

1 **Article type:** Original Research

2 **Title:** Predicting skin cancer risk from facial images with an explainable artificial intelligence
3 (XAI) based approach: a proof-of-concept study

4 **Authors:** X. Liu^{*1,2}, T.E. Sangers^{*3}, T. Nijsten³, M. Kayser⁴, LM. Pardo³, E.B. Wolvius², G.V.
5 Roshchupkin^{#1,5}, M. Wakkee^{#3}

6

7 *These authors contributed equally to this work.

8 #These authors contributed equally to this work.

9

10 ¹ Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center
11 Rotterdam, Rotterdam, the Netherlands

12 ² Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center
13 Rotterdam, Rotterdam, the Netherlands

14 ³ Department of Dermatology, Erasmus MC Cancer Institute, Erasmus MC University Medical
15 Center Rotterdam, Rotterdam, the Netherlands

16 ⁴ Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam,
17 Rotterdam, the Netherlands

18 ⁵ Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam,
19 the Netherlands

20

21 **Corresponding author:**

22 Marlies Wakkee, MD PhD

23 Dr. Molewaterplein 40, 3015 GD Rotterdam

24 m.wakkee@erasmusmc.nl

25

26 **Funding sources:** The Rotterdam Study is funded through unrestricted research grants from
27 Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the
28 Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly
29 (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and
30 Sports, the European Commission (DG XII), and the Municipality of Rotterdam. G.V.
31 Roshchupkin is supported by the ZonMw Veni grant (Veni, 549 1936320).

32

33 **Conflicts of Interest:** The authors declare the following financial interests which may be
34 considered potential competing interests: The Erasmus MC Department of Dermatology has
35 received an unrestricted research grant from SkinVision B.V

36

37 **IRB approval status:** The Rotterdam Study has been approved by the Erasmus MC Medical
38 Ethical Committee (MEC-02-1015), and by the Dutch Ministry of Health, Welfare and Sport
39 (Population Screening Act, reference 3295110-1021635-PG).

40

41

42

43

44

45

46

47 Abstract

48 *Background:*

49 Efficient identification of individuals at high risk of skin cancer is crucial for implementing
50 personalized screening strategies and subsequent care. While Artificial Intelligence holds
51 promising potential for predictive analysis using image data, its application for skin cancer risk
52 prediction utilizing facial images remains unexplored. We present a neural network-based
53 explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial
54 images and compare its efficacy to 18 established skin cancer risk factors using data from the
55 Rotterdam Study.

56 *Methods:*

57 The study employed data from the Rotterdam population-based study in which both skin cancer
58 risk factors and 2D facial images and the occurrence of skin cancer were collected from 2010 to
59 2018. We conducted a deep-learning survival analysis based on 2D facial images using our
60 developed XAI approach. We subsequently compared these results with survival analysis based
61 on skin cancer risk factors using cox proportional hazard regression.

62 *Findings:*

63 Among the 2,810 participants (mean Age=68.5±9.3 years, average Follow-up=5.0 years), 228
64 participants were diagnosed with skin cancer after photo acquisition. Our XAI approach achieved
65 superior predictive accuracy based on 2D facial images (c-index=0.72, SD=0.05), outperforming
66 that of the known risk factors (c-index=0.59, SD=0.03).

67 *Interpretation:*

68 This proof-of-concept study underscores the high potential of harnessing facial images and a
69 tailored XAI approach as an easily accessible alternative over known risk factors for identifying
70 individuals at high risk of skin cancer.

71 *Funding:*

72 The Rotterdam Study is funded through unrestricted research grants from Erasmus Medical Center
73 and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and
74 Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of
75 Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European
76 Commission (DG XII), and the Municipality of Rotterdam. G.V. Roshchupkin is supported by the
77 ZonMw Veni grant (Veni, 549 1936320).

78

79 **Research in context**

80 **Evidence before this study**

81 We searched PubMed for articles published in English between Jan 1, 2000, and Sept 28, 2023,
82 using the search terms “skin cancer” AND “artificial intelligence” OR “deep learning”. Our
83 search returned more than 1,323 articles. We found no study had explored the feasibility of
84 predicting the risk of developing skin cancer based on facial images that were taken before the
85 first diagnosis of skin cancer. Although there were studies focused on deep learning image
86 analysis and skin cancer, those are based on skin cancer lesion images. We found current skin
87 cancer risk prediction models are still hampered by dependencies on complex patient data,
88 including genetic information, or rely on self-reported patient data.

89 **Added value of this study**

90 In this study, we presented a neural network-based explainable artificial intelligence (XAI)
91 approach for skin cancer risk prediction based on 2D facial images. To the best of our
92 knowledge, our study is the first to utilize facial images as predictors in a skin cancer survival
93 analysis. Our novel image-based approach showed superior performance when juxtaposed with
94 traditional methods that relied on clinical and genetic skin cancer risk factors, as observed within
95 our study population

96 **Implications of all the available evidence.**

97 This proof-of-concept study underscores the high potential of harnessing facial images and a
98 tailored XAI approach as an easily accessible alternative over known risk factors for identifying
99 individuals at high risk of skin cancer.

101

102

Introduction

103 Skin cancer, the most common form of cancer in individuals of European ancestry with lighter
104 skin tones, presents a significant public health concern. The two most common types of skin cancer,
105 basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), together referred to as
106 keratinocyte carcinoma (KC), account for an estimated 6 million¹ new cases each year across the
107 globe. BCC, the most prevalent variant, grows slowly, often appearing as nodular, pigmented, or
108 waxy lesions on sun-exposed skin. SCC, though less common than BCC, is more aggressive and
109 usually presents as a scaly or erythematous patch or nodule. Even less common, but far more
110 lethal, is malignant melanoma, which causes an estimated 57,000 deaths globally each year.² Due
111 to longer life expectancies and past excessive UV exposure, the number of KC and melanoma
112 cases has surged over recent decades, and this trend is anticipated to continue.²

113 Early diagnosis of skin cancer can mitigate morbidity and mortality by preventing the
114 progression to late-stage disease.³ However, population-wide screening programs have not been
115 proven cost-effective,⁴ or convincingly demonstrated a reduction in skin cancer-related mortality
116 or morbidity. However, personalized screening programs for individuals at high risk of developing
117 skin cancer⁵ are considered as a potentially more feasible strategy to combat the ongoing skin
118 cancer epidemic.⁶ Although accurate stratification of individuals at increased risk of developing
119 skin cancer is essential for targeted screening, it remains a challenge to develop tools with
120 sufficient predictive performance that are suitable for wide-scale use. Many existing prediction^{7,8,9}
121 models are hampered by dependencies on complex patient data, including genetic information, or
122 rely on self-reported patient data, thereby making them susceptible to recall bias and social-
123 desirability bias.¹⁰

124 Artificial intelligence (AI), specifically convolutional neural networks (CNNs), have
125 demonstrated high accuracy in detecting skin cancer from skin lesion images in recent years.¹¹ Yet,
126 their potential in stratifying individuals based on skin cancer risk remains largely uncharted due to
127 the scarcity of longitudinal datasets. One potential direction for such screening strategies involves
128 the use of personal facial images. These images could reveal key risk factors associated with skin
129 cancer, such as age, skin color, and signs of UV damage. Furthermore, capturing facial images
130 requires minimal effort (such as taking a selfie with a smartphone) and is not affected by recall
131 bias thus offering a potentially easily accessible tool for identifying high risk individuals in the
132 general population.

133 Here, we develop a neural network-based explainable artificial intelligence (XAI)^{36,37}
134 approach that predicts skin cancer risk from 2D-facial images and utilize population-based data
135 from the Rotterdam Study (RS) to demonstrate its performance. To assess its effectiveness, we
136 compared the performance of our novel image-based approach with traditional clinical and genetic
137 skin cancer risk factors in RS.

138

139 Methods

140 Study design and participants

141 The RS is an ongoing large prospective population-based cohort study in Ommoord, a region in
142 Rotterdam, the Netherlands.¹² Since January 1990, the RS has been enrolling individuals aged 50
143 and over from the general population. Participants undergo comprehensive baseline examinations
144 and visit a dedicated study center every 3-4 years. During these visits they also undergo a full-body
145 skin examination (FBSE) performed by a dermatology-trained physician which also focuses on
146 detecting skin (pre-)malignancies and skin cancer. As of 2010, standardized full facial images are
147 taken of participants using a Premier 3dMD face3-plus UHD camera (3dMD Inc., Atlanta, GA,
148 USA).

