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Abstract 11 

Deep learning-based variant callers are becoming the standard and have achieved superior 12 

SNP calling performance using long reads. In this paper, we present Clair3, which makes the 13 

best of two major method categories: pile-up calling handles most variant candidates with 14 

speed, and full-alignment tackles complicated candidates to maximize precision and recall. 15 

Clair3 ran faster than any of the other state-of-the-art variant callers and performed the 16 

best, especially at lower coverage. 17 

 18 

Maintext 19 

The first preprint of DeepVariant1 was released in late 2016, marking the beginning of the 20 

use of deep learning-based methods (DL methods) instead of traditional statistical methods 21 

for variant calling. Over the years, several DL methods have been developed. We are now 22 

witnessing a complete take-over, led by DeepVariant for short-read variant calling. Long-23 

read variant calling, using Oxford Nanopore (ONT) data, on the other hand, has been 24 

dominated by DL-methods since the beginning, primarily owing to the difficulty caused by 25 

its higher base error rate in general. Although the DL methods for short-read and long-read 26 

have a lot in common, the problem of long-read variant calling is considered more difficult. 27 

This led to two major designs 3 using pileup or full-alignment as the input of the decision-28 

making neural network 3 which are significantly different in both performance and speed. 29 

Long-read variant callers, including Clairvoyante2, Clair3, and Nanocaller4, are pileup-based, 30 
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in which the read alignments are summarized into features and counts before being 31 

inputted into a variant calling network. PEPPER-Margin-DeepVariant5 (PEPPER) is full 32 

alignment-based. The input to the DeepVariant variant calling network is kept with spatial 33 

information in the read alignments and is tens of times larger than the pileup inputs in 34 

terms of size. Medaka6 is consensus-based; it uses pileup input to generate a diploid 35 

consensus in the first iteration and two haploid consensuses in the second. The differences 36 

between the reference and consensuses are identified and combined into variants. These 37 

are all state-of-the-art algorithms; the pileup-based algorithms are usually superior in terms 38 

of time efficiency and the full-alignment algorithms provide the best precision and recall. 39 

However, while the two designs are not mutually exclusive, there have not been any studies 40 

combining pileup calling and full-alignment calling. 41 

 42 

To fill the gap, we developed Clair3, the successor to Clair, which makes the best of both 43 

designs. It runs as fast as the pileup-based callers and performs as well as the full alignment-44 

based callers. Supplementary Figure 1 shows the workflow for Clair3. The philosophy 45 

behind Clair3 is to trust the full-alignment model unless the pileup model can make a quick 46 

but reliable decision. First, the pileup calling network goes through all the variant candidates 47 

that passed a coverage threshold and an alternative allele frequency threshold. Next, the 48 

high-quality pileup calls are used to phase the alignments and as part of the final output. 49 

Then, the alignments phased by WhatsHap7 are used to generate full-alignment input that is 50 

~23 times larger in size than the pileup input for each low-quality pileup call for full-51 

alignment calling. Finally, the full-alignment calls are integrated with the high-quality pileup 52 

calls as the final output. More details and parameters about the Clair3 workflow, 53 

input/output, and network architecture are provided in Methods. 54 

 55 

We benchmarked Clair3 against PEPPER (the current top-performing long-read variant 56 

caller), Medaka (ONT9s in-house developed variant caller), Longshot8 (non-deep learning-57 

based; works only with SNP), and Clair (the Clair3 predecessor) on two GIAB9, 10 samples: 58 

HG003 and HG004. HG003 was tested on models (including a pileup and a full-alignment 59 

model) trained on HG001, 2, 4 and 5. HG004 was tested on models trained on HG001, 2, 3 60 

and 5. The model availability and training details are in Methods. We chose to use ONT data 61 

base-called using Guppy 4 (version 4.2.2) for two reasons: 1) compared to the Guppy 5, 62 
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which was released in mid-2021, Guppy 49s read accuracy is ~1.8% lower11, which is more 63 

challenging to variant calling, so it can better test the speed and performance of different 64 

variant calling methods, and 2) as at the completion date of this paper, Guppy 4 base-called 65 

reads were still the latest version available for download by the Human Pangenome 66 

Reference Consortium12. A summary of the datasets used for training and testing is shown 67 

in Supplementary Table 1. The correct PEPPER and Medaka model for Guppy 4 data was 68 

chosen for benchmarking. The links to the dataset, and the versions, commands and 69 

parameters used for each tool are available in the Supplementary Notes.  70 

 71 

The benchmarking results at coverage from 10x to 90x are shown in Figure 1a, 72 

Supplementary Table 2, and Supplementary Table 3. The observations of different tools on 73 

