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ABSTRACT16

Cancer is an evolutionary process characterised by profound intra-tumour heterogeneity. Intra-tumour

heterogeneity can be quantified using in silico estimates of cancer cell fractions of tumour-specific somatic

mutations. Here we demonstrate a data-driven approach that uses cancer cell fraction distributions to

identify 4 robust pan-cancer evolutionary signatures from an analysis of 4,146 individual tumour samples

(TCGA) representing 17 distinct cancer types. Evolutionary signatures defined a continuum of cancer

cell fractions representing neutral evolution, clonal expansion and fixation. Correlation of evolutionary

signatures with programs representing distinct mutational and biological processes demonstrated

that individual tumours enriched for clonal expansions and fixations were associated with immune

evasion and distinct changes in the tumour immune microenvironment. We observed a dynamic switch

between adaptive and innate immune processes as tumours undergo clonal fixation and escape immune

surveillance. We also identify mutational processes underpinning different modes of tumour evolution

and demonstrate that switching between adaptive and innate immune cell populations is accompanied

by the clonal expansion of driver genes that modulate tumour-stroma interactions1.
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Introduction18

Genetic intra-tumour heterogeneity (ITH) has recently emerged as a universal feature of tumours2, 3. ITH19

arises through an evolutionary process involving both cancer cells and the tumour microenvironment420

providing selective cellular adaptation that supports the fitness of evolving tumour clones5, 6. Large-scale21

bulk sequencing efforts of cancer genomes7–10 have revealed tens of millions of genomic alterations,22

providing an invaluable resource for understanding the complexities of cancer evolution. While studies23

have focused on inferring evolutionary dynamics from ITH11–16, it is largely unknown how ITH relates to24

the tumour microenvironment.25

26

Tumours evolve by the selection of specific traits that provide a survival advantage17–19. Adaptation to27

diverse pressures including the host’s immune system and cytotoxic stress shape the evolution of cancer28

cells by driving selective genomic modifications20. Accumulation of mutations that overcome these29

selection pressures allows cancer cells to populate most of the tumour and escape the immune system21.30

Dynamic shifts in tumour cell-intrinsic and extrinsic selection pressures control cancer evolution22. Dis-31

tinct tumour cell-extrinsic selection pressures shape different tumour types with immune adaptation and32

external carcinogens providing alternative evolutionary trajectories to field cancerization23, 24.33

34

Each tumour is an independent evolution running its own course. A long promise of studying cancer35

evolution has always been finding commonalities in how tumours evolve such that the underlying driving36

forces of a malignancy can be characterised to a point where the dynamics of tumour progression can be37

accurately modelled. Analytical approaches to identify such commonalities have so far included phylo-38

genetic trees25 and neutral and selection dynamics from predefined mechanistic models12. A challenge39

shared with these approaches is that it is not straightforward to associate ITH with biological hallmarks40

acquired during the multistep development of human tumours using the same patient cohort.41

42

In this study, we propose a new machine learning framework to identify common patterns of cancer evolu-43

tion dynamics, which we refer to as consensus evolutionary dynamic signatures (ES), which can bridge44

the gap between evolutionary analysis and cancer hallmarks, making an assessment of the consequences45

of ITH possible in bulk sequenced tumour samples.46

Results47

Modelling evolutionary dynamics in cancer genomes48

Our method addresses two key limitations of the neutral formulation in Williams et al12. First, instead of49

modelling variant allele frequency (VAF), we model cancer cell fractions (CCFs). CCF represents the50

percentage of cancer cells bearing a mutation in a tumour sample. This change allows the framework51

to correct for normal contamination and copy number alterations, thereby, maximising the number of52

SNVs eligible for modelling and improving SNV distributions (histograms). Second, we introduce a53

generalised formulation to the neutral model to generate full CCF distributions. We achieve the transition54

from modelling the number of mutations (M) as a function of VAF to the number of mutations as a55

function of CCF using a change of variable.56

dM

dCCF
=

dM

dt

dt

dVAF

dVAF

dCCF
(1)57

58

The generalised formulation is designed to capture various growth and population parameters for mutations59
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with different growth behaviours in real tumours. Some mutations may follow a neutral growth pattern60

with a constant growth rate, while others exhibit selective growth with varying growth rates possibly.61

M(CCF) = ∑
i

∫

dMi

dCCF
dCCF = ∑

i

wiGi(CCF) (2)62

where i represents i mutation groups with different growth behaviours. The Gi(CCF) functions represent63

growth functions describing these growth behaviours, and the parameters wi represent how these functions64

give rise to the observed CCF distribution. Mutations with the same growth behaviours share the same65

growth functions and parameters, resulting in clusters that follow certain distributions. Without loss66

of generality, in the case of G(CCF) being an exponential growth function and i = 1, we can recover67

the neutral model12. More generally, cluster-like patterns in CCF distributions can be represented as a68

weighted sum of different growth functions, accommodating a broader range of growth behaviours beyond69

the specific case of exponential growth.70

71

Analytically solving the equation is infeasible, as we do not know all the underlying growth functions that72

contribute to the model. However, by pooling samples in a cohort, we can have a data-driven solution to73

the above equation using matrix factorisation:74

[

M1(CCF) ... M j(CCF)
]

=
[

G0(CCF) ... Gi(CCF)
]

∗









w0,1 ... w0, j

w1,1 ... w1, j

... ... ...

wi,1 ... wi, j









(3)75

where j represents the jth sample and Gi(CCF) represents the ith growth function shared across tumours,76

namely a signature. We use non-negative matrix factorization (NMF) to solve this matrix factorisation77

problem and simultaneously extract the signatures and contributions of each signature among samples. Sim-78

ilar methods have been successfully applied to mutational signatures26, 27 and copy number signatures28–30.79

80

Four consensus signatures of evolutionary dynamics in 2917 cancers81

To identify robust ES, 2917 whole-exome sequencing samples across 12 cancer types from The Cancer82

Genome Atlas (TCGA)31 were qualified for inclusion in the analysis with the following criteria (Figure 1a):83