149

150 Skin cancer and risk factor measurements

151 Skin cancer diagnoses, both prior to and after the facial photo was taken, along with their respective
152 body locations, were collected for all RS participants by linkage to the Dutch nationwide network
153 and registry of histo- and cytopathology (PALGA).¹³ Skin cancer-related risk factors were
154 collected through a combination of home interviews and study center visits. Available skin cancer
155 determinants included sex, age, skin color, hair color, eye color, pigment status (combined
156 variable^{14,15} hair and eye color), number of naevi, baldness in men, body mass index (BMI),
157 socioeconomic status, history of living in a sunny country, tendency to develop sunburn, alcohol
158 intake, coffee consumption, smoking, Glogau wrinkle classification, and a genetic risk score (GRS)
159 for KC as well as melanoma utilizing single-nucleotide polymorphisms (SNPs) that are
160 significantly associated with these specific types of skin cancer.^{34,35}

161

162 **Case definition**

163 **Events** were defined as participants, who received their first diagnosis of skin cancer (BCC, SCC
164 or melanoma) after the date of the facial images being taken. To ensure the exclusion of participants
165 who already had a skin cancer diagnosis at the time of the photograph (i.e., **left-censored** samples),
166 individuals with a confirmed histopathological skin cancer diagnosis prior to their photograph or
167 within 30 days after the FBSE were excluded from the study. Follow-up of all participants ended
168 at the time of death, or the date of censoring on July 1st, 2018, whichever came first. Death was
169 ascertained through linking with the municipal register. **Right-censored** samples were defined as
170 participants, who had not received a diagnosis of skin cancer by the date of censoring (July 1st,
171 2018), or who died before the date of censoring.

172

173 **Facial image acquisition and preprocessing**

174 Facial images of the RS participants were taken using a 3dMDface system (3dMD Inc., Atlanta,
175 GA, USA) photogrammetric device by medical doctors, who were specifically trained in operating
176 the device. The system comprised a central modular camera unit, flanked by two additional side
177 units, and underwent daily calibration. Image acquisition took place in a designated 3D imaging
178 room with consistent ambient lighting. An adjustable chair was used in a fixed position, to ensure
179 a standard level of height and fixed distance between subjects and the camera system. Participants
180 were requested to remove glasses and to wear a hair band to prevent hair from obscuring the
181 forehead or ears. During the image capture process, participants faced the central modular camera
182 unit maintaining a neutral facial expression with their eyes open. Frontal 2D facial images were
183 automatically derived from the 3dMD software.

184 For the detection of facial landmarks, we utilized Dlib,¹⁶ a facial image processing library. The
185 detected facial landmarks were subsequently employed to crop and align the facial regions, as
186 illustrated in Figure S8. To exclude the neck or shoulder regions from the images, those areas were
187 masked as black pixels. Additionally, histogram equalization was applied to enhance the visual
188 quality of each facial image as well as to mitigate potential lighting variations. The final resolution
189 employed for our analysis was set to 224x224 pixels.

190

191 **Deep learning analysis**

192 *AI-based endophenotypes derived from facial images*

193 An autoencoder is an artificial neural network architecture employed for learning compressed
194 representations of input data in a self-supervised manner, meaning that it does not require patient-
195 specific information during the training process. The autoencoder consists of an encoder and a
196 decoder, which collectively enable non-linear feature mapping. The encoder is responsible for
197 compressing high-dimensional facial images into low-dimensional latent features, while the
198 decoder reconstructs facial images from these latent features.

199 $Z = \text{Encode}(F)$

200 $F' = \text{Decode}(Z)$

201 where $Z = [Z_0, Z_1, \dots, Z_N]$ denotes the N latent features, $\text{Encode}()$ and $\text{Decode}()$ functions
202 correspond to the down-sampling and up-sampling processes F denotes the input 2D facial image,
203 while F' represents the reconstructed 2D facial image.

204 For our analysis, we used a deep convolutional autoencoder¹⁷ (detailed architecture in Figure S3c)
205 consisting of four encoder layers and four decoder layers to derive low-dimensional representations,
206 which we further defined as facial endophenotypes. To make the trade-off between reconstruction
207 error and dimensional complexity, we conducted experiments with varying numbers of

208 endophenotypes. The optimum number was found to be 200. The derived facial endophenotypes
209 were further used as predictors in the survival analysis.

210

211 *Explainable AI (XAI) techniques*

212 By selectively decoding a subset of endophenotype(s), we are able to generate a sequence of facial
213 images showing changes in facial features corresponding to the changes of selected
214 endophenotype(s). Implementation details about the selectively decoding can be found in Figure
215 S5a (in supplementary).

216

217 *Cox proportional hazard regression (CPH) analysis*

218 We performed a survival analysis employing cox proportional hazard regression (CPH),¹⁸ to
219 predict the risk of participants developing skin cancer over time. Predictors included either the 18
220 risk factors or the 200 facial endophenotypes. Additionally, time-to-event (TTE) was included as
221 an essential predictor in the model training. For events, TTE was calculated as the interval between
222 the date of the first diagnosis of skin cancer and the date when the facial image was taken; In the
223 case of right-censored samples, TTE was calculated as the interval between the date of censoring
224 (or death) and the date when a facial image was taken.

225

226 *Deep cox proportional hazards regression (DCPH) analysis*

227 A deep cox proportional hazard regression (DCPH) model is an extension of the linear cox
228 proportional hazards (CPH) model. Compared to DPH, DCPH enables non-linear modeling of the
229 predictors, and thus it is able to model more complex relationships between predictors and the

230 risk.¹⁹ The parameters of the DCPH model are optimized by minimizing the following log-partial
231 likelihood cost function which is widely used in survival analysis models:^{20,21,22}

232

$$Loss = - \sum_{i \in E} (h(x_i) - \ln \sum_{j \in R} e^{h(x_j)})$$

233 where E represents the set of events and R denotes the set of right-censored samples, and the TTE
234 for individual j is greater than the TTE for individual i, x_i and x_j represent the predictors for
235 individuals i and j, and $h(x)$ and $h(x_j)$ represent the network predictions for individuals i and j.

236 The DCPH model consisted of two fully connected layers and one neuron in the output layer.
237 Detailed architectures of the DCPH model can be found in Supplementary Figure S3b.

238

239 *Deep Convolutional cox proportional hazards regression analysis (DCCPH)*

240 Integrating 2D convolutional neural networks²³ with the cost function of DCPH, we can utilize the
241 entire facial image as input and directly compute a skin cancer risk score for each participant. This
242 integrated model was referred to as the deep convolutional cox proportional hazard (DCCPH)
243 model, which consisted of four convolutional layers, two fully connected layers and one neuron in
244 the output layer. Detailed architectures of the DCCPH model can be found in Supplementary
245 Figure S3c.

246

247 **Survival analysis and experiment settings**

248 In all experiments of the survival analysis, left-censored samples (i.e., participants diagnosed with
249 skin cancer prior to the facial image being taken) were excluded. We utilized three models in the
250 survival analysis: CPH, DCPH, and DCCPH. For both the CPH and DCPH models, we explored
251 three types of predictors: 1) age alone, 2) 18 known risk factors, and 3) facial endophenotypes. In

252 the DCCPH model, we employed 2D facial images without extracting facial endophenotypes as
253 predictors.

254 All the three models estimate the risk over time, but we only provide the risk score at a single time
255 point, which is at the end of the study. To evaluate the predictive performance of the models, we
256 calculated the concordance-index (c-index) using the following equation:

$$257 C = \frac{\sum_{i \neq j} 1(r_i < r_j)1(T_i > T_j)\delta_j}{\sum_{i \neq j} 1(T_i > T_j)\delta_j}$$

258 where δ_j is a variable that is assigned a value of 1, if individual j is an event and 0 if individual j is
259 a right-censored sample, T is the TTE for an individual and r is the risk score for an individual.