HG003 and HG004 are almost identical, ruling out the possibility of any tools9 overfitting to a 74 

particular sample. In terms of the SNP F1-score, Clair3 outperformed the other tools at 75 

lower coverage (10x to 30x) and performed similar to PEPPER above 30x. above 50x, the 76 

SNP F1-score improvement became more subtle. However, the Indel F1-score kept 77 

increasing with coverage, although it slowed down above 50x. Looking at the precision and 78 

recall at 50x (Figure 1b), in terms of SNP, Clair3 achieved 99.67% and 99.60%, which is 79 

similar to PEPPER9s 99.61% and 99.63%. In terms of Indel, Clair3 achieved 90.86% and 80 

64.73%, higher than PEPPER9s 87.62% and 57.42%. In terms of speed (Figure 1c), Clair3 and 81 

Clair ran the fastest (~8 hours), and PEPPER was second-fastest (~30 hours). We then 82 

compared Clair3 to PEPPER using the CMRG v1 small variant benchmarking dataset13, which 83 

covers repetitive and highly polymorphic medically relevant genes, so it is more challenging 84 

than using GIAB. However, CMRG v1 is based on HG002. To ensure no testing variant was 85 

involved in training, instead of training a new model with HG002 left out, we selectively 86 

benchmarked the 5,837 (out of 21,232) small variants that are in CMRG v1, but not GIAB 87 

HG002. The results are shown in Supplementary Figure 2 and Supplementary Table 4. 88 

Similar to the trends observed for HG003 and HG004, Clair3 outperformed PEPPER at 10x to 89 

30x on SNP, and had a similar performance above 30x. We compared Clair3 to PEPPER by 90 

different genomic contexts according to the GIAB genome stratifications14 v2.0 on HG003 at 91 

50x. The results are shown in Supplementary Figure 3 and Supplementary Table 5. In SNPs, 92 

Clair3 outperformed PEPPER on precision in low complexity and functional regions, but not 93 

in low mappability and segmental duplication regions. Clair3 and PEPPER had the same 94 
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recall in different regions. In Indels, Clair3 outperformed PEPPER in both precision and recall 95 

in all regions. 96 

 97 

The success of the Clair3 method lies in the effective distinction between true and false calls 98 

during pileup calling, so that only necessary candidates are sent to the much more 99 

computationally intensive full-alignment calling. Figure 2a shows that an effective 100 

distinction was achieved using variant quality. Using HG003 at 50x as an example, most false 101 

variant calls and false reference calls had a quality between 0 to 10, while the true calls 102 

were between 15 to 30. In reality, while the correctness of a pileup call is not known in 103 

advance, we empirically decided to send the bottom 30% of the pileup variant calls and the 104 

bottom 10% of the pileup reference calls to full-alignment calling as the default settings of 105 

Clair3 (See Methods). In the previous example, quality cut-off 16 was chosen for the variant 106 

calls, which resulted in 98% of the false variant calls and only 9% of the true variant calls 107 

being sent to full-alignment calling. Similarly, cut-off 19 was chosen for the reference calls, 108 

so that 98% of the false reference calls and only 11% of the true reference calls were sent to 109 

full-alignment calling. Figure 2b shows that ~62% of the pileup failed variant calls and ~31% 110 

of the pileup failed reference calls were correctly called in full-alignment calling. We tested 111 

sending different percentages of pileup variant calls to full-alignment calling, from 0% 112 

(pileup calling only) to 100% (full-alignment calling only). The results are shown in Figure 2c 113 

and Supplementary Table 6. Clair39s default, which had a similar performance to full-114 

alignment calling but ran ~4 times faster, showed that integrating pileup and full-alignment 115 

calling is a better strategy than relying on only one of them. 116 

 117 

The benchmarks focused on the more challenging ONT data, but the Clair3 method is not 118 

restricted to a certain sequencing technology. It should work particularly well in terms of 119 

both runtime and performance on noisy data. Clair3 was released six months ago and is 120 

currently in its ninth revision, having integrated plenty of feedback from the community and 121 

ONT. We observed in PEPPER9s most recent update (r0.7 on Dec 22nd, 2021) that a module 122 

in the front of the pipeline that was used solely for variant candidate selection was 123 

repurposed to output summary-based variant calls to relieve the heavy full-alignment 124 

calling workload. We expect integrating pileup and full-alignment calling to be a common 125 

practice in deep learning-based variant calling in the future. 126 
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Method 127 

