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Abstract 

We introduce a novel deconvolution framework, DeMixSC, to resolve technological discrepancies 

between bulk and single-cell/nucleus RNA-seq data, a critical issue unaddressed by existing single-cell-based 

deconvolution methods. Built upon the weighted non-negative least squares framework, DeMixSC introduces 

two key improvements: it leverages a small benchmark dataset to identify and rescale genes affected by 

technological discrepancies; it employs a novel weight function to account for variations across subjects and 

cells. The advanced utility of DeMixSC is demonstrated by its superior deconvolution accuracy on a benchmark 

dataset of healthy retinas and its broad applicability to a large aged-macular degeneration (AMD) cohort. Our 

work is the first to systematically evaluate the impact of technological discrepancies on deconvolution 

performance and underscores the importance of using a benchmark dataset to counteract these discrepancies. 

Our study positions DeMixSC as a transferable tool for accurate deconvolution of large bulk RNA-seq cohorts, 

necessitating only a tissue-type match between the benchmark and targeted datasets. 
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Introduction 

While recent advances in single-cell/nucleus RNA sequencing (sc/snRNA-seq) offer valuable insights 

into cell types and states in healthy1 and diseased tissues2,3, the high expenses and complex sample preparation 

procedures have restricted its widespread adoption in clinical settings4. Bulk RNA-seq, on the other hand, retains 

its essential role, especially in large disease-oriented cohort studies, where its cost-efficiency, streamlined 

sample processing, and high-throughput analytic capabilities establish it as the method of choice for both 

preliminary screenings and exhaustive population-level analyses5–7. Nevertheless, bulk RNA-seq comes with a 

significant drawback: it captures averaged gene expression across heterogeneous cell types, thus confounding 

downstream analysis4. To mitigate this drawback, deconvolution methods have been developed to delineate the 

cell-type-specific signals from bulk RNA-seq data. Traditional bulk-based deconvolution methods8,9 employ bulk 

RNA-seq data from normal tissues or cell lines as the reference. They are typically constrained by low-resolution 

estimates, limited to identifying only two or three cellular components within the bulk samples. The progress of 

sc/snRNA-seq techniques opens the door to the emergence of single-cell-based deconvolution methods10–18, 

which tap into the granularity of even a modest set of single-cell data to provide far superior resolution in 

estimating cell-type proportions in complex tissues, thereby offering a cost-effective alternative. 

Single-cell-based deconvolution methods are not without their disadvantages, however. Though affording 

remarkable resolution, they encounter a substantial challenge in achieving precise accuracy. This limitation 

arises from inconsistencies in gene expression profiles between bulk and sc/snRNA-seq data, which are 

attributable to technique variations in sample acquisition, preparation, and sequencing19,20. Such inconsistencies, 

which we refer to as <technological discrepancies=, have caused prior deconvolution studies to produce 

suboptimal estimates of cell-type proportions, particularly when unpaired sc/snRNA-seq data serve as the 

reference matrix for deconvolving publicly available large bulk cohorts16,21,22. Several studies have been aware 

of and attempted to address these issues but ended up with limited success10,14,18. CIBERSORTx18 simply 

implements a batch effect correction step but offers limited improvements in deconvolving complex bulk tissues. 

The ensemble approach of SCDC14 uses matched bulk and scRNA-seq data from two normal mice breast tissues, 

which lacks generalizability to patient cohorts. The most recent SQUID10 builds on top of DWLS15 with a Bisque-

based linear transformation step23 to align matched bulk and scRNA-seq data, which can distort gene expression 

profiles, risking overcorrection. Meanwhile, existing benchmarking designs10,21,22,24 often employ unfavorable 

datasets such as simulated pseudo-bulk data, cell line mixtures, or publicly available data, none of which are 

tailored to reveal the negative effect of technological discrepancies. Therefore, there is an unmet demand for a 

comprehensive benchmark study that rigorously illustrates and assesses the impact of technological 

discrepancies and a robust deconvolution framework that effectively mitigates these discrepancies to enhance 

analytical accuracy. 

In this study, we thoroughly explore technological discrepancies and address their impact on 

deconvolution performance to make adjustments correspondingly. To accomplish this, we generate a specialized 

benchmark dataset of 24 healthy retinal samples, ensuring technological discrepancies as the main confounding 

factor. Using this dataset, we demonstrate that technological discrepancies significantly affect the expression 

profiles of bulk and single-nucleus data and thus reduce the accuracy of existing single-cell-based deconvolution 
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methods. Against this backdrop, we introduce a novel deconvolution method called DeMixSC, which employs a 

benchmark dataset and an improved weighted nonnegative least-squares (wNNLS) framework25 to identify and 

adjust for genes consistently affected by technological discrepancies. DeMixSC is generalizable to any major 

tissue types, by necessitating a small representative benchmark dataset to effectively deconvolve a large tissue-

type-matched bulk cohort. We validate the improved deconvolution performance of DeMixSC by comparing it to 

eight existing methods on our benchmark dataset. When applied to 453 peripheral retinal samples from patients 

with age-related macular degeneration (AMD)7, DeMixSC achieves more realistic cell-type estimates which 

reflect subtle changes in cell-type proportions between AMD conditions, confirming its reliability and 

generalizability in real-world settings. DeMixSC fills the gap in resolving technological discrepancies in bulk 

deconvolution and serves as an accurate and adaptable instrument for estimating cell-type proportions. 

 

Results 

Use benchmark data to assess technological discrepancy 

We design a specialized benchmark dataset to assess the technological discrepancy between bulk and 

sc/sn sequencing platforms (Fig. 1A). This dataset comprises 24 healthy retinal samples from donors9 eyes 

collected within six hours postmortem (ages of death between 53-91, Supplementary Table 1), from two batches 

of sequencing experiments. Both bulk and snRNA-seq profiling are performed on each sample from the same 

single-nucleus suspension aliquot using a template-switching method to generate full-length cDNA libraries (see 

Methods). As single-cell protocols can be biased toward retaining certain cell types26, hence changing the cell-

type proportions, this special approach maximizes our chance that the matched sequencing data share 

approximately the same cell-type proportions. The corresponding snRNA-seq data is summed to create matched 

pseudo-bulk RNA-seq data. We hypothesize that any major differences in the gene expression profiles between 

the matched pseudo-bulk and real bulk RNA-seq would be technological as compared to biological discrepancies.  