260 A c-index of 0.5 indicates a random prediction, while a c-index of 1 indicates a perfect prediction.
261 In all prediction experiments, we employed a consistent practice of splitting the samples into a
262 training set and a test set, with an 80:20% ratio. We repeated this split 20 times with random
263 permutations and calculated the mean and standard deviation of the c-index.

264 We performed an additional analysis where we stratified the right-censored samples into different
265 subgroups based on their follow-up years. It is important to note that patient information in this
266 study was not updated beyond July 1st, 2018. Consequently, some right-censored samples had a
267 relatively short follow-up period and may have been diagnosed with skin cancer shortly after that
268 date. These right-censored samples with a shorter follow-up time could be deemed less reliable
269 compared to those with longer follow-up periods. In consequence, including right-censored
270 samples with short follow-up years in the analysis could potentially impact the prediction model
271 negatively. Therefore, we stratified the right-censored samples into 5 subgroups based on the
272 follow-up years, while ensuring age matching among the subgroups. The subgroups were defined
273 as follows: 1) > 2 follow-up years (N=1139); 2) > 3 follow-up years (N=1129); 3) > 4 follow-up
274 years (N=840); 4) > 5 follow-up years (N=548); 5) > 6 follow-up years (N=535), The event group

275 consisted of participants who were diagnosed with skin cancer at any location on the body (N=228).

276 Subsequently, we performed separate survival analysis for each sub-group in this additional

277 analysis.

278

279 **Ethical considerations**

280 The Rotterdam Study has been approved by the Erasmus MC Medical Ethical Committee (MEC-

281 02-1015), and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act,

282 reference 3295110-1021635-PG). Written informed consent was obtained from all participants.

283

284

285

286 Results

287 Study population and risk factors

288
289 We included a total of 3,371 participants from the RS cohort, who had a 2D-facial image and
290 underwent assessment for skin cancer risk factors. Among them, 23.4% (n=789) were diagnosed
291 with skin cancer, of which 71.1% (n=561, **left-censored** participants) were diagnosed prior to the
292 facial image being taken, and 28.9% were diagnosed afterwards (n=228, **events**). Figure S7 shows
293 the histogram distribution of time-to-event (TTE) of these 228 events, with an average TTE of 971
294 days (SD 678 days). Among these 228 events, 163 had a BCC, 68 had an SCC and 11 had a
295 melanoma. Left-censored participants were excluded from the survival analysis. Table 1 shows the
296 distribution of the 18 potential skin cancer risk factors among the study population (N=2,810), of
297 which the median age was 67.1 years (IQR 14.1 years) and 57.4% were women. We examined the
298 association between known skin cancer risk factors and the facial endophenotypes we derived from
299 the facial images (Figure S4), and visually represented the identified associations on the face
300 (Figure S5) via XAI techniques.

301
302 Table 1: Baseline characteristics of the RS study population.
303

	Participants, who did not develop skin cancer (Right-censored samples) N=2582	Participants, who developed skin cancer after facial image taken (Events) N=228
Age at FBSE in years, median (IQR)	66.8 (14.2)	70.6 (12.0)
Sex -Women (%) -Men (%)	1484 (57.5%) 1098 (42.5%)	129 (56.6%) 99 (43.4%)
BMI mean (SD)	27.67 (4.39)	27.75 (3.97)

Skin color		
-Olive color-light brown (%)	373 (14.4%)	23 (10.1%)
- White (%)	1908 (73.9%)	183 (80.3%)
- Pale (%)	301 (11.7%)	22 (9.6%)
Hair color when young		
-Black (%)	155 (6.0%)	9 (3.9%)
-Brown/dark blonde (%)	1844 (71.4%)	166 (72.8%)
-Light blonde (%)	505 (19.6%)	40 (17.5%)
-Red (%)	78 (3.0%)	13 (5.7%)
Eye color		
-Brown (%)	596 (23.1%)	48 (21.1%)
-Intermediate (%)	211 (8.2%)	21 (9.2%)
-Blue (%)	1775 (68.7%)	159 (69.7%)
Pigment status (combined variable ^{14,15} hair and eye color)		
-Light (%)	538 (20.8%)	49 (21.5%)
-Intermediate (%)	1467 (56.8%)	134 (58.8%)
-Dark (%)	577 (22.3%)	45 (19.7%)
Baldness		
-No/almost no (%)	1923 (74.5%)	157 (68.9%)
-Mild (%)	346 (13.4%)	31 (13.6%)
-Severe (%)	313 (12.1%)	40 (17.5%)
Number of naevi		
- >=100 (%)	49 (1.9%)	4 (1.8%)
- 50-99 (%)	141 (5.5%)	9 (3.9%)
- 25~49 (%)	371 (14.4%)	30 (13.2%)
- <25 (%)	2021 (78.3)	185 (81.1%)
Glogau wrinkle classification		
- 1 and 2 (%)	207 (8.0%)	12 (5.3%)
- 3 (%)	2027 (78.5%)	175 (76.8%)
- 4 (%)	348 (13.5%)	41 (18.0%)
Socioeconomic status		
-high (%)	755 (29.2%)	56 (24.6%)
-medium (%)	1505 (58.3%)	134 (58.8%)
-low (%)	322 (12.5%)	38 (16.7%)
History of living in a sunny country		
-Yes (%)	150 (5.8%)	17 (7.5%)
-No (%)	2432 (94.8%)	211 (93.5%)

Tendency to develop sunburn -Yes (%) -No (%)	866 (33.5%) 1716 (66.5%)	86 (37.7%) 142 (62.3%)
Alcohol intake g/day mean (SD)	7.95 (8.57)	8.08 (9.42)
Smoking -Ever (%) -Never (%)	1756 (68.0%) 826 (32.0%)	157 (68.9%) 71 (31.1%)
Coffee consumption (cups/day) mean (SD)	3.03 (1.83)	2.99 (1.81)
GRS_KC median (SD)	1.03 (0.25)	1.06 (0.27)
GRS_MM, median (SD)	7.03 (0.47)	7.06 (0.46)

304 Right-censored samples: Never had skin cancer before the end of the study;

305 Events: Diagnosed with skin cancer at least 30 days after the facial photo was taken;

306 FBSE: Full-body skin examination;

307 GRS_KC: Polygenetic risk score for KC;

308 GRS_MM: Polygenetic risk score for melanoma

309 Risk factors were imputed. Table S1 shows the characteristics of non-imputed risk factors.

310

311 **Skin cancer risk prediction in survival analysis**

312

313 Table 2 shows the c-index values for different prediction models using various predictors as input.

314 In the risk factor analysis, the age-only analysis yielded a c-index of about 0.55, which increased

315 to 0.59 when all other known risk factors were included. However, the analysis of facial

316 endophenotypes resulted in higher c-index values of 0.72, which remained similar at 0.71 when

317 using the facial images without extracting the facial endophenotypes. Comparing the prediction

318 models, the CPH showed better performance when using risk factors as input, while the DCPH

319 was more effective when employing facial endophenotypes as input.

320 In our main analysis, we focused on skin cancer occurring at any location on the body. We further
321 stratified the event group into two subgroups: skin cancer on the face and skin cancer on other
322 parts of the body excluding the face. Interestingly, we observed similar patterns and trends in the
323 analysis across different stratifications based on the location of skin cancer.

324
325 Table 2: C-index (mean/SD) of skin cancer risk prediction in survival analysis.

