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ABSTRACT

Cancer is an evolutionary process characterised by profound intra-tumour heterogeneity. Intra-tumour
heterogeneity can be quantified using in silico estimates of cancer cell fractions of tumour-specific somatic
mutations. Here we demonstrate a data-driven approach that uses cancer cell fraction distributions to
identify 4 robust pan-cancer evolutionary signatures from an analysis of 4,146 individual tumour samples
(TCGA) representing 17 distinct cancer types. Evolutionary signatures defined a continuum of cancer
cell fractions representing neutral evolution, clonal expansion and fixation. Correlation of evolutionary
signatures with programs representing distinct mutational and biological processes demonstrated
that individual tumours enriched for clonal expansions and fixations were associated with immune
evasion and distinct changes in the tumour immune microenvironment. We observed a dynamic switch
between adaptive and innate immune processes as tumours undergo clonal fixation and escape immune
surveillance. We also identify mutational processes underpinning different modes of tumour evolution
and demonstrate that switching between adaptive and innate immune cell populations is accompanied
by the clonal expansion of driver genes that modulate tumour-stroma interactions’.
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Introduction

Genetic intra-tumour heterogeneity (ITH) has recently emerged as a universal feature of tumours>>. ITH
arises through an evolutionary process involving both cancer cells and the tumour microenvironment*
providing selective cellular adaptation that supports the fitness of evolving tumour clones™%. Large-scale
bulk sequencing efforts of cancer genomes’~'? have revealed tens of millions of genomic alterations,
providing an invaluable resource for understanding the complexities of cancer evolution. While studies
have focused on inferring evolutionary dynamics from ITH'!~16 it is largely unknown how ITH relates to
the tumour microenvironment.

Tumours evolve by the selection of specific traits that provide a survival advantage'’~'°. Adaptation to
diverse pressures including the host’s immune system and cytotoxic stress shape the evolution of cancer
cells by driving selective genomic modifications’’. Accumulation of mutations that overcome these
selection pressures allows cancer cells to populate most of the tumour and escape the immune system?!.
Dynamic shifts in tumour cell-intrinsic and extrinsic selection pressures control cancer evolution??. Dis-
tinct tumour cell-extrinsic selection pressures shape different tumour types with immune adaptation and

external carcinogens providing alternative evolutionary trajectories to field cancerization>%*.

Each tumour is an independent evolution running its own course. A long promise of studying cancer
evolution has always been finding commonalities in how tumours evolve such that the underlying driving
forces of a malignancy can be characterised to a point where the dynamics of tumour progression can be
accurately modelled. Analytical approaches to identify such commonalities have so far included phylo-
genetic trees” and neutral and selection dynamics from predefined mechanistic models'?. A challenge
shared with these approaches is that it is not straightforward to associate ITH with biological hallmarks
acquired during the multistep development of human tumours using the same patient cohort.

In this study, we propose a new machine learning framework to identify common patterns of cancer evolu-
tion dynamics, which we refer to as consensus evolutionary dynamic signatures (ES), which can bridge
the gap between evolutionary analysis and cancer hallmarks, making an assessment of the consequences
of ITH possible in bulk sequenced tumour samples.

Results

Modelling evolutionary dynamics in cancer genomes

Our method addresses two key limitations of the neutral formulation in Williams et al'2. First, instead of
modelling variant allele frequency (VAF), we model cancer cell fractions (CCFs). CCF represents the
percentage of cancer cells bearing a mutation in a tumour sample. This change allows the framework
to correct for normal contamination and copy number alterations, thereby, maximising the number of
SNVs eligible for modelling and improving SNV distributions (histograms). Second, we introduce a
generalised formulation to the neutral model to generate full CCF distributions. We achieve the transition
from modelling the number of mutations (M) as a function of VAF to the number of mutations as a
function of CCF using a change of variable.

dM  dM dt dVAF
dCCF  dt dVAF dCCF

ey

The generalised formulation is designed to capture various growth and population parameters for mutations
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with different growth behaviours in real tumours. Some mutations may follow a neutral growth pattern
with a constant growth rate, while others exhibit selective growth with varying growth rates possibly.

M(CCF) Z / dCCFdCCF Zw, (CCF) 2

where i represents i mutation groups with different growth behaviours. The G;(CCF) functions represent
growth functions describing these growth behaviours, and the parameters w; represent how these functions
give rise to the observed CCF distribution. Mutations with the same growth behaviours share the same
growth functions and parameters, resulting in clusters that follow certain distributions. Without loss
of generality, in the case of G(CCF) being an exponential growth function and i = 1, we can recover
the neutral model'?. More generally, cluster-like patterns in CCF distributions can be represented as a
weighted sum of different growth functions, accommodating a broader range of growth behaviours beyond
the specific case of exponential growth.

Analytically solving the equation is infeasible, as we do not know all the underlying growth functions that
contribute to the model. However, by pooling samples in a cohort, we can have a data-driven solution to
the above equation using matrix factorisation:

wo,1 ... Wo,j
[M\(CCF) ... M;(CCF)] = [Go(CCF) ... Gi(CCF)]x |"tt = Wl 3)
Wil ... Wij

where j represents the jth sample and G;(CCF) represents the ith growth function shared across tumours,
namely a signature. We use non-negative matrix factorization (NMF) to solve this matrix factorisation
problem and simultaneously extract the signatures and contributions of each signature among samples. Sim-
ilar methods have been successfully applied to mutational signatures®®2” and copy number signatures>8-3°.