We indeed observe much larger batch differences between real-bulk and pseudo-bulk data, in contrast 

to small differences observed in cell-type distributions across samples in snRNA-seq or differences between the 

two experimental batches (Extended Data Figs. 1A-E). Total read counts from bulk RNA-seq data are 

significantly lower than total UMI counts from matched pseudo-bulk data (Extended Data Fig. 1F). Batch-1 

exhibits mean read depths of 3.7x107 and 7.9x107 for bulk and pseudo-bulk RNA-seq data, respectively (t-test 

P-value < 0.001), while the mean read depths in batch-2 are 4.6x106 and 4.7x107, respectively (t-test P-value < 

0.001). Assuming the difference in read depth does not impact the relative expression for each gene, we expect 

gene expression correlation to be a better metric for identifying technological discrepancy. We observe a low-to-

moderate correlation of gene expression between the paired bulk data, which is consistent across samples (Fig. 

1B, mean Pearson correlation coefficient = 0.12 for batch-1, and 0.47 for batch-2). Further differential expression 

(DE) analysis between the two bulks identifies more than 5,000 DE genes in each experimental batch (Fig. 1C, 

adjusted P-values < 0.05), with more than 60% of these genes overlapping across the experiments (Fig. 1D). 

Our observations suggest a consistent technological effect across experiments. In broader contexts, factors such 

as library preparation, RNA capture efficiency, reverse transcription protocol, and sequencing depth could serve 

as potential sources of the technological discrepancy19,20,27. Thus, we expect the reference matrix derived from 
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sc/snRNA-seq data does not fully represent cell-type-specific expression profiles in bulk samples10,22. Given 

these discrepancies, performances of existing deconvolution methods will be compromised, as their key 

assumption about the representative reference is violated. 

 

Overview of DeMixSC 

Here, we present our novel deconvolution framework, DeMixSC, and illustrate how it addresses the 

observed consistent technological discrepancy in order to enhance the estimation accuracy of cell-type 

proportions. The DeMixSC framework, as depicted in Fig. 2, is built upon the commonly used wNNLS 

approach15,17,25 with several essential improvements (see Methods and Supplementary Note 1). Concretely, for 

a subject j, DeMixSC estimates its cell-type proportions, denoted by p̂j , by minimizing a composite of two 

weighted squared error terms, as given below in (1): 

p̂j=argmin
pj≥0

( ∑ wjg
g∈G1

(yjg-nj ∑ pj
kR̂g

k

k∈K

)2

+ ∑ wjg
g∈G2

(yjg

ag -nj ∑ pj
k R̂g

k

ag 
k∈K

)2) .  (1) 

Here, yjg is the observed expression value of gene g from subject j in bulk RNA-seq data, nj is a normalization 

constant, R̂g
k
 is the estimated cell-type-specific expression value of cell type k in the reference matrix derived 

from sc/snRNA-seq data, and wjg is the weight. The gene sets G1 and G2 comprise genes with minimal and 

substantial impact by technological discrepancy, respectively. The first innovation of DeMixSC is the 

identification of and adjustment to genes presenting consistently high technological discrepancy (G2), using a 

small representative benchmark dataset such as our special matched RNA-seq data from 24 retinal samples 

(Fig. 2A). DeMixSC uses a DE analysis between bulk and matched pseudo-bulk RNA-seq data to segregate 

genes with low inter-platform discrepancy (non-DE genes, G1) from those highly affected by technological 

discrepancy (DE genes, G2). It then employs a partitioned loss function and adjusts genes from G2 by rescaling 

their expressions by ag (Figs. 2B, C) to mitigate the influence of technological discrepancy. Here we assign ag 

as the log2 transformed mean expression of the matched bulk and pseudo-bulk RNA-seq data. 

The second innovation of DeMixSC comes from our proposed function wjg
∗ , which is given by 

w*
jg
-1=(ŷjg)2+(yjg-ŷjg)2+2,  (2) 

where ŷjg denotes the fitted expression value. This weight function comprises three terms: the squared fitted 

expression, the squared residual, and a baseline constant (Fig. 2C). The fitted part addresses genes with high 

expression levels. The squared residual accounts for the remaining variance after fitting. The baseline constant 

constrains the weight range. Previous weight functions contain either the first or the second part only10,14–17. We 

reason that both parts are needed to comprehensively account for variations across cells and across samples, 

hence introducing this new weight function. In a test experiment using the benchmark dataset (see Methods, 

Extended Data Fig. 2), we observe that the previous method assigns higher weights to genes with low 

technological discrepancy rather than cell-type-specific genes, yielding high cell-type-wise collinearities. 

DeMixSC instead selects more cell-type-specifically expressed genes and reduces the cell-type-wise collinearity. 
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DeMixSC operates as a two-tier model in application. First, DeMixSC utilizes a specifically designed 

benchmark dataset to identify and adjust genes with high inter-platform discrepancies (Fig. 2A). Second, to 

deconvolve a large unmatched bulk RNA-seq dataset, DeMixSC aligns the large bulk cohort with the bulk RNA-

seq data in the small benchmark dataset28 (Fig. 2B) to generalize the detected technological discrepancy and 

then runs the refined wNNLS framework for deconvolution (Fig. 2C). Our main prerequisite is a matched tissue 

type between the small benchmark dataset and the large targeted cohort. 

 

Compare the estimation accuracy of DeMixSC to existing deconvolution methods 

Using our benchmark data, we compare the performance of DeMixSC to eight existing deconvolution 

methods10–15,17,18, including AutoGeneS, BayesPrism, CIBERSORTx, DWLS, MuSiC, RNAseive, SCDC, and 

SQUID (see Methods, Fig. 3A). The retinal tissue samples in our benchmark dataset encompass ten distinct cell 

types. We focus our evaluation of different deconvolution methods on seven major cell types (Fig. 1A; amacrine 

cells, ACs; bipolar cells, BCs; Cone cells; horizontal cells, HCs; Müller glial cells, MGs; retina ganglion cells, 

RGCs; Rod cells), which on average account for 98% of the total cell population30. 