1) patients with a minimum of 30 reliably called private mutations. 2) patients with a suggested average84

depth>120x32. 3) patients with high-quality cancer cell fraction estimation. These CCF estimations85

were obtained using CCube33, 34, which has been shown to be robust across several benchmarks35, 36.86

4) cancer types with at least 100 samples. We constructed sample-by-CCF matrices for each cancer87

type. Each row of a sample-by-CCF matrix consists of the number of mutations that fall in 100 discre-88

tised bins between 0 and 1 over CCF, depicting the distribution of M(CCF) for each sample. We first89

performed NMF for sample-by-CCF matrices of each cancer type and thus obtained type-wise evolution-90

ary dynamics signatures (Supplementary Figure 2). The optimal number of signatures for each cancer91

type was chosen by performing 1000 runs of the algorithm with different random seeds and 1,000-time92

shuffles of the input matrix to avoid over-fitting (Supplementary Figure 1). Unsupervised hierarchical93

clustering was then performed on all type-wise signatures, and the number of clusters was suggested by94

the Hubert index. The final set of evolutionary dynamics signatures was obtained by normalising and95

averaging type-wise signatures for each cluster (Figure 1b). Actually, we also observed similar signa-96

tures by directly performing NMF on pan-cancer datasets, further reinforcing the robustness of our method.97

98
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Our analysis identified four consensus evolutionary dynamics signatures using the TCGA cohorts (Figure99

1b). Evolutionary Dynamics Signature 1 (ES1) displays a left-skewed distribution concentrated in the100

low CCF region, close to 0. ES1 appears to adhere to the 1/f distribution, which has previously been101

discussed in terms of its relation to neutral evolution12, 37, 38. ES2 exhibits a bell-shaped distribution,102

primarily concentrated within the CCF range of 0.25 to 0.55. ES2 could potentially represent mutations103

coming out of the long tail of a typical neutral peak. ES3 appears to have a bell-shaped distribution104

similar to ES2, yet it accommodates mutations shifting to higher CCF ranges, typically falling within the105

range of 0.6 to 0.8. This level of CCF indicates mutations getting close to being fixed in the population,106

demonstrating evidence of one or several subclones becoming the dominant clone in the sample. Tumours107

with strong exposure to ES3 could therefore be under active subclonal expansion. In comparison to ES3,108

ES4 displays a more pronounced shift towards a close to 100% CCF. It also exhibits a long-tail shape that109

accommodates mutations that gradually approach fixation (CCF=1). Strong ES4 exposure indicates the110

tumour has undergone significant clonal expansion.111

112

Estimation of contributions of ES, namely signature exposure, can provide a coarse estimation of evolu-113

tionary dynamics in the unit of tumour mutation burden (Count/MB) in a single tumour. This estimation114

allows for downstream analysis to further refine the definitions and interpretation of ESs in terms of DNA115

damage status, immune landscape, biological process, and clinical relevance. Here, we assigned these four116

evolutionary dynamics signatures on 4146 samples across 16 cancer types to estimate the contribution of117

each signature in each sample (Figure 1c). These 4146 samples were included based on criteria similar to118

those used for signature identification but with relatively more leniency, as they did not require an average119

depth >120x (Figure 1a).120

121

Whole-genome sequencing dataset from the Pan-Cancer Analysis for Whole Genomes (PCAWG)10 was122

included for validation. We found highly similar evolutionary dynamics signatures within the TCGA123

and PCAWG cohorts, especially for ES3 and ES4 (ES3: cosine similarity = 0.96, Spearman correlation124

= 0.95; ES4: cosine similarity = 0.98, Spearman correlation = 0.91; Figure 1d). These observations125

demonstrate the robustness of both our analytical methodology and ESs across whole-exome sequencing126

and whole-genome sequencing. We further associated ES exposures among 567 patients concurrently127

sourced from both the TCGA and PCAWG cohorts. We observed a strong association within ES4, followed128

by ES2 and ES3 (ES2: r=0.41, P < 2.2e−16; ES3: r=0.49, P < 2.2e−16; ES4: r=0.81, P < 2.2e−16;129

Figure 1e) between ES exposures. ES1 displayed the lowest level of correlation, possibly attributed to130

limited coverage to detect low-frequency mutations within the tumour population using whole-genome131

sequencing.132

Signatures associated with DNA damage and biological processes133

During cancer evolution, genomic instability provides materials for selection and favours tumour progres-134

sion through multiple biological processes39, 40. To systematically investigate the underlying biological135

process and DNA damage related to evolutionary dynamics signatures, we correlated ES exposures with136

factors related to DNA damage from41, including copy number burden42, homologous recombination137

deficiency (HRD)42, intra-tumour heterogeneity (ITH)43, aneuploidy score43, predicted neoantigen41 and138

mutation rate41. We also retrieved weights of COSMIC mutational signatures for TCGA patients, which139

are characterised by mutations arising from specific mutagenesis processes such as DNA replication140

infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA141

enzymatic editing27.142

143
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Our results suggest that ES1 is generally negatively associated with DNA damage (including copy num-144

ber variation burden, HRD and Aneuploidy Scores), predicted neoantigens, mutation rate (Figure 2c)145

and only a few mutational processes like mitotic clock process and dMMR process (Figure 2d). For146

example, ES1 negatively correlated with HRD in BLCA (r = −0.47,P = 7× 10−5) and LUSC (r =147

−0.45,P = 2×10−5), copy number burden score "Fraction Altered" in LUAD (r =−0.51,P = 2×10−7)148

and PAAD (r = −0.45,P = 6× 10−4), and SNV neoantigen in LUAD (r = −0.31,P = 3× 10−3) and149