The Clair3 workflow 128 

As Supplementary Figure 1 shows, pileup candidates that are above a coverage threshold 129 

and an allele frequency threshold are extracted, and then called using the pileup network. 130 

The pileup calls are grouped into variant calls (genotype 0/1, 1/1, and 1/2) and reference 131 

calls (0/0). Both groups are ranked according to variant quality (QUAL). High-quality 132 

heterozygous SNP calls (top 70% in 0/1 calls) are used in WhatsHap phasing to produce 133 

phased alignment for input to the full-alignment network. Low-quality pileup calls 134 

(defaulted to the lowest 30% of variants and 10% of reference calls) are then called again 135 

using the full-alignment network. Finally, the full-alignment calls and high-quality pileup 136 

calls are outputted. Clair3 supports both VCF and GVCF output formats. 137 

 138 

Input/Output 139 

Clair3 uses a pileup input design simplified from that of its predecessors, and a full-140 

alignment input to cover as many details in the read alignments as possible. Supplementary 141 

Figure 4 visualizes the pileup and full-alignment inputs of a random SNP, insertion, deletion, 142 

or non-variant. The pileup input is 594 integers 3 33 genome positions wide with 18 143 

features at each position 3 A+, C+, G+, T+, IS+, I1
S+, DS+, D1

S+, DR+, A-, C-, G-, T-, IS-, I1
S-, DS-, 144 

D1
S-, and DR-. A, C, G, T, I, D, +, - means the count of read support of the four nucleotides: 145 

insertion, deletion, positive strand, and negative strand. Superscript <1= means only the 146 

indel with the highest read support is counted (i.e., all indels are counted if without <1=). 147 

Subscript <S=/<R= means the starting/non-starting position of an indel. For example, a 3bp 148 

deletion with the most reads support will have the first deleted base counted in either D1
S+ 149 

or D1
S-, and the second and third deleted bases counted in either DR+ or DR-. The design was 150 

determined experimentally, but the rationale is that for 1bp indels that are easy to call, look 151 

into the differences between the <S= counts, but reduce the quality if the <R= counts and 152 

discrepancy between positions increase. The pileup output is the same as that for Clair, but 153 

short of the two indel length tasks. The indel allele (or two indel alleles) with the highest 154 

reads support is used as the output according to the decision made in the 21-genotype task. 155 

The full-alignment input is 23,496 integers 3 8 channels of 33 genome positions and 89 156 

maximum representable reads. The description of the eight channels is in the 157 
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Supplementary Note. The full-alignment output is the same as that of Clair. The two indel 158 

length tasks can represent the exact indel length from -15 to 15bp, or below -15bp/ above 159 

15bp. An indel call with an exact length will output the most reads-supported allele at that 160 

length. Otherwise, the most reads-supported allele below -15bp/ above 15bp is outputted. 161 

In training, indel length task 1 is given the smaller number, and in all our variant calling 162 

experiments, no length predictions in task 1 larger than in task 2 were observed. The 163 

maximum supported coverage of pileup/full-alignment input was 144/89. Random 164 

subsampling was done on excessive coverage. If the coverage in a full-alignment input was 165 

below 89, the reads were centered.  166 

 167 

Network architecture 168 

The pileup and full-alignment networks are shown in Supplementary Figure 5. The pileup 169 

network uses two bidirectional long short-term memory (Bi-LSTM) layers with 128 and 160 170 

LSTM units. Stacked LSTM layers enable the network to learn the characteristics of raw 171 

sequential signal from different aspects at each position, but without increasing memory 172 

capacity, which enables the network to converge faster. Compared to Clair, the transpose-173 

split layer is removed for a 40% speedup with a small performance loss that is taken care of 174 

in full-alignment calling. The full-alignment network is residual neural network (ResNet) 175 

alike and uses three standard residual blocks. A convolutional layer is added on top of each 176 

residual block to expand channels but reduce dimensionality across channels. A spatial 177 

pyramid pooling15 (SPP) layer is used to tackle the problem of varying coverage in full-178 

alignment input. SPP is a pooling layer that removes a network's fixed-size constraint, thus 179 

avoiding the need for input cropping or warping at the beginning. The SPP layer generates 180 

various receptive fields using three pooling scales (1x1, 2x2, and 3x3) in each channel. It 181 

then pools the receptive fields of all channels and generates a fixed-length output for the 182 

next layer. In both networks, the dropout rates of 0.2 for the flatten layer, 0.5 for the 183 

penultimate dense layer, and 0.2 for the task-specific final dense layers, are empirically 184 

determined. 185 

 186 
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Model availability and training 187 

