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Abstract

Background:

Efficient identification of individuals at high risk of skin cancer is crucial for implementing
personalized screening strategies and subsequent care. While Artificial Intelligence holds
promising potential for predictive analysis using image data, its application for skin cancer risk
prediction utilizing facial images remains unexplored. We present a neural network-based
explainable artificial intelligence (XAI) approach for skin cancer risk prediction based on 2D facial
images and compare its efficacy to 18 established skin cancer risk factors using data from the

Rotterdam Study.
Methods:

The study employed data from the Rotterdam population-based study in which both skin cancer
risk factors and 2D facial images and the occurrence of skin cancer were collected from 2010 to
2018. We conducted a deep-learning survival analysis based on 2D facial images using our
developed XAI approach. We subsequently compared these results with survival analysis based

on skin cancer risk factors using cox proportional hazard regression.
Findings:

Among the 2,810 participants (mean Age=68.5+9.3 years, average Follow-up=5.0 years), 228
participants were diagnosed with skin cancer after photo acquisition. Our XAI approach achieved
superior predictive accuracy based on 2D facial images (c-index=0.72, SD=0.05), outperforming

that of the known risk factors (c-index=0.59, SD=0.03).


https://doi.org/10.1101/2023.10.04.23296549
http://creativecommons.org/licenses/by-nc-nd/4.0/

67

68

69

70

71

72

73

74

75

76

77

78

medRXxiv preprint doi: https://doi.org/10.1101/2023.10.04.23296549; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Interpretation:
This proof-of-concept study underscores the high potential of harnessing facial images and a
tailored XAI approach as an easily accessible alternative over known risk factors for identifying

individuals at high risk of skin cancer.
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79  Research in context

80  Evidence before this study

81  We searched PubMed for articles published in English between Jan 1, 2000, and Sept 28, 2023,
82  using the search terms “skin cancer” AND “artificial intelligence” OR “deep learning”. Our

83  search returned more than 1,323 articles. We found no study had explored the feasibility of

84  predicting the risk of developing skin cancer based on facial images that were taken before the
85  first diagnosis of skin cancer. Although there were studies focused on deep learning image

86 analysis and skin cancer, those are based on skin cancer lesion images. We found current skin
87  cancer risk prediction models are still hampered by dependencies on complex patient data,

88 including genetic information, or rely on self-reported patient data.

89  Added value of this study

90 In this study, we presented a neural network-based explainable artificial intelligence (XAI)

91  approach for skin cancer risk prediction based on 2D facial images. To the best of our

92  knowledge, our study is the first to utilize facial images as predictors in a skin cancer survival

93  analysis. Our novel image-based approach showed superior performance when juxtaposed with
94  traditional methods that relied on clinical and genetic skin cancer risk factors, as observed within

95  our study population

96 Implications of all the available evidence.

97  This proof-of-concept study underscores the high potential of harnessing facial images and a
98 tailored XAl approach as an easily accessible alternative over known risk factors for identifying

99 individuals at high risk of skin cancer.

100
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101

102 Introduction

103  Skin cancer, the most common form of cancer in individuals of European ancestry with lighter
104  skin tones, presents a significant public health concern. The two most common types of skin cancer,
105  basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), together referred to as
106  keratinocyte carcinoma (KC), account for an estimated 6 million! new cases each year across the
107  globe. BCC, the most prevalent variant, grows slowly, often appearing as nodular, pigmented, or
108  waxy lesions on sun-exposed skin. SCC, though less common than BCC, is more aggressive and
109  usually presents as a scaly or erythematous patch or nodule. Even less common, but far more
110  lethal, is malignant melanoma, which causes an estimated 57,000 deaths globally each year.? Due
111  to longer life expectancies and past excessive UV exposure, the number of KC and melanoma
112 cases has surged over recent decades, and this trend is anticipated to continue.?

113 Early diagnosis of skin cancer can mitigate morbidity and mortality by preventing the
114  progression to late-stage disease.> However, population-wide screening programs have not been
115  proven cost-effective,* or convincingly demonstrated a reduction in skin cancer-related mortality
116  or morbidity. However, personalized screening programs for individuals at high risk of developing

117 skin cancer’

are considered as a potentially more feasible strategy to combat the ongoing skin
118  cancer epidemic.® Although accurate stratification of individuals at increased risk of developing
119  skin cancer is essential for targeted screening, it remains a challenge to develop tools with
120  sufficient predictive performance that are suitable for wide-scale use. Many existing prediction’*?
121  models are hampered by dependencies on complex patient data, including genetic information, or