LUSC (r =−0.37,P = 7×10−4) (Figure 2a). ES1 exhibited a positive association with the mitotic clock150

process in CRC, STAD, and UCEC (r = 0.64,P = 3×10−31). ES1 was also associated with important151

cancer-driven mutational processes, such as the APOBEC process in HNSC and BRCA, as well as the152

dMMR process in UCEC (SBS15 : r = 0.58,P < 1×10−4) (Figure 2b).153

154

In comparison to ES1, ES2 showed similar but slightly weaker associations with DNA damage scores155

across cancer types. Additionally, ES2 was positively correlated with the ITH score in several cancer types,156

such as HNSC (r = 0.34,P = 3×10−4) and PAAD (r = 0.38,P < 0.05) (Figure 2a). Furthermore, similar157

to ES1, ES2 displayed a positive association with the Mitotic Clock, APOBEC, and dMMR processes.158

However, this association was present in more tumour types for ES2 than ES1 (Figure 2b, d).159

160

In general, ES3 and ES4 were both positively associated, opposite to ES1 and ES2, with aneuploidy score,161

neoantigens, and traditional features of selection, such as silent/non-silent mutation rates (Figure 2c). They162

also made a significant contribution to APOBEC, MMR, and HRD processes (Figure 2d). For example,163

positive associations were observed between ES4 and APOBEC SBS2 (BLCA: r = 0.77,P = 1×10−35;164

LUAD: r = 0.62,P = 9×10−16), HRD SBS3 (BRCA: r = 0.66,P = 2×10−26), smoking SBS4 (LUAD:165

r = 0.84,P = 2× 10−27; LUSC: r = 0.75,P = 2× 10−10) and dMMR SBS15 (UCEC: r = 0.75,P =166

3 × 10−7) (Figure 2b). Interestingly, we observed an overall opposite pattern in the association of167

ES3 and ES4 with ITH and copy number burden score” Fraction Altered”, suggesting that distinct168

states in the selection are captured, respectively (Figure 2c). For example, ES4 positively correlated169

with “Fraction Altered” in LUSC (r = 0.44,P = 6× 10−9), whereas ES3 was negatively correlated170

(r = −0.5,P = 7× 10−11). ES4 was negatively associated with ITH, opposite to ES3, in HNSC (ES3:171

r = 0.24,P = 8×10−3; ES4: r =−0.32,P = 4×10−5) and LUAD (ES3: r = 0.27,P = 3×10−4; ES4:172

r =−0.28,P = 2×10−4) (Figure 2a).173
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Figure 1. (Caption next page.)
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Figure 1. (Previous page.) Overview of study design and framework of identifying consensus evolutionary

dynamics signatures. a, Flowchart of patient inclusion and downstream analysis. Two-step process of estimating

patterns of evolutionary dynamics: 1) extracting consensus signature of evolutionary dynamics for each cancer type.

2) hierarchical clustering captures the most common patterns across cancer types. Downstream analyses were

performed by estimating the exposure of each consensus signature of evolutionary dynamics for TCGA samples. b,

Illustration of how non-negative matrix factorization (NMF) identifies the consensus signatures of evolutionary

dynamics (ES). c, Estimation of contributions of ESs in a single tumour across cancer types. d, Identified ESs in two

independent cohorts, TCGA (WES) and PCWAG (WGS). The cosine similarity and correlation coefficient between

these cohorts are indicated for each signature and are provided in the Supplementary Table. e, Scatter plots depicting

the correlation of ES exposure for the same patients between TCGA and PCAWG cohorts (n=567). Spearman

correlations were estimated after applying a central log transformation to each signature exposure.

Figure 2. Underlying biological process and molecular characterisation behind the evolutionary dynamics

signatures. a, Pan-cancer association between ES exposures and copy number burden, HRD, ITH, DNA damages

scores, predicted neoantigen and mutation rate in TCGA (only associations with a false-discovery rate P < 0.05 and

at least 30 samples are shown). b, Pan-cancer association between ES exposures and mutational signatures.

Spearman correlation coefficients and adjusted P values are as indicated (only associations with a false-discovery

rate P < 0.05 are shown). c-d, Association between ES exposures and copy number burden, HRD, ITH, DNA

damages scores, predicted neoantigen, mutation rate and mutational signatures in all TCGA samples. Spearman

correlation and adjusted P values are as indicated (only associations with a false-discovery rate P < 0.05 are shown).
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Signatures associated with immune infiltration174

The immune microenvironment influences tumour evolution in terms of the complex interplay between175

cancer cells and infiltrating immune cells and can be both prognostic and predictive of response to176

immunotherapy22, 41, 44. The immune tumour microenvironment (TME) across cancer types can be charac-177

terized by various immunogenomics methods, including assessment of total lymphocytic infiltrate from178

genomic and H&E image data, immune cell fraction from deconvolution analysis of mRNA-seq data and179

immune gene expression signatures41. Here, we systematically investigated the relationship of ESs with180

these factors relating to the TME.181

182

Proliferation and wound healing signatures were related to the cell cycle phase and associated with poor183

prognosis in cancer patients45, 46. We found that ES1 and ES2 were generally negatively associated with184

proliferation and wound healing (Figure 3b). Specifically, ES1 was negatively associated with wound185

healing and proliferation in BLCA, LIHC, LUAD, and LUSC (Wound Healing: r =−0.26,P = 2×10−2;186

Proliferation: r =−0.33,P = 3×10−3), STAD and UCEC. Interestingly, ES4 was positively associated187

with wound healing (r = 0.34,P = 3×10−5) and proliferation (r = 0.3,P = 3×10−4) in LUSC, whereas188