Four consensus signatures of evolutionary dynamics in 2917 cancers

To identify robust ES, 2917 whole-exome sequencing samples across 12 cancer types from The Cancer
Genome Atlas (TCGA)3! were qualified for inclusion in the analysis with the following criteria (Figure 1a):
1) patients with a minimum of 30 reliably called private mutations. 2) patients with a suggested average
depth>120x32. 3) patients with high-quality cancer cell fraction estimation. These CCF estimations
were obtained using CCube?*3*, which has been shown to be robust across several benchmarks®>35.
4) cancer types with at least 100 samples. We constructed sample-by-CCF matrices for each cancer
type. Each row of a sample-by-CCF matrix consists of the number of mutations that fall in 100 discre-
tised bins between 0 and 1 over CCF, depicting the distribution of M(CCF) for each sample. We first
performed NMF for sample-by-CCF matrices of each cancer type and thus obtained type-wise evolution-
ary dynamics signatures (Supplementary Figure 2). The optimal number of signatures for each cancer
type was chosen by performing 1000 runs of the algorithm with different random seeds and 1,000-time
shuffles of the input matrix to avoid over-fitting (Supplementary Figure 1). Unsupervised hierarchical
clustering was then performed on all type-wise signatures, and the number of clusters was suggested by
the Hubert index. The final set of evolutionary dynamics signatures was obtained by normalising and
averaging type-wise signatures for each cluster (Figure 1b). Actually, we also observed similar signa-
tures by directly performing NMF on pan-cancer datasets, further reinforcing the robustness of our method.
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Our analysis identified four consensus evolutionary dynamics signatures using the TCGA cohorts (Figure
1b). Evolutionary Dynamics Signature 1 (ES1) displays a left-skewed distribution concentrated in the
low CCEF region, close to 0. ES1 appears to adhere to the 1/f distribution, which has previously been
discussed in terms of its relation to neutral evolution'>37-38, ES2 exhibits a bell-shaped distribution,
primarily concentrated within the CCF range of 0.25 to 0.55. ES2 could potentially represent mutations
coming out of the long tail of a typical neutral peak. ES3 appears to have a bell-shaped distribution
similar to ES2, yet it accommodates mutations shifting to higher CCF ranges, typically falling within the
range of 0.6 to 0.8. This level of CCF indicates mutations getting close to being fixed in the population,
demonstrating evidence of one or several subclones becoming the dominant clone in the sample. Tumours
with strong exposure to ES3 could therefore be under active subclonal expansion. In comparison to ES3,
ES4 displays a more pronounced shift towards a close to 100% CCF. It also exhibits a long-tail shape that
accommodates mutations that gradually approach fixation (CCF=1). Strong ES4 exposure indicates the
tumour has undergone significant clonal expansion.

Estimation of contributions of ES, namely signature exposure, can provide a coarse estimation of evolu-
tionary dynamics in the unit of tumour mutation burden (Count/MB) in a single tumour. This estimation
allows for downstream analysis to further refine the definitions and interpretation of ESs in terms of DNA
damage status, immune landscape, biological process, and clinical relevance. Here, we assigned these four
evolutionary dynamics signatures on 4146 samples across 16 cancer types to estimate the contribution of
each signature in each sample (Figure 1c). These 4146 samples were included based on criteria similar to
those used for signature identification but with relatively more leniency, as they did not require an average
depth >120x (Figure 1a).

Whole-genome sequencing dataset from the Pan-Cancer Analysis for Whole Genomes (PCAWG)'? was
included for validation. We found highly similar evolutionary dynamics signatures within the TCGA
and PCAWG cohorts, especially for ES3 and ES4 (ES3: cosine similarity = 0.96, Spearman correlation
= 0.95; ES4: cosine similarity = 0.98, Spearman correlation = 0.91; Figure 1d). These observations
demonstrate the robustness of both our analytical methodology and ESs across whole-exome sequencing
and whole-genome sequencing. We further associated ES exposures among 567 patients concurrently
sourced from both the TCGA and PCAWG cohorts. We observed a strong association within ES4, followed
by ES2 and ES3 (ES2: r=0.41, P < 2.2¢ — 16; ES3: r=0.49, P < 2.2¢ — 16; ES4: r=0.81, P < 2.2¢ — 16;
Figure 1e) between ES exposures. ES1 displayed the lowest level of correlation, possibly attributed to
limited coverage to detect low-frequency mutations within the tumour population using whole-genome
sequencing.

Signatures associated with DNA damage and biological processes

During cancer evolution, genomic instability provides materials for selection and favours tumour progres-
sion through multiple biological processes>>*’. To systematically investigate the underlying biological
process and DNA damage related to evolutionary dynamics signatures, we correlated ES exposures with
factors related to DNA damage from*!, including copy number burden*?, homologous recombination
deficiency (HRD)*?, intra-tumour heterogeneity (ITH)*?, aneuploidy score*?, predicted neoantigen*! and
mutation rate*'. We also retrieved weights of COSMIC mutational signatures for TCGA patients, which
are characterised by mutations arising from specific mutagenesis processes such as DNA replication
infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA
enzymatic editing®’.
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Our results suggest that ES1 is generally negatively associated with DNA damage (including copy num-
ber variation burden, HRD and Aneuploidy Scores), predicted neoantigens, mutation rate (Figure 2c)
and only a few mutational processes like mitotic clock process and dMMR process (Figure 2d). For
example, ES1 negatively correlated with HRD in BLCA (r = —0.47,P = 7 x 107>) and LUSC (r =
—0.45,P =2 x 107>), copy number burden score "Fraction Altered" in LUAD (r = —0.51,P =2 x 10~7)
and PAAD (r = —0.45,P =6 X 10~%), and SNV neoantigen in LUAD (r = —0.31,P =3 x 103) and
LUSC (r =-037,P =7 x 104 (Figure 2a). ES1 exhibited a positive association with the mitotic clock
process in CRC, STAD, and UCEC (r = 0.64,P = 3 x 1073!). ES1 was also associated with important
cancer-driven mutational processes, such as the APOBEC process in HNSC and BRCA, as well as the
dMMR process in UCEC (SBS15: r=0.58,P < 1 x 1074 (Figure 2b).

