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Abstract

The demographic history of a population drives the pattern of genetic variation and is encoded
in the gene-genealogical trees of the sampled alleles. However, existing methods to infer
demographic history from genetic data tend to use relatively low-dimensional summaries of the
genealogy, such as allele frequency spectra. As a step toward capturing more of the information
encoded in the genome-wide sequence of genealogical trees, here we propose a novel
framework called the genealogical likelihood (gLike), which derives the full likelihood of a
genealogical tree under any hypothesized demographic history. Employing a graph-based
structure, gLike summarizes across independent trees the relationships among all lineages in a
tree with all possible trajectories of population memberships through time and efficiently
computes the exact marginal probability under a parameterized demographic model. Through
extensive simulations and empirical applications on populations that have experienced multiple
admixtures, we showed that gLike can accurately estimate dozens of demographic parameters
when the true genealogy is known, including ancestral population sizes, admixture timing, and
admixture proportions. Moreover, when using genealogical trees inferred from genetic data, we
showed that gLike outperformed conventional demographic inference methods that leverage
only the allele-frequency spectrum and yielded parameter estimates that align with established
historical knowledge of the past demographic histories for populations like Latino Americans
and Native Hawaiians. Furthermore, our framework can trace ancestral histories by analyzing a
sample from the admixed population without proxies for its source populations, removing the
need to sample ancestral populations that may no longer exist. Taken together, our proposed

gLike framework harnesses underutilized genealogical information to offer exceptional
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sensitivity and accuracy in inferring complex demographies for humans and other species,

particularly as estimation of genome-wide genealogies improves.

Introduction

Accurately inferring the population history of humans has archaeological and historical
significance, and it also helps to properly account for population structure in association studies
and improve robustness in inferences about natural selection'. Because of the complicated
interplay of random processes related to the underlying demography and observed genotypes —
including migration, coalescence, recombination, mutation, and genotyping error — demographic
inference is a challenging problem, often requiring simplifying assumptions or relatively coarse
data summaries. One popular way of estimating the size changes of a single population utilizes
a hidden Markov model (HMM) to describe the variation of haplotypes along the genome, where
the hidden states correspond to the underlying genealogical trees®®. As the number of potential
trees grows exponentially with sample size, these methods are computationally scalable by
tracking only a reduced representation of the underlying genealogy (e.g., SMC++° and ASMC®
only track the coalescent times between a specific pair of haplotypes, while the remaining
samples assume auxiliary functions). These methods are typically constrained by small sample
sizes (usually <100) and the assumption of a single, homogeneous population, although they
are flexible with respect to the population size trajectories over time. To accommodate for larger
sample sizes that are more informative of the recent human history as well as more complex
demographic events such as splits, migrations, and admixture, alternative approaches to
demographic inference rely on a further reduced representation of the genealogy, the allele
frequency spectrum (AFS)’~"". Although convenient to compute, the AFS may not contain

enough information to recover the history precisely'?'.

HMM- and AFS-based methods are based on observed genotypes or haplotypes. However,
since neutral variation is related to demographic history entirely via the genealogical processes,
the (unknown) genealogy arguably has a more direct relationship with the underlying

1517 Moreover, the complete genealogy of a

demography than the downstream genotypes
collection of samples, as represented by an ancestral recombination graph (ARG)'®'°, has
richer information than the AFS since it includes additional data not reflected in the allele
frequencies, such as the correlated coalescent histories between segments of a chromosome.

Therefore, a genealogy-based demographic inference method has the potential to leverage the
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69 flexible topological structure of the ARG in distinguishing complex demographic histories,
70  especially those with multiple admixtures.
71
72 Here, we introduce a genealogical likelihood framework named gLike to compute the likelihood
73  of an observed genealogical tree under a parameterized demographic history. The intuition
74  behind gLike is that a genealogy in itself does not imply the assortment history of any of its
75 lineages (i.e. which set of discrete population memberships a particular lineage has traversed
76  over time), meaning that all possible cases have to be considered. Notably, this idea bears
77  similarity to the recently proposed “local ancestry path” problem by Pearson and Durbin?, but
78 instead of inferring the population membership distribution of each individual node, gLike aims
79  to compute the total likelihood of all combinations. By defining a “state” as the population
80 memberships of all lineages existing at a specific time, possible movements between states
81 throughout the history can be summarized into a directed acyclic Graph of States (GOS). We
82  develop a full methodology for the GOS around three key problems: 1) constructing a minimal
83  GOS that contains all necessary states; 2) computing the conditional probabilities between
84  connected states with considerations of migrations, coalescences, and non-coalescences; and
85  3) propagating the marginal probabilities through the GOS to achieve the total likelihood of the
86 tree, which can then be combined across multiple independent trees across the genome. As a
87  general-purpose statistical framework and as a first step towards utilizing the information from
88 the entire ARG, glLike is applicable to a variety of demographic events — migrations, splits,
89 admixtures, and population size variations, providing tools for model selection and parameter
90 estimation.
91
92  We demonstrate the advantage of genealogy-based demography inference by applying gLike to
93 simulated scenarios, with particular emphasis on complicated admixture histories such as three-
94  or four-way admixtures. gLike consistently outperforms existing AFS-based methods by
95  producing parameter estimates closer to the simulated truth. In analyses of genotyped samples
96 from Latino Americans and Native Hawaiians, the complex demography inferred by gLike is
97  consistent with the known history of both admixed populations and their ancestral populations —
98 Africans, Europeans, East Asians, Indigenous Americans, and Polynesians. Most notably, our
99 inference required no reference sample from the ancestral populations (such as samples from
100 Polynesians), nor explicit inference of local ancestries — information that is often not available or
101 is imprecisely estimated for understudied populations with complex history.
102
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103 Results

104 Method overview: genealogical likelihood under multi-population demography

105 A genealogical tree, despite being a complete record of the coalescent events of the sample
106  haplotypes within a chromosomal interval, does not specify the migration history of lineages. In
107  atypical genetic study, the samples (leaf nodes) are collected from known populations, which
108 serves as the initial condition. The internal lineages could migrate, subject to the restriction that
109 coalescences must happen within a population. Therefore, the probability of a given

110 genealogical tree corresponds to the cumulative total of all migration scenarios that are

111  compatible with this tree. Our proposed method, gLike, computes the likelihood of any given
112 genealogical tree under a hypothesized demographic history (Methods). Operationally, it is
113  broken into two topological steps to search for possible population memberships of lineages,