ES1, ES2 and ES3 (Wound Healing: r =−0.32,P = 1×10−4; Proliferation: r =−0.31,P = 2×10−4)189

were all negatively associated (Figure 3a).190

191

In general, we observed ES3 was positively associated with immune infiltrations (including stromal192

fractions, leukocyte fractions, lymphocyte infiltration scores, TGF-β response, IFN-γ response and193

macrophage regulation), opposite to ES4 (Figure 3b). Specifically, ES3 was strongly positively as-194

sociated with the leukocyte fraction in most types of cancer (HNSC: r = 0.4,P = 4× 10−9; LIHC:195

r = 0.52,P = 6 × 10−8; LUAD: r = 0.39,P = 2 × 10−7; LUSC: r = 0.48,P = 3 × 10−10; SKCM:196

r = 0.51,P = 2× 10−10), whereas ES4 was negatively associated with the leukocyte fraction (HNSC:197

r = −0.42,P = 5× 10−10; LIHC: r = −0.38,P = 9× 10−5; LUAD : r = −0.37,P = 6× 10−7; LUSC:198

r =−0.44,P = 1×10−8; SKCM: r =−0.41,P = 3×10−7) (Figure 3a).199

200

The extensive observed opposing associations of ES3 and ES4 with leukocyte fraction prompted us to201

investigate further the relationship between adaptive immune response represented by leukocyte fraction202

and innate immune response represented by monocytes, and differences between ES3 and ES4. We found203

that high ES4 was associated with increased monocyte signature enrichment, while high ES3 was related to204

increased leukocyte fractions across cancer types (Figure 3c, d), which suggests a transition from adaptive205

immune response to innate immune response with the increase of ES4 proportion.206
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Figure 3. tumour microenvironment associated with deviance between ES3 and ES4. a, Pan-cancer association

between ES exposures and immune signatures in TCGA (Only associations with a false-discovery rate P < 0.05 and

at least 30 samples are shown). b, Association between ES exposures and immune signatures in TCGA. Spearman

correlation coefficients and adjusted P values are as indicated (only associations with a false-discovery rate P < 0.05

are shown). c, Scatter plot showing a general negative association between immune infiltration (leukocyte fraction

minus monocytes fraction) and deviance between ES3 and ES4 in TCGA. Blue dots denote the intensity of points

overlapped. d, Scatter plots showing negative associations between immune infiltration (leukocyte

fraction-monocytes fraction) and deviance between ES3 and ES4 across cancer types.
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Evolutionary dynamics subtypes reflect distinct immune mechanisms during cancer207

evolution208

Given the results from previous analyses, which have demonstrated distinct states and immune mechanisms209

associated with ES3 and ES4 in the context of cancer evolution, we characterised differences in cancer210

hallmarks between ES3 and ES4. Specifically, we focused our investigation on colorectal cancer (CRC),211

stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC), which have been212

previously studied regarding mutator phenotypes (POLE, MSS, MRR) and underlying immune escape213

mechanisms22.214

215

Figure 4. Survey of evolutionary dynamics subtypes in CRC, UCEC, STAD. a, Overview of ESs distribution

over evolutionary dynamics subtypes. Samples were categorized into three groups (high, medium, low) through a

trisection based on the difference between ES3 and ES4 proportions, where group high and low are defined as ES3Hi

and ES4Hi in the following analyses. b, Differences in immune infiltration were compared between ES subtypes and

p values were shown by Wilcoxon signed-rank test. c, Boxplots show the distribution of ES3 and ES4 proportions

stratified between three groups (high, medium, low) and are annotated by a Kruskall-Wallis P value. d, Boxplots

show the difference of immune escape scores stratified between ES subtypes and are annotated by a Kruskall-Wallis

P value. e, Immune infiltration distribution over ES3 and ES4 (ES3-ES4) deviation with a Spearman correlation

coefficient and P value. Boxplots show the difference in immune infiltration across MSI status and are annotated by

a Kruskall-Wallis P value.
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Our findings reveal that the mean ES3 proportion is significantly higher in tumours exhibiting evidence of216

immune escape compared to those without such evidence (P= 1×10−4, Kruskal-Wallis’s test). In contrast,217

the distribution of ES4 proportion does not show a significant difference between the immune escape218

groups (Figure 4d). Moreover, we observe that the mean difference between ES3 and ES4 proportions is219

lower in MSS tumours compared to those with MMR and POLE mutations (P = 4×10−7, Kruskal-Wallis220

test). Additionally, the mean difference between monocytes and leukocyte fraction in MSS tumours is221

lower compared to tumours with MMR and POLE mutations (P = 8× 10−7, Kruskal-Wallis test), as222

depicted in Figure 4e.223

224

To elucidate the states of evolutionary dynamics characterized by distinct immune mechanisms, we225

categorised tumours into ES3Hi or ES4Hi subtypes, based on the differences in ES3 and ES4 proportions,226

utilizing thresholds established at one-third and two-thirds as depicted in Figure 4a. Compared to the227

ES4Hi group, the ES3Hi group exhibited a significantly higher proportion of ES3 (P = 3×10−4, Kruskal-228

Wallis test) and a lower proportion of ES4 (P = 2×10−2, Kruskal-Wallis test) as illustrated in Figure229

4c. We then examined processes associated with immune escape including clonal/subclonal neoantigen230

numbers, mutator phenotypes, TCR/BCR diversity, and Th1/Th2/Th17 signatures in the ES3Hi and ES4Hi
231

groups. We observed that the ES3Hi group exhibited a marked immune response, with increased neoantigen232

load, lower HRD score, reduced copy number burden, higher mutation rate, increased expression of Th1233

cells, and higher T-cell receptor diversity scores compared to the ES4Hi group (P < 0.01, Wilcoxon test),234

as depicted in Figure 4b. These findings suggest that the ES4Hi group aligns with characteristics indicative235

of later stages of tumour evolution, displaying higher HRD and copy number burden, and having already236

developed mechanisms associated with immune escape.237

Evolutionary dynamics subtypes reflect driver mutations acting during late-stage cancer238

evolution239

Based on our previous observations (Figure 4), we hypothesize that the switch from an ES3Hi state towards240

an ES4Hi state during late-stage evolution, is accompanied by increased copy number burden and immune241

escape associated with dynamic changes in the tumour immune microenvironment. Mutation frequency242

generally displays an upward trend during clonal expansion under positive selection, while it tends to243

decrease when other stronger competitive subclone expand or under negative selection13, 47, 48. We posit244

that ESs capture groups of mutations with distinct growth behaviours during the evolutionary process of245

cancer. However, the specific mutation content within these groups may vary among individual patients.246

Therefore, identifying mutations undergoing the evolutionary process from an ES3Hi state towards an247