122 rely on self-reported patient data, thereby making them susceptible to recall bias and social-

123 desirability bias.'®


https://onlinelibrary.wiley.com/doi/10.1002/cam4.4046
https://jamanetwork.com/journals/jamadermatology/fullarticle/2790344
https://jamanetwork.com/journals/jamadermatology/fullarticle/2790344
https://jamanetwork.com/journals/jama/fullarticle/192984
https://jamanetwork.com/journals/jama/fullarticle/192984
https://pubmed.ncbi.nlm.nih.gov/27458949/
https://pubmed.ncbi.nlm.nih.gov/27458949/
https://www.nature.com/articles/s41467-020-20246-5
https://pubmed.ncbi.nlm.nih.gov/31520533/
https://jamanetwork.com/journals/jamadermatology/fullarticle/2749356&sa=D&source=docs&ust=1666006574966825&usg=AOvVaw2Qslq5Zqn48jFD5NwugrZi
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124 Artificial intelligence (AI), specifically convolutional neural networks (CNNs), have
125  demonstrated high accuracy in detecting skin cancer from skin lesion images in recent years.!! Yet,
126  their potential in stratifying individuals based on skin cancer risk remains largely uncharted due to
127  the scarcity of longitudinal datasets. One potential direction for such screening strategies involves
128  the use of personal facial images. These images could reveal key risk factors associated with skin
129  cancer, such as age, skin color, and signs of UV damage. Furthermore, capturing facial images
130  requires minimal effort (such as taking a selfie with a smartphone) and is not affected by recall
131  bias thus offering a potentially easily accessible tool for identifying high risk individuals in the
132 general population.

133 Here, we develop a neural network-based explainable artificial intelligence (XAI)3®37
134  approach that predicts skin cancer risk from 2D-facial images and utilize population-based data
135  from the Rotterdam Study (RS) to demonstrate its performance. To assess its effectiveness, we
136  compared the performance of our novel image-based approach with traditional clinical and genetic
137  skin cancer risk factors in RS.

138
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139 Methods

140  Study design and participants

141 The RS is an ongoing large prospective population-based cohort study in Ommoord, a region in
142 Rotterdam, the Netherlands.'? Since January 1990, the RS has been enrolling individuals aged 50
143 and over from the general population. Participants undergo comprehensive baseline examinations
144  and visit a dedicated study center every 3-4 years. During these visits they also undergo a full-body
145  skin examination (FBSE) performed by a dermatology-trained physician which also focuses on
146  detecting skin (pre-)malignancies and skin cancer. As of 2010, standardized full facial images are
147  taken of participants using a Premier 3dMD face3-plus UHD camera (3dMD Inc., Atlanta, GA,
148  USA).

149

150  Skin cancer and risk factor measurements

151  Skin cancer diagnoses, both prior to and after the facial photo was taken, along with their respective
152 body locations, were collected for all RS participants by linkage to the Dutch nationwide network
153  and registry of histo- and cytopathology (PALGA)."* Skin cancer-related risk factors were
154  collected through a combination of home interviews and study center visits. Available skin cancer
155  determinants included sex, age, skin color, hair color, eye color, pigment status (combined
156  variable!*! hair and eye color), number of naevi, baldness in men, body mass index (BMI),
157  socioeconomic status, history of living in a sunny country, tendency to develop sunburn, alcohol
158 intake, coffee consumption, smoking, Glogau wrinkle classification, and a genetic risk score (GRS)
159 for KC as well as melanoma utilizing single-nucleotide polymorphisms (SNPs) that are

160  significantly associated with these specific types of skin cancer.3*3>


https://pubmed.ncbi.nlm.nih.gov/32367290/
https://pubmed.ncbi.nlm.nih.gov/32367290/
https://pubmed.ncbi.nlm.nih.gov/17429138/
https://pubmed.ncbi.nlm.nih.gov/17429138/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496285/
https://pubmed.ncbi.nlm.nih.gov/26121210/
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161

162  Case definition

163  Events were defined as participants, who received their first diagnosis of skin cancer (BCC, SCC
164  or melanoma) after the date of the facial images being taken. To ensure the exclusion of participants
165  who already had a skin cancer diagnosis at the time of the photograph (i.e., left-censored samples),
166  individuals with a confirmed histopathological skin cancer diagnosis prior to their photograph or
167  within 30 days after the FBSE were excluded from the study. Follow-up of all participants ended
168  at the time of death, or the date of censoring on July 1%, 2018, whichever came first. Death was
169  ascertained through linking with the municipal register. Right-censored samples were defined as
170  participants, who had not received a diagnosis of skin cancer by the date of censoring (July Ist,
171 2018), or who died before the date of censoring.