Method (predictors)	Skin cancer on any location of body N = 228	Skin cancer on face N = 136	Skin cancer on other parts of the body except face N=113
CPH age only	0.550/0.048	0.554/0.036	0.543/0.051
CPH 18 known risk factors	0.589/0.034	0.586/0.047	0.595/0.060
DCPH 18 known risk factors	0.572/0.044	0.520/0.067	0.532/0.069
CPH facial endophenotypes	0.685/0.033	0.693/0.037	0.674/0.054
DCPH facial endophenotypes	0.721/0.045	0.732/0.058	0.718/0.049
DCPH facial endophenotypes + age	0.723/0.039	0.738/0.060	0.721/0.062
DCCPH 2D facial image without extracted endophenotypes	0.713/0.041	0.721/0.051	0.703/0.049

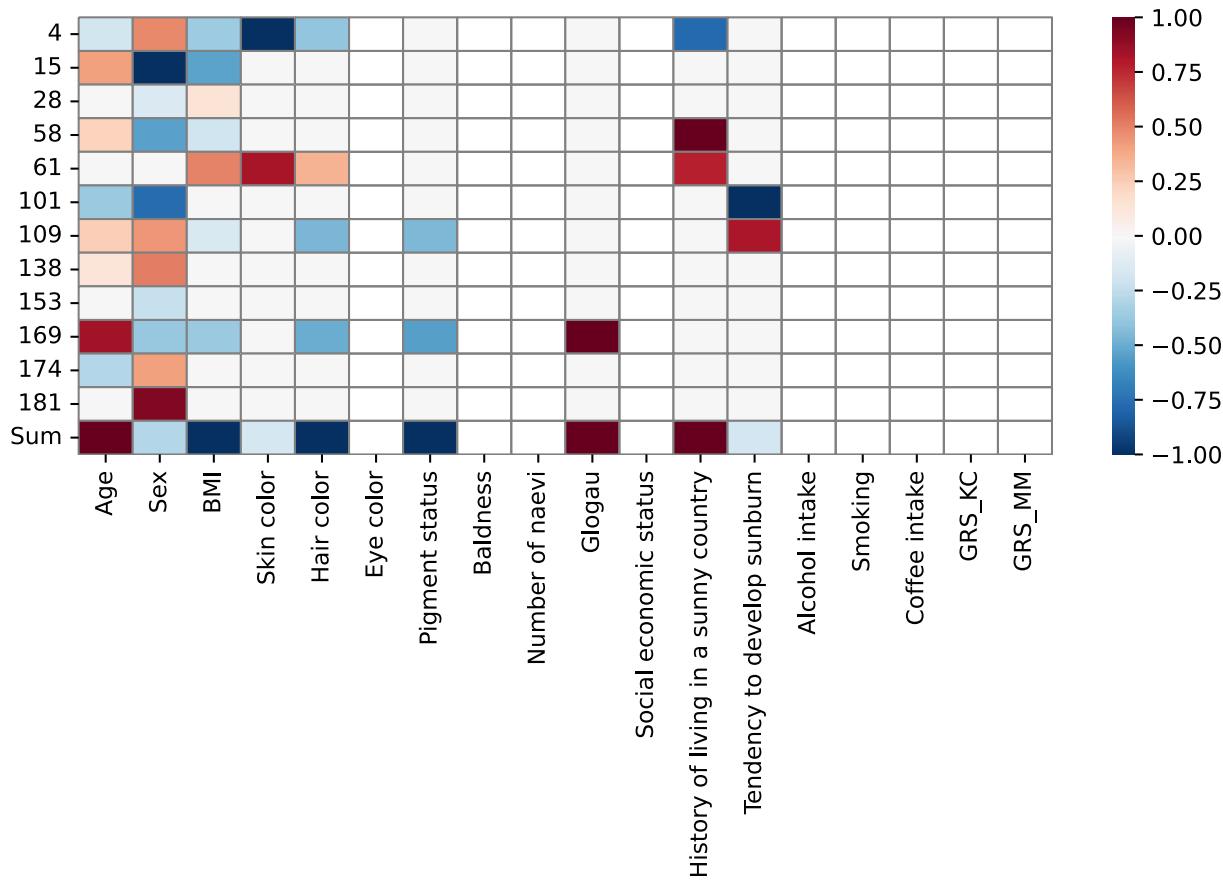
326 CPH: Cox proportional hazard regression
327 DCPH: Deep Cox proportional hazard regression
328 DCCPH: Deep convolutional cox proportional hazards regression
329 Only Right-censored samples (N= 535) with > 6 follow-years were included.
330 Results were based on imputed risk factors. Table S2 shows the results based on non-imputed risk factors.
331

332 **Facial endophenotypes association with known risk factors**

333 Figure 1 shows the associations between traditional skin cancer risk factors and statistically
334 significant facial endophenotypes identified in the survival analysis (CPH facial endophenotypes)
335 in Table 2. Combining the effects of 12 statistically significant facial endophenotypes, several key

336 patterns emerged. Strong associations of facial endophenotypes were observed with age (positive),
337 Glogau wrinkle classification (positive), history of living in a sunny country (positive), BMI
338 (negative), and hair color and pigment status (higher risk in lighter color). Weaker associations
339 were found with sex (higher risk in males), tendency to develop sunburn (negative) and skin color
340 (higher risk with lighter skin color). No significant associations were detected with alcohol
341 consumption, coffee consumption, smoking, eye color, social economic status, number of naevi,
342 baldness and genetic risk score.

343



344
345 **Figure 1.** Statistically significant facial endophenotypes in survival analysis are associated with known risk factors,
346 in the analysis of skin cancer on any location of the body. The x-axis represents the different risk factors, while the
347 y-axis represents the index of facial endophenotypes that exhibited statistical significance in the survival analysis.
348 The "sum" row represents the summation of each row. The values of associations are normalized from -1 to 1 for
349 each column, where red indicates a positive association, indicating a higher risk of skin cancer associated with
350 higher values of the corresponding risk factor, such as age.

351

352

353 **Explainable AI (XAI)**

354 In order to gain insights into the facial features contributing to skin cancer prediction, we
355 selectively decoded the statistically significant facial endophenotypes identified in the survival
356 analysis (CPH facial endophenotypes) and generated a sequence of facial images representing low
357 to high risk of skin cancer via XAI techniques (implementation details in Figure S5a). Figure 2
358 presents synthesized facial images that the prediction model considered as having low to high risk
359 of skin cancer, stratified based on whether the cancer occurred on the face, on other body parts
360 excluding the face, or anywhere on the body including the face. The result indicates that factors
361 such as a lower BMI or increased facial erythema might be linked to a higher risk. Notably,
362 participants in the sub-group of skin cancer occurring outside the face had never been diagnosed
363 with skin cancer on the face before the date of censoring.