Overall, DeMixSC achieves the lowest root mean squared error (RMSE) and mean absolute error (MAE) 

scores in deconvolving bulk RNA-seq data, with mean values of 0.06 and 0.04 (Figs. 3B, C). Moreover, DeMixSC 

produces similar RMSE and MAE scores for deconvolving bulk and pseudo-bulk RNA-seq data (mean RMSE: 

bulk 0.06, pseudo-bulk 0.04; and mean MAE: bulk 0.04, pseudo-bulk 0.03). This suggests that DeMixSC properly 

adjusts for undesired technological discrepancies. In contrast, existing methods perform poorly for bulk as 

compared to perform reasonably for pseudo-bulk, reflecting that technological discrepancies compromise 

deconvolution accuracy and remain unaddressed by current approaches (Figs. 3B, C). Specifically, AutoGeneS 

shows higher RMSE and MAE scores for pseudo-bulk data, likely due to an inability to distinguish between Rod 

and Cone cells, which share largely similar expression profiles (Fig. 3D). DWLS excels in deconvolving pseudo-

bulk samples but fails short in bulk RNA-seq data, possibly due to overfitting. Using the tree-based deconvolution 

in MuSiC or the ensemble option in SCDC does not improve their accuracy (Extended Data Fig. 3). 

CIBERSORTx presents overall reasonable performances in both bulk and pseudo-bulk data, likely because of 

its batch effect correction step. Looking further at the cell-type level, we observe systematic biases across 

methods. Most methods underestimate the proportions of ACs and BCs while overestimating HCs and MGs (Fig. 

3D). DeMixSC accurately estimates the proportions of all seven major cell types and improves the deconvolution 

results for ACs, BCs, HCs, and MGs (Figs. 3D-F; RMSE: 0.04, 0.06, 0.03, 0.03 and MAE: 0.03, 0.05, 0.03, 0.02 

for four cell types, respectively). Similar to most other methods, DeMixSC also underestimates the proportion of 

Cone cells (true mean proportion at 0.04). Finally, we test the performance of each method using various data 

transformation procedures (see Methods). We test the robustness of these methods under varied data formats29, 

including RPM, RPKM, and TPM, and find DeMixSC to be robust to data transformations (Extended Data Fig. 

4). In line with previous benchmarking studies24, we find using raw counts as input is sufficient to obtain good 

results. Finally, we find SQUID delivers the least desirable results in this benchmarking study (mean RMSE and 

MAE in bulk data: 0.25 and 0.17). The pitfall with SQUID possibly lies in its data transformation step23, which has 

the potential to misrepresent gene expression profiles. In summary, our DeMixSC framework achieves the most 
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accurate deconvolution among the compared methods by successfully addressing key issues with technological 

discrepancy between two sequencing platforms. 

 

Apply DeMixSC to human peripheral retina bulk RNA-seq data 

Age-related macular degeneration (AMD) is characterized as a deterioration of retina and choroid that 

leads to a substantial loss in visual acuity, with the loss of Rod cells being a major manifestation. It is the leading 

cause of blindness among the global elderly population31. However, the molecular and cellular events that 

underlie AMD remain poorly understood, impeding the development of effective treatments32. Understanding the 

molecular and cellular dynamics is essential for targeting the progression of AMD. We aim to examine cell-type 

proportion changes during AMD progression using bulk RNA-seq samples from 453 human peripheral retina7 

(see Methods). Among these retina samples, 105 are in the Minnesota Grading System 1 (MGS1), with 97 in 

MGS2, 88 in MGS3, and 61 in MGS4). An MGS1 rating suggests healthy retina, and an MGS4 rating suggests 

AMD, while MGS2 and MGS3 represent intermediate stages33. 

We run the two-tier DeMixSC to first align the AMD cohort with the bulk data from our specialized 

benchmark dataset of retina samples, and then run wNNLS to estimate cell-type proportions in the AMD cohort 

(see Methods, Fig. 4A). As we have more than one single-nucleus reference sample, DeMixSC produces robust 

deconvolution estimates among the consensus and each individual single-nucleus reference at both cell-type 

and sample levels (see Methods, Figs. 4B, C). The top-weighted genes selected by DeMixSC present low cell-

type-wise collinearity across samples (see Methods, Extended Data Fig. 5). DeMixSC achieves cell-type 

proportions (Fig. 4D) that are closer to experimental measures for non-AMD samples34 , with an MAE of 0.03 

(Supplementary Table 2). In contrast, three other methods, MuSiC2, CIBERSORTx, and SQUID, overestimate 

the proportion of Rod cells and underestimate all other cell types (Extended Data Fig. 6). DeMixSC identifies 

consistent changes in proportions in three major cell types over the axis of MGS1-4 (Extended Data Fig. 7), 

including a statistically significant decrease in proportions of Rod cells (non-AMD: 0.57 vs. AMD: 0.53; t-test P-

value = 0.02), as well as statistically significant increases in proportions of BCs (non-AMD: 0.16 vs. AMD: 0.17, 

t-test P-value = 0.05) and MGs (non-AMD: 0.12 vs. AMD: 0.15, t-test P-value < 0.001). It is known that the adult 

retina is not able to generate new cells31,32,35, so we hypothesize that it is the loss of Rod cells that results in a 

decreased total number of cells, hence inflating the Rod cell proportions as well as proportions of other cells in 

the AMD condition. Indeed, we find losing 15% of all Rod cells can result in the observed subtle drop from 0.57 

to 0.53 for the proportions of Rod cells, as well as the subtle increases in proportions of the other two cell types 

(see Methods). 