172
173  Facial image acquisition and preprocessing

174  Facial images of the RS participants were taken using a 3dMDface system (3dMD Inc., Atlanta,
175  GA, USA) photogrammetric device by medical doctors, who were specifically trained in operating
176  the device. The system comprised a central modular camera unit, flanked by two additional side
177  units, and underwent daily calibration. Image acquisition took place in a designated 3D imaging
178  room with consistent ambient lighting. An adjustable chair was used in a fixed position, to ensure
179  astandard level of height and fixed distance between subjects and the camera system. Participants
180  were requested to remove glasses and to wear a hair band to prevent hair from obscuring the
181  forehead or ears. During the image capture process, participants faced the central modular camera
182  unit maintaining a neutral facial expression with their eyes open. Frontal 2D facial images were

183  automatically derived from the 3dMD software.
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184  For the detection of facial landmarks, we utilized Dlib,'% a facial image processing library. The
185  detected facial landmarks were subsequently employed to crop and align the facial regions, as
186 illustrated in Figure S8. To exclude the neck or shoulder regions from the images, those areas were
187  masked as black pixels. Additionally, histogram equalization was applied to enhance the visual
188  quality of each facial image as well as to mitigate potential lighting variations. The final resolution
189  employed for our analysis was set to 224x224 pixels.

190
191  Deep learning analysis

192 Al-based endophenotypes derived from facial images

193  An autoencoder is an artificial neural network architecture employed for learning compressed
194  representations of input data in a self-supervised manner, meaning that it does not require patient-
195  specific information during the training process. The autoencoder consists of an encoder and a
196  decoder, which collectively enable non-linear feature mapping. The encoder is responsible for
197  compressing high-dimensional facial images into low-dimensional latent features, while the
198  decoder reconstructs facial images from these latent features.

199 Z = Encode(F)

200 F’=Decode(Z)

201 where Z = [Zo, Z1, ..., ZN] denotes the N latent features, Encode() and Decode() functions
202  correspond to the down-sampling and up-sampling processes F denotes the input 2D facial image,
203  while F' represents the reconstructed 2D facial image.

204  For our analysis, we used a deep convolutional autoencoder!” (detailed architecture in Figure S3c)
205  consisting of four encoder layers and four decoder layers to derive low-dimensional representations,
206  which we further defined as facial endophenotypes. To make the trade-off between reconstruction

207 error and dimensional complexity, we conducted experiments with varying numbers of
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208  endophenotypes. The optimum number was found to be 200. The derived facial endophenotypes
209  were further used as predictors in the survival analysis.

210

211 Explainable Al (XAI) techniques

212 By selectively decoding a subset of endophenotype(s), we are able to generate a sequence of facial
213  images showing changes in facial features corresponding to the changes of selected
214 endophenotype(s). Implementation details about the selectively decoding can be found in Figure
215  S5a (in supplementary).

216

217 Cox proportional hazard regression (CPH) analysis

218  We performed a survival analysis employing cox proportional hazard regression (CPH),'® to
219  predict the risk of participants developing skin cancer over time. Predictors included either the 18
220  risk factors or the 200 facial endophenotypes. Additionally, time-to-event (TTE) was included as
221  anessential predictor in the model training. For events, TTE was calculated as the interval between
222 the date of the first diagnosis of skin cancer and the date when the facial image was taken; In the
223 case of right-censored samples, TTE was calculated as the interval between the date of censoring
224 (or death) and the date when a facial image was taken.

225

226 Deep cox proportional hazards regression (DCPH) analysis

227 A deep cox proportional hazard regression (DCPH) model is an extension of the linear cox
228  proportional hazards (CPH) model. Compared to DPH, DCPH enables non-linear modeling of the

229  predictors, and thus it is able to model more complex relationships between predictors and the

10
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230  risk.!” The parameters of the DCPH model are optimized by minimizing the following log-partial

231 likelihood cost function which is widely used in survival analysis models:?**!:*2

232 Loss = —Z(h(xi) “ln Y ehG)
jer

iEE

233 where E represents the set of events and R denotes the set of right-censored samples, and the TTE
234 for individual j is greater than the TTE for individual i, xi and Xx; represent the predictors for
235  individuals i and j, and h(x) and h(x;) represent the network predictions for individuals i and j.