ES4Hi state can provide insights into the selection pressures acting upon driver mutations during late248

cancer evolution across various cancer types.249

250

To detect the evolutionary modes of driver mutations, we constructed CCF distributions for the ES3Hi and251

ES4Hi groups separately for 409 consensus driver mutations identified by a comprehensive PanCancer252

analysis49. We then conducted a Kolmogorov-Smirnov test across cancer types to identify mutations253

with a significant transition between these two CCF distributions. The direction of the transition was254

determined by comparing the means of two CCF distributions. We define a driver mutation that acts on255

late-stage evolution in a type of cancer with a rightward transition from CCF distribution in ES3Hi subtype256

to CCF distribution in ES4Hi subtype. Such a transition of a driver mutation indicates the presence of257

stronger positive selection acting on subclones that do not carry this mutation. This observation implies a258

reduced significance of this driver mutation in driving switching between adaptive and innate immune259

mechanisms during late-stage evolution. Mutations show similar CCF distributions within ES3Hi and260
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Figure 5. Evolutionary dynamics subtypes reflect different selection on driver mutations. a, Identification of

mutations enriched in both ES3Hi tumours and ES4Hi tumours with a transition pattern on the CCF spectrum. b,

Heatmap showing the distribution of mutations with identified transition in ES3Hi versus ES4Hi across cancer types

and pathways. The colour spectrum shows the significance level and direction of identified transition on mutation

CCFs distribution between ES3Hi and ES4Hi tumours. Only differences with false-discovery rate P < 0.05

(Kolmogorov-Smirnov test) are shown. c, Alteration frequencies distribution of enriched mutation with transition

pattern across cancer types and pathways. d, Donut chart showing the frequency distribution of mutations identified

with transition pattern per pathways.

ES4Hi subtypes are considered neutral or early drivers that already reach fixation in both subtypes.261

262

We found the CCFs distribution of several drivers in ES3Hi move towards a higher frequency in ES4Hi
263

in most cancer types, notably ATRX, ARID1A, KMT2D, PTEN, ARID1A, PIK3CA, SETD2, KMT2C,264

RB1, CTNNB1, FAT1, FBXW7, BRAF, NOTCH1, CDKN2A, ERBB2 and KDM6A. For example, the265

CCFs distribution of FBXW7 in ES3Hi (median = 0.71, n = 264) was significantly different from CCFs266

distribution in ES4Hi (median = 1, n = 154) in colorectal cancer (P = 6×10−8, Kolmogorov-Smirnov test).267

Interestingly, we also observed a transition pattern toward lower frequency in CCF distribution between268

ES3Hi and ES4Hi for drivers in a few cancer types, which may be in line with negative selection. For269

example, the CCFs distribution of NF1 in ES3Hi (median = 0.67, n = 180) was significantly different from270

the one in ES4Hi (median = 0.29, n = 45) in BRCA (P = 1.5×10−20, Kolmogorov-Smirnov test) (Figure271

5a).272

273

Importantly, we found that clonal drivers under selection are enriched for key oncogenic pathways across274

cancer types, including chromatin, RTK/RAS, PI3K, and Notch (Figure 5b). We found Chromatin275
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Modifiers (including KMT2D, ARID1A, KMT2C etc.,), RTK/RAS (including NF1, ERBB2, KRAS,276

BRAF, etc.,) and PIK3 (including PTEN, PIK3CA, PIK3R1, etc.,) pathways account for a great part277

of the identified drivers under selection, especially in CRC, STAD, UCEC and LUAD (Figure 5c,d).278

These observations suggest the roles of selection for specific drivers in different cancer types in regulating279

subclonal expansion and tumour-stroma interactions that drive switching between adaptive and innate280

immune mechanisms.281

Evolutionary dynamics subtypes show prognostic value in patient survival282

Figure 6. Evolutionary dynamics subtypes exhibit prognostic value. a, Kaplan-Meier plots with estimated

hazards ratio and the 95% confidence interval show the difference in patient survival between evolutionary dynamics

subtypes (using a quarter and three quarters as thresholds) in CRC, UCEC, LIHC, KIRP and PRAD. P values were

computed from the Cox Proportional Hazards (CoxPH) regression modelling after applying a central log

transformation to each signature exposure. The number of patients within each subtype is shown in the legend. b,

Hazard ratio table for patient survival stratified based on ES subtype, derived from CoxPH regression model across

cancer types.

We investigated further whether evolutionary dynamics subtypes are prognostic in 16 cancer types (Figure283

6b). ES3Hi and ES4Hi samples were defined for each cancer type using one-quarter and three-quarters of284

the difference between ES4 and ES3 proportions as thresholds. We identified a worse progression-free285
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survival for the ES4Hi subtype in five cancer types, including CRC (HR = 2.5, 95%CI = (1.03,5.92),286

P = 0.043, log-rank test), KIRC (HR = 1.8, P = 0.05, log-rank test), LIHC (HR = 1.9, P = 0.043, log-rank287

test), PRAD (HR = 2.9, P = 0.004, log-rank test), UCEC (HR = 2.3, 95%CI = (1.11,4.98), P = 0.025,288

log-rank test) (Figure 6a).289

290

Discussion291

In our pipeline, we identified consensus evolutionary signatures in tumours, termed evolutionary dynamics292

signature (ES), making assessments of evolutionary dynamics possible under the limitation of single293

time-point data for individual tumours. We approximate a generalised mathematical formula for modelling294

evolutionary dynamics in cancer genomes based on the population genetics theory as a data-driven solu-295

tion using non-negative matrix factorization (NMF). Similar methods have been successfully applied to296

mutational signatures26, 27 and copy number signatures28–30. This framework consists of four major steps,297

(1) NMF-based type-wise signature extraction, (2) Hierarchical clustering into pan-cancer evolutionary298

dynamics signatures, (3) Signature assignment, and (4) Signature characterisation. These signatures299

can introduce interpretability by integrating with other patient-level data, such as gene expression, DNA300

damage scores, mutational signatures and immune infiltration. Besides, these signatures can be derived301

from bulk sequencing data like WES and WGS, which is rapid and cost-effective, providing great utility302

to clinical implementation.303

304

Evolutionary signatures defined a continuum of cancer cell fractions representing neutral evolution, clonal305

expansion and fixation. Our analysis uncovered important pan-cancer correlations between evolutionary306

signatures and immune infiltration, DNA damage and cancer-driven mutational processes (Figure 2).307