One major utility of obtaining accurate cell-type proportions is to enable the downstream accurate 

evaluation of cell-type-specific gene expressions between disease conditions. We test the utility of DeMixSC by 

running the kernel of integrated single cells (KERIS), a method that estimates cell-type specific gene expression 

levels between conditions, on the proportion estimates of non-AMD and AMD samples provided by DeMixSC 

and MuSiC2 (see Methods, Supplementary Tables 4-7). Pathway enrichment analysis using the top 100 

expressed genes in Rod cells, MGs, and BCs, respectively, shows that with the majority cell type where a similar 

trend in proportions is presented by both methods, e.g., in Rod cells (Fig. 4D, Extended Data Fig. 6A), their cell-
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type specific enriched pathways also overlap (Fig. 4E); when the proportions are underestimated by MuSiC2, 

e.g., in MGs and BCs (Fig. 4D, Extended Data Fig. 6A), DeMixSC-based estimates generates pathways that are 

biologically meaningful, such as extracellular matrix remodeling and hypoxia response in MGs36,37 and synapse 

regulation and membrane potential in BCs38 (Fig. 4E). In conclusion, DeMixSC demonstrates high accuracy and 

generalizability in deconvolving unmatched large bulk RNA-seq datasets using a small tissue-type-matched 

benchmark dataset. 

 

Discussion 

This work addresses technological discrepancies between bulk and sc/sn RNA-seq data in order to 

improve the deconvolution accuracy of bulk RNA-seq data. We construct a specialized benchmark dataset of 

healthy retina samples and thoroughly evaluate the impact of technological discrepancies on existing single-cell-

based deconvolution methods10–18. Utilizing this benchmark dataset, we introduce the DeMixSC deconvolution 

method that makes innovative improvements on the wNNLS framework to address the consistently observed 

technological discrepancy at a gene level. The distinct advantage of DeMixSC lies in its superior deconvolution 

accuracy and broad generalizability. As demonstrated in our benchmark study, DeMixSC achieves more 

accurate estimates of cell-type proportions compared to existing methods. More importantly, DeMixSC is 

generalizable to deconvolving unmatched large bulk datasets, only requiring a matched tissue type between a 

small benchmark dataset and the targeted bulk cohorts. In the application to complex retina samples from 

patients with AMD, DeMixSC identifies subtle yet critical cell-type proportion changes, highlighting its ability to 

reflect cellular dynamics during disease progressions and facilitate the cell-type-specific gene expression 

analysis. Most existing single-cell-based deconvolution methods10–18 are adept at discerning between 7 to 13 

cell types from bulk RNA-seq data, DeMixSC aligns with these capabilities as demonstrated in our study. 

DeMixSC is computationally efficient, completing the analysis of 453 AMD samples in under five minutes, and 

presents robust convergence against different starting values (see Methods, Extended Data Figs. 8). The 

implementation of the DeMixSC framework is freely available at https://github.com/wwylab/DeMixSC. 

The generation of the benchmark dataset in DeMixSC is crucial for accurate and reliable estimates of 

cell-type proportions. Our study employs a specifically tailored cDNA library preparation procedure to generate 

the benchmark dataset of retinal samples. A critical step in the data generation process is to ensure the 

'matchness' of paired bulk and snRNA-seq data. In our setup, the cDNA library for bulk RNA-seq is generated 

using the Smartseq v4 ultralow input RNA kit, a protocol that is similar to that of the snRNA-seq. We advocate 

for the preparation of ample tissue samples when executing this pipeline to ensure a reliable benchmark dataset. 

The stride of DeMixSC is noteworthy, yet there is potential room for improvements which we leave for 

future work. The key of DeMixSC rests on effectively discerning and down-weighting genes with technological 

discrepancies. A potential challenge arises in gene identification when applying DeMixSC to tissue types (e.g., 

tumors) with high cellular plasticity. In this scenario, a stratified categorization of genes into three distinct groups 

can be beneficial: technologically stable genes, biologically stable genes (e.g., global tumor signature genes6), 

and the remaining unstable genes. Moreover, DeMixSC can gain from principled statistical methods to identify 

and adjust genes simultaneously. Additionally, alternative methods to ComBat28 for aligning the large cohort with 
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the benchmark dataset can be considered when dealing with tumor samples, which often are extremely 

heterogeneous with complex batch structures. Considering these potential adaptations, we anticipate the 

promising utility of DeMixSC in cancer research. By utilizing a concise benchmark dataset derived from matched 

tissue specimens, DeMixSC can be leveraged to accurately deconvolve large bulk cohorts acquired through 

either surgery or needle biopsies, which accelerates the discovery of cell subtypes and cell-type-specific markers 

among diverse patient groups. 

 

Methods 

Human retina sample collection. These samples were obtained from 24 individuals between the ages of 73 

and 91 who had passed away due to respiratory or heart failure or from a myocardial infarction (Supplementary 

Table 1). Human donor eyes were obtained through the Utah Lions Eye Bank. For this study, we included 

samples collected within six hours postmortem. Dissections of donor eyes were performed immediately following 

a previously published protocol39. Macular retinal tissue was collected using a six mm disposable biopsy punch 

(Integra, Cat # 33-37), flash-frozen, and stored at -80°C. Only one eye was used per donor, and donors with any 

history of retinal degeneration, diabetes, macular degeneration, or drusen were excluded from the study. 

Additionally, each donor underwent an ophthalmology check to ensure that the eye was in a healthy condition. 

Institutional approval for patients consent to donate their eyes was obtained from the University of Utah, and the 

study adhered to the principles of the Declaration of Helsinki. All retinal tissues were deidentified in accordance 

with HIPAA Privacy Rules. 

 

Generation of benchmark data from 24 human retinal samples. 

Single-nucleus mRNA sequencing. Nuclei were isolated with prechilled fresh-made RNase-free lysis 

buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40). The frozen tissue was resuspended and 

triturated to break the tissue structure in lysis buffer and homogenized with a Wheaton™ Dounce Tissue Grinder. 

Isolated nuclei were filtered with 40 µm Flow Cell Strainer and stained with DAPI (4′,6-diamidino-2-phenylindole, 

10 µg/ml) before fluorescent cytometry sorting (FACS) on an FACSAria III Cell Sorter (BD, San Jose, CA, USA) 

in the Cytometry and Cell Sorting Core at Baylor College of Medicine (BCM). All single-nucleus RNA sequencing 

was performed at the Single Cell Genomics Core (SCGC) at BCM. Single-nucleus cDNA library preparation and 

sequencing were performed following the manufacturer's protocols (https://www.10xgenomics.com). A single-

nucleus suspension was loaded on a Chromium controller to obtain a single-cell GEMS (gel beads-in-emulsions) 

for the reaction. The snRNA-seq library was prepared with chromium single cell 3′ reagent kit v3 (10x Genomics). 