114  followed by three numerical steps to compute the conditional and marginal probabilities (Figure
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118  Fig 1. A schematic of the major steps of the gLike algorithm with examples. Starting from a parameterized

119 demography and an observed genealogical tree with known sample populations, the fundamental data structure in
120 gLike is the graph of states that summarizes all possible scenarios for all lineages to move through the populations
121 across history. We denote the unique state at time zero that contains the observable population memberships of

122 samples as the “origin state” (state “ABBCC” in this example), and the states about the root of the genealogical tree
123 as the “root states” (states “F” and “E” in this example). The graph of states is constructed in Step 2, guaranteed by a
124  preparatory Step 1 such that no redundant states will be generated, minimizing computational burden. Each column

125 represents the population membership (in Step 2; e.g. “AD” means that lineage 8 is in population A and lineage 7 is
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126 in population D, t, generations ago) or the set of possible memberships (in Step 1; e.g. at t,, lineage 8 may be in A
127 or E, and lineage 7 may be in D or E,) of a certain lineage. In Step 3, the conditional probabilities are computed for
128 all states in the GOS except the origin states, including the coalescence and non-coalescence probabilities implied in
129 each state and the migration probabilities between connected states. Conditional probabilities are exemplified within
130 the fourth epoch (between t; and t,) around the state “EE”. Specifically, “EE” implies a unique hidden state “EEE”
131  near the t5 end of the epoch because lineages 1 and 6 should both be in population E in order to coalesce into

132  lineage 8, which is in E given the state “EE.” The connection between “EE” and “EEE” is represented by the

133 “genealogical probability,” which consists of the probability that lineages 1, 6 and 7 did not coalesce before 75 (with
134  probability exp(—3(t3; — t3)ng)), that lineages 1 and 6 coalesced at 75 (with probability ng), and that lineages 7 and
135 8 did not coalesce before t, (with probability exp(—(t, — 7)ng)). The state “EE” has two child states, “AAE” and
136  “AEE,” according to Step 2, connected via the intermediate state “EEE”. The transition from “AAE” to “EEE”

137 requires two lineage migrations from “A” to “E,” which occurs with “migration probability” m3;. Similarly,

138 transition from “AEE” to “EEE” occurs with probability m,;. In Step 4, the “marginal probability” of a state is

139  defined as the probability conditional on the origin state and is computed recursively. For state “EE”, p(state EE) =
140  ngexp(—3(t — t3)ng — (t4 — ng) ((mag)?p(state AAE) + m,pp(state AEE)). The marginal probabilities are
141 propagated backward in time until the root states, and the log likelihood of the genealogical tree (conditional on the
142  hypothesized demography) is, in step 5, the sum of all root states: p(tree) = p(state F) + p(state E).

143

144  We define a “state” as a specification of the population memberships of all lineages existing at a
145  specific time. All possible states before each historical event (occurring at t4, t,, ..., t5 in this

146  example) form a directed acyclic graph (step 2, Figure 1), which we call the “graph of states
147  (GOS)”, a complete representation of all possible migration scenarios. When a state specifies a
148 lineage in an impossible population, it becomes a dead-end state that does not connect to the
149  origin. For example, in step 2, if we imagine a state “AA” at t, as a child of “F”, it will not connect
150 to the origin state “ABBCC”, because the fourth and fifth samples cannot migrate from C to A
151  per the hypothesized demographic model (Figure 1; see also Figure S1). To reduce

152  computation time, we avoid generating any dead-end state by a preliminary step (step 1, Figure
153 1) that summarizes possible population memberships for each lineage. For example, in step 1
154  att,, lineage 8 may be in “A” or “E”, and lineage 7 may be in “D” or “E”, thus “AA” is not a legal
155 state in step 2 (Figure 1). The graph of states is then constructed from the root states (“F” or “E”
156 in this example) forward in time, by searching for child states according to both the specified
157  migration events in the demography and the results in step 1. See Figure S1 for intermediate
158 results and further operational details during these two steps.

159
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160  After building the GOS, the relevant conditional probabilities are computed. Because lineages
161  are restricted to their respective population until a historical event, a state immediately before a
162  historical event t; is sufficient to specify the population memberships of all lineages between
163 t,_; and t,. For example, the state “EE” implies that not only the two lineages, but also the

164  subtrees under both lineages are all in population E between t; and t,. Given memberships of
165 all lineages within the context of a state, we can compute the “genealogical probability” of the
166 state based on standard coalescent theory to describe the coalescence (or lack thereof) events
167  during the relevant interval on the tree. We also compute the “migration probability” between a
168 state and its child, which is the product of the migration probability of each lineage, according to
169 the migration matrix of the historical event (step 3, Figure 1). The “marginal probability” of a
170 state is then the probability conditional on the origin state and can be computed recursively

171  (step 4, Figure 1). Finally, we compute the likelihood of the genealogical tree as the sum of the
172  marginal probabilities of the root states (step 5, Figure 1). See Figure 1 legend for more

173  explanation of genealogical, migration, marginal, and total probabilities related to the state “EE”
174  in steps 3-5.

175

176 In practice, we apply gLike to a subsample of trees that are presumed independent, ideally from
177  evolutionarily neutral sites distantly spaced across the genome (usually 10-100, depending on
178  the computational resources), and the total likelihood is computed as the product over each
179 individual tree. The total likelihood as a function of the demographic parameters is then

180 optimized by simulated annealing. The final estimation of parameters is averaged over a

181 number of subsamples with replacement. The variance across subsamples serves as an

182 indicator of the uncertainty of the estimate.

183

184  gLike accurately estimates all parameters in a three-way admixture demography

185  Admixed populations, especially those with three ancestral components or more, pose

186 challenges to existing demographic inference methods. To showcase the performance of gLike
187  to analyze complex admixture, we simulated 1000 haplotypes on a 30Mb chromosome from a
188  population formed by two consecutive recent admixture events from three ancestral populations.
189  Such a demography is parameterized by 3 event times, 2 admixture proportions, and 7

190 population sizes, totaling up to 11 parameters (Figure 2A). When true genealogical trees were
191  available, the maximum likelihood estimates from gLike, averaged over 50 independent

192  simulations, for all 11 parameters achieved an overall 3.8% relative error (Figure 2B), while

193  glLike on the tsdate-reconstructed trees achieved an overall 23.3% relative error (Figure 2C).
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194  We found that t; and No are the most overestimated parameters (by 35.6% and 97.3%,

195 respectively) when using tsdate-reconstructed trees, likely due to tsdate’s tendency to

196 overestimate times of recent coalescences, prolonging the recent branches (Figure S2). Apart
197 from t; and No, the other 9 parameters are estimated with 13.7% relative error.