236 The DCPH model consisted of two fully connected layers and one neuron in the output layer.

237  Detailed architectures of the DCPH model can be found in Supplementary Figure S3b.

238

239 Deep Convolutional cox proportional hazards regression analysis (DCCPH)

240  Integrating 2D convolutional neural networks?® with the cost function of DCPH, we can utilize the
241  entire facial image as input and directly compute a skin cancer risk score for each participant. This
242  integrated model was referred to as the deep convolutional cox proportional hazard (DCCPH)
243 model, which consisted of four convolutional layers, two fully connected layers and one neuron in
244 the output layer. Detailed architectures of the DCCPH model can be found in Supplementary
245  Figure S3c.

246

247  Survival analysis and experiment settings

248  In all experiments of the survival analysis, left-censored samples (i.e., participants diagnosed with
249  skin cancer prior to the facial image being taken) were excluded. We utilized three models in the
250  survival analysis: CPH, DCPH, and DCCPH. For both the CPH and DCPH models, we explored

251  three types of predictors: 1) age alone, 2) 18 known risk factors, and 3) facial endophenotypes. In

11
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252 the DCCPH model, we employed 2D facial images without extracting facial endophenotypes as
253  predictors.

254  All the three models estimate the risk over time, but we only provide the risk score at a single time
255  point, which is at the end of the study. To evaluate the predictive performance of the models, we

256  calculated the concordance-index (c-index) using the following equation:

l#]

257 C= lé:jl(Ti > Tj)é}
258  where 9; is a variable that is assigned a value of 1, if individual j is an event and O if individual j is
259  aright-censored sample, T is the TTE for an individual and r is the risk score for an individual.
260 A c-index of 0.5 indicates a random prediction, while a c-index of 1 indicates a perfect prediction.
261 In all prediction experiments, we employed a consistent practice of splitting the samples into a
262  training set and a test set, with an 80:20% ratio. We repeated this split 20 times with random
263  permutations and calculated the mean and standard deviation of the c-index.

264  We performed an additional analysis where we stratified the right-censored samples into different
265  subgroups based on their follow-up years. It is important to note that patient information in this
266  study was not updated beyond July 1st, 2018. Consequently, some right-censored samples had a
267  relatively short follow-up period and may have been diagnosed with skin cancer shortly after that
268  date. These right-censored samples with a shorter follow-up time could be deemed less reliable
269  compared to those with longer follow-up periods. In consequence, including right-censored
270  samples with short follow-up years in the analysis could potentially impact the prediction model
271  negatively. Therefore, we stratified the right-censored samples into 5 subgroups based on the
272 follow-up years, while ensuring age matching among the subgroups. The subgroups were defined
273 as follows: 1) > 2 follow-up years (N=1139); 2) > 3 follow-up years (N=1129); 3) > 4 follow-up
274 years (N=840); 4) > 5 follow-up years (N=548); 5) > 6 follow-up years (N=535), The event group

12
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275  consisted of participants who were diagnosed with skin cancer at any location on the body (N=228).
276  Subsequently, we performed separate survival analysis for each sub-group in this additional
277  analysis.

278

279  Ethical considerations

280  The Rotterdam Study has been approved by the Erasmus MC Medical Ethical Committee (MEC-
281  02-1015), and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act,
282  reference 3295110-1021635-PG). Written informed consent was obtained from all participants.
283

284

285

13
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36 Results

287  Study population and risk factors

288
289  We included a total of 3,371 participants from the RS cohort, who had a 2D-facial image and

290 underwent assessment for skin cancer risk factors. Among them, 23.4% (n=789) were diagnosed
291  with skin cancer, of which 71.1% (n=561, left-censored participants) were diagnosed prior to the
292  facial image being taken, and 28.9% were diagnosed afterwards (n=228, events). Figure S7 shows
293  the histogram distribution of time-to-event (TTE) of these 228 events, with an average TTE of 971
294  days (SD 678 days). Among these 228 events, 163 had a BCC, 68 had an SCC and 11 had a
295  melanoma. Left-censored participants were excluded from the survival analysis. Table 1 shows the
296  distribution of the 18 potential skin cancer risk factors among the study population (N=2,810), of
297  which the median age was 67.1 years (IQR 14.1 years) and 57.4% were women. We examined the
298  association between known skin cancer risk factors and the facial endophenotypes we derived from
299  the facial images (Figure S4), and visually represented the identified associations on the face

300 (Figure S5) via XAl techniques.