The product was then sequenced on an Illumina NovaSeq 6000 (https://www.illumina.com). 

Bulk mRNA sequencing of retina single-nucleus suspension. To ensure the 8matchness9 of paired bulk 

and snRNA-seq data, the mRNA library for bulk RNA-seq followed the same pipeline as for snRNA-seq. 

Specifically, matched samples with snRNA-seq were used for RNA isolation by applying TRIzol (Invitrogen) to 

the separated single-nucleus resuspension. cDNA was prepared from ∼1 ng of total RNA by using the Smartseq 

v4 ultralow input RNA Kit according to the manufacturer9s directions (Takara). The libraries were made using 
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Nextera XT library prep (Illumina). Full-length RNA-seq was performed on NovaSeq 6000 sequencers according 

to the manufacturer9s directions (Illumina).  

 

Preprocessing of snRNA-seq and bulk RNA-seq data. Retina snRNA-seq UMI (unique molecular identifier) 

count matrices were obtained using CellRanger (version 3.1.0) following the official guide to estimate absolute 

counts and were then processed using the Seurat40 package (version 3.6.0). Specifically, for each snRNA-seq 

dataset, we first removed genes expressed in fewer than 5% of cells; then filtered out cells with either fewer than 

500 total UMIs or 200 expressed genes, or more than 50% total UMI counts derived from mitochondrial genes. 

The total numbers of transcripts of each cell were then normalized to 10,000, followed by a natural log 

transformation. Highly variable genes were detected and used for principal component analysis (PCA). Cells 

were then clustered using the Seurat package at a resolution of 0.5.  

For bulk RNA-seq data, the quality of raw sequencing data was first evaluated by FastQC (version 0.11.9), 

and low-quality reads and adapters were then trimmed by Trimmomatic (version 0.4.0). Next, reads that passed 

quality control were aligned to GRCh38 using the 2-pass mode of STAR (version 2.7.7b), and read counts were 

obtained by featureCount function from the Subread package (version 1.22.2) following the standard pipeline. 

 

Cell type annotation for snRNA-seq data. Seven major cell types, including Cone cells, Rod cells, horizontal 

cells (HCs), bipolar cells (BCs), amacrine cells (ACs), retinal ganglion cells (RGCs), and Müller glia cells (MGs), 

were annotated using known marker genes34,35 (Extended Data Figs. 1A, B; Supplementary Table 3). For the 

deconvolution analysis of bulk AMD retinal samples7, we included additional 3 minor cell types, including 

astrocytes, microglia cells, and retina pigmental epithelium (RPE). 

 

Generation of ground truth proportion, and pseudo-bulk mixtures. With each annotated snRNA-seq data, 

the true proportion of each cell type was calculated as the number of cells in the cell type divided by the total 

number of cells. Pseudo-bulk mixtures corresponding to each bulk were calculated by adding up the UMI counts 

from all the annotated cells per gene from the matched snRNA-seq data.  

 

Statistical analysis. We used paired Student9s t-tests to identify the differentially expressed (DE) genes 

between matched bulk and pseudo-bulk RNA-seq data. The P-values for DE analysis were adjusted for multiple 

testing by the Benjamini-Hochberg (BH) method41. We used Student9s t-tests to compare the estimated cell-type 

proportions between non-AMD and AMD groups from different deconvolution methods. We used Wilcoxon rank-

sum tests to compare the sequencing read depth between bulk and pseudo-bulk data. For all P-values in this 

study, significance levels were denoted as follows: no significant (ns), P-value >0.05; *P-value f0.05; **P-value 

f0.01; and ***P-value f0.001. 

 

DeMixSC deconvolution framework. DeMixSC is a reference-based model built upon the wNNLS 

deconvolution framework with several improvements. Our model explicitly requires a benchmark dataset for 

training. To begin with, we revisit the core equation of existing deconvolution methods10,11,14–17,25, which is 
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p̂j=argmin
pjg0

∑ wjg
g∈G

(yjg-nj ∑ pj
kR̂g

k

k∈K

)2

  (1), 

where yjg  is the observed expression value of gene g  from subject j  in the bulk RNA-seq data, R̂g
k
 is the 

estimated expression value of gene g and cell type k in the reference matrix derived from sc/snRNA-seq data, 

wjg is the weight of each gene g from subject j, p̂j is the estimated vector of cell-type proportions, and nj is a 

normalization constant. The main drawback of model (1) is that it does not address technological discrepancies 

observed in our benchmark data. To explain this, we split the squared term in Eq(1) into two components, and 

rewrite the model as  

p̂j=argmin
pjg0

∑ wjg
g∈G

((ỹjg-nj ∑ pj
kRg

k

k∈K

) + (ϵjg-nj ∑ pj
kbg

k

k∈K

))2

 (2), 

where ỹjg is the true expression value in the bulk data, ỹjg+ϵjg=yjg, and Rg
k
 is the true cell-type-specific reference 

matrix, nj ∑ pj
kRg

k
k∈K +nj ∑ pj

kbg
k

k∈K =nj ∑ pj
kR̂g

k
k∈K . The left component of Eq(2), (ỹjg-nj ∑ pj

kRg
k

k∈K ), consists of the 

true bulk-level expression ỹjg and the fitted value based on true cell-type-specific mean expression nj ∑ pj
kRg

k
k∈K . 

This component reflects the true estimation errors that we aim to minimize. The right component in Eq(2), (ϵjg-

nj ∑ pj
kbg

k
k∈K ), defines the difference in noise introduced by the bulk (ϵjg) and the sc/snRNA-seq data (denoted by 

pj
kbg

k
 for cell type k ). Therefore, the right component in Eq(2) represents the measurable technological 

discrepancy between sequencing platforms. Genes with higher levels of technological discrepancy contribute 

more to the right component (see Supplementary Note 1). Thus, when the technological discrepancy overtakes 

the true signal, instead of minimizing estimation errors (the left component), this model is geared towards 

minimizing technological discrepancies (the right component) and is no longer fitting the expression profiles of 

individual bulk samples. 

