearum*.  
469 *Annu. Rev. Phytopathol.* 29:65–87.

470 Hossain, M. M., Masud, M. M., Hossain, M. I., Haque, M. M., Uddin, M. S., Alam, M. Z., et al. 2022. Rep-  
471 PCR analyses reveal genetic variation of *Ralstonia solanacearum* causing wilt of solanaceous  
472 vegetables in Bangladesh. *Curr. Microbiol.* 79:234.

473 Jain, C., Rodriguez-R, L. M., Phillippe, A. M., Konstantinidis, K. T., and Aluru, S. 2018. High throughput ANI  
474 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat. Commun.* 9:1–8.

475 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. 2012. Geneious Basic:  
476 an integrated and extendable desktop software platform for the organization and analysis of  
477 sequence data. *Bioinformatics*. 28:1647–1649.

478 Kelman, A. 1953. *The bacterial wilt caused by Pseudomonas solanacearum*. North Carolina Agricultural  
479 Experiment Station.

480 Kelman, A. 1954. The relationship of pathogenicity in *Pseudomonas solanacearum* to colony appearance  
481 on a tetrazolium medium. *Phytopathology*. 44:693–695.

482 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. 2019. Assembly of long, error-prone reads using  
483 repeat graphs. *Nat. Biotechnol.* 37:540–546.

484 Kumar, A., Prameela, T. P., and Panja, B. 2014. Genetic characterization of an Indian isolate of *Ralstonia*  
485 *solanacearum* race 3/ biovar 2/ phylotype IIB from potato. *Indian. Phytopath.* 67:346–352.

486 Kumar, R., Barman, A., Jha, G., and Ray, S. K. 2013. Identification and establishment of genomic identity  
487 of *Ralstonia solanacearum* isolated from a wilted chilli plant at Tezpur, North East India. *Curr.*  
488 *Sci.* 105:1571–1578.

489 Kunwar, S., Iriarte, F., Fan, Q., Evaristo da Silva, E., Ritchie, L., Nguyen, N. S., et al. 2018. Transgenic  
490 expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of  
491 tomato. *Phytopathology*. 108:1402–1411.

492 Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P., et al. 2010.  
493 Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial  
494 resistance. *Nat. Biotechnol.* 28:365–369.

495 Landry, D., González-Fuente, M., Deslandes, L., and Peeters, N. 2020. The large, diverse, and robust  
496 arsenal of *Ralstonia solanacearum* type III effectors and their in planta functions. *Mol. Plant*  
497 *Pathol.* 21:1377–1388.

498 Lebeau, A., Daunay, M.-C., Frary, A., Palloix, A., Wang, J.-F., Dintinger, J., et al. 2011. Bacterial wilt  
499 resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the  
500 *Ralstonia solanacearum* species complex. *Phytopathology*. 101:154–165.

501 Lee, I., Kim, Y. S., Kim, J.-W., and Park, D. H. 2020. Genetic and pathogenic characterization of bacterial  
502 wilt pathogen, *Ralstonia pseudosolanacearum* (*Ralstonia solanacearum* phylotype I), on roses in  
503 Korea. *Plant Pathol. J.* 36:440–449.

504 Letunic, I., and Bork, P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree  
505 display and annotation. *Nucleic Acids Res.* 49:W293–W296.

506 Lewis Ivey, M. L., Gardener, B. B. M., Opina, N., and Miller, S. A. 2007. Diversity of *Ralstonia*  
507 *solanacearum* infecting eggplant in the Philippines. *Phytopathology*. 97:1467–1475.

508 Lewis Ivey, M. L., Jimenez Madrid, A. M., Daunay, M.-C., and Shah, D. A. 2021. Evaluation of tomato,  
509 eggplant and pepper accessions for resistance to *Ralstonia solanacearum* species complex  
510 (RSSC) strains from Louisiana. *Eur. J. Plant Pathol.* 159:279–293.

511 López, M. M., and Biosca, E. G. 2005. Potato bacterial wilt management: new prospects for an old  
512 problem. Bacterial wilt disease and the *Ralstonia*. Available at:  
513 <https://www.cabdirect.org/cabdirect/abstract/20053172616>.

514 Louws, F. J., Fulbright, D. W., Stephens, C. T., and de Bruijn, F. J. 1994. Specific genomic fingerprints of  
515 phytopathogenic *Xanthomonas* and *Pseudomonas* pathovars and strains generated with  
516 repetitive sequences and PCR. *Appl. Environ. Microbiol.* 60:2286–2295.

517 Lowe-Power, T., Avalos, J., Bai, Y., Charco Munoz, M., Chipman, K., Tom, C., et al. 2022. A meta-analysis  
518 of the known global distribution and host range of the *Ralstonia* species complex. *bioRxiv*.  
519 Available at: <https://www.biorxiv.org/content/10.1101/2020.07.13.189936v4.full>.

520 Lowe-Power, T., Sharma, P., Alfenas-Zerbini, P., Álvarez, B., Arif, M., Baroukh, C., et al. 2023. Letter to  
521 the Editor: The *Ralstonia* research community rejects the proposal to classify phylotype I  
522 *Ralstonia* into the new species *Ralstonia nicotianae*. *PhytoFrontiers*. Available at:  
523 <https://doi.org/10.1094/PHYTOFR-06-23-0071-LE>.

524 Mangin, B., Thoquet, P., Olivier, J., and Grimsley, N. H. 1999. Temporal and multiple quantitative trait  
525 loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.  
526 *Genetics*. 151:1165–1172.

527 Méline, V., Caldwell, D. L., Kim, B.-S., Khangura, R. S., Baireddy, S., Yang, C., et al. 2023. Image-based  
528 assessment of plant disease progression identifies new genetic loci for resistance to *Ralstonia*  
529 *solanacearum* in tomato. *Plant J.* 113:887–903.

530 Miller, S. A., Rezaul Karim, A. M. N., Baltazar, A. M., Rajotte, E. G., and Norton, G. W. 2005. Developing  
531 IPM packages in Asia. In *Globalizing Integrated Pest Management: A Participatory Research*, , p.  
532 27–50.

533 N'guessan, C. A., Brisse, S., Le Roux-Nio, A.-C., Poussier, S., Koné, D., and Wicker, E. 2013. Development  
534 of variable number of tandem repeats typing schemes for *Ralstonia solanacearum*, the agent of  
535 bacterial wilt, banana Moko disease and potato brown rot. *J. Microbiol. Methods*. 92:366–374.