In comparison to ES1, ES2 showed similar but slightly weaker associations with DNA damage scores
across cancer types. Additionally, ES2 was positively correlated with the ITH score in several cancer types,
such as HNSC (r = 0.34,P =3 x 10~%) and PAAD (r = 0.38, P < 0.05) (Figure 2a). Furthermore, similar
to ES1, ES2 displayed a positive association with the Mitotic Clock, APOBEC, and dMMR processes.
However, this association was present in more tumour types for ES2 than ES1 (Figure 2b, d).

In general, ES3 and ES4 were both positively associated, opposite to ES1 and ES2, with aneuploidy score,
neoantigens, and traditional features of selection, such as silent/non-silent mutation rates (Figure 2c). They
also made a significant contribution to APOBEC, MMR, and HRD processes (Figure 2d). For example,
positive associations were observed between ES4 and APOBEC SBS2 (BLCA: r =0.77,P =1 x 1073,
LUAD: r =0.62,P =9 x 10~!6), HRD SBS3 (BRCA: r = 0.66,P = 2 x 102%), smoking SBS4 (LUAD:
r=0.84,P=2x10"%; LUSC: r = 0.75,P = 2 x 10719 and dMMR SBS15 (UCEC: r = 0.75,P =
3 x 10~7) (Figure 2b). Interestingly, we observed an overall opposite pattern in the association of
ES3 and ES4 with ITH and copy number burden score” Fraction Altered”, suggesting that distinct
states in the selection are captured, respectively (Figure 2c). For example, ES4 positively correlated
with “Fraction Altered” in LUSC (r = 0.44,P = 6 x 107?), whereas ES3 was negatively correlated
(r=—0.5,P =7 x 10~!1). ES4 was negatively associated with ITH, opposite to ES3, in HNSC (ES3:
r=0.24,P=8x10"3; ES4: r = —0.32,P =4 x 107) and LUAD (ES3: r=0.27,P =3 x 10~%; ES4:
r=—0.28,P =2 x 10~%) (Figure 2a).
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Figure 1. (Previous page.) Overview of study design and framework of identifying consensus evolutionary
dynamics signatures. a, Flowchart of patient inclusion and downstream analysis. Two-step process of estimating
patterns of evolutionary dynamics: 1) extracting consensus signature of evolutionary dynamics for each cancer type.
2) hierarchical clustering captures the most common patterns across cancer types. Downstream analyses were
performed by estimating the exposure of each consensus signature of evolutionary dynamics for TCGA samples. b,
Ilustration of how non-negative matrix factorization (NMF) identifies the consensus signatures of evolutionary
dynamics (ES). ¢, Estimation of contributions of ESs in a single tumour across cancer types. d, Identified ESs in two
independent cohorts, TCGA (WES) and PCWAG (WGS). The cosine similarity and correlation coefficient between
these cohorts are indicated for each signature and are provided in the Supplementary Table. e, Scatter plots depicting
the correlation of ES exposure for the same patients between TCGA and PCAWG cohorts (n=567). Spearman
correlations were estimated after applying a central log transformation to each signature exposure.
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Figure 2. Underlying biological process and molecular characterisation behind the evolutionary dynamics
signatures. a, Pan-cancer association between ES exposures and copy number burden, HRD, ITH, DNA damages
scores, predicted neoantigen and mutation rate in TCGA (only associations with a false-discovery rate P < 0.05 and
at least 30 samples are shown). b, Pan-cancer association between ES exposures and mutational signatures.
Spearman correlation coefficients and adjusted P values are as indicated (only associations with a false-discovery
rate P < 0.05 are shown). ¢-d, Association between ES exposures and copy number burden, HRD, ITH, DNA
damages scores, predicted neoantigen, mutation rate and mutational signatures in all TCGA samples. Spearman
correlation and adjusted P values are as indicated (only associations with a false-discovery rate P < 0.05 are shown).
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Signatures associated with immune infiltration

The immune microenvironment influences tumour evolution in terms of the complex interplay between
cancer cells and infiltrating immune cells and can be both prognostic and predictive of response to
immunotherapy®>*-44, The immune tumour microenvironment (TME) across cancer types can be charac-
terized by various immunogenomics methods, including assessment of total lymphocytic infiltrate from
genomic and H&E image data, immune cell fraction from deconvolution analysis of mRNA-seq data and
immune gene expression signatures*!'. Here, we systematically investigated the relationship of ESs with
these factors relating to the TME.