To address the issue of overcorrection for technological discrepancies in model (1), we introduce 

DeMixSC, which estimates cell-type proportions by minimizing a partitioned loss function, as shown below: 

p̂j=argmin
pjg0

( ∑ wjg
g∈G1

(yjg-nj ∑ pj
kR̂g

k

k∈K

)2

+ ∑ wjg
g∈G2

(yjg

ag -nj ∑ pj
k R̂g

k

ag 
k∈K

)2)   (3),  

where G1 is a set of genes hardly affected by technological discrepancies, i.e., the non-DE genes between 

matched bulk and pseudo-bulk data, G2 contains genes highly affected by technological discrepancies, i.e., the 

DE genes between matched bulk and pseudo-bulk (see Supplementary Note 1), and ag is the log2 transformed 

mean expression of the matched bulk and pseudo-bulk RNA-seq data. We use ag to rescale the expression 

levels of DE genes to reduce the impact of the large differences in their error terms, as shown in Eq(2). Instead 

of directly filtering them out, our approach preserves those DE genes in our model, as they could still have 

biological significance and contribute to mixed expression levels. In addition, we introduce a new weight function 

(wjg
∗ ) to reduce the influence of highly expressed genes and assign lower rankings for genes with large variances: 
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w*
jg
-1=(ŷjg)2+(yjg-ŷjg)2+2  (4). 

The current literature uses either the squared fitted value10,15 (ŷjg)2
 or the variance14,16,17 (yjg-ŷjg)2

 for weights, but 

never both. The constant 2 in Eq(4) is introduced for controlling the range of weights. Using the summation of 

the three terms as our new weight function improves model fit, accounts for variability, and enhances the 

statistical robustness of our framework. The detailed mathematical derivation is in Supplementary Note 1.  

 

Collinearity in top-weighted genes. To test the cell-type-wise collinearity among samples, we selected the top 

1000 weighted genes from each deconvolved sample and used them to compute the cell-type-wise collinearity 

matrix. The cell-type-wise collinearity was quantified using the Pearson correlation coefficient. We then took the 

average of cell-type-wise collinearity matrices across all samples to achieve the final collinearity heatmap 

(Extended Data Fig. 2 and Extended Data Fig. 4). 

 

Convergence property of the DeMixSC algorithm. To evaluate how robust DeMixSC is against different initial 

values, we randomly selected a sample from the AMD cohort7 as a case study. To create different initial values, 

we set three different scale factors n = {100, 380, 1000}. For each scale factor, we chose 10 extreme starting 

values for the proportions p̂, with the proportion of one out of 10 cell types being one and the rest being zero 

(Extended Data Figs. 8A). Finally, we used the 30 values of n×p̂ to initialize the wNNLS framework and then 

compared the estimates of DeMixSC (Extended Data Figs. 8B).  

 

Data normalization of bulk mixtures. We applied the following data normalizations to the bulk raw count 

matrices29: (i) reads per million mapped reads (RPM); (ii) reads per kilobase of transcript, per million mapped 

reads (RPKM); and (iii) transcripts per million (TPM). Both RPKM and TPM include an additional step that uses 

the gene length to obtain normalized counts per million. 

 

Computational deconvolution. Nine deconvolution methods that use scRNA-seq as a reference were tested 

in our study10–18. We first used the default settings of each method as described in the GitHub repository or the 

websites (AutoGeneS: https://github.com/theislab/AutoGeneS, BayesPrism: https://github.com/Danko-

Lab/BayesPrism, CIBERSORTx: https://cibersortx.stanford.edu/, DWLS: https://github.com/dtsoucas/DWLS, 

MuSiC: https://github.com/xuranw/MuSiC, MuSiC2: https://github.com/Jiaxin-Fan/MuSiC2/tree/master/R, 

RNAseive: https://github.com/songlab-cal/rna-sieve, SCDC: https://github.com/meichendong/SCDC, and 

SQUID: https://github.com/favilaco/deconv_matching_bulk_scnRNA). For CIBERSORTx, we followed the 

recommended built-in batch correction method for the deconvolution analysis of bulk samples (batch mode = S).  

Additionally, we evaluated the performance of the tree-guided deconvolution of MuSiC17 and the 

ensemble option of SCDC14. For tree-guided MuSiC, we first performed hierarchical clustering on the single-cell 

reference dataset; based on the hierarchical clustering results, we grouped Cone and Rod cells to form a mega 

cell cluster (Extended Data Fig. 3A), and each of the remaining cell types also formed a cluster. Cell-type-specific 

marker genes of cones and rods were obtained using FindAllMarkers function from Seurat40 package under the 
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bimod likelihood ratio test. We ran MuSiC deconvolution first at the cell cluster level and then again within the 

Rod and Cone clusters. For the SCDC ensemble option, we ran deconvolution on SCDC with 3 different sc 

references; then, we ran the SCDC_ENSEMBLE function to obtain the ensemble deconvolution results. 

 

Evaluation metrics for the deconvolution performance. We evaluated the estimated cell proportions of each 

method using two metrics, root-mean-square error (RMSE) and mean absolute error (MAE), at both sample and 

cell-type levels: RMSEj=√∑ (p̂j
k-pj

k)
2K

k=1

K
, MAEj= 1

K
∑ |p̂j

k-pj
k|K

k=1 , RMSEk=√∑ (p̂j
k-pj

k)
2J

j=1

J
, MAEk= 1

J
∑ |p̂j

k-pj
k|J

j=1 , where p̂j
k
 

denotes the estimated cell proportion by the investigated method for cell type k and sample j, and pj
k

 is the 

corresponding ground truth. We use J to denote the total number of samples and K to denote the total number 

of cell types. Smaller RMSE and MAE values indicate a better deconvolution performance. 

 

Quality control for the AMD cohort. The large AMD bulk cohort7 comprised 523 samples. We conducted quality 

control following the pipeline described in the original study. Briefly, samples were filtered out due to ambiguous 

clinical features (n=26), poor sequencing results (n=16), inconsistent genotyping results (n=14), and divergent 

ancestry (n=6). A total of 70 samples were removed, with a total of 453 samples remaining to be used to perform 

the deconvolution analysis. 