Specifically, we identified a dynamic transition between adaptive and innate immune processes as tumours308

undergo clonal fixation and escape immune surveillance (Figure 3). tumours with high ES4 signature309

enrichment were associated with poor survival across several cancer types (Figure 6), highlighting the310

clinical utility of our approach. This work also reveals driver mutations that are specifically enriched311

during clonal expansion and fixation (Figure 5). The selection of distinct driver mutations in the context312

of lymphoid-poor and myeloid-rich immune micro-environments provides important insights into the313

dynamics of tumour progression across several cancer types.314

315

We found that the quantification of ES contribution is influenced by sequencing coverage depth. Specif-316

ically, in the context of ES situated in regions of low CCF (ES1), the signature exposures estimated in317

both WGS and WES lack a robust correlation among individual patients (Figure 1e). A higher coverage318

level of sequencing data might be necessary to ensure the reliability of ES1 estimation. In this paper, we319

estimated the contribution of evolutionary dynamics signatures using a single bulk-sequencing sample320

for a patient. Further application to multi-region sequencing will be required to reflect the tumour spatial321

structure for individual patients. Our analysis does not provide prognosis implications using ES subtypes322

across all cancer types, suggesting tailoring cancer-specific signatures might be helpful to enhance the323

clinical application in specific cancer types.324

325

In summary, evolutionary dynamics signatures provides valuable insight into how clonal expansion link326

to dynamic changes in the tumour immune microenvironment. We show that through signature analysis327

we can detect the clonal expansion of driver genes that modulate tumour-stroma interactions and identify328

subtypes with prognosis significance in many cancer types. Our study creates an opportunity to understand329
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the complexity of ITH during cancer evolution and its potential implication in bulk-sequenced tumour330

samples.331

Data availability332

PCAWG protected datasets are controlled access that is subject to data usage agreement. Somatic variant333

calls generated by PCAWG datasets is available for download at https://docs.icgc.org/pcawg/data/. In334

accordance with the data access policies of the TCGA projects, most molecular, clinical and specimen335

data are in an open tier which does not require access approval. Immune signatures used in this paper is336

described here41 and available for download. The source data underlying Figs. 2–6 and Supplementary337

Figs are provided as a Source Data file.338

Code availability339

The code is available at Github repository.340
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Methods463

NMF-based signature extraction of cancer evolutionary dynamics in a tumour464

We use non-negative matrix factorization (NMF) to solve this matrix factorisation problem and simultane-465

ously extract the signatures and contributions of each signature among tumour samples. The framework of466

identification of evolutionary dynamics patterns based on NMF in this study performs separate steps as467

follows (see Figure1b):468

Step 1: Construct type-wise CCF-by-sample matrices. To assemble mutation size over CCF of tumours469

into matrices, the continuous interval of CCF between 0 and 1 is divided into 100 bins. The CCF-by-sample470

matrix was constructed for each cancer type. Each matrix has a size of 100×ntype, where ntype denotes471

the number of samples in a specific cancer type. In the CCF-by-sample matrix, columns represent tumour472

samples, rows represent the CCF span (100 rows as 100 intervals between 0 and 1), and each cell indicates473

the number of mutations falling within the corresponding CCF interval.474

Step 2: Determine the optimal number of signatures. A critical step of NMF is the estimate of475

factorization rank, i.e., the suggested number of signatures for factorization. Brunet algorithm50 was476

performed for 1000 runs with different random seeds between ranks 3-10. The rank was determined477

based on six quality measures (cophenetic coefficient, dispersion, evar, residual sum of squares, euclidean478

distance, and KL divergence). To detect overfitting, 1,000-time shuffles of the input matrix, by permuting479

the rows of each column, were also performed to get a null estimate of each of the scores. The rank was480

estimated for samples of different cancer types with the deemed optimal value under these constraints.481

Step 3: Identification of consensus signatures of evolutionary dynamics. The normalised CCF-by-482

sample matrix of each cancer type was subjected to the NMF algorithm separately with the corresponding483

estimated rank in step 2. We normalise it here due to the huge difference in mutation burden among484

samples, ranging from tens to tens of thousands of mutations, which can make the evolutionary patterns of485

samples with small mutation loads obscure or even misclassified. Unsupervised hierarchical clustering486

was then performed on all signatures obtained to identify the consensus signatures across cancer types.487

The proper number of clusters was determined by the Hubert index as the significant peak in the Hubert488

index second difference plot. As a result, the consensus signatures obtained ended up averaging all the489

type-wise signatures allocated to the same cluster.490

Datasets491

For each patient, we curated somatic mutation, integer-level copy number, tumour purity (fraction of492

tumour cells in the sample) and overall ploidy, donor clinical profiles and survival data from The Cancer493

Genome Atlas (TCGA). All somatic mutation samples from the TCGA were retrieved through the494

National Cancer Institute Genomics Data Commons Portal (TCGA Unified Ensemble "MC3" mutation495

calls, version 0.2.8). Only patients with matched germline (from blood samples) and primary tumour496

information available were considered.497

Estimation of cancer cell fractions498

To estimate the cancer cell fraction (CCF) of somatic mutations in tumour samples, we used Ccube33, 34
499

algorithm, which allows for clustering and estimating cancer cell fractions (CCF) of somatic variants500

(SNVs/SVs) from bulk whole genome/exome data. The method takes the reference and alternative allele501

read counts of called variants, corrects for copy number alterations and purity, and then produces CCF502

estimates for all variants within the tumour sample. It identifies clusters of mutations, which can be used503

to determine the clonal architecture of individual tumour samples. Cancer cell fraction values larger than 1504

(arising from sequence noise and copy neutral LOH events) were assumed to be 1.505

19/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.560630doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.560630
http://creativecommons.org/licenses/by-nc-nd/4.0/