198
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200 Fig 2. gLike accurately reconstructs three-way admixture without ancestral population samples. (A) The true
201  demography under which the genealogical trees and genotypes were simulated, with 6 populations involved:

202  population O is admixed from A and B; B is the intermediate population admixed from C and D, where C is defined
203  to be the major ancestor (proportion > 0.5) without loss of generalizability; E is the ancestor of A, C and D. All

204  population sizes are to scale. There are 11 parameters involved, including 6 population sizes and: ti, time of

205  admixture of population O; t2, time of admixture of population B; t3, time of split from population E; r1, admixture

206 proportion of A in O; r2, admixture proportion of C in B. The true value of each parameter is provided on the right.
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207 (B-D) The reconstructed demography using parameter estimates averaged over 50 independent simulations (left) and
208 boxplots of relative errors ((estimated-true)/true) in each simulation (right). Boxplots are capped at 300% relative
209 error for ease of visualization. Trees and genotypes of 1000 haplotypes drawn from population O were simulated on
210 a 30 Mb chromosome. The demographic parameters were estimated by gLike on the true trees (B), by gLike on the
211 tsinfer+tsdate reconstructed trees from the true genotypes (C), and by Fastsimcoal2 on the allele frequency spectra
212 derived from true genotypes (D). For Fastsimcoal2 results, the parameter estimates for the single run with the

213 highest likelihood out of 50 independent runs, a practice commonly adopted by Fastsimcoal2, are labeled in red. A

214 reference for the width of the population sizes equivalent to 50,000 is given in each panel.

215

216  We also tested Fastsimcoal2 (ref.'"), which is capable of flexibly inferring complex demography
217  using allele frequency spectra. Based on true genotypes and the same three-way admixture
218 model, Fastsimcoal2 estimates had a relative error of 51.4%, which led to a visually distorted
219  demography (Figure 2D). This is in sharp contrast to Fastsimcoal2 showing comparable

220  accuracy to gLike on a three-population split demography (Figure S3). gLike also outperformed
221  a Generative Adversarial Network (GAN)-based deep learning approach, pg-gan®', which was
222  designed to overcome the limitations of relying on summary statistics such as the frequency
223 spectrum. In our benchmarking, pg-gan performed well for a two-population split demography
224 but was less accurate compared with Fastsimcoal2 and gLike on the three-population split and
225  admixture demographies (Figure S4 and data not shown). We thus did not test pg-gan further in
226  this study. Nevertheless, our experiments with pg-gan were conducted without specialized

227  neural network hardware and do not dismiss GANs' potential as an emerging approach. Further
228 training and improved procedures may enhance GAN-based demographic inference®.

229

230 We find that in our application with gLike for the demographies we have studied, analyses using
231 tsinfer+tsdate-estimated genealogical trees produced more accurate estimated demographies
232 those using trees estimated by Relate. The difference in performance may trace to the fact that
233 recent coalescence times are overestimated by Relate to a greater extent than by tsdate,

234  causing a 20~50% depletion of coalescences within the recent dozens of generations (Figure
235 S2A), thereby leading to mis-estimations in the gLike framework. As a result, gLike on Relate-
236  reconstructed trees was not tested further in this study. Notably, Relate is more accurate in

237  estimating the ancient part of the ARG, including the tree-wise times to the most recent common
238  ancestor (tMRCAs) than tsinfer+tsdate (Figure S2B), which explains why in other applications
239  dtilizing the genealogical trees, such as inferring the genome-wide expected relationship

240 matrix'” (eGRM), Relate may outperform tsdate.

241
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242  gLike detects components of admixture with high confidence

243  We examined the ability of gLike to distinguish two-way from three-way admixtures. We expect
244  that the estimated parameters should reduce a complex model into a simpler one if the simpler
245  model is closer to the true underlying model. Conversely, the likelihood should increase

246  substantially when switching from a simple model to a complex one if the complex model is

247  closer to the true underlying model. We first applied gLike under a hypothesized three-way

248  admixture model to simulated trees and observed the estimated admixture proportions, ri and r2
249  (Figure 3A, left and middle panels). Across 50 replicate simulations, when the true demography
250 was a three-way admixture, the estimated admixture proportion for the third ancestry

251  component, rz, centered around the true value (0.7) and was always far from the boundaries
252 (0.5 and 1.0). When the true demography was a two-way admixture, the estimated r, was

253 almost always 1.0, with only one exception (Figure 3A). This indicates that gLike correctly

254  reduced a three-way admixture model into a two-way model if the truth were indeed two-way
255  admixed. In contrast, both ry and r, were estimated to be the boundary values around half of the
256 time by Fastsimcoal2, regardless of the true demography (Figure 3A, right panel).

257

258  We next evaluated the maximum likelihood achieved under a two-way admixture model and a
259  three-way admixture model (Methods). AIC model selection was applied on the log-likelihood
260 differences between two models to select the more likely model between the two-way and three-
261  way admixtures. Across 100 independent simulations, the three-way admixture model was

262  never preferred when the true admixture was two-way, and the three-way admixture model was
263  preferred over two-way when it was the true model ~85% of the time with both true ARGs and
264  tsdate-reconstructed ARGs, resulting in a ~92% accuracy of classification.

265
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Fig 3. gLike distinguishes three-way admixture from two-way admixture. True (left) and tsifner-+tsdate
reconstructed (middle) trees were obtained from simulated three-way (orange, same model as Figure 2) and two-
way (grey, r2 was set to 1, removing contribution from population D) admixed populations. (A) gLike was applied
assuming a three-way admixture model. The estimated r1 and r2 values in each of 50 independent simulations are
shown, dashed lines denote true values of r1 and r2 in three-way admixture simulations. (B) gLike was first applied
under a two-way admixture model, then the model is expanded into a three-way admixture and gLike likelihood is
optimized while fixing shared parameters between two models (see Methods for technical details). The distributions
of log likelihood improvement after model expansion are shown as histogram. Model selection through the Akaike

information criterion (AIC) resulted in a classification accuracy of 92%.