 

Reference matrices for deconvolving the AMD cohort. For our deconvolution analysis of AMD retinal 

samples7, we generated a consensus single-nucleus reference by integrating seven samples from Batch-2 

(Sample 5, 10, 12, 18, 19, 21 and 23, Supplementary Tables 1). We selected these samples as they adequately 

represented these three minor cell types: astrocytes, microglia cells, and RPE. For each sample, we randomly 

selected up to 500 cells per cell type, using all available cells for types with fewer than 500 cells. Relative 

abundance and cell size for every cell type were calculated for each sample. A consensus reference matrix was 

subsequently derived by averaging relative abundance and cell size across the selected samples. 

 

Accounting for the total cell loss in the AMD cohort. The decline in overall cell count induced by Rod cell 

loss likely amplifies the cell-type proportions in the AMD samples31,35,37. To quantify the true proportion of Rod 

cell loss, we use x to represent the mean percentage of lost Rod cells in the AMD group. With the mean 

estimated fraction of Rod cells is 0.57 in non-AMD and 0.53 in AMD (Fig. 4D), we derived the relation: 0.57(1-

x)/(1-0.57x)=0.53. Solving for x gives 0.15. This 15% reduction in Rod cells in the peripheral AMD retina aligns 

well with biological evidence indicating the primary impact of AMD on the macular region31. 

Then, we demonstrated the observed subtle increases in BCs and MGs are driven by the death of Rod 

cells. The mean estimated fractions of BCs and MGs in the non-AMD group were 0.16 and 0.12 (Fig. 4D). Based 

on our Rod cell loss metric, the expected fractions in the AMD group would be 0.16/(1-0.57*0.15)=0.17 for BCs 

and 0.12/(1-0.57x0.15)=0.13 for MGs, which were close to the DeMixSC9s estimates of BCs (0.17) and MGs 

(0.15) in the AMD group (Fig. 4D).  
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Cell-type-specific functional analysis. we applied KERIS42 with default settings as described in the GitHub 

repository (https://github.com/YosefLab/keris). Briefly, KERIS takes bulk gene expression, cell-type proportion 

estimates, and a vector of sample conditions (e.g., non-AMD vs AMD) as input, and gives the mean expression 

of each cell type as output. For each cell type, we selected the top 100 genes ranked by the estimated mean 

expression levels (Supplementary Tables 4 and 5) and performed a Gene Ontology (GO) enrichment analysis 

on three major cell types Rod, BC, and MG using clusterProfiler4.043 following the standard pipeline 

(Supplementary Tables 6 and 7) (http://yulab-smu.top/biomedical-knowledge-mining-book/GOSemSim.html).  
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Figures: 

  
Figure 1 | Assessing technological discrepancies between bulk and single-cell sequencing platforms using 
matched single-nuclei aliquots. 
A, Workflow for generating a benchmark dataset. We collect 24 healthy human retinal samples within six hours of 
postmortem. An illustration shows the layer and cell compositions of the human retina. Seven major cell types include 
photoreceptors (Rod and Cone cells), bipolar cells (BCs), retinal ganglion cells (RGCs), horizontal cells (HCs), amacrine 
cells (ACs), and Müller glia cells (MGs). Three minor cell types are not depicted in the illustration: astrocytes, microglia cells, 
and retinal pigment epithelial (RPE) cells. Samples are isolated into single-nucleus suspensions. The same aliquot of single-
nuclei is used for both bulk and snRNA-seq profiling. The matched pseudo-bulk mixtures are generated as conventionally 
done by summing UMI counts across cells from all cell types in each sample. This data generation pipeline guarantees the 
matched bulk and snRNA-seq data share the same cell-type proportions, which enables us to evaluate the impact of 
technological discrepancies (i.e., the shot-gun sequencing procedure) on the bulk and snRNA-seq expression profiles. B 
and C show the influence of technological discrepancies at sample- and gene-level, respectively. B, Pearson correlation 
coefficient across genes between the matched real-bulk and pseudo-bulk RNA-seq data for one sample at a time for both 
batches. C, MA-plots displaying the mean expression levels of all genes between matched real-bulk and pseudo-bulk data. 
Differentially expressed (DE) genes are identified using the paired t-test with Benjamini-Hochberg (BH) adjustment. Red 
represents genes expressed higher in the real-bulk, and blue represents genes expressed higher in the pseudo-bulk. The 
horizontal dotted lines denote a log2 fold change of one between matched real-bulk and pseudo-bulk data. adj.p: adjusted 
P-values. D, Venn diagrams showing genes consistently expressed higher in the bulk (upper) or the pseudo-bulk (bottom) 
between the two batches, which were generated using different tissue samples and at a different time. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561733
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure 2 | Overview of DeMixSC. 
The DeMixSC framework for deconvolution analysis of bulk RNA-seq data using sc/sn RNA-seq data as reference. A, The 
framework starts with a benchmark dataset of matched bulk and sc/snRNA-seq data with the same cell-type proportions. 
Pseudo-bulk mixtures are generated from the sc/sn data. DeMixSC identifies DE genes and non-DE genes between the 
matched real-bulk and pseudo-bulk data. The non-DE genes are considered stably captured by both sequencing platforms 
(blue), while the DE genes are highly affected by technological discrepancies (orange). B, DeMixSC then employs a 
normalization procedure to perform the alignment between two bulk RNA-seq datasets (e.g., with ComBat). C, DeMixSC 
estimates cell-type proportions by regression under a weighted non-negative least square (wNNLS) framework with two 
improvements: 1) partitioning and adjusting genes with high technological discrepancies, and 2) a new weight function. 
Here, g is the index of gene, j is the index of subject, k is the index of cell type, p̂j is the estimated cell-type proportions, wjg 
is the weight, nj is the normalization constant, R̂g

k
 is the reference expression value derived from the sc/snRNA-seq data, 

ag  is the log2 transformed mean expression of the matched bulk and pseudo-bulk RNA-seq data, yjg  is the observed 