536 Norman, D. J., Zapata, M., Gabriel, D. W., Duan, Y. P., Yuen, J. M. F., Mangravita-Novo, A., et al. 2009.  
537 Genetic diversity and host range variation of *Ralstonia solanacearum* strains entering North  
538 America. *Phytopathology*. 99:1070–1077.

539 Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., et al. 2016. Mash:  
540 fast genome and metagenome distance estimation using MinHash. *Genome Biol.* 17:132.

541 Opina, N., Tavner, F., Hollway, G., Wang, J. F., Li, T. H., Maghirang, R., et al. 1997. A novel method for  
542 development of species and strain-specific DNA probes and PCR primers for identifying  
543 *Burkholderia solanacearum* (formerly *Pseudomonas solanacearum*). *Asia Pacific Journal of  
544 Molecular Biology and Biotechnology*. 5:19–30.

545 Pandiyaraj, P., Singh, T. H., Reddy, K. M., Sadashiva, A. T., Gopalakrishnan, C., Reddy, A. C., et al. 2019.  
546 Molecular markers linked to bacterial wilt (*Ralstonia solanacearum*) resistance gene loci in  
547 eggplant (*Solanum melongena* L.). *Crop Prot.* 124:104822.

548 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. 2015. CheckM: assessing  
549 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.  
550 *Genome Res.* 25:1043–1055.

551 Patil, V. U., Girimalla, V., Sagar, V., Chauhan, R. S., and Chakrabarti, S. K. 2017. Genome sequencing of  
552 four strains of Phylotype I, II and IV of *Ralstonia solanacearum* that cause potato bacterial wilt in  
553 India. *Braz. J. Microbiol.* 48:193–195.

554 Patil, V. U., Vanishree, G., Sagar, V., and Chakrabarti, S. K. 2020. Microsatellites composition in bipartite  
555 *Ralstonia solanacearum* genomes: A comparative study between the phylotypes. *Indian*  
556 *Phytopathology*. 73:767–770.

557 Peng, Y., Leung, H. C. M., Yiu, S. M., and Chin, F. Y. L. 2012. IDBA-UD: a de novo assembler for single-cell  
558 and metagenomic sequencing data with highly uneven depth. *Bioinformatics*. 28:1420–1428.

559 Pradhanang, P. M., Elphinstone, J. G., and Fox, R. T. V. 2000. Identification of crop and weed hosts of  
560 *Ralstonia solanacearum* biovar 2 in the hills of Nepal. *Plant Pathol.* 49:403–413.

561 Pradhanang, P. M., and Momol, M. T. 2001. Survival of *Ralstonia solanacearum* in soil under irrigated  
562 rice culture and aquatic weeds. *J. Phytopathol.* 149:707–711.

563 Price, M. N., Dehal, P. S., and Arkin, A. P. 2010. FastTree 2--approximately maximum-likelihood trees for  
564 large alignments. *PLoS One*. 5:e9490.

565 Prior, P., Ailloud, F., Dalsing, B. L., Remenant, B., Sanchez, B., and Allen, C. 2016. Genomic and proteomic  
566 evidence supporting the division of the plant pathogen *Ralstonia solanacearum* into three  
567 species. *BMC Genomics*. 17:90.

568 Rahman, A., Ali, F., Hossain, A. K. M., and Laila, L. 2011. Screening of different eggplant cultivars against  
569 wilt caused by fungi, bacteria and nematodes. *J. Exp. Sci.* 2:6–10.

570 Ramesh, R., Achari, G. A., and Gaitonde, S. 2014. Genetic diversity of *Ralstonia solanacearum* infecting  
571 solanaceous vegetables from India reveals the existence of unknown or newer sequevars of  
572 Phylotype I strains. *Eur. J. Plant Pathol.* 140:543–562.

573 Ramsuhag, A., Lawrence, D., Cassie, D., Fraser, R., Umaharan, P., Prior, P., et al. 2012. Wide genetic  
574 diversity of *Ralstonia solanacearum* strains affecting tomato in Trinidad, West Indies. *Plant*  
575 *Pathol.* 61:844–857.

576 Rasoamanana, H., Ravelomanantsoa, S., Yahiaoui, N., Dianzinga, N., Rébert, E., Gauche, M.-M., et al.  
577 2020. Contrasting genetic diversity and structure among Malagasy *Ralstonia*  
578 *pseudosolanacearum* phylotype I populations inferred from an optimized Multilocus Variable  
579 Number of Tandem Repeat Analysis scheme. *PLoS One*. 15:e0242846.

580 Ravelomanantsoa, S., Robène, I., Chiroleu, F., Guérin, F., Poussier, S., Pruvost, O., et al. 2016. A novel  
581 multilocus variable number tandem repeat analysis typing scheme for African phylotype III  
582 strains of the *Ralstonia solanacearum* species complex. *PeerJ*. 4:e1949.

583 Rivard, C. L., and Louws, F. J. 2011. Tomato grafting for disease resistance and increased productivity.  
584 Sustainable Agricultural Research & Education.

585 Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., and Kappler, U. 2014. Polyphasic taxonomic  
586 revision of the *Ralstonia solanacearum* species complex: proposal to emend the descriptions of  
587 *R. solanacearum* and *R. syzygii* and reclassify current *R. syzygii* strains. *Int J Syst Evol Microbiol.*  
588 2014;64:3087–103.

589 Sagar, V., Jeevalatha, A., Mian, S., Chakrabarti, S. K., Gurjar, M. S., Arora, R. K., et al. 2014. Potato  
590 bacterial wilt in India caused by strains of phylotype I, II and IV of *Ralstonia solanacearum*. *Eur. J.*  
591 *Plant Pathol.* 138:51–65.

592 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. 2019. The global  
593 burden of pathogens and pests on major food crops. *Nat Ecol Evol.* 3:430–439.

594 Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., and Goesmann, A. 2021. Bakta:  
595 rapid and standardized annotation of bacterial genomes via alignment-free sequence  
596 identification. *Microb Genom.* 7 Available at: <http://dx.doi.org/10.1099/mgen.0.000685>.

597 Scott, J. W., Wang, J. F., and Hanson, P. 2005. Breeding tomatoes for resistance to bacterial wilt, a global  
598 view. In *Proceedings of the First International Symposium on Tomato Diseases*, 695, eds. M. T.  
599 Momol, P. Ji, and J. B. Jones. International Society for Horticultural Science, p. 161–172.