301
302 Table 1: Baseline characteristics of the RS study population.
303
Participants, who did not Participants, who
develop skin cancer (Right- | developed skin cancer after
censored samples) facial image taken (Events)
N=2582 N=228
Age at FBSE in years, median (IQR) 66.8 (14.2) 70.6 (12.0)
Sex
-Women (%) 1484 (57.5%) 129 (56.6%)
-Men (%) 1098 (42.5%) 99 (43.4%)
BMI
mean (SD) 27.67 (4.39) 27.75 (3.97)

14
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Skin color

-Olive color-light brown (%) 373 (14.4%) 23 (10.1%)
- White (%) 1908 (73.9%) 183 (80.3%)
- Pale (%) 301 (11.7%) 22 (9.6%)
Hair color when young

-Black (%) 155 (6.0%) 9 (3.9%)
-Brown/dark blonde (%) 1844 (71.4%) 166 (72.8)
-Light blonde (%) 505 (19.6%) 40 (17.5%)
-Red (%) 78 (3.0%) 13 (5.7%)
Eye color

-Brown (%) 596 (23.1%) 48 (21.1%)
-Intermediate (%) 211 (8.2%) 21 (9.2%)
-Blue (%) 1775 (68.7%) 159 (69.7%)

Pigment status (combined variable'*!

hair and eye color)

-Light (%) 538 (20.8%) 49 (21.5%)
-Intermediate (%) 1467 (56.8%) 134 (58.8%)
-Dark (%) 577 (22.3%) 45 (19.7%)
Baldness

-No/almost no (%) 1923 (74.5%) 157 (68.9%)
-Mild (%) 346 (13.4%) 31 (13.6%)
-Severe (%) 313 (12.1%) 40 (17.5%)
Number of naevi

- >=100 (%) 49 (1.9%) 4 (1.8%)

- 50-99 (%) 141 (5.5%) 9 (3.9%)

- 25~49 (%) 371 (14.4%) 30 (13.2%)
- <25 (%) 2021 (78.3) 185 (81.1%)
Glogau wrinkle classification

-1and 2 (%) 207 (8.0%) 12 (5.3%)
-3 (%) 2027 (78.5%) 175 (76.8%)
-4 (%) 348 (13.5%) 41 (18.0%)
Socioeconomic status

-high (%) 755 (29.2%) 56 (24.6%)
-medium (%) 1505 (58.3%) 134 (58.8%)
-low (%) 322 (12.5%) 38 (16.7%)
History of living in a sunny country

-Yes (%) 150 (5.8%) 17 (7.5%)
-No (%) 2432 (94.8%) 211 (93.5%)
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Tendency to develop sunburn

-Yes (%) 866 (33.5%) 86 (37.7%)
-No (%) 1716 (66.5%) 142 (62.3%)
Alcohol intake

g/day

mean (SD) 7.95 (8.57) 8.08 (9.42)
Smoking

-Ever (%) 1756 (68.0%) 157 (68.9%)
-Never (%) 826 (32.0%) 71 (31.1%)

Coffee consumption (cups/day)

mean (SD) 3.03 (1.83) 2.99 (1.81)
GRS_KC

median (SD) 1.03 (0.25) 1.06 (0.27)
GRS_MM,

median (SD) 7.03 (0.47) 7.06 (0.46)

Right-censored samples: Never had skin cancer before the end of the study;

Events: Diagnosed with skin cancer at least 30 days after the facial photo was taken;
FBSE: Full-body skin examination;

GRS_KC: Polygenetic risk score for KC;

GRS_MM: Polygenetic risk score for melanoma

Risk factors were imputed. Table S1 shows the characteristics of non-imputed risk factors.

Skin cancer risk prediction in survival analysis

Table 2 shows the c-index values for different prediction models using various predictors as input.
In the risk factor analysis, the age-only analysis yielded a c-index of about 0.55, which increased
to 0.59 when all other known risk factors were included. However, the analysis of facial
endophenotypes resulted in higher c-index values of 0.72, which remained similar at 0.71 when
using the facial images without extracting the facial endophenotypes. Comparing the prediction
models, the CPH showed better performance when using risk factors as input, while the DCPH

was more effective when employing facial endophenotypes as input.
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In our main analysis, we focused on skin cancer occurring at any location on the body. We further
stratified the event group into two subgroups: skin cancer on the face and skin cancer on other
parts of the body excluding the face. Interestingly, we observed similar patterns and trends in the

analysis across different stratifications based on the location of skin cancer.

Table 2: C-index (mean/SD) of skin cancer risk prediction in survival analysis.