gLike reproduces complex demographic histories from stdpopsim

Having established that gLike sensitively detects components of admixtures and estimates
parameters with high accuracy, we further evaluate its ability to reconstruct two additional
demographic models with increasing complexity, as published in stdpopsim? — the American
Admixture (stdpopsim model 4B11; Figure 4) and the Ancient Europe (stdpopsim model 2A21;

Figure 5) demographies.
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284  The American Admixture model consists of four populations (AFR, EUR, ASIA and ADMIX;

285  Figure 4A), where ADMIX is formed by a very recent admixture from the other three

286  populations. This model has 15 parameters, including 4 event times, 2 admixture proportions, 6
287  population sizes and 3 exponential growth rates. We simulate 1000 haplotypes from population
288  ADMIX on a 30Mb chromosome. gLike on the true trees inferred all 15 parameters with overall
289  11.3% relative error (Figure 4B). The majority of the error was in Nooa, the size of the out-of-
290 Africa predecessor of the European population, which was overestimated by 38.5%. gLike on
291 the tsdate-reconstructed trees inferred parameters with overall 23.5% relative error (Figure 4C).
292  Except from the overestimation of Nooa by 77.8%, the error concentrated on the African branch.
293  For example, r1 (the African admixture proportion) was overestimated by 30.2%, and Nanc was
294  overestimated by 27.1%. Fastsimcoal2, in comparison, estimated the same set of parameters
295  with 258.7% relative error (Figure 4D). Fastsimcoal2 estimated the African proportion fairly
296  accurately, but appears unable to distinguish between the European and Asian proportions

297  (Figure 4E).

298

299 As AFS-based methods presumably have better performance in the presence of a multi-

300 dimensional allele frequency spectrum, we compared gLike and Fastsimcoal2 in additional

301 simulations where 500 haplotypes from each ancestral population were sampled to supplement
302 the 1000 admixed samples (Figure S5). Presence of ancestry reference samples improved the
303  accuracy and consistency of Fastsimcoal2’s estimation of almost all parameters (an average of
304 213.1% relative error), especially the admixture proportions. But gLike based on the true and
305 inferred trees (5.8% and 16.7% relative errors, respectively) was still more accurate in capturing
306 the histories of these populations (Figure S5).

307
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Fig 4. gLike reconstructs the American admixture demography

(A) American admixture demography with parameters from stdpopsim model 4B11. All population sizes are drawn

to scale. (B-D) The reconstructed demography using estimations averaged over 50 replicate simulations (left) and

boxplots of relative errors in each simulation (right). Trees and genotypes of 1,000 haplotype from the admixed

population were simulated on a 30 Mb chromosome, the demographic parameters were estimated by gLike on the

true trees (B) or the tsinfer+tsdate reconstructed trees (C), and by Fastsimcoal2 on the allele frequency spectra

derived from true genotypes (D). Boxplots are capped at 300% relative error for ease of visualization. For

Fastsimcoal2 results, the parameter estimates for the single run with the highest likelihood out of 50 independent
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317 runs are labeled in red. A reference for the width of the population sizes equivalent to 50,000 is given in each panel.
318 (E) Ternary plots showing admixture proportions estimated by gLike on the true trees (left), by gLike on the

319 tsinfer+tsdate reconstructed trees (middle) or by Fastsimcoal2 on the allele frequency spectra of the true genotypes
320  (right), with slide lines indicating true parameters.

321

322  Totest gLike’s performance on intra-continental admixtures, we also evaluated the Ancient

323  Europe model from stdpopsim (2A21). This model is a four-way admixture model where the two
324 intermediate ancestors of Bronze Age population are each in turn admixed from two ancestors
325 (Figure 5A). We simulated 1000 haplotypes from the present-day population that descended
326 from the Bronze Age, and 200 from each of the ancient populations, according to the times

327  specified by stdpopsim. Applying gLike to the true trees resulted in estimates of the 20

328 parameters with overall 3.0% relative error (Figure 5B). The main misestimated parameter was
329 the 29.6% underestimation of Nneo, @n ancient population that only existed for 20 generations
330 (180-200gen) when its samples were collected. Fastsimcoal2 estimated all parameters with an
331 average relative error of 132.3% (Figure 5C). The estimates of several population sizes reside
332 near the preset borders -- a behavior that has been suggested to be an intrinsic pitfall of AFS-
333  based methods?*. We did not test tsdate in this experiment because its ARG inference method
334  does not currently make full use of the ancient samples (instead, they are inserted as “proxy
335 sample ancestors” onto the existing ARG). Given our evaluation above, however, we would
336  expect that gLike will substantially improve over Fastsimcoal2 in accuracy of parameter

337 estimates if inferred ARGs can accurately incorporate ancient samples, and that gLike can

338 generally handle intra-continental admixtures when ancestral populations may be relatively

339  closely related.

340
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(A) Ancient Europe demography with parameters from stdpopsim model 4A21. The Bronze Age population is

plotted with initial size true to scale, but the growth rate is shown as text to avoid a disproportionate figure. All other

population sizes are constant size and drawn to scale. (B, C) The reconstructed demography using estimates

averaged over 50 replicate simulations (left) and boxplots of percentage errors in each simulation (right). Trees and

genotypes were simulated on a 30 Mb chromosome. A total of 2200 haplotype samples (1000 contemporary samples

descended directly from the Bronze Age population and 200 ancient samples each from the six ancient populations)

were drawn at collection times as described by stdpopsim. The demographic parameters were estimated by gLike on

the true trees (B) or by Fastsimcoal2 on the allele frequency spectra of the true genotypes (C). Boxplots are capped

at 300% relative error for ease of visualization. For Fastsimcoal2 results, the parameter estimates for the single run

with the highest likelihood out of 50 independent runs are labeled in red. A reference for the width of the population

sizes equivalent to 10,000 is given in each panel.

Inferring admixture history of Latinos and Native Hawaiians using genome-wide array

data
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358 We applied gLike to investigate populations with complex demographic history using genome-
359  wide genotyping data from Latinos and Native Hawaiians, each with 500 subsampled diploid
360 individuals. We parameterized a four-way admixture model consisting of Africans, Europeans,
361 East Asians and a fourth ancestral population, which is used to model the Indigenous

362  Americans (for Latinos) or the Polynesians (for Native Hawaiians). We estimated genealogical
363 trees from the genotyping data using tsdate and estimated a total of 16 parameters using gLike
364 (Figure 6; Supplemental Table 1). We estimated the Latino lineages to be 10.7% from

365  Africans, 44.2% from Europeans, 45.1% from Indigenous Americans, and 0% (across all 20
366 independent threads) from East Asians, while the Native Hawaiian lineages were 19.8% from
367 Europeans, 33.4% from East Asians, 46.8% from Polynesians, and 0% (across all 20

368 independent threads) from Africans (Figure 6). As expected, we estimated the Native

369 Hawaiians to be more recently admixed than the Latinos (19 compared to 25 generations ago).
370 Also, the Native Hawaiians had a slightly smaller initial population size than the Latinos

371  (35,682+10,656 compared to 41,579+16,851; but both are likely overestimated. See

372 Discussion) and grew at a slower rate (0.078+0.009 compared to 0.132+0.012) since the

373  admixture.