600 Sedighian, N., Taghavi, S. M., Hamzehzarghani, H., van der Wolf, J. M., Wicker, E., and Osdaghi, E. 2020.  
601 Potato-infecting *Ralstonia solanacearum* strains in Iran expand knowledge on the global  
602 diversity of brown rot ecotype of the pathogen. *Phytopathology.* 110:1647–1656.

603 Sharma, P., Johnson, M. A., Mazloom, R., Allen, C., Heath, L. S., Lowe-Power, T. M., et al. 2022. Meta-  
604 analysis of the *Ralstonia solanacearum* species complex (RSSC) based on comparative  
605 evolutionary genomics and reverse ecology. *Microb Genom.* 8:000791.

606 Shin, I. S., Hsu, J.-C., Huang, S.-M., Chen, J.-R., Wang, J.-F., Hanson, P., et al. 2020. Construction of a  
607 single nucleotide polymorphism marker based QTL map and validation of resistance loci to  
608 bacterial wilt caused by *Ralstonia solanacearum* species complex in tomato. *Euphytica.* 216:54.

609 Singh, D., Sinha, S., Yadav, D. K., Sharma, J. P., Srivastava, D. K., Lal, H. C., et al. 2010. Characterization of  
610 biovar/races of *Ralstonia solanacearum*, the incitant of bacterial wilt in solanaceous crops.  
611 *Indian Phytopath.* 63:261–265.

612 Singh, G. 2012. *Check list of commercial varieties of vegetables*. Department of Agriculture and  
613 Cooperation, Government of India, Ministry of Agriculture.

614 Sinha, S.K. 1986. Bacterial wilt in India. In *Bacterial Wilt Disease in Asia and the South Pacific*, ed. G. J.  
615 Persley. AICAR Conference Proceedings, p. 28–29.

616 Sood, A. K., and Singh, B. M. 1993. Prevalence of bacterial wilt of solanaceous vegetables in the mid-hill  
617 subhumid zone of Himachal Pradesh, India. In *Bacterial Wilt (Proceedings from an International  
618 Conference held in Taiwan)*, 45, eds. G. L. Hartman and A. C. Hayward. AICAR Conference  
619 Proceedings, p. 358–361.

620 Subedi, N. 2015. Characterization and management of *Ralstonia solanacearum* populations in South  
621 Asia. Columbus: The Ohio State University.

622 Timila, R. D., and Joshi. 2007. Participatory evaluation of some tomato genotypes for resistance to  
623 bacterial wilt. Nepal. Agri. 8:50–55.

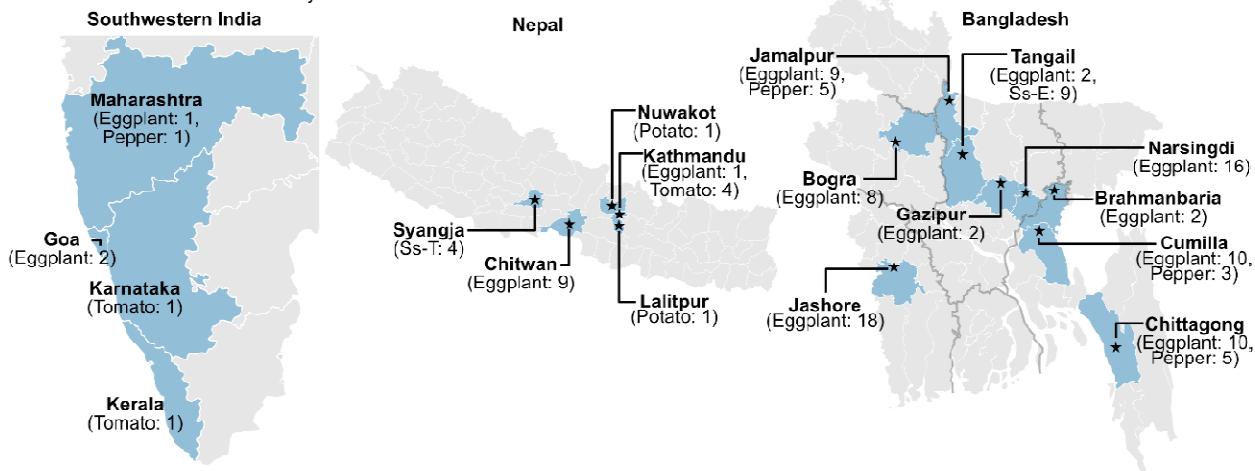
624 Titus Brown, C., and Irber, L. 2016. sourmash: a library for MinHash sketching of DNA. J. Open Source  
625 Softw. 1:27.

626 Versalovic, J., Scheneider, M., De Bruijn F, J., and Lupski, J. R. 1994. Genomic fingerprint of bacterial  
627 using repetitive sequence-based polymerase chain reaction. Meth. mol cell. 5:25–40.

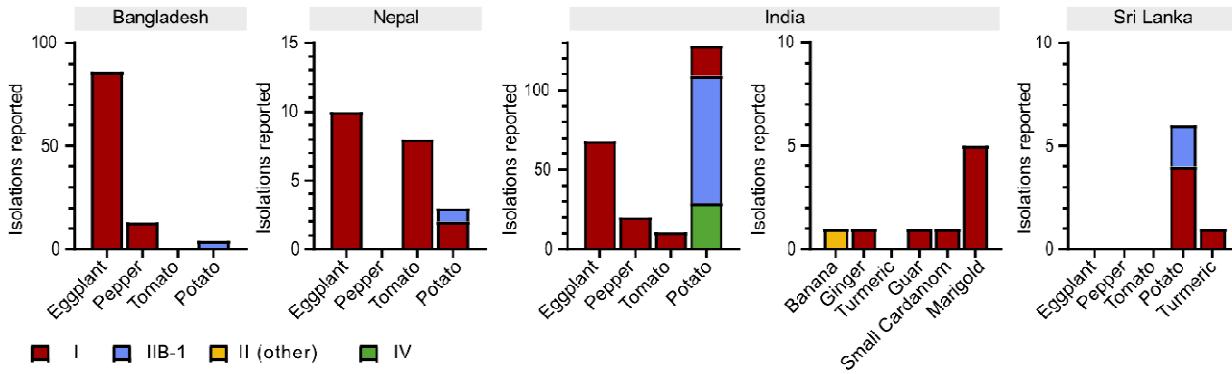
628 Villa, J. E., Tsuchiya, K., Horita, M., Natural, M., Opina, N., and Hyakumachi, M. 2005. Phylogenetic  
629 relationships of *Ralstonia solanacearum* species complex strains from Asia and other continents  
630 based on 16S rDNA, endoglucanase, and *hrpB* gene sequences. J. Gen. Plant Pathol. 71:39–46.