expression value in the bulk RNA-seq data, and ŷjg is the corresponding fitted value.  
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Figure 3 | Compare the estimation accuracy of DeMixSC to existing deconvolution methods. 
A, Workflow for the deconvolution benchmarking design. We use benchmark data from retinal samples. The cell count 
proportions for each cell type are used as ground truth for the corresponding tissue samples. We assess the deconvolution 
performance of DeMixSC and seven existing methods for both bulk and pseudo-bulk mixtures. In addition to the raw counts, 
we also test RPM, RPKM, and TPM. The deconvolution performance is assessed by RMSE and MAE. B and C, Boxplots 
showing the deconvolution performance of eight deconvolution methods for the bulk and pseudo-bulk data. RMSE and MAE 
values are calculated across seven major cell types for each sample, with gray denoting pseudo-bulk and red denoting real-
bulk. Smaller values indicate higher accuracy in proportion estimation. D, Boxplots showing the distributions of 
deconvolution estimates at the cell-type level for all 24 retinal samples. Each color corresponds to a given deconvolution 
method, with black denoting the ground truth, and each panel corresponds to a given cell type. E and F, An overview of 
deconvolution performance at the cell-type level across the eight methods using RMSE and MAE, respectively. Lighter 
colors correspond to lower RMSE or MAE values.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561733
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure 4 | Using DeMixSC to deconvolve a large cohort of human peripheral retinal samples. 
A, PCA plots of both the retina cohort data and the benchmark data. Red denotes the bulk data to be deconvolved, blue 
denotes the benchmark bulk data, and green denotes the benchmark pseudo-bulk data. B and C demonstrate the 
robustness of DeMixSC to different reference matrices at both cell-type and sample levels. Higher correlation coefficients 
indicate better performance. D, Distributions of DeMixSC estimated cell-type proportions of Ratnapriya et al. data using 
consensus references. Each panel corresponds to a given cell type. The P-values for Student’s t-tests comparing the 
estimated cell-type proportions between non-AMD and AMD groups are denoted as follows: not significant (ns), P-
value >0.05; *P-value ≤0.05; **P-value ≤0.01; and ***P-value ≤0.001. E, Venn diagram showing the GO annotation pathways 
identified using KERIS output based on DeMixSC or MuSiC2, for Rod, MGs, and BCs in the AMD samples.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.10.561733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561733
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Extended Data Figure 1 | Overview of the matched bulk and snRNA-seq data. 
A and B, UMAP projection of snRNA-seq data from 4 healthy retinal samples in batch-1 and 20 healthy retinal samples in 
batch-2, annotated by cell types. C and D, UMAP projection of snRNA-seq data from 4 healthy retinal samples in batch-1 
and 20 healthy retinal samples in batch-2, annotated by sample IDs.  Cells were clustered by their biological annotations 
instead of sample origins, suggesting weak-to-none batch effects. E, Distribution of the first two principal components for 
the matched real-bulk and pseudo-bulk RNA-seq data in the benchmark dataset. F, Boxplot showing the raw read depth 
between bulk and pseudo-bulk RNA-seq data from batch-1 and batch-2. The P values for Wilcoxon rank-sum tests 
comparing sequencing read depth between bulk and pseudo-bulk data are denoted as follows: *P-value ≤0.05; **P-value 
≤0.01; and ***P-value ≤0.001.    
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Extended Data Figure 2 | DeMixSC reduces the collinearity among top-weighted genes in the benchmark dataset. 
A and B, Boxplots showing numbers of low and high discrepancy genes within the top 1000 weighted genes for each sample, 
and heatmaps showing the averaged cell-type-wise collinearity across samples: DeMixSC (A) and MuSiC (B). 
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Extended Data Figure 3 | Deconvolution performance of the tree-guided MuSiC and Ensemble-SCDC. 
A, Hierarchical clustering of the cell-type-specific reference matrix. B, Boxplot showing the distributions of estimated cell-
type proportions from the benchmark data using the tree-guided MuSiC. C, Boxplot showing the distributions of estimated 
cell-type proportions from the benchmark data using the SCDC ensemble mode. Black denotes the ground truth 
estimated using the snRNA-seq data. Gray denotes estimates from the pseudo-bulk RNA-seq data, and red denotes 
estimates from the matched bulk RNA-seq data.  
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Extended Data Figure 4 | Impact of data normalization on the deconvolution performance. 
A, C, and E, Boxplots showing the deconvolution performance across DeMixSC and seven current single-cell-based 
deconvolution methods for bulk and pseudo-bulk mixtures. RMSE values are calculated across seven major cell types for 
each sample, with gray denoting pseudo-bulk and red denoting real-bulk. Smaller values indicate higher accuracy in 
proportion estimation. B, D, and F, Heatmaps showing the deconvolution performance at the cell-type level across the eight 
methods using RMSE. Lighter colors correspond to lower RMSE values. Each panel corresponds to a normalization strategy: 
RPM (B), RPKM (D), and TPM (F). 
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Extended Data Figure 5 | DeMixSC reduces the collinearity among top-weighted genes in the AMD cohort. 
A, Boxplot showing numbers of low and high discrepancy genes within top 1000 weighted genes for each sample. B, 
heatmap showing the averaged cell-type-wise collinearity across samples. 
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Extended Data Figure 6 | Cell-type proportion estimates for the AMD cohort with existing methods. 
A, B, and C, Boxplots showing the distributions of cell-type proportion estimates for non-AMD retina vs. AMD retina from 
MuSiC2 (A), CIBERSORTx (B), SQUID (C). The P values for Student’s t-tests comparing the estimated cell-type proportions 
between non-AMD and AMD groups are denoted as follows: not significant (ns), P-value >0.05; *P-value ≤0.05; **P-value 
≤0.01; and ***P-value ≤0.001. 
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Extended Data Figure 7 | DeMixSC recovers a dynamic shift in cell-type proportions during the AMD progression. 
A, B, and C, Boxplots showing the distributions of cell-type proportion estimates across different MGS stages from MGS1 
to MGS4. Each panel corresponds to a given cell type: Rod cells (A), Bipolar cells (B), and Müller glia cells (C). 
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Extended Data Figure 8 | Convergence of DeMixSC with different starting values. 
A, A list of different starting values across ten cell types. B, Trace plots of estimated proportions over iterations. 
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