374

375 The European ancestries participated in both admixtures. As expected, we found the estimates
376  of its population size (13,388+2,388 and 13,341+4,702) and of time of divergence with the East
377  Asians (1,0181£172 and 1,041+87 generations ago) to be highly concordant between two data
378  sets, suggesting the same underlying population that colonized the Americas and Polynesia.
379 Note that this ancestry should be more appropriately interpreted as the ancestral population
380 responsible for the colonization, which is less genetically diverse than the entire European

381  continent currently or at the time. The Indigenous Americans and Polynesians, though

382 represented as the same component in the model, were estimated to have different sizes

383  (73,170£28,939 compared to 15,695+7,393), which may reflect greater population sizes or more
384  extensive structure in the ancestors to the Latino samples than to the Native Hawaiian samples.
385 Considering the potential errors during the ARG-reconstruction process (as have been seen in
386 Figures 2, 4 and S2) and biases due to the lack of high-quality sequencing data for these two
387 admixed cohorts (Table S2), these estimates of the demographic parameters for both

388  populations should be taken with caution. Nevertheless, our results suggest that gLike is able to
389  qualitatively capture known features of the demographic history of Latinos and Native Hawaiians
390 without reference data from their ancestral populations, and the results stand to improve as

391 ARG-reconstruction approaches advance.
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394 Fig 6. parameter estimations for the demographic histories of Latinos and Native Hawaiians.

395 glike was applied under a potential four-way admixture model reminiscent of stdpopsim model 4B11 for both the
396 Latino (A) and Native Hawaiian (B) data. The four potential ancestral populations are African, European, East
397 Asian, and Indigenous American (for Latinos) and Polynesian (for Native Hawaiians). The reconstructed

398 demographic diagrams are to scale, marked with relevant parameters. N, size of the admixed population in diploids
399 at time of admixture; gr, growth rate of the admixed population. Ancestral populations estimated to have 0%

400 admixture proportion are shown as translucent, because their sizes cannot be estimated. Pie charts show the

401  estimated admixture proportions of ancestral populations.
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403 Discussion

404  With the fast development of scalable ARG inference over the past few years, development of
405 population-genetic approaches that explicitly use the ARG or its marginal trees is an exciting
406  area of active research. With this in mind, our current study introduced a framework that

407  explains the stochastic formation of the genealogical trees in a multi-population context, and
408 computes the full likelihood of each demographic scenario. Our results revealed that the history
409 of at least three ancestral populations can be clearly decoded from the genealogical trees of a
410 single admixed sample without knowledge of the ancestral populations. For many understudied
411 diverse populations across the world, it is often unclear whether they are admixed, and if so,
412  what the ancestral populations were. Even if the ancestral populations are known or can be
413  hypothesized, they likely no longer exist or are difficult to sample. For these populations,

414  demographic inference using allele frequencies is difficult, since distinct demographic scenarios
415  can give similar AFSs'?. gLike has the potential to provide new insights into studies of these
416 understudied or ancient populations, as well as the demographic history of other species.

417

418 It is worth clarifying that the admixture proportions in the demographic context (such as those
419 estimated by Fastsimcoal2'' and gLike here) have a slightly different meaning from that in the
420  genomic context (such as those estimated by STRUCTURE?® and ADMIXTURE®). As a

421 demographic parameter, the admixture proportion describes the probability of a lineage to

422  migrate (backward in time) from one population to another, while in the genomic context, this
423  proportion describes how much of the genome one population shares with another. The two
424  concepts can deviate primarily in two cases: 1. There is considerable genetic drift after the

425  admixture, especially when the population size is small; 2. The admixed population, O, may
426  have a genetic component from, say, population A, not because A participated in the formation
427  of O, but because of more ancient migrations from A to other ancestries of O. In gLike results,
428  all admixture proportions should be interpreted in demographic context. In practice, admixture
429  proportions could be estimated through other means in the genomic context, and then be used
430 as the initial values for gLike to improve optimization speed and stability, while allowing gLike to
431  make further adjustments as needed.

432

433  We also note that currently gLike is not utilizing the full information encoded in an ARG, but
434  rather is relying on sets of presumed independent trees. In many ways, gLike was inspired by
435 HMM-based demographic inference®®, where genealogical trees are implicitly utilized.

436  However, these methods are computationally intensive and have limited scalability, primarily


https://doi.org/10.1101/2023.10.10.561787
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561787; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

437  due to the intricate handling of recombination events. We reasoned that while recombination
438 events are essential for ARG inference, they are less informative for ARG-based demographic
439 inference. Once the ARG (and thus the genealogical trees within the ARG) has been accurately
440 inferred from the genotypes, reliance on recombination events for insights into demography
441  becomes less important. Recombination can be modeled as a random breakpoint in the

442  genealogical tree re-coalesced onto the rest of the tree — the random break is independent of
443  demography, and the re-coalescence holds minimal information compared to the numerous
444  coalescences already on the tree. In light of this, gLike currently focuses on rigorously modeling
445 lineage assortments and coalescent events within individually independent trees, rather than the
446  variability between neighboring trees, to achieve greater scalability (in order to handle

447  thousands of samples and multiple populations). Future enhancements of gLike may then

448  model recombination to incorporate the remaining information encoded in the ARG.

449  Furthermore, gLike has some commonality with approaches to species-tree inference based on
450 gene trees, where gene trees can be used to estimate the topology and branch lengths of a
451  phylogenetic tree?’. Whereas such methods estimate the whole topology, we pre-specify the
452  demographic history and estimate parameters related to it, including processes like admixture
453  that do not feature as prominently in species-tree inference. In cases where the demographic
454 history is sketchy, it may be possible to develop approaches akin to the species-tree inference
455  to estimate parts of the topology.