631 Wang, J. F., Ho, F. I., Truong, H. T. H., Huang, S. M., and Balatero, C. H. 2013. Identification of major QTLs  
632 associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to *Ralstonia solanacearum*.  
633 Euphytica. 190:241–252.

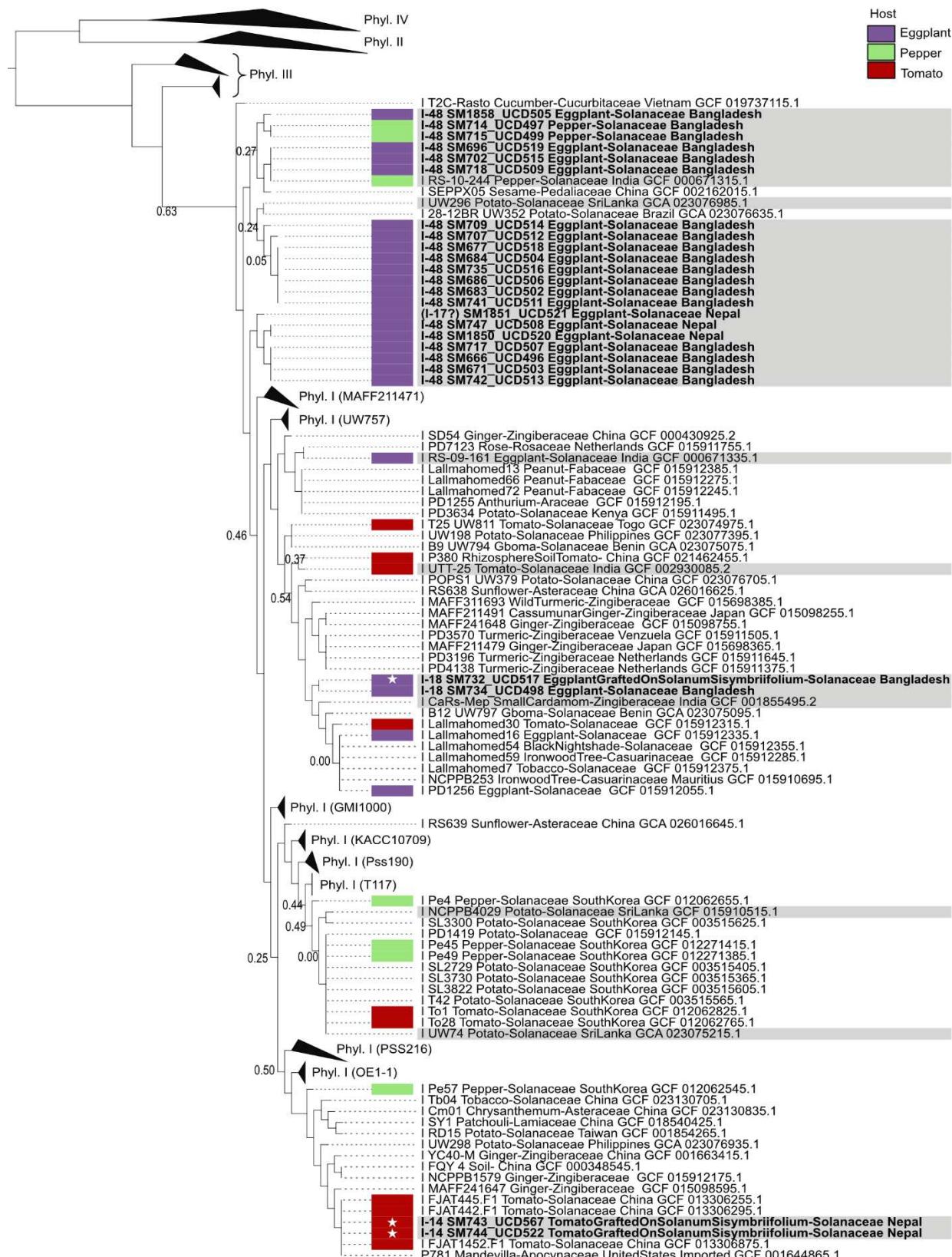
634 Wang, J.-F., Thoquet, P., Olivier, J., and Grimsley, N. 1998. Genetic Analysis of Quantitative Resistance  
635 Loci (QRL) of Tomato Variety Hawaii 7996 in Taiwan. In *Bacterial Wilt Disease: Molecular and  
636 Ecological Aspects*, eds. Philippe Prior, Caitlyn Allen, and John Elphinstone. Berlin, Heidelberg:  
637 Springer Berlin Heidelberg, p. 245–249.


638 Wick, R. R., Schultz, M. B., Zobel, J., and Holt, K. E. 2015. Bandage: interactive visualization of de novo  
639 genome assemblies. Bioinformatics. 31:3350–3352.

640 Xue, Q.-Y., Yin, Y.-N., Yang, W., Heuer, H., Prior, P., Guo, J.-H., et al. 2011. Genetic diversity of *Ralstonia*  
641 *solanacearum* strains from China assessed by PCR-based fingerprints to unravel host plant- and  
642 site-dependent distribution patterns. FEMS Microbiol. Ecol. 75:507–519.


643 Zulperi, D., Sijam, K., Ahmad, Z. A. M., Awang, Y., and Mohd Hata, E. 2014. Phylotype classification of  
644 *Ralstonia solanacearum* biovar 1 strains isolated from banana (*Musa* spp.) in Malaysia. Archives  
645 of Phytopathology and Plant Protection. 47:2352–2364.