Pretrained models are provided in Clair39s installation. Models for specific chemistries and 188 

basecallers that are tested and supported by the ONT developers are available through 189 

Rerio (https://github.com/nanoporetech/rerio). The detailed steps, options and caveats for 190 

training a pileup model and a full-alignment model are available in Clair39s GitHub repo and 191 

are continually updated. The pretrained models, while targeted for use in production, were 192 

trained using multiple GIAB samples with known variants and 10 coverages for each sample, 193 

as described in Clair, but they always hold out chromosome 20 in Clair3. We used the 194 

following new training technics in Clair3. (1) Representation Unification: a variant can be 195 

represented in multiple forms14. Traditional variant calling methods rely on postprocessing 196 

(e.g., hap.py, RTG Tools) to equate multiple forms. However, to generate correct training 197 

samples, Clair3 must unify a variant9s representations between the alignments and the truth 198 

variants. Supplementary Figure 6 shows four cases in which the alignments and the truth 199 

variants have different representations that would confuse the training if not unified. Clair3 200 

chooses to align the truth variants' representation to the alignments. The five detailed steps 201 

are shown in Supplementary Figure 7. First, the truth variants and alignments are phased (if 202 

not yet done) using WhatsHap. Second, among the candidates with alternative allele 203 

frequency g0.15,  confident and in situ matches between the alignments and truth variants 204 

are identified and excluded from computationally intensive step 3. Third, the best match 205 

between the possible haplotypes of the truth variants and candidates is sought. Each of the 206 

truth variants can be either positive (using its reported genotype) or negative (using 0|0), 207 

and their Cartesian product forms possible haplotypes of the truth variants. Similarly, each 208 

candidate can be either 0|0, 0|1 (or 1|0 according to the phased alignments), or 1|1, and 209 

their Cartesian product forms the possible haplotypes of the candidates. A pairwise 210 

comparison is then done to find equivalent haplotypes between the two Cartesian products, 211 

and among all equivalents, the candidate haplotype with the most reads support is selected. 212 

The variants in the haplotype are used as the new truth variants. This step is 213 

computationally intensive, so in practice, we applied the step to partitions with at most 15 214 

candidates and required less than 100bp between the candidates. Fourth,  low alternative 215 

allele frequency (g0.08 but <0.15) candidates with in situ matches between the alignments 216 

and the truth variants were chosen. Fifth, the truth variants or unified variants generated in 217 

steps 2, 3 and 4 were merged. In our benchmarks, representation unification alone in 218 
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general increased the SNP recall by ~0.2% and Indel recall by ~2%. (2) Ratio of variants to 219 

non-variants samples for training: In Clair, the ratio was fixed at 1:2. In Clair3, we tested 220 

ratios up to 1:10 for both pileup and full-alignment model training, and we observed a 221 

monotonic but decelerated performance increase with more non-variants added to the 222 

training. Since focal loss is used to alleviate the effect of training class imbalance, another 223 

possible explanation is that the 21-genotype output task that Clair3 relies primarily on is 224 

insensitive to the ratio because it judges only the genotype of a candidate instead of 225 

whether a candidate is a variant or not. We chose 1:5 and 1:1 as the default ratio for pileup 226 

and full-alignment model training, respectively, to strike a balance between model 227 

performance and training speed. (3) Use of phased alignments: Deep-learning and full-228 

alignment based variant callers DeepVariant and PEPPER concluded that using phased 229 

alignments is essential to their high performance. In Clair3, high-quality heterozygous pileup 230 

calls are used to phase the input alignments using the 8phase9 and 8haplotag9 modules in 231 

WhatsHap. The phased alignments are used as input for full-alignment calling. When 232 

training a full-alignment model, two training samples for each variant, one using phased 233 

alignments and the other unphased, are used to ensure the model works when alignments 234 

cannot be properly phased. In our benchmarks, the use of phased alignments alone, in 235 

general, increased the SNP F1-score by ~0.1%, and the Indel F1-score by ~6%. (4) New 236 

optimization methods: Clair3 removed both the cyclical learning rate and learning rate 237 

decay strategies used in Clair, and now uses the Ranger optimizer (RectifiedAdam16 plus 238 