Signature assignment to individual patient samples506

The consensus evolutionary dynamics signatures were used to assign an activity for each signature to 4146507

TCGA patient samples. Linear Combination Decomposition (LCD) was performed to assign the amount508

of each signature harboured by tumour samples in terms of a decomposition of the given CCF-by-sample509

matrix V with known consensus signature W by solving the minimization problem min(∥W ∗H −V∥)510

with additional constraints of non-negativity on H where W and V are known. After assigning signatures511

to each patient, we can estimate the contributions of each signature in the individual patient samples,512

which allows for subsequent patient-level analyses.513

Evolutionary dynamics signature validation514

The signature identification procedure described above was applied to 2365 whole-genome sequenced515

samples from the ICGC Pan-Cancer Analysis of Whole Genomes Project (PCAWG). The number of516

signatures was fixed at 4 for matrix decomposition with NMF. Pearson correlation was computed between517

the TCGA signature-by-component weight matrix and the PCAWG signature-by-component matrix,518

signature by signature.519

Association with DNA damage, biological processes and immune microenvironment520

We collected factors related to DNA damage from Thorsson et al.41, including homologous recombination521

deficiency (HRD)42, intratumor heterogeneity (ITH)43, aneuploidy Score43, copy number burden score522

("Fraction Altered" and "Number of Segments")42, predicted neoantigen ("Indel Neoantigens" and "SNV523

neoantigens") and mutation rate41. Besides, we downloaded the weights of all known SBS mutational524

signatures for TCGA patients from COSMIC (v3.3 - June 2022).525

526

To systematically investigate the interpretation of ESs in terms of the underlying immune microenviron-527

ment, we collected factors related to immune expression signatures, including macrophage regulation528

signature51 ("Macrophage Regulation"), immune cellular fraction estimates41 ("Macrophages" and "Mono-529

cytes"), lymphocyte infiltration52 ("Lymphocyte Infiltration Signature Score"), TGF-β response53 ("TGF-530

beta Response"), IFN-γ response54 ("IFN-gamma Response"), wound healing55 ("Wound Healing"),531

tumour-infiltrating lymphocytes from TCGA H&E images41 ("TIL Regional Fraction"), proliferation532

signature54 ("Proliferation"), leukocyte and stromal fractions41 ("Leukocyte Fraction" and "Stromal Frac-533

tion"). we also collected factors related to immune mechanisms, including immune escape annotation56,534

clonal and subclonal neoantigen numbers56, mutator phenotypes57, T-cell receptor (TCR) and B-cell535

receptor (BCR) diversity41, Th1/Th2/Th17 signatures57.536

537

We evaluated the association of these factors and the constituent components of evolutionary dynamics538

signatures for 4146 TCGA patients across cancer types. Association between evolutionary dynamics signa-539

ture exposures and features related to DNA damage, biological processes and immune microenvironment540

were performed using one of two procedures: for a continuous association feature, Spearman correlation541

was performed with adjusted p values for multiple testing using the Benjamini-Hochberg method58; for a542

binary association feature, samples were divided two groups and a Mann-Whitney U-test was performed543

to test for differences in signature exposure medians between groups. Besides, the association between544

evolutionary dynamics subtypes and features related to DNA damage, biological processes and microenvi-545

ronment were performed using the Wilcoxon signed-rank test. The Kruskal-Wallis test was also performed546

to test the differences between groups.547
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Identification of evolutionary dynamics subtypes548

To investigate the various states of evolutionary dynamics characterized by distinct immune mechanisms,549

we categorised tumours into ESig3Hi or ESig4Hi subtypes, separately for each cancer type. This subtyping550

was based on the disparities in proportions of ES3 and ES4, using predefined thresholds set at one-third551

and two-thirds. Consequently, the ESig3Hi and ESig4Hi subtypes were established as balanced labels for552

each specific cancer type, enabling the exploration of group-wise differences in immune mechanisms and553

prognosis.554

Detection of selection modes on driver mutations in cancer555

We constructed CCF distributions in ES3Hi and ES4Hi groups separately for 409 cancer consensus driver556

mutations identified by a PanCancer analysis49 to detect the evolutionary modes of driver mutations. We557

then identified the mutations with a significant transition between these two CCFs distributions using558

the Kolmogorov-Smirnov test across cancer types. The transition direction was determined based on the559

mean of two CCFs distributions. We define a driver mutation that undergoes positive selection in a type of560

cancer with a rightward transition from CCF distribution in ES3Hi subtype to CCF distribution in ES4Hi
561

subtype. Driver mutations with opposite transition directions are determined as under negative selection.562

Mutations show similar CCF distributions within ES3Hi and ES4Hi subtypes are considered as neutral or563

early drivers that already reach fixation in both subtypes.564

Survival Analysis565

Cox Proportional Hazards (CoxPH) regression modelling was used to determine whether ES subtype566

(ES3Hi and ES4Hi) predicts patient survival. A central log transformation was applied to each signature’s567

exposure prior to its submission to the CoxPH model. The Hazard Ratio (HR) and the 95% confidence568

interval (95%CI) of HR were calculated with p values. A False Discovery Rate (FDR) correction using569

the BH method was applied to p values. A test of Schoenfeld residuals was performed to assess the PH570

assumption. The Kaplan-Mier estimator was used to create the survival plots and the log-rank test was571

used to compare the difference in survival curves.572
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Supplementary Materials573

Rank estimate for NMF on TCGA cohorts574

To extract type-wise evolutionary dynamics signatures using NMF for the TCGA cohort, we need to575

determine the proper rank for each cancer type separately following the above rank estimate procedure.576

577

To achieve this, we run 1000 runs of NMF with Brunet’s algorithm for each rank between 3 and 12 and578

each cancer type using the original and randomised datasets. We then compute seven quality measures for579

each condition, including sparseness, residual sum of squares, explained variance, dispersion coefficient,580

cophenetic correlation coefficient, euclidean distance and Kullbakc-Leibler divergence (Supplementary581