Skin cancer on any Skin cancer Skin cancer on other
Method (predictors) location of body on face parts of the body except
N =228 N =136 face
N=113
CPH age only 0.550/0.048 0.554/0.036 0.543/0.051
CPH 18 known risk factors 0.589/0.034 0.586/0.047 0.595/0.060
DCPH 18 known risk factors 0.572/0.044 0.520/0.067 0.532/0.069
CPH facial endophenotypes 0.685/0.033 0.693/0.037 0.674/0.054
DCPH facial endophenotypes 0.721/0.045 0.732/0.058 0.718/0.049
DCPH facial endophenotypes + | 0.723/0.039 0.738/0.060 0.721/0.062
age
DCCPH 2D facial image 0.713/0.041 0.721/0.051 0.703/0.049

without extracted
endophenotypes

CPH: Cox proportional hazard regression
DCPH: Deep Cox proportional hazard regression

DCCPH: Deep convolutional cox proportional hazards regression

Only Right-censored samples (N= 535) with > 6 follow-years were included.

Results were based on imputed risk factors. Table S2 shows the results based on non-imputed risk factors.
Facial endophenotypes association with known risk factors

Figure 1 shows the associations between traditional skin cancer risk factors and statistically

significant facial endophenotypes identified in the survival analysis (CPH facial endophenotypes)

in Table 2. Combining the effects of 12 statistically significant facial endophenotypes, several key
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patterns emerged. Strong associations of facial endophenotypes were observed with age (positive),
Glogau wrinkle classification (positive), history of living in a sunny country (positive), BMI
(negative), and hair color and pigment status (higher risk in lighter color). Weaker associations
were found with sex (higher risk in males), tendency to develop sunburn (negative) and skin color
(higher risk with lighter skin color). No significant associations were detected with alcohol
consumption, coffee consumption, smoking, eye color, social economic status, number of naevi,

baldness and genetic risk score.

4 q 1.00
15 - 0.75
28 -

58 - 0.50
614 -0.25
101 -
109 - -0.00
138 -
153 - - -0.25
169 - 1 ~0.50
174 -
181 - -0.75
Sum 1.00

I
v xX =
o O =
< »n m

Eye color -
Baldness -
Glogau
Smoking -
GRS _KC -
GRS_MM -

Hair color I
Pigment status I

Skin color -

Number of naevi
Social economic status -
Alcohol intake -
Coffee intake -

History of living in a sunny country I
Tendency to develop sunburn -

Figure 1. Statistically significant facial endophenotypes in survival analysis are associated with known risk factors,
in the analysis of skin cancer on any location of the body. The x-axis represents the different risk factors, while the
y-axis represents the index of facial endophenotypes that exhibited statistical significance in the survival analysis.
The "sum" row represents the summation of each row. The values of associations are normalized from -1 to 1 for
each column, where red indicates a positive association, indicating a higher risk of skin cancer associated with
higher values of the corresponding risk factor, such as age.
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353  Explainable AI (XAI)

354 In order to gain insights into the facial features contributing to skin cancer prediction, we
355  selectively decoded the statistically significant facial endophenotypes identified in the survival
356  analysis (CPH facial endophenotypes) and generated a sequence of facial images representing low
357  to high risk of skin cancer via XAI techniques (implementation details in Figure S5a). Figure 2
358  presents synthesized facial images that the prediction model considered as having low to high risk
359  of skin cancer, stratified based on whether the cancer occurred on the face, on other body parts
360 excluding the face, or anywhere on the body including the face. The result indicates that factors
361 such as a lower BMI or increased facial erythema might be linked to a higher risk. Notably,
362  participants in the sub-group of skin cancer occurring outside the face had never been diagnosed

363  with skin cancer on the face before the date of censoring.

364
Skin cancer on any location
Skin cancer on the face
Skin cancer on other regions other than the face
Lower risk Higher risk
365
366

367 Figure 2: Reconstruction of faces representing lower to higher risk for developing skin cancer on the face, and other
368 body locations excluding the face, as well as anywhere on the body including the face. The synthetic faces shown in
369 the figure were reconstructed via selectively decoding statistically significant facial endophenotypes in the survival
370 analysis (CPH facial endophenotypes) in Table 2.