364

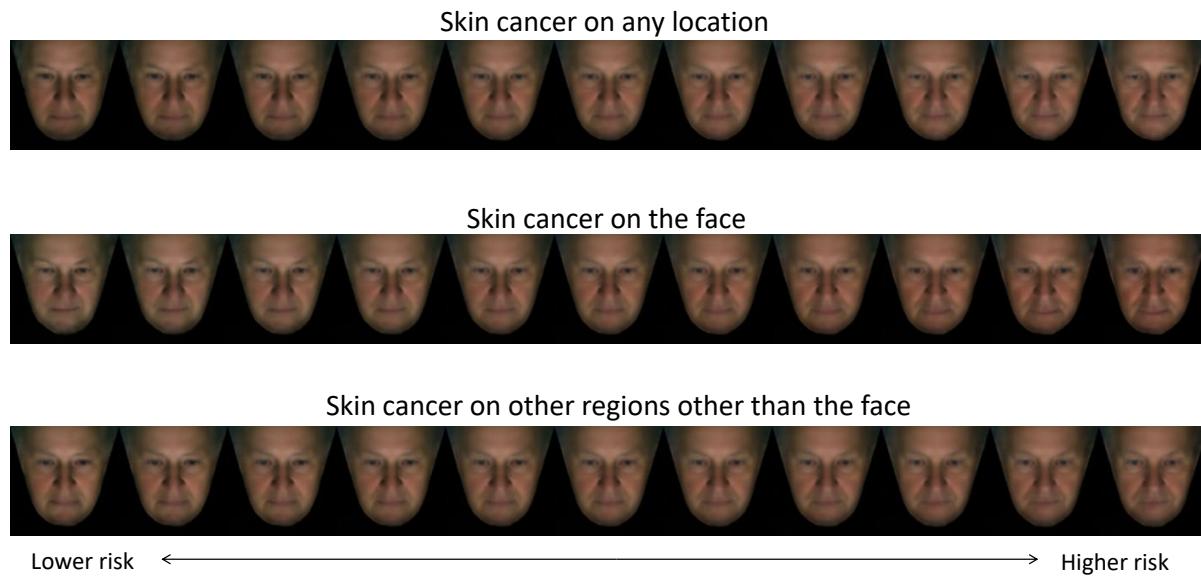
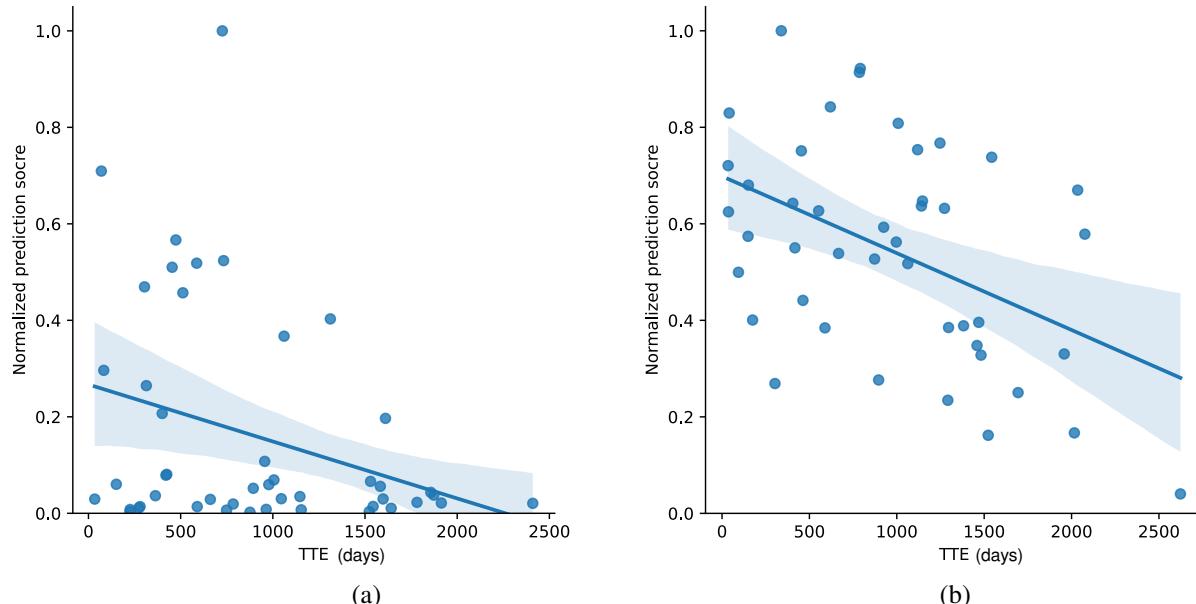


Figure 2: Reconstruction of faces representing lower to higher risk for developing skin cancer on the face, and other body locations excluding the face, as well as anywhere on the body including the face. The synthetic faces shown in the figure were reconstructed via selectively decoding statistically significant facial endophenotypes in the survival analysis (CPH facial endophenotypes) in Table 2.

372 **In-depth analysis of TTE in survival analysis**

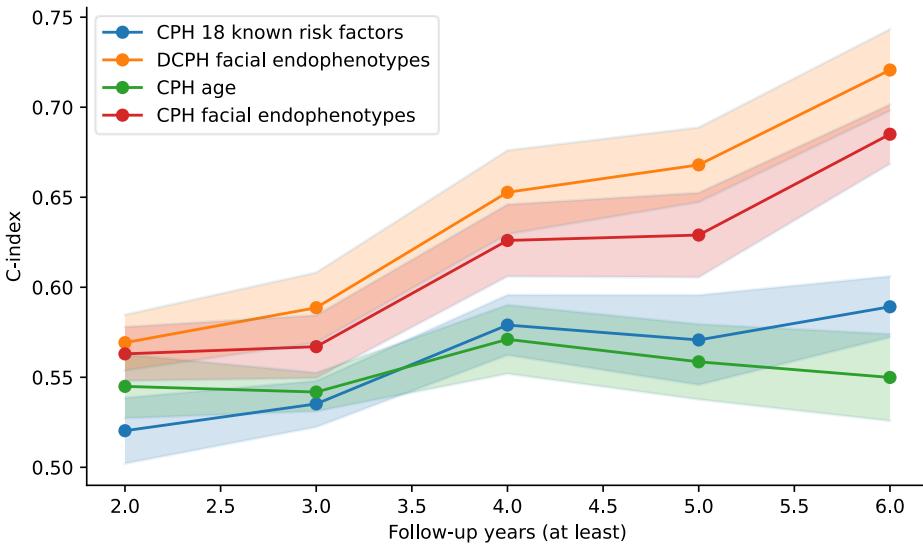
373
374 The relationship between the skin cancer prediction score and TTE of events during the test stage
375 of the survival analysis (CPH and DCPH facial endophenotypes) is illustrated in Figure 3. Notably,
376 the TTE information of each participant was not included into the model as a predictor in the test
377 stage. The plot reveals that events with a higher prediction score, indicating a higher risk of skin
378 cancer, tend to have a shorter TTE. A shorter TTE implies that participants were diagnosed with
379 skin cancer earlier after the facial images were taken, suggesting that their faces may have
380 exhibited early signs of skin cancer at the time the photo was made. The CPH and DCPH models
381 effectively identified these participants, assigning them to overall higher risk scores compared to
382 subjects with a longer TTE. This effect, although to a lesser extent, was also observed for
383 participants with skin cancer on other parts of the body excluding the face (Figure S9).



384
385
386 Figure 3: Relationship between risk prediction score and time to event (TTE) for N=44 events in the test set. a)
387 Analysis of (CPH facial endophenotypes) and b) Analysis of (DCPH facial endophenotypes) for skin cancer at any
388 location on the body. The X-axis represents the TTE in days, while the Y-axis represents the prediction risk score
389 normalized to a range of 0 to 1. A higher predicted score indicates a higher risk of skin cancer.

390
391

392 Figure 4 shows the survival analysis results with the stratification of right-censored samples based
393 on their follow-up years. Age was matched between the event group and right-censored subgroups,
394 so the c-index curve of (CPH age) served as a baseline. It is evident that compared to (CPH age),
395 the results of (CPH 18 known risk factors), (CPH facial endophenotypes) and (DCPH facial
396 endophenotypes) showed a trend of increasing c-index in subgroups with longer follow-up years.



397

398 Figure 4: Stratification of right-censored samples based on follow-up years. The solid line represents the mean
399 result, while the transparent surrounding area denotes the standard deviation. (CPH 18 known risk factors): Results
400 obtained from a CPH model using risk factors as predictors. (DCPH facial endophenotypes): Results obtained from a
401 DCPH model using facial endophenotypes as predictors.
402

403 Discussion

404 Our research underscores the promise of using facial endophenotypes, extracted from 2D facial
405 images through AI techniques, as indicators for developing skin cancer in the future. We
406 demonstrate that the innovative use of facial image-based predictions outperformed traditional
407 methods relying on many known risk factors, which are normally identified based on complex
408 patient information, including extensive questionnaires, genetic data, and clinical parameters
409 identified during physical skin cancer screening, such as nevi count, AK, or wrinkles. Our analysis
410 confirms the robust relationship between these facial endophenotypes and established skin cancer
411 risk determinants. We found a notable correlation between the most predictive facial
412 endophenotypes and certain recognized risk factors for skin cancer.

413 Facial endophenotypes provide a rapid, user-friendly and explainable AI-based alternative
414 to existing risk factors, particularly when comprehensive patient information is difficult to collect
415 on a large scale. Furthermore, these endophenotypes might offer a more consistent prediction of
416 skin cancer risk than relying on questionnaire data, sidestepping potential recall biases. To the best
417 of our knowledge, our study is the first to utilize facial images and facial endophenotypes derived
418 from these images as predictors in a skin cancer survival analysis.

419 *Relevance to existing literature*

420 Previous modeling studies reported targeted skin cancer screening of high-risk populations to be a
421 cost-effective²⁴ population-based intervention to reduce skin cancer related morbidity and
422 mortality. However, the characteristics of individuals that are considered 'high risk' vary across
423 studies.²⁵ Our findings provide promises that facial endophenotypes can help in narrowing the
424 scope of high-risk individuals to optimize cost-effectiveness and improve the feasibility of targeted
425 screening programs.