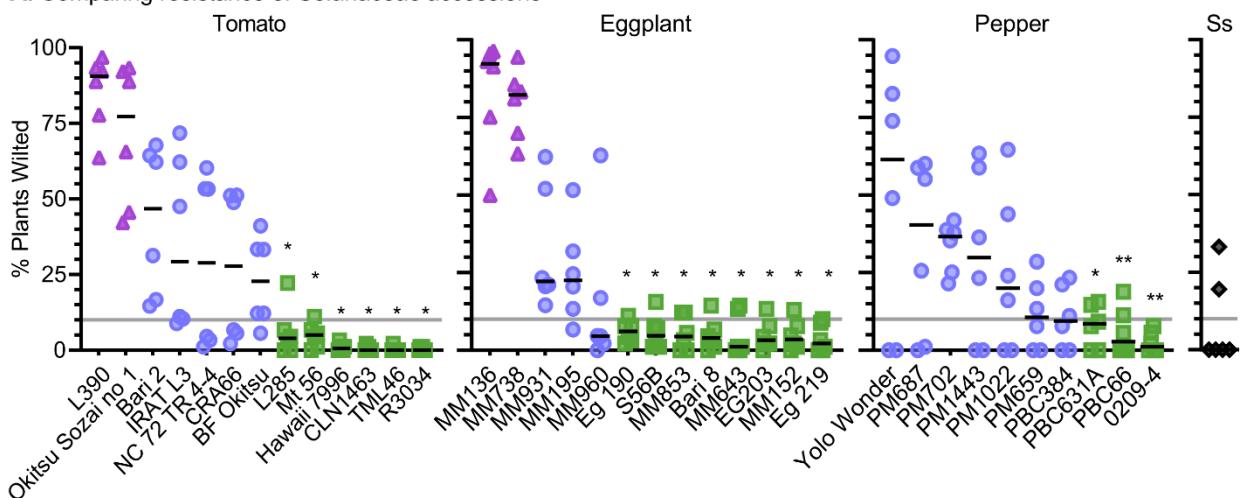
646 **Figures and Tables**


A. Strains characterized in this study

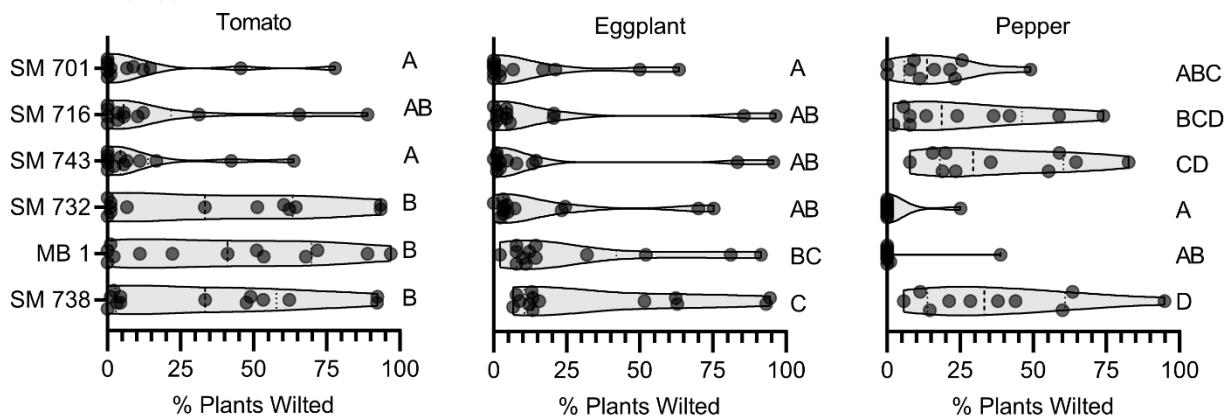


B. Meta-analysis of RSSC lineages isolated in South Asia




**Fig 1.** *Ralstonia solanacearum* species complex (RSSC) isolates in South Asia. (A) Origins of South Asian *R. pseudosolanacearum* phylotype I isolates characterized in this study. Stars indicate the sampling locations, and light blue shading indicates districts (Bangladesh/Nepal) and states (India) where isolates originated. Abbreviations: Ss-E, eggplant grafted on *S. sisymbriifolium* rootstock; Ss-T, tomato grafted on *S. sisymbriifolium* rootstock. (B) Meta-analysis of RSSC lineages isolated in South Asia in this study and the literature, adapted from Lowe-Power et al. 2022. This study included Bangladesh isolates (77 from eggplant, nine from grafted eggplant/*S. sisymbriifolium*, and 13 from pepper) and Nepal isolates (ten eggplant, four from tomato, two from potato, and two from grafted tomato/*S. sisymbriifolium*).




662 **Fig 2.** Phylogeny of South Asian and global RSSC. The phylogenetic tree was built with the KBase  
663 SpeciesTree tool, which creates a multiple sequence alignment of 49 conserved bacterial genes and  
664 generates a tree using FastTree. Analysis of the *egl* sequence suggested that the *R. pseudosolanacearum*  
665 genomes sequenced in this study belong to sequevar 48, 14, 18, and 17. Because the sole sequevar 17  
666 assignment to SM1851 was incongruent with the KBase tree, we indicate uncertainty in this assignment  
667 with "(17?)". Grey shading indicates isolates from South Asia. Bold indicates genomes sequenced in this  
668 study. Purple, red, and light green rectangles identify isolates isolated from eggplant, pepper, or tomato.  
669 White stars indicate isolates isolated from crop hosts that were grafted onto *Solanum sisymbriifolium*  
670 rootstock. Phylotype I clades without South Asian isolates were collapsed to triangles that reflect the  
671 amount of genetic diversity within the collapsed clade. Per triangle, one representative genome from  
672 the clade is listed. Additionally, phylotype II, III, and IV clades were collapsed. Bootstrap values are only  
673 listed if less than 0.70. A searchable PDF of the full tree is available on the FigShare repository  
674 ([doi.org/10.6084/m9.figshare.23733567](https://doi.org/10.6084/m9.figshare.23733567)).  
675

