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Abstract

Deep learning-based variant callers are becoming the standard and have achieved superior
SNP calling performance using long reads. In this paper, we present Clair3, which makes the
best of two major method categories: pile-up calling handles most variant candidates with
speed, and full-alignment tackles complicated candidates to maximize precision and recall.
Clair3 ran faster than any of the other state-of-the-art variant callers and performed the

best, especially at lower coverage.

Maintext

The first preprint of DeepVariant! was released in late 2016, marking the beginning of the
use of deep learning-based methods (DL methods) instead of traditional statistical methods
for variant calling. Over the years, several DL methods have been developed. We are now
witnessing a complete take-over, led by DeepVariant for short-read variant calling. Long-
read variant calling, using Oxford Nanopore (ONT) data, on the other hand, has been
dominated by DL-methods since the beginning, primarily owing to the difficulty caused by
its higher base error rate in general. Although the DL methods for short-read and long-read
have a lot in common, the problem of long-read variant calling is considered more difficult.
This led to two major designs — using pileup or full-alignment as the input of the decision-
making neural network — which are significantly different in both performance and speed.

Long-read variant callers, including Clairvoyante?, Clair3, and Nanocaller?, are pileup-based,
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in which the read alignments are summarized into features and counts before being
inputted into a variant calling network. PEPPER-Margin-DeepVariant® (PEPPER) is full
alignment-based. The input to the DeepVariant variant calling network is kept with spatial
information in the read alignments and is tens of times larger than the pileup inputs in
terms of size. Medaka® is consensus-based; it uses pileup input to generate a diploid
consensus in the first iteration and two haploid consensuses in the second. The differences
between the reference and consensuses are identified and combined into variants. These
are all state-of-the-art algorithms; the pileup-based algorithms are usually superior in terms
of time efficiency and the full-alignment algorithms provide the best precision and recall.
However, while the two designs are not mutually exclusive, there have not been any studies

combining pileup calling and full-alignment calling.

To fill the gap, we developed Clair3, the successor to Clair, which makes the best of both
designs. It runs as fast as the pileup-based callers and performs as well as the full alignment-
based callers. Supplementary Figure 1 shows the workflow for Clair3. The philosophy
behind Clair3 is to trust the full-alignment model unless the pileup model can make a quick
but reliable decision. First, the pileup calling network goes through all the variant candidates
that passed a coverage threshold and an alternative allele frequency threshold. Next, the
high-quality pileup calls are used to phase the alignments and as part of the final output.
Then, the alignments phased by WhatsHap’ are used to generate full-alignment input that is
~23 times larger in size than the pileup input for each low-quality pileup call for full-
alignment calling. Finally, the full-alignment calls are integrated with the high-quality pileup
calls as the final output. More details and parameters about the Clair3 workflow,

input/output, and network architecture are provided in Methods.

We benchmarked Clair3 against PEPPER (the current top-performing long-read variant
caller), Medaka (ONT’s in-house developed variant caller), Longshot® (non-deep learning-
based; works only with SNP), and Clair (the Clair3 predecessor) on two GIAB® 1° samples:
HGO003 and HG004. HGO03 was tested on models (including a pileup and a full-alignment
model) trained on HG0O01, 2, 4 and 5. HG004 was tested on models trained on HG001, 2, 3
and 5. The model availability and training details are in Methods. We chose to use ONT data

base-called using Guppy 4 (version 4.2.2) for two reasons: 1) compared to the Guppy 5,
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which was released in mid-2021, Guppy 4’s read accuracy is ~1.8% lower!!, which is more
challenging to variant calling, so it can better test the speed and performance of different
variant calling methods, and 2) as at the completion date of this paper, Guppy 4 base-called
reads were still the latest version available for download by the Human Pangenome
Reference Consortium?!2. A summary of the datasets used for training and testing is shown
in Supplementary Table 1. The correct PEPPER and Medaka model for Guppy 4 data was
chosen for benchmarking. The links to the dataset, and the versions, commands and

parameters used for each tool are available in the Supplementary Notes.

The benchmarking results at coverage from 10x to 90x are shown in Figure 1a,
Supplementary Table 2, and Supplementary Table 3. The observations of different tools on
HGO003 and HG0O04 are almost identical, ruling out the possibility of any tools’ overfitting to a
particular sample. In terms of the SNP F1-score, Clair3 outperformed the other tools at
lower coverage (10x to 30x) and performed similar to PEPPER above 30x. above 50x, the
SNP F1-score improvement became more subtle. However, the Indel F1-score kept
increasing with coverage, although it slowed down above 50x. Looking at the precision and
recall at 50x (Figure 1b), in terms of SNP, Clair3 achieved 99.67% and 99.60%, which is
similar to PEPPER’s 99.61% and 99.63%. In terms of Indel, Clair3 achieved 90.86% and
64.73%, higher than PEPPER’s 87.62% and 57.42%. In terms of speed (Figure 1c), Clair3 and
Clair ran the fastest (~8 hours), and PEPPER was second-fastest (~30 hours). We then
compared Clair3 to PEPPER using the CMRG v1 small variant benchmarking dataset!3, which
covers repetitive and highly polymorphic medically relevant genes, so it is more challenging
than using GIAB. However, CMRG v1 is based on HG002. To ensure no testing variant was
involved in training, instead of training a new model with HG002 left out, we selectively
benchmarked the 5,837 (out of 21,232) small variants that are in CMRG v1, but not GIAB
HGO0O02. The results are shown in Supplementary Figure 2 and Supplementary Table 4.
Similar to the trends observed for HG0O03 and HGO0O04, Clair3 outperformed PEPPER at 10x to
30x on SNP, and had a similar performance above 30x. We compared Clair3 to PEPPER by
different genomic contexts according to the GIAB genome stratifications'* v2.0 on HG0O03 at
50x. The results are shown in Supplementary Figure 3 and Supplementary Table 5. In SNPs,
Clair3 outperformed PEPPER on precision in low complexity and functional regions, but not