456

457  One current limitation of gLike is that certain parameters are not individually identifiable, but
458  could only be optimized in combination. For example, the effects of population size and growth
459 rate are hard to separate if a population exists for only a short time (Figure S6). Any

460 combination of the two parameters that produces the same average coalescence rate will have
461  a similar likelihood, making it difficult to identify the global optimum. Such entangled parameters
462  are in fact a limitation in many demographic inference methods and often result in similar

463 likelihoods for many combinations of parameters. When applying gLike with hill-climbing-based
464  optimization methods, the estimates of entangled parameters could be path dependent. Thus, a
465  grid search on specific entangled parameters after a general optimization routine may be

466  beneficial to an unbiased estimation of the demography.

467

468 In addition, continuous migration is not currently supported by gLike, because it drastically

469 increases the number of states. In the American Admixture simulations (Figure 4), we omitted

470  the weak migrations (10°-10* per generation) between continental populations as originally
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471  specified by the stdpopsim model. Omitting the continuous migrations have no visible impact on
472  estimating the remaining parameters unless they are ~100 times more intense than that

473  currently specified in the stdpopsim model and presumed to be typical between continental

474  human populations (Figure S7). However, such frequent migrations (10-10 per generation)
475  may exist between intra-continental populations where geographical separations are minimal.
476  Estimating the migration rate itself is also of interest in ecological studies of other species, and a
477  future focus will be extending gLike to incorporate continuous migration. One obvious solution is
478  to discretize the continuous migration into a number of pulse migrations, which results in many
479 layers each containing a large number of states. An effective discretization strategy, as well as
480 an efficient random sampling technique on the states, seems necessary to address this

481 challenge.

482

483  Current ARG inference methods have achieved remarkable scalability and accuracy, but their
484  Dbiases and errors still deserve attention in genetic applications. We have showcased the varying
485 performance of tsinfer+tsdate and Relate at different time scales in admixed populations

486  (Figure S2). The overestimation of branch lengths at recent times appears to be a common

487  problem for both methods, but is more severe in Relate-inferred trees, to the degree that

488 meaningful GOSs are difficult to construct. Tsinfer and tsdate are also faster because they use
489  heuristic algorithms to avoid the O(n?) pair-wise comparisons. However, the bottom-up

490 approach of tsdate is somewhat less accurate for ancient coalescences, whereas Relate’s

491 hierarchical clustering-based method infers the deep part of the genealogies with higher

492  accuracy (especially beyond 1000 generations ago), and thus captures global relatedness more
493  robustly'’. There may be techniques to adjust one’s result with the other, thus combining both of
494  their advantages. With scalable and accurate ARG inference across broader scales, we expect
495 the reliability and accuracy of gLike demographic inference to be further improved.

496

497  Finally, we acknowledge that human migrations and admixtures exist on a continuum. In the
498  current framework we opted to model discrete populations and components of ancestries, as is
499  customary when modeling the histories of recently admixed populations such as the Latinos.
500 But one of the advantages of an ARG-based view of human history may be to remove the

501 notion of distinct populations. Enabling continuous rather than pulse-like migrations between
502  populations to enhance gLike may be another step forward, but future developments of ARG-
503 based demographic inference may emphasize on the paradigm shift to represent human

504 histories and structure on a continuum.
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505

506 Methods

507 Formalization of the problem: Probability of a genealogical tree under a demography
508 The demographic history of K populations can be represented by the interplay between two
509 stochastic processes affecting the lineages — coalescence and movement among populations.

510 The coalescence rate n,(t) of each population a as a function of time ¢ is

511 ng(t) =

1
o @ e{1,..,K}, t € (0,00),

512  where N, is the effective population size, and k is ploidy. And the migration probability matrix m
513  at each of the S historical events is

514 mep(ts), a,b € {1,..,K}, se{l,..,5},

515  where t; is the time of the s-th historical event, and m,, (t,) is the instantaneous probability for a

516 lineage to move (backward in time) from population a to b.

517
518 The demography is thus defined as
519 D = (n,m) = ({ng}, {map}),

520 asize-K vector of coalescence rates defined on continuous time, and a K x K matrix of
521  migration probabilities defined on a discrete set of times. While gLike currently does not
522  explicitly incorporate continuous migration, it can potentially be represented as a series of

523 historical events through discretization.

524
525 A genealogical tree with N nodes can be defined by the time and children of each node
526 G ={@mlie,..,N}},

527  where 71, is the time of the node i (or equivalently, the emergence of lineage i), and r; is the set
528 of its child nodes (which is empty if i is a leaf node). The end time w; of lineage i can be

529  calculated as time of its parent node (that is, w; = 7; if i € ;) or oo if it has no parent. Our goal is
530 to compute P(G|D) for arbitrary G and D, and we will omit thereafter the “conditional on D”

531 notation, which is always implied.

532

533 ltis helpful to define the set of lineages existing at time t as
534 L(t) = {i|]t; <t < w;},
535 and the lineages emerging between t and t’ as

536 Lt t") ={ilt<t,w; <t'}.

537
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538 Migration trajectory and states

539  The population identity of a lineage i during its existence,

540 x; (1), t € [t;, )

541 is a time-dependent variable taking values from {1, ..., K} that describes how this lineage, or its
542  ancestor lineage when t > w;, migrates in history. For convenience, the value of x;(t) at exactly

543  the time of a historical event is defined as the left limit x;(t;) = tlirtn_x(t), so that x(t) is left-

544  continuous.

545
546  The population identity of all lineages existing at any time throughout the history is
547 x(@) = {x;(®)]i € L(D)}, t € [0, 0),

548  which gives a complete migration trajectory of the genealogical tree. The genealogical tree itself
549  does not dictate x, and the probability of it should be computed as the sum over all possible

550 trajectories,

551 P(G) = 2 P(G N x).

552  In order to compute P(G) recursively over time, we define G(0, t) as the genealogical history in G
553  until time t, and define a “state” as

554 G(@0,t) Nnx(t).

555  For example, the state “ABCC” in Figure 1 at t; contains G(0, t;), which indicates that lineages
556 2 and 3 coalesced at t; but all other possible coalesces has not happened at t;, and x(t;) =
557  ABCC, which indicates that the remaining four lineages (1,6,4 and 5) are in populations A,B,C
558 and C, respectively, at t;.