676

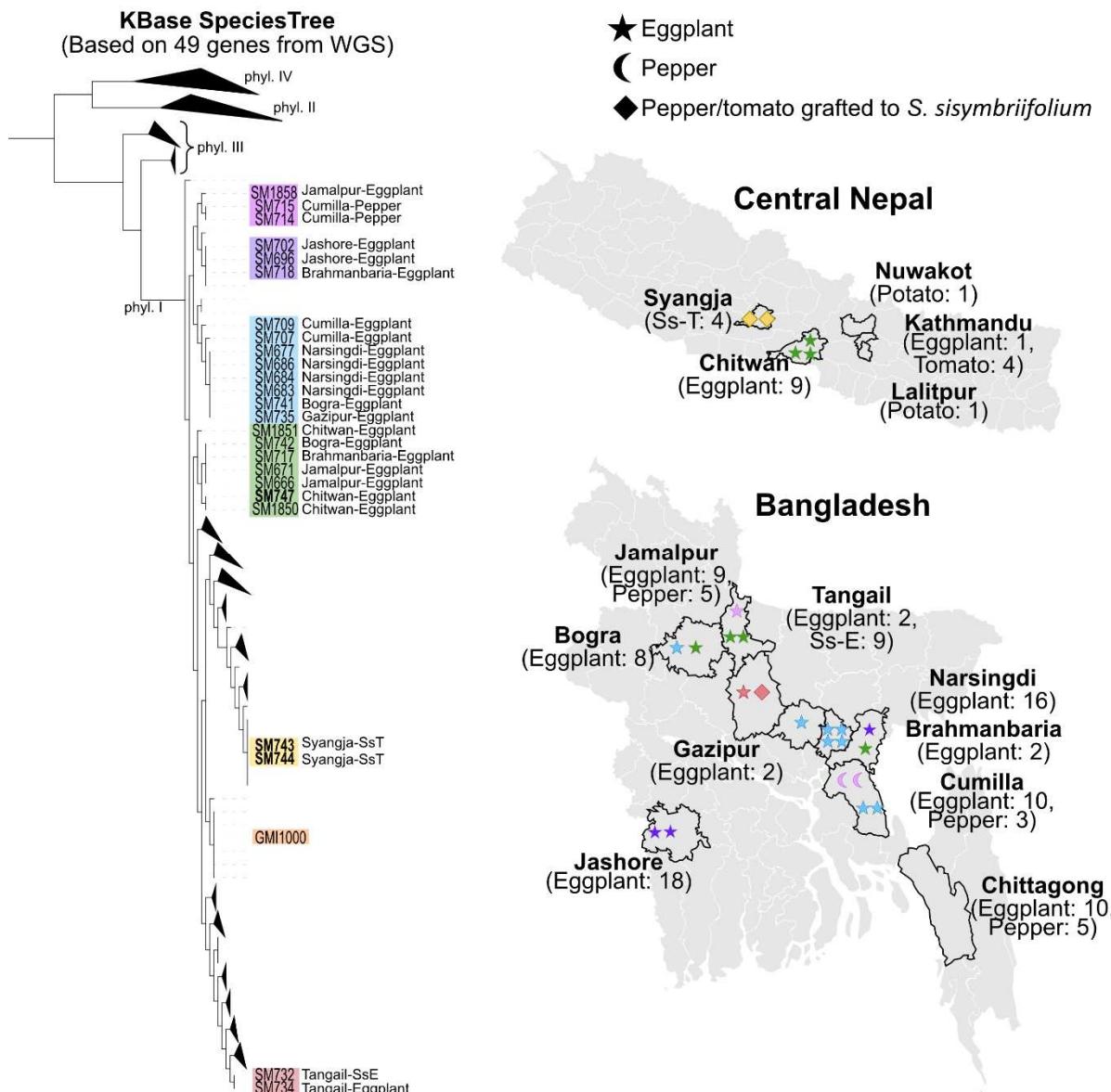
#### A. Comparing resistance of Solanaceae accessions



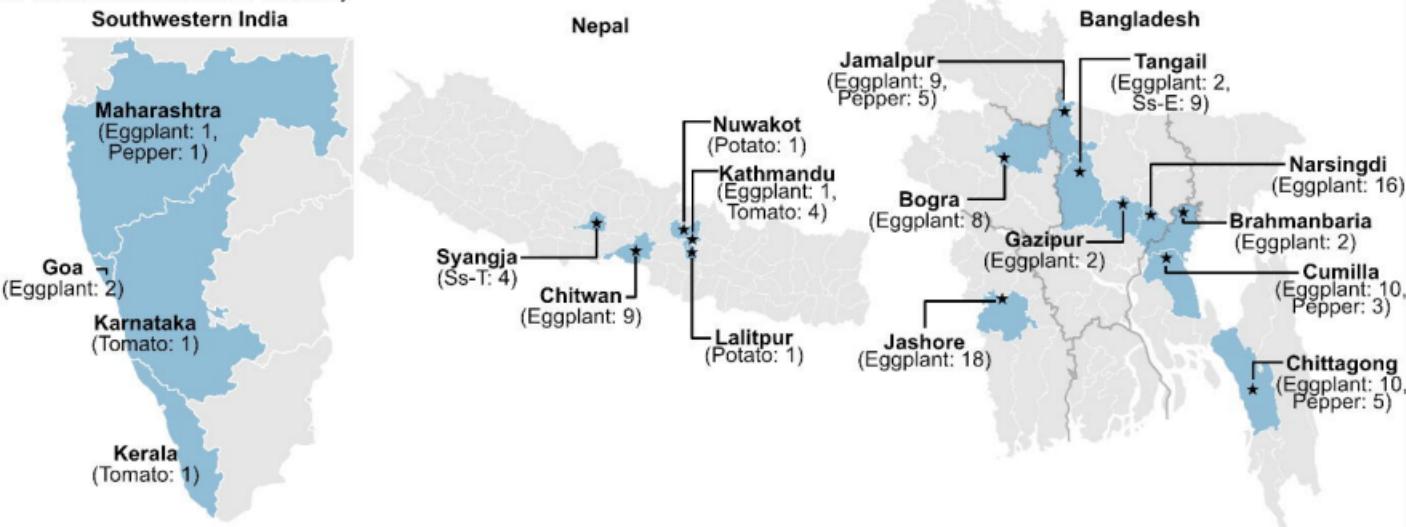
## B. Comparing aggression of six strains



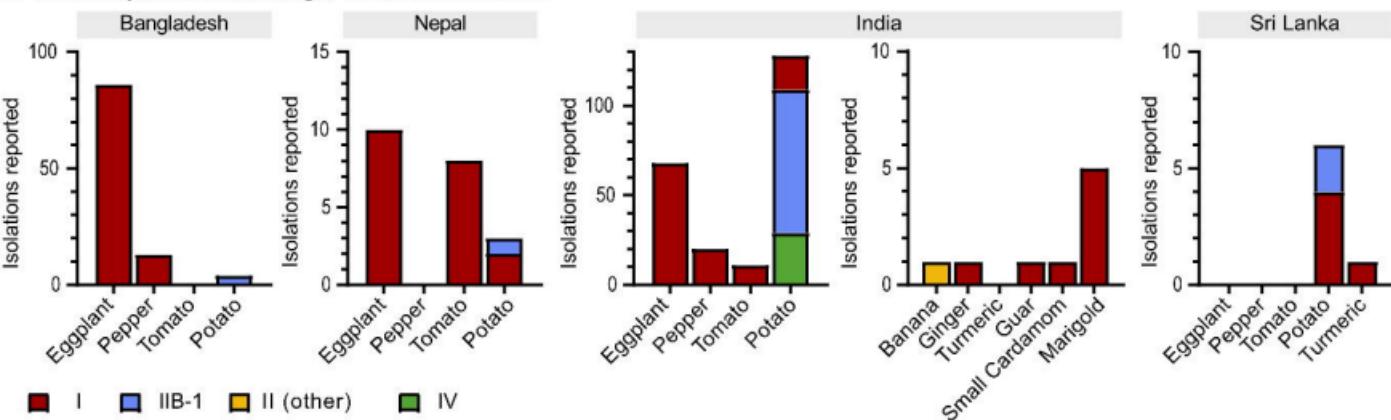
### C. Isolation locations and hosts of the six strains