Proliferation and wound healing signatures were related to the cell cycle phase and associated with poor
prognosis in cancer patients*%®. We found that ES1 and ES2 were generally negatively associated with
proliferation and wound healing (Figure 3b). Specifically, ES1 was negatively associated with wound
healing and proliferation in BLCA, LIHC, LUAD, and LUSC (Wound Healing: r = —0.26,P = 2 X 1072;
Proliferation: » = —0.33, P = 3 x 10~2), STAD and UCEC. Interestingly, ES4 was positively associated
with wound healing (r = 0.34, P = 3 x 107°) and proliferation (r = 0.3, P = 3 x 10~%) in LUSC, whereas
ES1, ES2 and ES3 (Wound Healing: r = —0.32,P = 1 x 10~%; Proliferation: r = —0.31,P =2 x 107%)
were all negatively associated (Figure 3a).

In general, we observed ES3 was positively associated with immune infiltrations (including stromal
fractions, leukocyte fractions, lymphocyte infiltration scores, TGF- response, IFN-y response and
macrophage regulation), opposite to ES4 (Figure 3b). Specifically, ES3 was strongly positively as-
sociated with the leukocyte fraction in most types of cancer (HNSC: r = 0.4,P = 4 x 10~?; LIHC:
r=052,P=6x10"% LUAD: r =0.39,P =2 x 10~7; LUSC: r = 0.48,P = 3 x 10710, SKCM:
r=0.51,P =2 x 10719), whereas ES4 was negatively associated with the leukocyte fraction (HNSC:
r=—042,P=5x10"1% LIHC: r = —0.38,P =9 x 107>; LUAD : r = —0.37,P = 6 x 10~7; LUSC:
r=—0.44,P=1x10"% SKCM: r = —0.41,P =3 x 10~7) (Figure 3a).

The extensive observed opposing associations of ES3 and ES4 with leukocyte fraction prompted us to
investigate further the relationship between adaptive immune response represented by leukocyte fraction
and innate immune response represented by monocytes, and differences between ES3 and ES4. We found
that high ES4 was associated with increased monocyte signature enrichment, while high ES3 was related to
increased leukocyte fractions across cancer types (Figure 3c, d), which suggests a transition from adaptive
immune response to innate immune response with the increase of ES4 proportion.
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Figure 3. tumour microenvironment associated with deviance between ES3 and ES4. a, Pan-cancer association
between ES exposures and immune signatures in TCGA (Only associations with a false-discovery rate P < 0.05 and
at least 30 samples are shown). b, Association between ES exposures and immune signatures in TCGA. Spearman
correlation coefficients and adjusted P values are as indicated (only associations with a false-discovery rate P < 0.05
are shown). ¢, Scatter plot showing a general negative association between immune infiltration (leukocyte fraction
minus monocytes fraction) and deviance between ES3 and ES4 in TCGA. Blue dots denote the intensity of points
overlapped. d, Scatter plots showing negative associations between immune infiltration (leukocyte
fraction-monocytes fraction) and deviance between ES3 and ES4 across cancer types.
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Evolutionary dynamics subtypes reflect distinct immune mechanisms during cancer
evolution

Given the results from previous analyses, which have demonstrated distinct states and immune mechanisms
associated with ES3 and ES4 in the context of cancer evolution, we characterised differences in cancer
hallmarks between ES3 and ES4. Specifically, we focused our investigation on colorectal cancer (CRC),
stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC), which have been
previously studied regarding mutator phenotypes (POLE, MSS, MRR) and underlying immune escape
mechanisms>2.
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Figure 4. Survey of evolutionary dynamics subtypes in CRC, UCEC, STAD. a, Overview of ESs distribution
over evolutionary dynamics subtypes. Samples were categorized into three groups (high, medium, low) through a
trisection based on the difference between ES3 and ES4 proportions, where group high and low are defined as ES3H
and ES4" in the following analyses. b, Differences in immune infiltration were compared between ES subtypes and
p values were shown by Wilcoxon signed-rank test. ¢, Boxplots show the distribution of ES3 and ES4 proportions
stratified between three groups (high, medium, low) and are annotated by a Kruskall-Wallis P value. d, Boxplots
show the difference of immune escape scores stratified between ES subtypes and are annotated by a Kruskall-Wallis
P value. e, Immune infiltration distribution over ES3 and ES4 (ES3-ES4) deviation with a Spearman correlation
coefficient and P value. Boxplots show the difference in immune infiltration across MSI status and are annotated by
a Kruskall-Wallis P value.
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Our findings reveal that the mean ES3 proportion is significantly higher in tumours exhibiting evidence of
immune escape compared to those without such evidence (P =1 x 104, Kruskal-Wallis’s test). In contrast,
the distribution of ES4 proportion does not show a significant difference between the immune escape
groups (Figure 4d). Moreover, we observe that the mean difference between ES3 and ES4 proportions is
lower in MSS tumours compared to those with MMR and POLE mutations (P = 4 x 10~7, Kruskal-Wallis
test). Additionally, the mean difference between monocytes and leukocyte fraction in MSS tumours is
lower compared to tumours with MMR and POLE mutations (P = 8 X 10~7, Kruskal-Wallis test), as
depicted in Figure 4e.