559
560 Now PP(G) can be expressed as the sum of probability of root states
561 P(G) = P(§(0,) = > P(§(0,%0) nx(x)
x(e0)
562
563 Conditional probability between states
564  The conditional probability between states
565 P(G(0, ts41) N x(ts+1)1G(0, ts) N x(ts))
566 = P(G(0,t5) N x(ts41)1G(0, ) N x(ts))P(G(O, t541) N x(ts41)1G (0, t5) N X (t511))
567 consists of a migration probability and a genealogical probability.

568
569  The migration probability
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570 P(G(0,t) N x(ts IGO0, ) 1 x(t)) = | | Musceammcensn (00

€L(ts)
571 describes the migration of each lineage i from x;(t,) to x;(ts,1) at time t,.
572
573  The genealogical probability P(Q(O, tsr1) N x(ts41)1G(0,t) N x(ts+1)) describes how likely the
574  genealogical tree grows according to G backward in time from t; to t;,, given population
575 identities x(ts,,). This requires that every coalescence in G happened exactly at its time in G
576  (which we call the coalescence probability) and that any other possible coalescence did not
577  happen (which we call the non-coalescence probability).
578

579  The coalescence probability is

max(0,|m;[-1)

580 1_[ [yt ()]
iEL(ts,ts+1)

581  where n, ., (1;) is the coalescence rate of lineage i's population when it emerges. Note that
582  the lack of migration between t; and t,,, guarantees x;(t;) = x;(ts4+1). And max(0, |m;| — 1) is
583 the number of coalescences at the emergence of i (for example, a binary node is formed with
584  one coalescence, a ternary node can be viewed as two coalescences at the same moment, and
585 aleaf node or unary node does not have coalescence).
586
587  The non-coalescence probability is
588 [T ew <_ J o <la§t)> .n(t)dt>

a€ll,..K} ts
589  where
590 la(@®) = [{ili € L(8), x;(ts41) = a}l
591 is the number of lineages in population a at time t (if population identities are specified by
592  x;(ts+1)), Which is a step function that jumps when lineages emerge or coalesce; (laz(t)) =

593 la(t)(la(t)_l)

. is the number of lineage pairs in a that are possible to coalesce; and the exponential

594  term is the probability that none of them actually coalesced during (ts, ts,1), Which is derived
595  from a nonhomogeneous Poisson process with rate A(t) = (laz(t)) -n(t). Note that n(t) can be
596 any integrable function, enabling flexibility to the population size variation in the demographic

597 model.
598
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599  We conclude that the conditional probability between states is
600 P(G(0, ts+1) N x(ts+1)1G(0, t5) N x(ts))

max(0,|m;|-1)

601 =[] mecomn @ |- ] @]

iEL(ts) i€L(ts,ts+1)
ts+1 la(t)
602 . 1_[ exp —J 5 ‘n(t)dt
a€ll,..K} ts
603 = (migration probability) - (coalescence probability) - (noncoalescence probability)
604 = (migration probability) - (genealogical probability)

605

606  Practically, the migration probability has to be computed between any parent-child state pair,
607  but the genealogical probability is independent from the child state and needs to be calculated
608 only once for every state. As a boundary condition, the origin state at the bottom (i.e. leaves) of
609 the tree has probability one

610 P(G(0,0) nx(0)) = P(x(0)) = 1,

611  where x(0) specifies the population identities of each individual in the study samples.

612

613 The minimal graph of states

614  All possible states at all times of all historical events t, t,, ..., ts form a directed acyclic graph,
615 named as the graph of states (GOS), where states in adjacent layers (one at t; and the other at
616  ts,.4) are connected with their conditional probability as introduced above. A state with zero

617  marginal probability will not contribute to the marginal probability of its parent state and is

618 redundant in the graph. A GOS without redundant states is called a minimal GOS.

619

620 The coalescence probability and non-coalescence probability are always above zero, because
621  population sizes cannot be zero or infinity. This means that, to judge if a state is possible or not,
622  we only have to check the migration probabilities, which are decomposable into migrations of
623  each individual lineage. In other words, a state is possible if every lineage is in a possible

624  population. To put it mathematically, we have

1<rs<s

625 P(G(0,ts) Nx(ts)) >0 < [I(xi(o)) 1_[ m(tr)] >0, VielL(0)
xi(ts)

626  where I(xl-(O)) is a size-K indicator vector with value 1 at the population x;(0) where sample i

627  was collected, and all other elements zero; [[,<,<s m(t,) is the transition matrix summarizing the
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628 first s historical events; and [1(x;(0)) [Ti<r<s m(tr)]x'(t , is the probability that lineage i migrated

629  from x;(0) to x;(ts). Figure 1 step 1 can be understood as the non-zero elements in
630  I(x;(0))IT1<r<s m(t,) for every s.

631

632 Implementation details and optimization

633  With the above-mentioned theory to calculate P(G|Dg) on a demographic model Dy
634  parameterized by 6, the estimated parameters that best explains the observed g is

635 0" = argénax P(G|Dg)

636 glLike encapsulates the likelihood computation and a simulated annealing-based optimization
637 into an open-source Python package, alongside a C extension to accelerate Cartesian product
638  operations when searching for child states (GitHub page: https://github.com/Ephraim-usc/glike).
639  All probabilities are implemented in log scale, and sums of probabilities are calculated with the
640  scipy logsumexp function. If the number of states at a layer exceeds the preset limit (10° by
641  default), a random subsample of states is generated to approximate the likelihood. When

642  multiple, presumed independent and neutrally evolving, trees are provided, the final log

643 likelihood is the sum of log likelihoods of each tree. We presume independence of trees as the
644  total likelihood would assume more complicated forms if trees were nearby and not

645 independent. We also presume neutrality as coalescence probabilities would deviate from the
646 inverse of population sizes when there are variants under natural selection. We set a user-

647  defined parameter to drop some proportion (default: 50%) the lowest likelihood trees during
648  optimization, as we found in practice that this filtering improves robustness against errors in tree
649  reconstruction (such as erroneous coalescences) and migrations that are neglected in the

650 demographic model.

651

652 Demographic inference in simulations

653  All simulations were performed on a 30 Mb chromosome with both recombination and mutation
654 rates set to 10® per generation per base pair, with a sample size of 1,000 haplotypes from the
655 admixed population. The demographic parameters are annotated in the corresponding figures,
656  or cloned from stdpopsim? models 4B11 (American Admixture) and 4A21 (Ancient Europe). In
657  American Admixture simulations, we ignored the continuous migrations in our simulations and
658 estimations. The extent to which hidden migrations potentially undermines glLike results was
659 tested on additional simulations with 1-, 10- and 100-times continuous migrations as reported by

660 stdpopsim 4B11. In the Ancient Europe simulation, we additionally sampled 200 haplotypes


https://doi.org/10.1101/2023.10.10.561787
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.10.561787; this version posted October 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

661  from each ancestral population according to the collection times reported by stdpopsim, in order
662  to mimic genetic studies with ancient DNA.