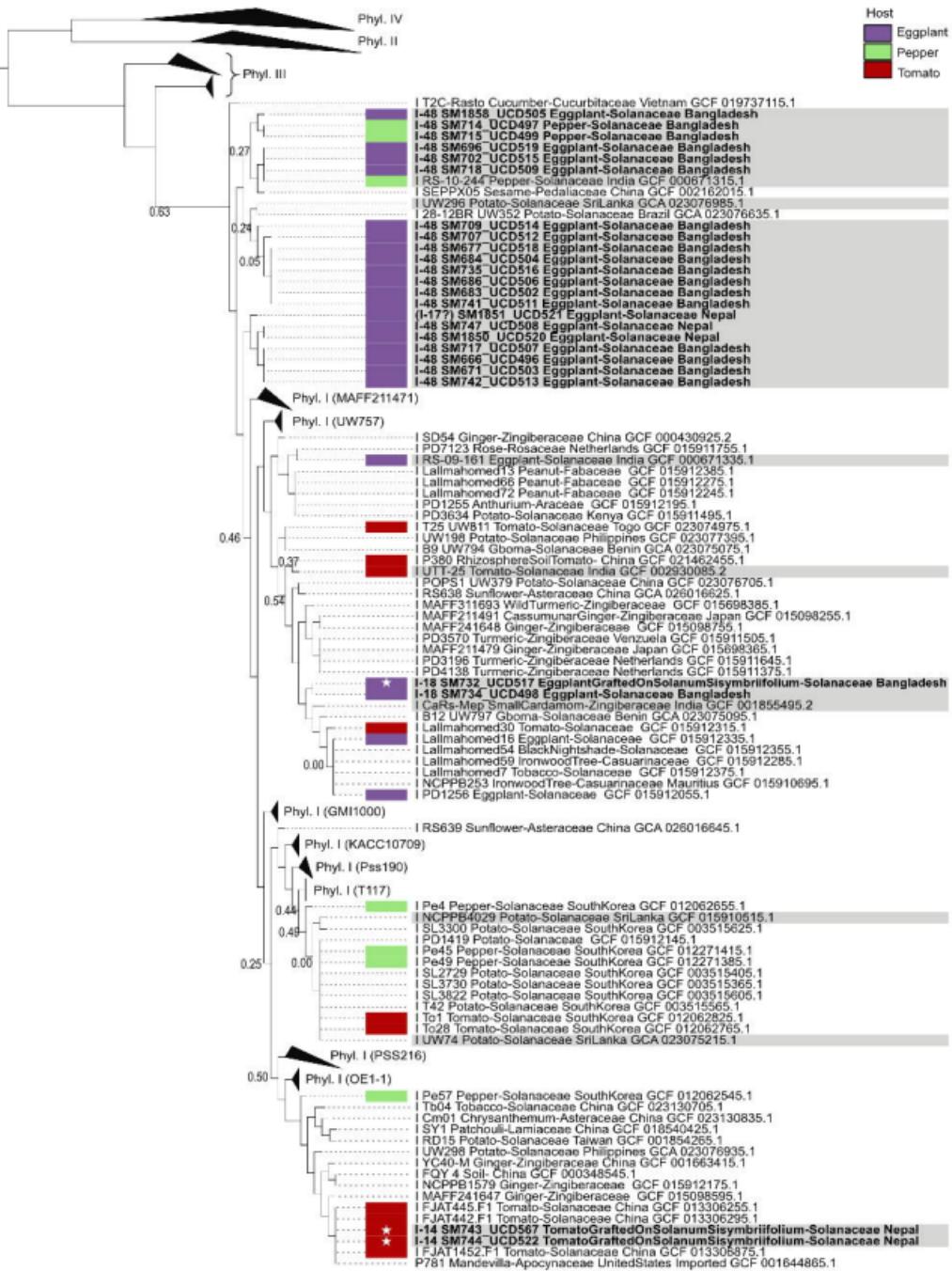



677

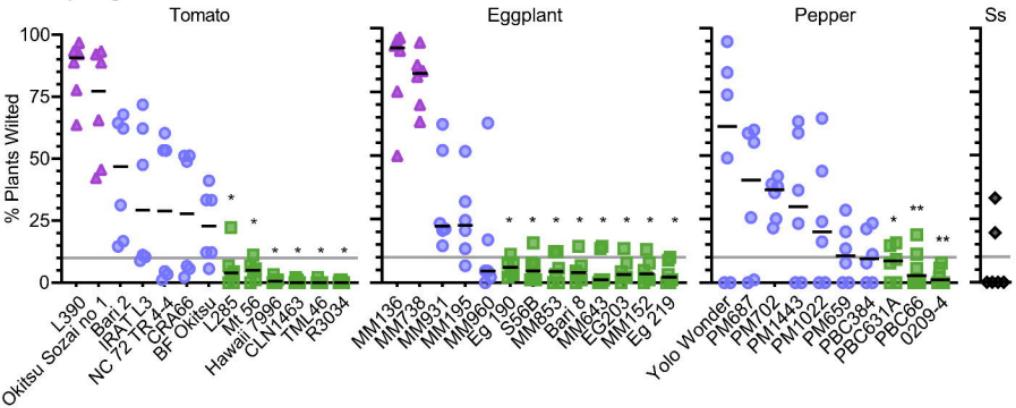

678 **Fig 3.** Disease interactions of 13 tomato accessions, 13 eggplant accessions, ten pepper accessions, and  
679 one *Solanum sisymbriifolium* (Ss) accession against six South Asian phylotype I isolates. Four-week-old  
680 seedlings were soil drench-inoculated with 5 ml of bacterial suspension ( $10^8$  CFU/ml) following root  
681 injury. The experiment was conducted twice as a randomized complete block design with three  
682 replications (blocked by time) of 15 plants per replication. Each point represents the average wilt  
683 incidence of two experiments recorded five weeks after inoculation. Isolates were SM701 (eggplant in  
684 Jessore, Bangladesh), SM716 (pepper in Comilla, Bangladesh), SM732 (eggplant grafted on *S.*  
685 *sisymbriifolium* in Tangail, Bangladesh), SM738 (eggplant in Bogra, Bangladesh), SM743 (tomato grafted  
686 on *S. sisymbriifolium* in Syangja, Nepal), and MB1 (eggplant in India). **(A)** Relative resistance of tomato,  
687 eggplant, and pepper accessions. Asterisks indicate significance compared to the most susceptible  
688 cultivar (L390 tomato, MM136 eggplant, and Yolo Wonder pepper) based on  $p<0.05$  with Friedman test  
689 and Dunn's multiple comparison correction. **(B)** Relative virulence of the six isolates across the  
690 accessions. Each symbol indicates the mean incidence of the isolate on a single accession. Letters  
691 indicate significance groups ( $p<0.05$ ) by Friedman test and Dunn's multiple comparison correction. **(C)**  
692 Origins of the six South Asian isolates.