Lookahead17) for automated warm-up, faster convergence, minimal computational 239 

overhead, etc. In our benchmarks, compared to Clair, the new optimizer alone, in general, 240 

increased the overall F1-score of pileup calling by ~0.2%. 241 

 242 

Benchmarking methods and computational concerns 243 

We used five GIAB samples, HG001 to 5, for either model training or testing. When using 244 

either HG003 or HG004 for testing, the other four samples were used for training. We 245 

selected 10% of the training samples for validation and chose the best-performing epoch in 246 

the first 30 epochs in the validation data for benchmarking. We used hap.py14 to compare 247 

the called variants against the true variants, and used Clair39s 8GetOverallMetrics9 module to 248 

generate three metrics, 8precision9, 8recall9, and 8F1-score9, for five categories: 8overall9, 249 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2021. ; https://doi.org/10.1101/2021.12.29.474431doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474431
http://creativecommons.org/licenses/by/4.0/


 9 

8SNP9, 9Indel9, 8Insertion9, and 8Deletion9. We used qfy.py with V2.0 GIAB genome 250 

stratifications to evaluate Clair39s performance in challenging and targeted regions of the 251 

genome. Runtimes were gauged on a server with two 2.1GHz Intel Xeon Silver 4116s, with 252 

24 cores, and 256GB memory at 2666MHz. With the same setting, Clair3 finished in ~8 253 

hours using ~50x of ONT Guppy 4 data and in ~4.5 hours with the same amount of Guppy 5 254 

data. The memory consumption of each Clair3 calling process was capped at 1GB. 255 

 256 

Brief summary of methods tested showing no or negligible improvement 257 

(1) Use of more residual blocks in the full-alignment network: We added a fourth residual 258 

block with 512 channels. The number of parameters increased from 2,989,210 to 9,812,634. 259 

The runtime doubled, but the performance change was negligible, even though the terminal 260 

training loss fell. (2) Local realignment: This technique is essential for high indel calling 261 

performance in state-of-the-art, short-read, small variant callers. But it worked differently 262 

on long-read. We tried local realignment using a 2000bp window in regions with a high 263 

density of candidates using a local realignment algorithm similar to that of DeepVariant. We 264 

observed that while it increased the recall a bit, local realignment tripled the runtime and 265 

introduced ~10% of new non-variant candidates, which in turn, lowered the precision a bit. 266 

In Clair3, we implemented local realignment, but disabled it on long-read as the default. (3) 267 

Including variants outside high-confidence regions in training: To increase variant training 268 

samples, we explored including variants outside the high-confidence regions in training, but 269 

observed negative performance improvement in Clair. In Clair3, the GIAB truth datasets we 270 

used were upgraded from version 3.3.2 to 4.2.1, but we had the same observation that 271 

including variants outside the high-confidence regions in training jeopardized model 272 

performance. (4) Selecting candidates for full-alignment calling based on reference 273 

sequence complexity: Variant calling is more difficult in the <low complexity= and <difficult 274 

to map= regions. In addition to selecting candidates by pileup calling quality ranking for full-275 

alignment calling, we added those candidates at positions with relatively low sequence 276 

entropy (the lowest 30% of the whole genome). About three times more candidates were 277 

selected for full-alignment calling, but the performance increase was negligible. 278 

 279 
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Code availability 280 

Clair3 is open-source software (BSD 3-Clause license), hosted by GitHub at 281 

https://github.com/HKU-BAL/Clair3, and available through Docker, Bioconda, and 282 

Singularity. 283 

 284 

Data availability 285 

The 1) links to the reference genomes, truth variants, benchmarking materials, and ONT 286 

data, and 2) the commands and parameters used in this study, are available in the 287 

Supplementary Notes. All analysis output, including the VCFs and running logs, are available 288 

at http://www.bio8.cs.hku.hk/clair3/analysis_result. 289 
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Figures 303 

 304 

Figure 1. Benchmarking results on HG003 and HG004. (a) The SNP/Indel F1-score of 305 

different tools at multiple coverage from 10x to 90x. (b) The precision against the recall of 306 

different tools at 50x coverage. (c) The runtime breakdowns of different tools at 50x 307 

coverage. 308 
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 309 

 310 

Figure 2. Pileup and full-alignment calling working details and synergy on HG003 at 50x 311 

coverage. (a) The variant quality distribution of the true and false variant/reference pileup 312 

calls. (b) The performance of full-alignment on pileup failed variants of different variant 313 

quality. (c) The F1-score when different proportions of low-quality variant/reference calls 314 

enter full-alignment calling. 315 
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