426 The current literature on skin cancer risk prediction encompasses a range of prediction
427 models with varying levels of accuracy. While some models have demonstrated promising results
428 using relatively simpler factors, such as the number of actinic keratosis and coffee consumption
429 (c-index 0.6),²⁶ others have incorporated more extensive patient information to achieve improved
430 accuracy. Notably, a model focused on melanoma risk achieved c-index values of 0.72 for any
431 melanoma and 0.69 for invasive melanoma by incorporating seven relevant predictors.²⁷ In our
432 study, utilizing facial endophenotypes outperformed the predictive accuracy based on known risk
433 factors alone, yielding a c-index of 0.73, which surpasses the performance of many published
434 models. Recent research has broadened its scope, incorporating up to 32 genetic and non-genetic
435 risk factors to remarkably enhance the accuracy of predicting future skin cancer development.⁴⁰
436 Nonetheless, it's vital to acknowledge that making direct comparisons between our study and prior
437 investigations presents challenges due to variations in the populations, research methodologies
438 employed, and, notably, the divergent primary outcomes assessed in these studies.

439 Our study also revealed associations between several facial endophenotypes and known
440 risk factors for skin cancer such as age, sex, BMI, Glogau wrinkle score, hair and skin color, history
441 of living in a sunny country, tendency to develop sunburn, and pigment status. Age is a well-
442 known risk factor for skin cancer,^{28,29,30} with many existing prediction models relying heavily on
443 it. Similarly, our prediction model leaned heavily on age as a discriminative variable when our
444 analysis was restricted to known skin cancer risk factors.

445 Interestingly, we were also able to corroborate previous studies that found an inverse
446 correlation between BMI and KC, meaning a higher BMI appears to reduce the risk of KC).^{31,32}
447 However, other studies focusing on melanoma observed a positive correlation with BMI.³³ Given

448 the substantial proportion of KC patients within our study cohort relative to melanoma patients,
449 this has likely skewed our results towards an inverse correlation.

450 Furthermore, we found several facial endophenotypes associated with sex to be predictive
451 of skin cancer. Men are known to have a higher risk of developing skin cancer than women,
452 particularly in the case of melanoma. This disparity can be attributed to a mix of genetic and
453 behavioral factors, including men's tendency to have more sun exposure and less protection from
454 ultraviolet (UV) radiation due to occupational and recreational activities and less care to protect
455 from UV with cosmetics. Moreover, individuals with lighter skin tones and hair colors are more
456 susceptible to skin cancer, including both KC and melanoma, due to their decreased melanin levels,
457 which leaves them less protected against UV radiation. Residing in a sunny country also increases
458 skin cancer risk due to higher cumulative exposure to UV radiation. Surprisingly, our study
459 identified an inverse relationship between the tendency to develop sunburn and the risk of skin
460 cancer. This counterintuitive finding could be attributed to a chance finding as this association was
461 relatively weak. Furthermore, we were unable to correlate other known skin cancer risk factors to
462 facial endophenotypes, such as coffee consumption and the number of nevi. This outcome is
463 anticipated, as these risk factors would be less likely to be reflected in facial images.

464 *Strengths and limitations*

465 Strengths of this study include the use of extensive population-based data from the Rotterdam
466 Study, with over 7 years of follow-up data. Additionally, the inclusion of nationwide data on skin
467 cancer diagnosis from the Dutch National Histopathology Registry reduces the risk of having
468 missed skin cancer diagnoses in the studied individuals during the study follow-up period.
469 Nevertheless, the results of our study should be understood in the context of several limitations.
470 First, given the proof-of-concept design of our study and, as far as we are aware of, no publicly

471 available datasets worldwide containing both facial images and follow-up skin cancer data, we
472 were unable to externally validate our algorithm using an independent dataset. Second, facial
473 images in the Rotterdam Study were collected using a highly standardized method with a dedicated
474 camera setup, which could result in suboptimal performance when other, out-of-distribution facial
475 photos taken under different capturing conditions (e.g., selfies taken with a front-facing
476 smartphone camera) are used in our AI model, which can be tested in future studies. Also, a portion
477 of right-censored samples included in our analysis had a short follow-up period, meaning they
478 might have developed skin cancer shortly after this study's follow-up period ended, potentially
479 impacting the prediction model negatively. Furthermore, as Rotterdam Study participants are of
480 Dutch European ancestry and thus in majority having fair skin colour, the training and testing
481 dataset of this study was unbalanced in terms of skin colour diversity, which may make our model
482 less reliable when used for individuals with darker skin tones. Moreover, the study cohort is
483 relatively old (mean age around 68) affecting the generalizability of the findings, suggesting that
484 the impact of age may be even more dominant in the general population with a different age
485 distribution, which should be tested in the future. Finally, we implemented an XAI approach in an
486 attempt to shed light on the risk predictions made by our AI system. We did this by generating
487 synthetic facial images associated with higher or lower risks of developing skin cancer. This
488 method provides some insights, indicating that factors such as a lower BMI or increased facial
489 erythema might be linked to a higher risk. But the inherent complexity of deep learning algorithms
490 restricts our ability to fully understand the specific elements that boost the model's accuracy.

491 Conclusion

492 In conclusion, our research underscores the high potential of using facial images in deep-learning

493 models for targeted skin cancer screening. The novel AI-driven approach we introduce here
494 eliminates the need for collecting information via lengthy questionnaires, DNA collection,
495 genotyping, or in-person evaluations. However, before it can be integrated into personalized
496 screening programs, further validation within diverse population samples and less standardized
497 setting is needed.

498

499 **Acknowledgements**

500 The Rotterdam Study is funded by the Erasmus Medical Center and Erasmus University,
501 Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the
502 Research Institute for Diseases in the Elderly, the Ministry of Education, Culture and Science, the
503 Ministry for Health, Welfare and Sports, the European Commission (Directorate-General XII), and
504 the Municipality of Rotterdam. G.V. Roshchupkin is supported by the ZonMw Veni grant (Veni,
505 549 1936320). The authors are grateful to the study participants, the staff from the Rotterdam
506 Study, and the participating general practitioners and pharmacists.

507 **Data sharing**

508 De-identified data used in this study is currently not publicly available. Researchers interested in
509 data access should contact the corresponding author. Data requests will need to undergo ethical
510 and legal approval by the relevant institutions.

511 **Author contributions**

512 All authors made significant contributions to this scientific work and approved the final version
513 of the manuscript. X.L. and T.E. were involved in the conception and design of the study,
514 conducted the method development and experiments, and wrote the article. M.W and G.V.R.
515 were involved in the conception and design of the study, supervised the method development and
516 design of experiments, and co-wrote the article. T.N, M.K, LM.P. and E.B.W. were involved in
517 the conception and design of the study, reviewed the manuscript, and provided consultation
518 regarding the analysis and interpretation of the data. X.L. and T.E. have directly accessed and
519 verified the underlying data reported in the manuscript.

520 **Conflicts of interest**

521 The authors declare the following financial interests which may be considered potential
522 competing interests: The Erasmus MC Department of Dermatology has received an unrestricted
523 research grant from SkinVision B.V.