663

664  To evaluate glLike, ARGs and genotypes were simulated by msprime®®. ARG reconstructions by
665 tsinfer+tsdate?®>° or Relate®' were performed with all default parameters as suggested in the
666  user manual. One hundred evenly spaced trees across the chromosome were selected for

667  gLike inference. The precision of gLike parameter estimation (i.e., the minimal step size during
668  optimization by simulated annealing, relative to the current estimate) was set to 2%. The

669  absolute difference between the average estimate and the truth, divided by truth, is defined as
670 the relative error. The average estimates across 50 replicate simulations were used as the final
671 pictorial representation of the reconstructed demography, with boxplots of the relative errors
672  across 50 replicates also shown. The standard deviation across 50 replicate simulations serves
673  as an indicator of the parameter uncertainties as listed in Tables S1 and S2.

674

675 To compare glLike to Fastsimcoal2 (ref '), derived allele frequency spectra were computed on
676  all simulated SNPs (including singletons), and parameter estimation was performed with

677 100,000 simulations and 40 ECM (expectation/conditional-maximization) loops, using the

678 commands “n 1 -s0 -d -k 1000000” for AFS simulation and “-n 100000 -s0 -d -M -L 40” for

679  parameter estimation. The estimate with the highest likelihood obtained among 50 independent
680 runs was used as the final pictorial representation of the reconstructed demography (following
681 the same practice recommended by the authors of Fastsimcoal23?), with estimates from all 50
682  shown in the accompanying boxplots. We also compared gLike performance to pg-gan?', a

683  deep learning demographic parameter inference method that uses generative adversarial

684  networks to create realistic simulated training data. Genotypes from simulated ARGs of the

685 same demographic model were used as training data, run for up to 300 training iterations with
686  default training parameters. We also used the same range for each demographic parameter to
687  be consistent with the Fastsimcoal2 comparisons. Since pg-gan gives multiple sets of

688  parameter proposals at end of training, the set of inferred demographic parameters with the
689 lowest relative error compared to the true parameters was selected as the final estimate of this
690 run. A total of 50 independent runs were conducted.

691

692  To characterize the impact of ARG reconstruction using array data instead of sequencing data,
693  we performed additional simulation experiment in which SNPs were retained with the probability
694 p(MAF) = C,etf(MAF)/Cgim (MAF),
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695  where MAF is the minor allele frequency of the simulated SNP, C..(MAF) is the number of

696  occurrences of MAF in the Latinos array data, and Cj;,,, is the number of occurrences of MAF in
697 asimulated genome (3,000Mb). As expected, it was found that Cg;,, is greater than C..s across
698  all values of MAF € [0, 0.5], which ensures p is always less than one. We then inferred the ARG
699 using tsinfer+tsdate using the simulated array data.

700

701  Model selection in simulations

702  To test for the existence of an additional ancestral component, gLike was applied under a two-
703  way admixture model and a three-way admixture model, and the maximum likelihoods achieved
704  under both models were compared. Specifically, the two-way admixture model structurally

705  mimicked the three-way admixture as in Figure 2A, but without population D, so that all

706 lineages from population B entered population C. As such, the two-way admixture model had
707  two fewer parameters — r, (admixture proportion from D) and Np (population size of D). gLike
708 was then applied in a two-step manner. First, the parameters were estimated under the two-way
709  admixture model with the default hill-climbing optimization. Next, we applied gLike under the
710 three-way admixture model and perform a grid search on r2, Nc and Np, while fixing other

711  parameters at their two-way admixture estimates. Finally, the difference between the maximum
712  log likelihoods achieved under two models was used for AIC model selection (with 2 degrees of
713  freedom, to account for the two extra parameters in the three-way admixture model), and the
714  model with the higher AIC value was selected.

715

716 Latinos and Native Hawaiians data processing

717  Atotal of 5,382 self-identified Native Hawaiians and 3,659 self-identified Latinos from the

718  Multiethnic Cohort (MEC) were genotyped on two separate GWAS arrays: lllumina MEGA and
719  lllumina Global Diversity Array (GDA). After taking the intersection of SNPs found on both

720  arrays, the genotyping data were lifted to hg38 using triple-liftover® to ensure alleles in inverted
721  sequences between reference genome builds were properly lifted. We removed variants that
722  were genotyped in fewer than 95% of individuals, variants out of Hardy-Weinberg Equilibrium (p
723 < 107°), and individuals with greater than 2% missing genotypes (though no one was removed
724  with this threshold). After quality check, the Native Hawaiian and Latino datasets contained

725 990,549 and 1,093,693 SNPs, respectively. The data were phased without a reference using
726  EAGLE** and its default hg38 genetic map. We randomly subsampled 1,000 haploids and

727  removed monomorphic SNPs, resulting in 879,040 and 927,254 SNPs in the Native Hawaiian

728 and Latinos datasets, respectively. The ancestral alleles were called by a comparison with the
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729  human ancestor GRCh38 e107 genome (URL.: ftp.ensembl.org/pub/release-

730  86/fasta/ancestral_alleles/). Tsinfer and tsdate were used with all default parameters as

731  suggested in the user manual to reconstruct the ARG. The human neutralome® (i.e., the

732 regions of the human genome identified as likely selectively neutral) was converted into hg38
733 coordinates, and 319 neutral regions that are at least 5Mb from each other were selected for
734  gLike analysis. Ten trees were sampled in each glLike optimization thread, and 20 threads were
735 runin parallel. The estimates of demographic parameters were averaged over 20 threads. The
736  precision of gLike parameter estimation was set to 5%, higher than 2% used in simulations. This
737  choice is due to the broader span of the likelihood curve's plateau, which generally extends
738  beyond 5%, wider than observed in simulations. Therefore, using smaller step sizes would

739  increase computational costs with little gain in performance.

740

741  Data Availability

742  The individual level genetic data for Native Hawaiian and Latino datasets were derived from the
743  Multiethnic Cohort (MEC), and are available on dbGaP (accession numbers: phs000220.v2.p2
744  and phs002183.v1.p1). The gLike package is available on its github page

745 (https://github.com/Ephraim-usc/glike2).
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