To elucidate the states of evolutionary dynamics characterized by distinct immune mechanisms, we
categorised tumours into ES3H! or ES4H! subtypes, based on the differences in ES3 and ES4 proportions,
utilizing thresholds established at one-third and two-thirds as depicted in Figure 4a. Compared to the
ES4H1 group, the ES3H! group exhibited a significantly higher proportion of ES3 (P = 3 x 10~#, Kruskal-
Wallis test) and a lower proportion of ES4 (P = 2 x 1072, Kruskal-Wallis test) as illustrated in Figure
4c. We then examined processes associated with immune escape including clonal/subclonal neoantigen
numbers, mutator phenotypes, TCR/BCR diversity, and Th1/Th2/Th17 signatures in the ES3" and ES4Hi
groups. We observed that the ES3H! group exhibited a marked immune response, with increased neoantigen
load, lower HRD score, reduced copy number burden, higher mutation rate, increased expression of Thl
cells, and higher T-cell receptor diversity scores compared to the ES4t! group (P < 0.01, Wilcoxon test),
as depicted in Figure 4b. These findings suggest that the ES4H! group aligns with characteristics indicative
of later stages of tumour evolution, displaying higher HRD and copy number burden, and having already
developed mechanisms associated with immune escape.

Evolutionary dynamics subtypes reflect driver mutations acting during late-stage cancer
evolution

Based on our previous observations (Figure 4), we hypothesize that the switch from an ES3H! state towards
an ES4H1 state during late-stage evolution, is accompanied by increased copy number burden and immune
escape associated with dynamic changes in the tumour immune microenvironment. Mutation frequency
generally displays an upward trend during clonal expansion under positive selection, while it tends to
decrease when other stronger competitive subclone expand or under negative selection!>47-43 We posit
that ESs capture groups of mutations with distinct growth behaviours during the evolutionary process of
cancer. However, the specific mutation content within these groups may vary among individual patients.
Therefore, identifying mutations undergoing the evolutionary process from an ES3H! state towards an
ES4Hi state can provide insights into the selection pressures acting upon driver mutations during late
cancer evolution across various cancer types.

To detect the evolutionary modes of driver mutations, we constructed CCF distributions for the ES3Hi and
ES4ti groups separately for 409 consensus driver mutations identified by a comprehensive PanCancer
analysis*. We then conducted a Kolmogorov-Smirnov test across cancer types to identify mutations
with a significant transition between these two CCF distributions. The direction of the transition was
determined by comparing the means of two CCF distributions. We define a driver mutation that acts on
late-stage evolution in a type of cancer with a rightward transition from CCF distribution in ES3H! subtype
to CCF distribution in ES4t! subtype. Such a transition of a driver mutation indicates the presence of
stronger positive selection acting on subclones that do not carry this mutation. This observation implies a
reduced significance of this driver mutation in driving switching between adaptive and innate immune
mechanisms during late-stage evolution. Mutations show similar CCF distributions within ES3H! and
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Figure S. Evolutionary dynamics subtypes reflect different selection on driver mutations. a, Identification of
mutations enriched in both ES3H! tumours and ES4% tumours with a transition pattern on the CCF spectrum. b,
Heatmap showing the distribution of mutations with identified transition in ES3H! versus ES4H! across cancer types
and pathways. The colour spectrum shows the significance level and direction of identified transition on mutation
CCFs distribution between ES3H and ES4"! tumours. Only differences with false-discovery rate P < 0.05
(Kolmogorov-Smirnov test) are shown. ¢, Alteration frequencies distribution of enriched mutation with transition
pattern across cancer types and pathways. d, Donut chart showing the frequency distribution of mutations identified
with transition pattern per pathways.

ES4H1 subtypes are considered neutral or early drivers that already reach fixation in both subtypes.

We found the CCFs distribution of several drivers in ES3H move towards a higher frequency in ES4
in most cancer types, notably ATRX, ARIDIA, KMT2D, PTEN, ARID1A, PIK3CA, SETD2, KMT2C,
RB1, CTNNBI, FAT1, FBXW7, BRAF, NOTCH1, CDKN2A, ERBB2 and KDM6A. For example, the
CCFs distribution of FBXW?7 in ES3H! (median = 0.71, n = 264) was significantly different from CCFs
distribution in ES4M! (median = 1, n = 154) in colorectal cancer (P = 6 x 1078, Kolmogorov-Smirnov test).
Interestingly, we also observed a transition pattern toward lower frequency in CCF distribution between
ES3H and ES4H! for drivers in a few cancer types, which may be in line with negative selection. For
example, the CCFs distribution of NF1 in ES3H! (median = 0.67, n = 180) was significantly different from
the one in ES4H (median = 0.29, n = 45) in BRCA (P = 1.5 x 10~%°, Kolmogorov-Smirnov test) (Figure
5a).

Importantly, we found that clonal drivers under selection are enriched for key oncogenic pathways across
cancer types, including chromatin, RTK/RAS, PI3K, and Notch (Figure 5b). We found Chromatin
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Modifiers (including KMT2D, ARID1A, KMT2C etc.,), RTK/RAS (including NF1, ERBB2, KRAS,
BRAF, etc.,) and PIK3 (including PTEN, PIK3CA, PIK3R1, etc.,) pathways account for a great part
of the identified drivers under selection, especially in CRC, STAD, UCEC and LUAD (Figure Sc,d).
These observations suggest the roles of selection for specific drivers in different cancer types in regulating
subclonal expansion and tumour-stroma interactions that drive switching between adaptive and innate
immune mechanisms.

Evolutionary dynamics subtypes show prognostic value in patient survival
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Figure 6. Evolutionary dynamics subtypes exhibit prognostic value. a, Kaplan-Meier plots with estimated
hazards ratio and the 95% confidence interval show the difference in patient survival between evolutionary dynamics
subtypes (using a quarter and three quarters as thresholds) in CRC, UCEC, LIHC, KIRP and PRAD. P values were
computed from the Cox Proportional Hazards (CoxPH) regression modelling after applying a central log
transformation to each signature exposure. The number of patients within each subtype is shown in the legend. b,
Hazard ratio table for patient survival stratified based on ES subtype, derived from CoxPH regression model across
cancer types.