524

525

References

- 526 1. Zhang, W, Zeng, W, Jiang, A, et al. Global, regional and national incidence, mortality and
527 disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: An analysis
528 of the Global Burden of Disease Study 2019. *Cancer Med.* 2021; 10: 4905–4922.
529 <https://doi.org/10.1002/cam4.4046>
- 530 2. Arnold M, Singh D, Laversanne M, et al. Global Burden of Cutaneous Melanoma in 2020 and
531 Projections to 2040. *JAMA Dermatol.* 2022;158(5):495–503.
532 doi:10.1001/jamadermatol.2022.0160
- 533 3. Weinstock MA. Early Detection of Melanoma. *JAMA.* 2000;284(7):886–889.
534 doi:10.1001/jama.284.7.886
- 535 4. Henrikson NB, Ivlev I, Blasi PR, Nguyen MB, Senger CA, Perdue LA, Lin JS. Skin Cancer
536 Screening: Updated Evidence Report and Systematic Review for the US Preventive Services
537 Task Force. *JAMA.* 2023 Apr 18;329(15):1296-1307. doi: 10.1001/jama.2023.3262. PMID:
538 37071090.
- 539 5. Wernli KJ, Henrikson NB, Morrison CC, Nguyen M, Pocobelli G, Blasi PR. Screening for
540 Skin Cancer in Adults: Updated Evidence Report and Systematic Review for the US Preventive
541 Services Task Force. *JAMA.* 2016 Jul 26;316(4):436-47. doi: 10.1001/jama.2016.5415. PMID:
542 27458949.
- 543 6. Asgari MM, Crane LA. Skin Cancer Screening: The Importance of Identifying High-risk
544 Subgroups and the Need for US-Based Population Research. *JAMA.* 2023;329(15):1259–1260.
545 doi:10.1001/jama.2023.3259
- 546 7. Fontanillas, P., Alipanahi, B., Furlotte, N.A. et al. Disease risk scores for skin cancers. *Nat
547 Commun* 12, 160 (2021). <https://doi.org/10.1038/s41467-020-20246-5>
- 548 8. Cust AE, Badcock C, Smith J, Thomas NE, Haydu LE, Armstrong BK, Law MH, Thompson
549 JF, Kanetsky PA, Begg CB, Shi Y, Kricker A, Orlow I, Sharma A, Yoo S, Leong SF, Berwick
550 M, Ollila DW, Lo S. A risk prediction model for the development of subsequent primary
551 melanoma in a population-based cohort. *Br J Dermatol.* 2020 May;182(5):1148-1157. doi:
552 10.1111/bjd.18524. Epub 2019 Nov 27. PMID: 31520533; PMCID: PMC7069770.
- 553 9. Wang H, Wang Y, Liang C, Li Y. Assessment of Deep Learning Using Nonimaging
554 Information and Sequential Medical Records to Develop a Prediction Model for Nonmelanoma
555 Skin Cancer. *JAMA Dermatol.* 2019;155(11):1277–1283. doi:10.1001/jamadermatol.2019.2335

556 10. Fontanillas P, Alipanahi B, Furlotte NA, Johnson M, Wilson CH; 23andMe Research Team;
557 Pitts SJ, Gentleman R, Auton A. Disease risk scores for skin cancers. *Nat Commun.* 2021 Jan
558 8;12(1):160. doi: 10.1038/s41467-020-20246-5. PMID: 33420020; PMCID: PMC7794415.

559 11. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level
560 classification of skin cancer with deep neural networks. *Nature.* 2017 Feb 2;542(7639):115-118.
561 doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum in: *Nature.* 2017 Jun 28;546(7660):686.
562 PMID: 28117445; PMCID: PMC8382232.

563 12. Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom
564 BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker
565 BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until
566 2020 from the Rotterdam Study. *Eur J Epidemiol.* 2020 May;35(5):483-517. doi:
567 10.1007/s10654-020-00640-5. Epub 2020 May 4. PMID: 32367290; PMCID: PMC7250962.

568 13. Casparie M, Tiebosch AT, Burger G, Blauwgeers H, van de Pol A, van Krieken JH, Meijer
569 GA. Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the
570 nationwide histopathology and cytopathology data network and archive. *Cell Oncol.*
571 2007;29(1):19-24. doi: 10.1155/2007/971816. PMID: 17429138; PMCID: PMC4618410.

572 14. Tokez S, Alblas M, Nijsten T, Pardo LM, Wakkee M. Predicting keratinocyte carcinoma in
573 patients with actinic keratosis: development and internal validation of a multivariable risk-
574 prediction model. *Br J Dermatol.* 2020 Sep;183(3):495-502. doi: 10.1111/bjd.18810. Epub 2020
575 Feb 26. PMID: 31856292; PMCID: PMC7496285.

576 15. Verkouteren JAC, Smedinga H, Steyerberg EW, Hofman A, Nijsten T. Predicting the Risk of
577 a Second Basal Cell Carcinoma. *J Invest Dermatol.* 2015 Nov;135(11):2649-2656. doi:
578 10.1038/jid.2015.244. Epub 2015 Mar 3. PMID: 26121210.

579 16. Davis E. King. Dlib-ml: A Machine Learning Toolkit. *Journal of Machine Learning Research*
580 10, pp. 1755-1758, 2009

581 17. X. Hou, L. Shen, K. Sun and G. Qiu, "Deep Feature Consistent Variational Autoencoder""
582 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA,
583 USA, 2017, pp. 1133-1141, doi: 10.1109/WACV.2017.131.

584 18. Harrell, F.E. (2015). Cox Proportional Hazards Regression Model. In: *Regression Modeling*
585 *Strategies.* Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-19425-7_20

587 19. Katzman, J.L., Shaham, U., Cloninger, A. et al. DeepSurv: personalized treatment
588 recommender system using a Cox proportional hazards deep neural network. *BMC Med Res*
589 *Methodol* 18, 24 (2018). <https://doi.org/10.1186/s12874-018-0482-1>

590 20. A. Cheerla and O. Gevaert. Deep learning with multimodal representation for pancancer
591 prognosis prediction. *Bioinformatics*, 35(14):i446–i454, 2019.

592 21. P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gut-man, J. S. Barnholtz-Sloan, J. E. V.
593 Vega, D. J. Brat, and L. A. Cooper. Predicting cancer outcomes from histology and genomics
594 using convolutional networks. *Proceedings of the National Academy of Sciences*,
595 115(13):E2970–E2979, 2018.

596 22. S. Yousefi, F. Amrollahi, M. Amgad, C. Dong, J. E. Lewis, C. Song, D. A. Gutman, S. H.
597 Halani, J. E. V. Vega, D. J. Brat, et al. Predicting clinical outcomes from large scale cancer
598 genomic profiles with deep survival models. *Scientific reports*, 7(1):1–11, 2017.

599 23. Y LeCun, Y Bengio. Convolutional networks for images, speech, and time series. The
600 handbook of brain theory and neural networks 3361 (10), 1995

601 24. Adamson AS, Jarmul JA, Pignone MP. Screening for Melanoma in Men: a Cost-
602 Effectiveness Analysis. *J Gen Intern Med*. 2020 Apr;35(4):1175-1181. doi: 10.1007/s11606-019-
603 05443-3. Epub 2019 Nov 8. PMID: 31705474; PMCID: PMC7174523.

604 25. Gordon LG, Brynes J, Baade PD, Neale RE, Whiteman DC, Youl PH, Aitken JF, Janda M.
605 Cost-Effectiveness Analysis of a Skin Awareness Intervention for Early Detection of Skin
606 Cancer Targeting Men Older Than 50 Years. *Value Health*. 2017 Apr;20(4):593-601. doi:
607 10.1016/j.jval.2016.12.017. Epub 2017 Feb 15. PMID: 28408001.

608 26. Tokez S, Alblas M, Nijsten T, Pardo LM, Wakkee M. Predicting keratinocyte carcinoma in
609 patients with actinic keratosis: development and internal validation of a multivariable risk-
610 prediction model. *Br J Dermatol*. 2020 Sep;183(3):495-502. doi: 10.1111/bjd.18810. Epub 2020
611 Feb 26. PMID: 31856292; PMCID: PMC7496285.

612 27. Olsen CM, Pandeya N, Thompson BS, Dusingize JC, Webb PM, Green AC, Neale RE,
613 Whiteman DC; QSkin Study. Risk Stratification for Melanoma: Models Derived and Validated
614 in a Purpose-Designed Prospective Cohort. *J Natl Cancer Inst*. 2018 Oct 1;110(10):1075-1083.
615 doi: 10.1093/jnci/djy023. PMID: 29538697.

616 28. Mar, V., Wolfe, R. and Kelly, J.W. (2011), Predicting melanoma risk for the Australian
617 population. *Australasian Journal of Dermatology*, 52: 109-116. <https://doi.org/10.1111/j.1440-0960.2010.00727.x>

619 29. Quéreux, Gaelle, et al. “Development of an Individual Score for Melanoma Risk.” *European
620 Journal of Cancer Prevention*, vol. 20, no. 3, 2011, pp. 217–24. JSTOR,
621 <https://www.jstor.org/stable/48504055>. Accessed 23 Aug. 2023.