Figure 1).582

583

We choose the best value of factorisation rank for each cancer type suggested by the three mentioned584

methods and finally combine the three suggestions and inspection checks to determine the final chosen585

rank (Table 1). As a result, we performed 1000 runs of NMF with Brunet’s algorithm based on the chosen586

rank for each cancer type and obtained the type-wise evolutionary dynamics signatures (Supplementary587

Figure 2).588
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UCEC - cophenetic UCEC - dispersion UCEC - euclidean UCEC - evar UCEC - kl UCEC - rss UCEC - sparseness

STAD - cophenetic STAD - dispersion STAD - euclidean STAD - evar STAD - kl STAD - rss STAD - sparseness

PAAD - cophenetic PAAD - dispersion PAAD - euclidean PAAD - evar PAAD - kl PAAD - rss PAAD - sparseness

OV - cophenetic OV - dispersion OV - euclidean OV - evar OV - kl OV - rss OV - sparseness

LUSC - cophenetic LUSC - dispersion LUSC - euclidean LUSC - evar LUSC - kl LUSC - rss LUSC - sparseness

LUAD - cophenetic LUAD - dispersion LUAD - euclidean LUAD - evar LUAD - kl LUAD - rss LUAD - sparseness

LIHC - cophenetic LIHC - dispersion LIHC - euclidean LIHC - evar LIHC - kl LIHC - rss LIHC - sparseness

KIRC - cophenetic KIRC - dispersion KIRC - euclidean KIRC - evar KIRC - kl KIRC - rss KIRC - sparseness

HNSC - cophenetic HNSC - dispersion HNSC - euclidean HNSC - evar HNSC - kl HNSC - rss HNSC - sparseness

GBM - cophenetic GBM - dispersion GBM - euclidean GBM - evar GBM - kl GBM - rss GBM - sparseness

COADREAD - cophenetic COADREAD - dispersion COADREAD - euclidean COADREAD - evar COADREAD - kl COADREAD - rss COADREAD - sparseness

BRCA - cophenetic BRCA - dispersion BRCA - euclidean BRCA - evar BRCA - kl BRCA - rss BRCA - sparseness
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Supplementary Figure 1. Estimation of the NMF rank across 12 types in TCGA cohort: comparison of quality

measures computed for each rank value between 3-12. Each point on the graph was obtained from 1000 runs of

NMF with Brunet’s algorithm. The curves for the actual data are in a circle shape, and those for the randomized data

are in a triangle shape.
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Suggested rank for TCGA cohorts

Type brunet et al. hutchins et al. frigyesi et al. Chosen

rank

BRCA 5 6 10 6

COADREAD 3 5 7 5

GBM 9 6 12 6

HNSC 3 5 5 4

KIRC 3 5 9 5

LIHC 4 4 6 4

LUAD 4 5 4 4

LUSC 3 4 4 4

OV 3 4 6 5

PAAD 4 4 5 5

STAD 4 4 5 4

UCEC 4 4 9 4

Supplementary Table 1. Suggested rank for TCGA cohorts

Rank estimate for NMF on PCAWG cohorts589

To extract type-wise evolutionary dynamics signatures using NMF for the PCAWG cohort as validation,590

we performed the rank estimate procedure similar to TCGA by running 1000 runs of NMF with Brunet’s591

algorithm and computing quality measures for each rank between 3 and 12 and each cancer type using the592

original and randomised datasets (Supplementary Figure 3). We choose the best value of factorisation593

rank for each cancer type suggested by the three mentioned methods and finally combine the three594

suggestions and inspection checks to determine the final chosen rank (Table 2). As a result, we performed595

1000 runs of NMF with Brunet’s algorithm based on the chosen rank for each cancer type and obtained596

the type-wise evolutionary dynamics signatures (Supplementary Figure 2).597

Suggested rank for ICGC cohorts

Type brunet et al. hutchins et al. frigyesi et al. Chosen

rank

BRCA 3 5 4 3

CLLE 3 4 4 3

ESAD 4 4 4 4

LIRI 4 5 4 4

MALY 5 5 4 5

OV 3 4 4 4

PACA 4 4 4 4

PBCA 3 4 4 4

PRAD 3 4 4 4

Supplementary Table 2. Suggested rank for ICGC cohorts
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Supplementary Figure 2. The evolutionary dynamics signatures obtained for each cancer type in TCGA following

the suggested ranks (Supplementary Table 1). Colour represents the assignment results with the following

hierarchical clustering for ESs shown in Figure 1.
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PRAD - cophenetic PRAD - dispersion PRAD - euclidean PRAD - evar PRAD - kl PRAD - rss PRAD - sparseness

PBCA - cophenetic PBCA - dispersion PBCA - euclidean PBCA - evar PBCA - kl PBCA - rss PBCA - sparseness

PACA - cophenetic PACA - dispersion PACA - euclidean PACA - evar PACA - kl PACA - rss PACA - sparseness

OV - cophenetic OV - dispersion OV - euclidean OV - evar OV - kl OV - rss OV - sparseness

MALY - cophenetic MALY - dispersion MALY - euclidean MALY - evar MALY - kl MALY - rss MALY - sparseness

LIRI - cophenetic LIRI - dispersion LIRI - euclidean LIRI - evar LIRI - kl LIRI - rss LIRI - sparseness

ESAD - cophenetic ESAD - dispersion ESAD - euclidean ESAD - evar ESAD - kl ESAD - rss ESAD - sparseness

CLLE - cophenetic CLLE - dispersion CLLE - euclidean CLLE - evar CLLE - kl CLLE - rss CLLE - sparseness

BRCA - cophenetic BRCA - dispersion BRCA - euclidean BRCA - evar BRCA - kl BRCA - rss BRCA - sparseness
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Supplementary Figure 3. Estimation of the NMF rank across 9 types in PCAWG cohort: comparison of quality

measures computed for each rank value between 3-12. Each point on the graph was obtained from 1000 runs of

NMF with Brunet’s algorithm. The curves for the actual data are in a circle shape, and those for the randomized data

are in a triangle shape.
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