We investigated further whether evolutionary dynamics subtypes are prognostic in 16 cancer types (Figure

6b). ES3H! and ES4H! samples were defined for each cancer type using one-quarter and three-quarters of
the difference between ES4 and ES3 proportions as thresholds. We identified a worse progression-free
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survival for the ES4t! subtype in five cancer types, including CRC (HR = 2.5, 95%CI = (1.03,5.92),
P =0.043, log-rank test), KIRC (HR = 1.8, P = 0.05, log-rank test), LIHC (HR = 1.9, P = 0.043, log-rank
test), PRAD (HR = 2.9, P = 0.004, log-rank test), UCEC (HR = 2.3, 95%CI = (1.11,4.98), P = 0.025,
log-rank test) (Figure 6a).

Discussion

In our pipeline, we identified consensus evolutionary signatures in tumours, termed evolutionary dynamics
signature (ES), making assessments of evolutionary dynamics possible under the limitation of single
time-point data for individual tumours. We approximate a generalised mathematical formula for modelling
evolutionary dynamics in cancer genomes based on the population genetics theory as a data-driven solu-
tion using non-negative matrix factorization (NMF). Similar methods have been successfully applied to
mutational signatures®®2” and copy number signatures?®—?. This framework consists of four major steps,
(1) NMF-based type-wise signature extraction, (2) Hierarchical clustering into pan-cancer evolutionary
dynamics signatures, (3) Signature assignment, and (4) Signature characterisation. These signatures
can introduce interpretability by integrating with other patient-level data, such as gene expression, DNA
damage scores, mutational signatures and immune infiltration. Besides, these signatures can be derived
from bulk sequencing data like WES and WGS, which is rapid and cost-effective, providing great utility
to clinical implementation.

Evolutionary signatures defined a continuum of cancer cell fractions representing neutral evolution, clonal
expansion and fixation. Our analysis uncovered important pan-cancer correlations between evolutionary
signatures and immune infiltration, DNA damage and cancer-driven mutational processes (Figure 2).
Specifically, we identified a dynamic transition between adaptive and innate immune processes as tumours
undergo clonal fixation and escape immune surveillance (Figure 3). tumours with high ES4 signature
enrichment were associated with poor survival across several cancer types (Figure 6), highlighting the
clinical utility of our approach. This work also reveals driver mutations that are specifically enriched
during clonal expansion and fixation (Figure 5). The selection of distinct driver mutations in the context
of lymphoid-poor and myeloid-rich immune micro-environments provides important insights into the
dynamics of tumour progression across several cancer types.

We found that the quantification of ES contribution is influenced by sequencing coverage depth. Specif-
ically, in the context of ES situated in regions of low CCF (ES1), the signature exposures estimated in
both WGS and WES lack a robust correlation among individual patients (Figure 1e). A higher coverage
level of sequencing data might be necessary to ensure the reliability of ES1 estimation. In this paper, we
estimated the contribution of evolutionary dynamics signatures using a single bulk-sequencing sample
for a patient. Further application to multi-region sequencing will be required to reflect the tumour spatial
structure for individual patients. Our analysis does not provide prognosis implications using ES subtypes
across all cancer types, suggesting tailoring cancer-specific signatures might be helpful to enhance the
clinical application in specific cancer types.

In summary, evolutionary dynamics signatures provides valuable insight into how clonal expansion link
to dynamic changes in the tumour immune microenvironment. We show that through signature analysis
we can detect the clonal expansion of driver genes that modulate tumour-stroma interactions and identify
subtypes with prognosis significance in many cancer types. Our study creates an opportunity to understand
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the complexity of ITH during cancer evolution and its potential implication in bulk-sequenced tumour
samples.

Data availability

PCAWG protected datasets are controlled access that is subject to data usage agreement. Somatic variant
calls generated by PCAWG datasets is available for download at https://docs.icgc.org/pcawg/data/. In
accordance with the data access policies of the TCGA projects, most molecular, clinical and specimen
data are in an open tier which does not require access approval. Immune signatures used in this paper is
described here*! and available for download. The source data underlying Figs. 2—-6 and Supplementary
Figs are provided as a Source Data file.

Code availability

The code is available at Github repository.
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Methods

NMF-based signature extraction of cancer evolutionary dynamics in a tumour

We use non-negative matrix factorization (NMF) to solve this matrix factorisation problem and simultane-
ously extract the signatures and contributions of each signature among tumour samples. The framework of
identification of evolutionary dynamics patterns based on NMF in this study performs separate steps as
follows (see Figurelb):

Step 1: Construct type-wise CCF-by-sample matrices. To assemble mutation size over CCF of tumours
into matrices, the continuous interval of CCF between 0 and 1 is divided into 100 bins. The CCF-by-sample
matrix was constructed for each cancer type. Each matrix has a size of 100 x n;y., where n;y,, denotes
the number of samples in a specific cancer type. In the CCF-by-sample matrix, columns represent tumour
samples, rows represent the CCF span (100 rows as 100 intervals between 0 and 1), and each cell indicates
the number of mutations falling within the corresponding CCF interval.