622 30. Whiteman DC, Thompson BS, Thrift AP, Hughes MC, Muranushi C, Neale RE, Green AC,
623 Olsen CM; QSkin Study. A Model to Predict the Risk of Keratinocyte Carcinomas. *J Invest
624 Dermatol*. 2016 Jun;136(6):1247-1254. doi: 10.1016/j.jid.2016.02.008. Epub 2016 Feb 22.
625 PMID: 26908057.

626 31. Pothiawala S, Qureshi AA, Li Y, Han J. Obesity and the incidence of skin cancer in US
627 Caucasians. *Cancer Causes Control*. 2012 May;23(5):717-26. doi: 10.1007/s10552-012-9941-x.
628 Epub 2012 Mar 27. PMID: 22450736; PMCID: PMC3704194.

629 32. Zhou, D., Wu, J. & Luo, G. Body mass index and risk of non-melanoma skin cancer:
630 cumulative evidence from prospective studies. *Sci Rep* 6, 37691 (2016).
631 <https://doi.org/10.1038/srep37691>

632 33. Theodoros N. Sergentanis, Antonios G. Antoniadis, Helen J. Gogas, Constantine N.
633 Antonopoulos, Hans-Olov Adami, Anders Ekbom, Eleni Th. Petridou. Obesity and risk of
634 malignant melanoma: A meta-analysis of cohort and case-control studies, *European Journal of
635 Cancer*, Volume 49, Issue 3, 2013, Pages 642-657, <https://doi.org/10.1016/j.ejca.2012.08.028>.

636 34. George CD, Tokez S, Hollestein L, Pardo LM, Keurentjes AJ, Wakkee M, Nijsten T.
637 Longitudinal Assessment of the Prevalence of Actinic Keratosis and Extensive Risk Factor
638 Evaluation: An Update from the Rotterdam Study. *J Invest Dermatol*. 2023 May 9:S0022-
639 202X(23)02056-0. doi: 10.1016/j.jid.2023.02.042. Epub ahead of print. PMID: 37169068.

640 35. Tokez, S., Alblas, M., Nijsten, T., Pardo, L.M. and Wakkee, M. (2020), Predicting
641 keratinocyte carcinoma in patients with actinic keratosis: development and internal validation of
642 a multivariable risk-prediction model. *Br J Dermatol*, 183: 495-502.
643 <https://doi.org/10.1111/bjd.18810>

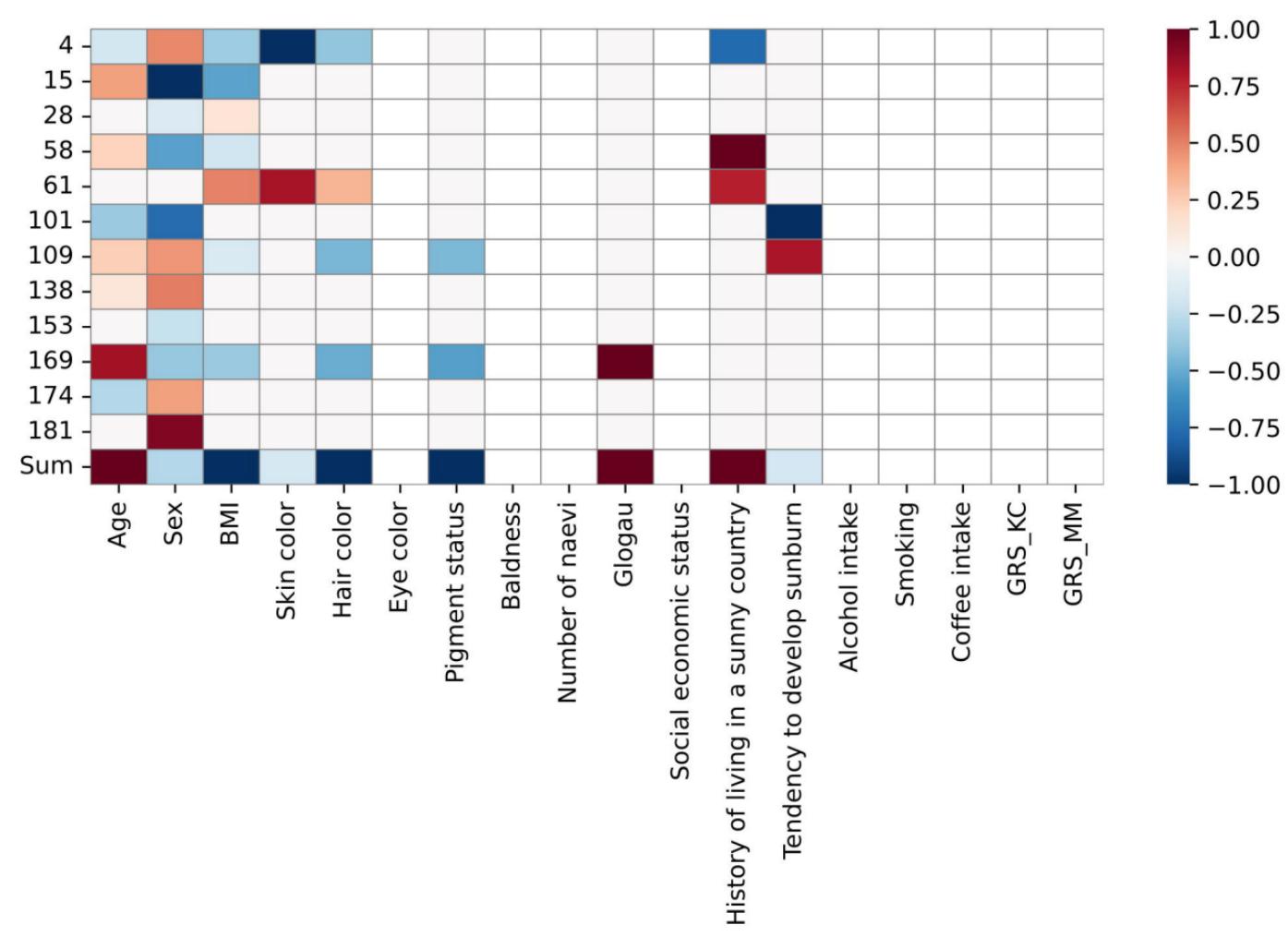
644 36. Bas H.M. van der Velden, Hugo J. Kuijf, Kenneth G.A. Gilhuijs, Max A. Viergever.
645 Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. *Medical
646 Image Analysis*. Volume 79, 2022, 102470, ISSN 1361-8415,
647 <https://doi.org/10.1016/j.media.2022.102470>.

648 37. Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, Khan Muhammad, Jose M. Alonso-Moral,
649 Roberto Confalonieri, Riccardo Guidotti, Javier Del Ser, Natalia Díaz-Rodríguez, Francisco
650 Herrera. Explainable Artificial Intelligence (XAI): What we know and what is left to attain
651 Trustworthy Artificial Intelligence. *Information Fusion*. Volume 99, 2023, 101805, ISSN 1566-
652 2535, <https://doi.org/10.1016/j.inffus.2023.101805>

653 38. Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva Schmidt,
654 Andreas Sessing, Kevin Baum. What do we want from Explainable Artificial Intelligence (XAI)?
655 – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI
656 research. *Artificial Intelligence*. Volume 296, 2021, 103473, ISSN 0004-3702,
657 <https://doi.org/10.1016/j.artint.2021.103473>

658 39. Erico Tjoa, Cuntai Guan. A Survey on Explainable Artificial Intelligence (XAI): Toward
659 Medical XAI. *IEEE Transactions on Neural Networks and Learning Systems*. Volume: 32, Issue:
660 11, November 2021. <https://doi.org/10.1109/TNNLS.2020.3027314>

661 40. Fontanillas, P., Alipanahi, B., Furlotte, N.A. et al. Disease risk scores for skin cancers. *Nat
662 Commun* 12, 160 (2021). <https://doi.org/10.1038/s41467-020-20246-5>



Skin cancer on any location

Skin cancer on the face

Skin cancer on other regions other than the face

Lower risk

Higher risk