371
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In-depth analysis of TTE in survival analysis

The relationship between the skin cancer prediction score and TTE of events during the test stage

of the survival analysis (CPH and DCPH facial endophenotypes) is illustrated in Figure 3. Notably,

the TTE information of each participant was not included into the model as a predictor in the test

stage. The plot reveals that events with a higher prediction score, indicating a higher risk of skin

cancer, tend to have a shorter TTE. A shorter TTE implies that participants were diagnosed with

skin cancer earlier after the facial images were taken, suggesting that their faces may have

exhibited early signs of skin cancer at the time the photo was made. The CPH and DCPH models

effectively identified these participants, assigning them to overall higher risk scores compared to

subjects with a longer TTE. This effect, although to a lesser extent, was also observed for

participants with skin cancer on other parts of the body excluding the face (Figure S9).
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Figure 3: Relationship between risk prediction score and time to event (TTE) for N=44 events in the test set. a)
Analysis of (CPH facial endophenotypes) and b) Analysis of (DCPH facial endophenotypes) for skin cancer at any
location on the body. The X-axis represents the TTE in days, while the Y -axis represents the prediction risk score
normalized to a range of O to 1. A higher predicted score indicates a higher risk of skin cancer.
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Figure 4 shows the survival analysis results with the stratification of right-censored samples based
on their follow-up years. Age was matched between the event group and right-censored subgroups,
so the c-index curve of (CPH age) served as a baseline. It is evident that compared to (CPH age),
the results of (CPH 18 known risk factors), (CPH facial endophenotypes) and (DCPH facial

endophenotypes) showed a trend of increasing c-index in subgroups with longer follow-up years.

0.75 —@— CPH 18 known risk factors

DCPH facial endophenotypes
—8— CPH age
0.70 1 —e— CPH facial endophenotypes

0.65 A

C-index

0.60 A

0.55 1

0.50 A

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Follow-up years (at least)

Figure 4: Stratification of right-censored samples based on follow-up years. The solid line represents the mean
result, while the transparent surrounding area denotes the standard deviation. (CPH 18 known risk factors): Results
obtained from a CPH model using risk factors as predictors. (DCPH facial endophenotypes): Results obtained from a
DCPH model using facial endophenotypes as predictors.
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w03 Discussion

404  Our research underscores the promise of using facial endophenotypes, extracted from 2D facial
405 images through Al techniques, as indicators for developing skin cancer in the future. We
406  demonstrate that the innovative use of facial image-based predictions outperformed traditional
407  methods relying on many known risk factors, which are normally identified based on complex
408  patient information, including extensive questionnaires, genetic data, and clinical parameters
409 identified during physical skin cancer screening, such as nevi count, AK, or wrinkles. Our analysis
410  confirms the robust relationship between these facial endophenotypes and established skin cancer
411  risk determinants. We found a notable correlation between the most predictive facial
412 endophenotypes and certain recognized risk factors for skin cancer.

413 Facial endophenotypes provide a rapid, user-friendly and explainable Al-based alternative
414  to existing risk factors, particularly when comprehensive patient information is difficult to collect
415  on a large scale. Furthermore, these endophenotypes might offer a more consistent prediction of
416  skin cancer risk than relying on questionnaire data, sidestepping potential recall biases. To the best
417  of our knowledge, our study is the first to utilize facial images and facial endophenotypes derived
418  from these images as predictors in a skin cancer survival analysis.

419  Relevance to existing literature

420  Previous modeling studies reported targeted skin cancer screening of high-risk populations to be a
421  cost-effective®® population-based intervention to reduce skin cancer related morbidity and
422  mortality. However, the characteristics of individuals that are considered ‘high risk’ vary across
423  studies.” Our findings provide promises that facial endophenotypes can help in narrowing the
424  scope of high-risk individuals to optimize cost-effectiveness and improve the feasibility of targeted

425 screening programs.
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426 The current literature on skin cancer risk prediction encompasses a range of prediction
427  models with varying levels of accuracy. While some models have demonstrated promising results
428  using relatively simpler factors, such as the number of actinic keratosis and coffee consumption
429  (c-index 0.6),%¢ others have incorporated more extensive patient information to achieve improved
430  accuracy. Notably, a model focused on melanoma risk achieved c-index values of 0.72 for any
431  melanoma and 0.69 for invasive melanoma by incorporating seven relevant predictors.?’” In our
432 study, utilizing facial endophenotypes outperformed the predictive accuracy based on known risk
433  factors alone, yielding a c-index of 0.73, which surpasses the performance of many published
434  models. Recent research has broadened its scope, incorporating up to 32 genetic and non-genetic
435  risk factors to remarkably enhance the accuracy of predicting future skin cancer development.*’
436  Nonetheless, it's vital to acknowledge that making direct comparisons between our study and prior
437  investigations presents challenges due to variations in the populations, research methodologies
438  employed, and, notably, the divergent primary outcomes assessed in these studies.