Step 2: Determine the optimal number of signatures. A critical step of NMF is the estimate of
factorization rank, i.e., the suggested number of signatures for factorization. Brunet algorithm>® was
performed for 1000 runs with different random seeds between ranks 3-10. The rank was determined
based on six quality measures (cophenetic coefficient, dispersion, evar, residual sum of squares, euclidean
distance, and KL divergence). To detect overfitting, 1,000-time shuffles of the input matrix, by permuting
the rows of each column, were also performed to get a null estimate of each of the scores. The rank was
estimated for samples of different cancer types with the deemed optimal value under these constraints.
Step 3: Identification of consensus signatures of evolutionary dynamics. The normalised CCF-by-
sample matrix of each cancer type was subjected to the NMF algorithm separately with the corresponding
estimated rank in step 2. We normalise it here due to the huge difference in mutation burden among
samples, ranging from tens to tens of thousands of mutations, which can make the evolutionary patterns of
samples with small mutation loads obscure or even misclassified. Unsupervised hierarchical clustering
was then performed on all signatures obtained to identify the consensus signatures across cancer types.
The proper number of clusters was determined by the Hubert index as the significant peak in the Hubert
index second difference plot. As a result, the consensus signatures obtained ended up averaging all the
type-wise signatures allocated to the same cluster.

Datasets

For each patient, we curated somatic mutation, integer-level copy number, tumour purity (fraction of
tumour cells in the sample) and overall ploidy, donor clinical profiles and survival data from The Cancer
Genome Atlas (TCGA). All somatic mutation samples from the TCGA were retrieved through the
National Cancer Institute Genomics Data Commons Portal (TCGA Unified Ensemble "MC3" mutation
calls, version 0.2.8). Only patients with matched germline (from blood samples) and primary tumour
information available were considered.

Estimation of cancer cell fractions

To estimate the cancer cell fraction (CCF) of somatic mutations in tumour samples, we used Ccube
algorithm, which allows for clustering and estimating cancer cell fractions (CCF) of somatic variants
(SNVs/SVs) from bulk whole genome/exome data. The method takes the reference and alternative allele
read counts of called variants, corrects for copy number alterations and purity, and then produces CCF
estimates for all variants within the tumour sample. It identifies clusters of mutations, which can be used
to determine the clonal architecture of individual tumour samples. Cancer cell fraction values larger than 1
(arising from sequence noise and copy neutral LOH events) were assumed to be 1.
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Signature assignment to individual patient samples

The consensus evolutionary dynamics signatures were used to assign an activity for each signature to 4146
TCGA patient samples. Linear Combination Decomposition (LCD) was performed to assign the amount
of each signature harboured by tumour samples in terms of a decomposition of the given CCF-by-sample
matrix V with known consensus signature W by solving the minimization problem min(||W «H —V||)
with additional constraints of non-negativity on H where W and V are known. After assigning signatures
to each patient, we can estimate the contributions of each signature in the individual patient samples,
which allows for subsequent patient-level analyses.

Evolutionary dynamics signature validation

The signature identification procedure described above was applied to 2365 whole-genome sequenced
samples from the ICGC Pan-Cancer Analysis of Whole Genomes Project (PCAWG). The number of
signatures was fixed at 4 for matrix decomposition with NMF. Pearson correlation was computed between
the TCGA signature-by-component weight matrix and the PCAWG signature-by-component matrix,
signature by signature.

Association with DNA damage, biological processes and immune microenvironment

We collected factors related to DNA damage from Thorsson et al.*!, including homologous recombination
deficiency (HRD)*?, intratumor heterogeneity (ITH)*, aneuploidy Score**, copy number burden score
("Fraction Altered" and "Number of Segments")*?, predicted neoantigen ("Indel Neoantigens" and "SNV
neoantigens") and mutation rate*'. Besides, we downloaded the weights of all known SBS mutational
signatures for TCGA patients from COSMIC (v3.3 - June 2022).

To systematically investigate the interpretation of ESs in terms of the underlying immune microenviron-
ment, we collected factors related to immune expression signatures, including macrophage regulation
signature’! ("Macrophage Regulation"), immune cellular fraction estimates*! ("Macrophages" and "Mono-
cytes"), lymphocyte infiltration®? ("Lymphocyte Infiltration Signature Score"), TGF-f response’> ("TGF-
beta Response"), IFN-y response®* ("IFN-gamma Response"), wound healing®> ("Wound Healing"),
tumour-infiltrating lymphocytes from TCGA H&E images*' ("TIL Regional Fraction"), proliferation
signature>* ("Proliferation"), leukocyte and stromal fractions*' ("Leukocyte Fraction" and "Stromal Frac-
tion"). we also collected factors related to immune mechanisms, including immune escape annotation’®,
clonal and subclonal neoantigen numbers>®, mutator phenotypes>’, T-cell receptor (TCR) and B-cell

receptor (BCR) diversity*!, Th1/Th2/Th17 signatures’”.

We evaluated the association of these factors and the constituent components of evolutionary dynamics
signatures for 4146 TCGA patients across cancer types. Association between evolutionary dynamics signa-
ture exposures and features related to DNA damage, biological processes and immune microenvironment
were performed using one of two procedures: for a continuous association feature, Spearman correlation
was performed with adjusted p values for multiple testing using the Benjamini-Hochberg method>3; for a
binary association feature, samples were divided two groups and a Mann-Whitney U-test was performed
to test for differences in signature exposure medians between groups. Besides, the association between
evolutionary dynamics subtypes and features related to DNA damage, biological processes and microenvi-
ronment were performed using the Wilcoxon signed-rank test. The Kruskal-Wallis test was also performed
to test the differences between groups.
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Identification of evolutionary dynamics subtypes

To investigate the various states of evolutionary dynamics characterized by distinct immune mechanisms,
we categorised tumours into ESig3™! or ESigd™! subtypes, separately for each cancer type. This subtyping
was based on the disparities in proportions of ES3 and ES4, using predefined thresholds set at one-third
and two-thirds. Consequently, the ESig3H! and ESig4H! subtypes were established as balanced labels for
each specific cancer type, enabling the exploration of group-wise differences in immune mechanisms and
prognosis.