693

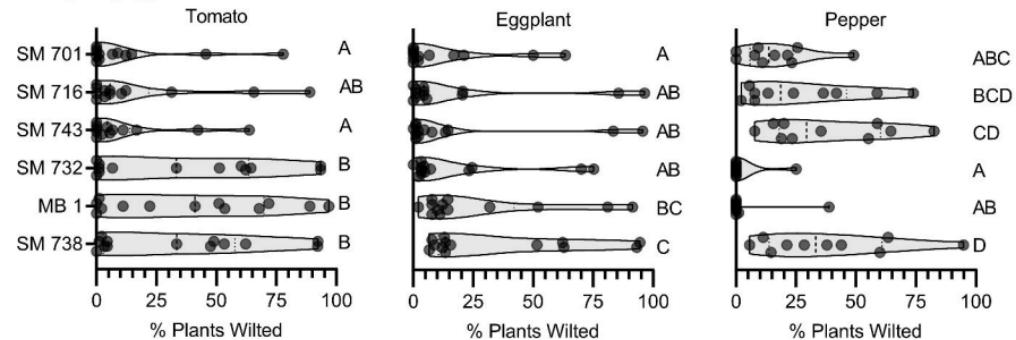

694



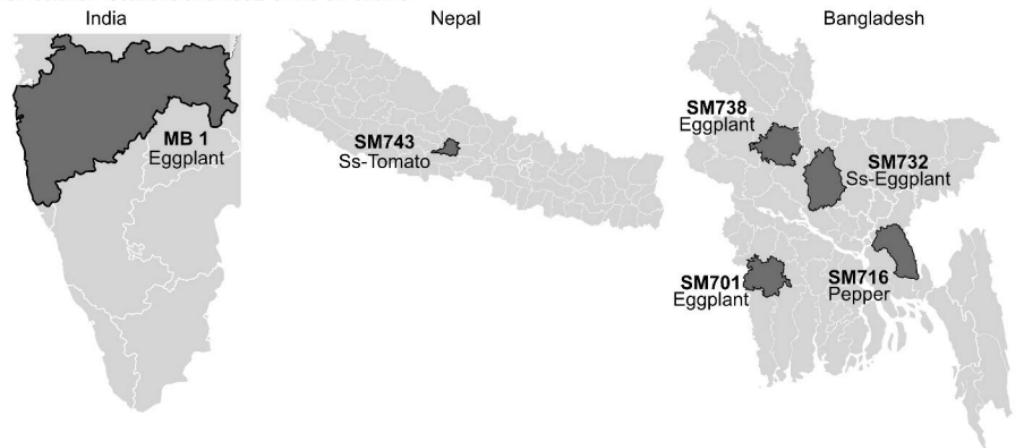

### A. Strains characterized in this study




### B. Meta-analysis of RSSC lineages isolated in South Asia

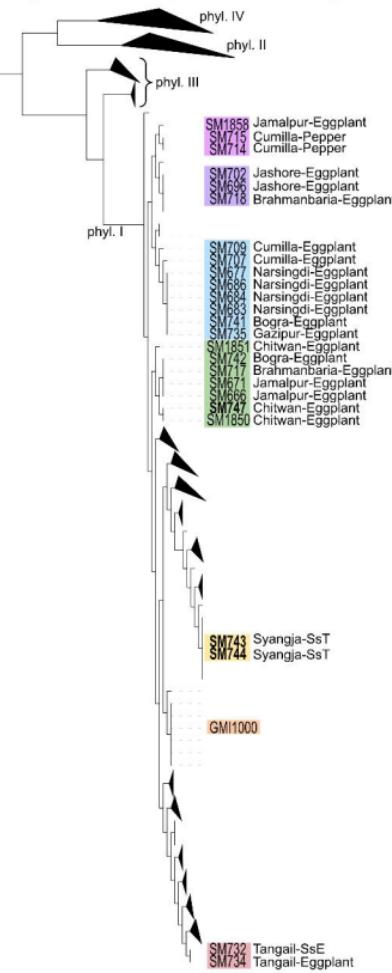






### A. Comparing resistance of Solanaceae accessions



### B. Comparing aggressiveness of six strains

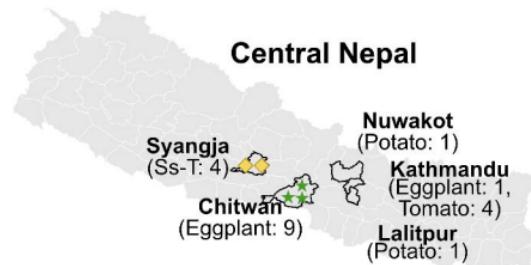



### C. Isolation locations and hosts of the six strains

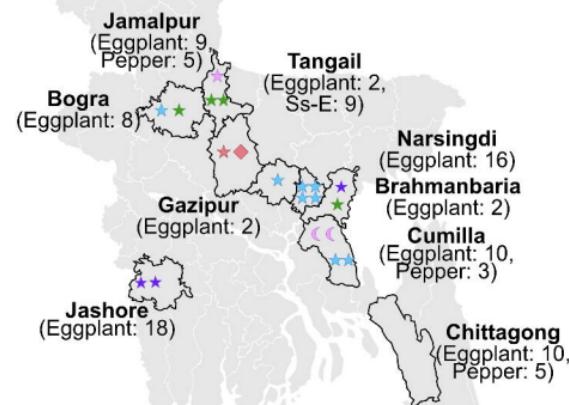


# KBase SpeciesTree

(Based on 49 genes from WGS)




★ Eggplant


☾ Pepper

◆ Pepper/tomato grafted to *S. sisymbriifolium*

## Central Nepal



## Bangladesh