439 Our study also revealed associations between several facial endophenotypes and known
440  risk factors for skin cancer such as age, sex, BMI, Glogau wrinkle score, hair and skin color, history
441  of living in a sunny country, tendency to develop sunburn, and pigment status. Age is a well-

442  known risk factor for skin cancer,?%2%-3°

with many existing prediction models relying heavily on
443 it. Similarly, our prediction model leaned heavily on age as a discriminative variable when our
444  analysis was restricted to known skin cancer risk factors.

445 Interestingly, we were also able to corroborate previous studies that found an inverse
446  correlation between BMI and KC, meaning a higher BMI appears to reduce the risk of KC).3!'%

1.33

447  However, other studies focusing on melanoma observed a positive correlation with BMI.”* Given
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448  the substantial proportion of KC patients within our study cohort relative to melanoma patients,
449  this has likely skewed our results towards an inverse correlation.

450 Furthermore, we found several facial endophenotypes associated with sex to be predictive
451  of skin cancer. Men are known to have a higher risk of developing skin cancer than women,
452  particularly in the case of melanoma. This disparity can be attributed to a mix of genetic and
453  behavioral factors, including men’s tendency to have more sun exposure and less protection from
454  ultraviolet (UV) radiation due to occupational and recreational activities and less care to protect
455  from UV with cosmetics. Moreover, individuals with lighter skin tones and hair colors are more
456  susceptible to skin cancer, including both KC and melanoma, due to their decreased melanin levels,
457  which leaves them less protected against UV radiation. Residing in a sunny country also increases
458  skin cancer risk due to higher cumulative exposure to UV radiation. Surprisingly, our study
459  identified an inverse relationship between the tendency to develop sunburn and the risk of skin
460  cancer. This counterintuitive finding could be attributed to a chance finding as this association was
461  relatively weak. Furthermore, we were unable to correlate other known skin cancer risk factors to
462  facial endophenotypes, such as coffee consumption and the number of nevi. This outcome is
463  anticipated, as these risk factors would be less likely to be reflected in facial images.

464  Strengths and limitations

465  Strengths of this study include the use of extensive population-based data from the Rotterdam
466  Study, with over 7 years of follow-up data. Additionally, the inclusion of nationwide data on skin
467  cancer diagnosis from the Dutch National Histopathology Registry reduces the risk of having
468  missed skin cancer diagnoses in the studied individuals during the study follow-up period.
469  Nevertheless, the results of our study should be understood in the context of several limitations.

470  First, given the proof-of-concept design of our study and, as far as we are aware of, no publicly

24


https://doi.org/10.1101/2023.10.04.23296549
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2023.10.04.23296549; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

471  available datasets worldwide containing both facial images and follow-up skin cancer data, we
472  were unable to externally validate our algorithm using an independent dataset. Second, facial
473  images in the Rotterdam Study were collected using a highly standardized method with a dedicated
474  camera setup, which could result in suboptimal performance when other, out-of-distribution facial
475  photos taken under different capturing conditions (e.g., selfies taken with a front-facing
476  smartphone camera) are used in our Al model, which can be tested in future studies. Also, a portion
477  of right-censored samples included in our analysis had a short follow-up period, meaning they
478  might have developed skin cancer shortly after this study's follow-up period ended, potentially
479  impacting the prediction model negatively. Furthermore, as Rotterdam Study participants are of
480  Dutch European ancestry and thus in majority having fair skin colour, the training and testing
481  dataset of this study was unbalanced in terms of skin colour diversity, which may make our model
482  less reliable when used for individuals with darker skin tones. Moreover, the study cohort is
483  relatively old (mean age around 68) affecting the generalizability of the findings, suggesting that
484  the impact of age may be even more dominant in the general population with a different age
485  distribution, which should be tested in the future. Finally, we implemented an XAl approach in an
486  attempt to shed light on the risk predictions made by our Al system. We did this by generating
487  synthetic facial images associated with higher or lower risks of developing skin cancer. This
488  method provides some insights, indicating that factors such as a lower BMI or increased facial
489  erythema might be linked to a higher risk. But the inherent complexity of deep learning algorithms

490 restricts our ability to fully understand the specific elements that boost the model's accuracy.

291 Conclusion

492  In conclusion, our research underscores the high potential of using facial images in deep-learning
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493  models for targeted skin cancer screening. The novel Al-driven approach we introduce here
494  eliminates the need for collecting information via lengthy questionnaires, DNA collection,

495  genotyping, or in-person evaluations. However, before it can be integrated into personalized
496  screening programs, further validation within diverse population samples and less standardized

497  setting is needed.
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