Detection of selection modes on driver mutations in cancer

We constructed CCF distributions in ES3H and ES4"! groups separately for 409 cancer consensus driver
mutations identified by a PanCancer analysis*® to detect the evolutionary modes of driver mutations. We
then identified the mutations with a significant transition between these two CCFs distributions using
the Kolmogorov-Smirnov test across cancer types. The transition direction was determined based on the
mean of two CCFs distributions. We define a driver mutation that undergoes positive selection in a type of
cancer with a rightward transition from CCF distribution in ES3H! subtype to CCF distribution in ES4H
subtype. Driver mutations with opposite transition directions are determined as under negative selection.
Mutations show similar CCF distributions within ES3" and ES4H! subtypes are considered as neutral or
early drivers that already reach fixation in both subtypes.

Survival Analysis

Cox Proportional Hazards (CoxPH) regression modelling was used to determine whether ES subtype
(ES3Hi and ES411) predicts patient survival. A central log transformation was applied to each signature’s
exposure prior to its submission to the CoxPH model. The Hazard Ratio (HR) and the 95% confidence
interval (95%CI) of HR were calculated with p values. A False Discovery Rate (FDR) correction using
the BH method was applied to p values. A test of Schoenfeld residuals was performed to assess the PH
assumption. The Kaplan-Mier estimator was used to create the survival plots and the log-rank test was
used to compare the difference in survival curves.
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Supplementary Materials
Rank estimate for NMF on TCGA cohorts

To extract type-wise evolutionary dynamics signatures using NMF for the TCGA cohort, we need to
determine the proper rank for each cancer type separately following the above rank estimate procedure.

To achieve this, we run 1000 runs of NMF with Brunet’s algorithm for each rank between 3 and 12 and
each cancer type using the original and randomised datasets. We then compute seven quality measures for
each condition, including sparseness, residual sum of squares, explained variance, dispersion coefficient,
cophenetic correlation coefficient, euclidean distance and Kullbakc-Leibler divergence (Supplementary
Figure 1).

We choose the best value of factorisation rank for each cancer type suggested by the three mentioned
methods and finally combine the three suggestions and inspection checks to determine the final chosen
rank (Table 1). As a result, we performed 1000 runs of NMF with Brunet’s algorithm based on the chosen
rank for each cancer type and obtained the type-wise evolutionary dynamics signatures (Supplementary
Figure 2).
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Supplementary Figure 1. Estimation of the NMF rank across 12 types in TCGA cohort: comparison of qud8j26
measures computed for each rank value between 3-12. Each point on the graph was obtained from 1000 runs of
NMF with Brunet’s algorithm. The curves for the actual data are in a circle shape, and those for the randomized data
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Suggested rank for TCGA cohorts
Type brunet et al. hutchins et al. | frigyesi et al. Chosen
rank
BRCA 5 6 10 6
COADREAD || 3 5 7 5
GBM 9 6 12 6
HNSC 3 5 5 4
KIRC 3 5 9 5
LIHC 4 4 6 4
LUAD 4 5 4 4
LUSC 3 4 4 4
ov 3 4 6 5
PAAD 4 4 5 5
STAD 4 4 5 4
UCEC 4 4 9 4

Supplementary Table 1. Suggested rank for TCGA cohorts

Rank estimate for NMF on PCAWG cohorts

To extract type-wise evolutionary dynamics signatures using NMF for the PCAWG cohort as validation,
we performed the rank estimate procedure similar to TCGA by running 1000 runs of NMF with Brunet’s
algorithm and computing quality measures for each rank between 3 and 12 and each cancer type using the
original and randomised datasets (Supplementary Figure 3). We choose the best value of factorisation
rank for each cancer type suggested by the three mentioned methods and finally combine the three
suggestions and inspection checks to determine the final chosen rank (Table 2). As a result, we performed
1000 runs of NMF with Brunet’s algorithm based on the chosen rank for each cancer type and obtained
the type-wise evolutionary dynamics signatures (Supplementary Figure 2).

Suggested rank for ICGC cohorts

Type

brunet et al.

hutchins et al.

frigyesi et al.

BRCA

CLLE

ESAD

LIRI

MALY

ov

PACA

PBCA

PRAD

W W AW BB W] W

ENENENE R ARAE N E R

R R R

NN NN AENENESIES

Supplementary Table 2. Suggested rank for ICGC cohorts
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Supplementary Figure 2. The evolutionary dynamics signatures obtained for each cancer type in TCGA followin
the suggested ranks (Supplementary Table 1). Colour represents the assignment results with the following 25/2
hierarchical clustering for ESs shown in Figure 1.
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Supplementary Figure 3. Estimation of the NMF rank across 9 types in PCAWG cohort: comparison of quality
measures computed for each rank value between 3-12. Each point on the graph was obtained from 1000 runs of
NMF with Brunet’s algorithm. The curves for the actual data are in a circle shape, and those for the randomized data
are in a triangle shape.
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