in low mappability and segmental duplication regions. Clair3 and PEPPER had the same
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95 recall in different regions. In Indels, Clair3 outperformed PEPPER in both precision and recall
96 inallregions.
97
98 The success of the Clair3 method lies in the effective distinction between true and false calls
99  during pileup calling, so that only necessary candidates are sent to the much more
100 computationally intensive full-alignment calling. Figure 2a shows that an effective
101  distinction was achieved using variant quality. Using HG003 at 50x as an example, most false
102  variant calls and false reference calls had a quality between 0 to 10, while the true calls
103  were between 15 to 30. In reality, while the correctness of a pileup call is not known in
104  advance, we empirically decided to send the bottom 30% of the pileup variant calls and the
105 bottom 10% of the pileup reference calls to full-alignment calling as the default settings of
106  Clair3 (See Methods). In the previous example, quality cut-off 16 was chosen for the variant
107  calls, which resulted in 98% of the false variant calls and only 9% of the true variant calls
108 being sent to full-alignment calling. Similarly, cut-off 19 was chosen for the reference calls,
109  so that 98% of the false reference calls and only 11% of the true reference calls were sent to
110  full-alignment calling. Figure 2b shows that ~62% of the pileup failed variant calls and ~31%
111 of the pileup failed reference calls were correctly called in full-alignment calling. We tested
112 sending different percentages of pileup variant calls to full-alignment calling, from 0%
113  (pileup calling only) to 100% (full-alignment calling only). The results are shown in Figure 2c
114  and Supplementary Table 6. Clair3’s default, which had a similar performance to full-
115  alignment calling but ran ~4 times faster, showed that integrating pileup and full-alignment
116  calling is a better strategy than relying on only one of them.
117
118  The benchmarks focused on the more challenging ONT data, but the Clair3 method is not
119  restricted to a certain sequencing technology. It should work particularly well in terms of
120  both runtime and performance on noisy data. Clair3 was released six months ago and is
121 currently in its ninth revision, having integrated plenty of feedback from the community and
122 ONT. We observed in PEPPER’s most recent update (r0.7 on Dec 229, 2021) that a module
123 in the front of the pipeline that was used solely for variant candidate selection was
124  repurposed to output summary-based variant calls to relieve the heavy full-alignment
125  calling workload. We expect integrating pileup and full-alignment calling to be a common

126  practice in deep learning-based variant calling in the future.
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127 Method

128  The Clair3 workflow

129  As Supplementary Figure 1 shows, pileup candidates that are above a coverage threshold
130 and an allele frequency threshold are extracted, and then called using the pileup network.
131  The pileup calls are grouped into variant calls (genotype 0/1, 1/1, and 1/2) and reference
132 calls (0/0). Both groups are ranked according to variant quality (QUAL). High-quality

133  heterozygous SNP calls (top 70% in 0/1 calls) are used in WhatsHap phasing to produce
134  phased alignment for input to the full-alignment network. Low-quality pileup calls

135  (defaulted to the lowest 30% of variants and 10% of reference calls) are then called again
136  using the full-alignment network. Finally, the full-alignment calls and high-quality pileup
137  calls are outputted. Clair3 supports both VCF and GVCF output formats.

138

139  Input/Output

140  Clair3 uses a pileup input design simplified from that of its predecessors, and a full-

141  alignment input to cover as many details in the read alignments as possible. Supplementary
142  Figure 4 visualizes the pileup and full-alignment inputs of a random SNP, insertion, deletion,
143  or non-variant. The pileup input is 594 integers — 33 genome positions wide with 18

144  features at each position — A+, C+, G+, T+, Is+, I's+, Ds+, D%+, Dp+, A-, C-, G-, T-, Is-, I%s-, Ds-,
145 DY%-,andDr-.A,C,G,T,1, D, +, - means the count of read support of the four nucleotides:

wln

146  insertion, deletion, positive strand, and negative strand. Superscript means only the

147  indel with the highest read support is counted (i.e., all indels are counted if without “*”).
148  Subscript “s”/“r” means the starting/non-starting position of an indel. For example, a 3bp
149  deletion with the most reads support will have the first deleted base counted in either D1s+
150 or D%-, and the second and third deleted bases counted in either Dr+ or Dg-. The design was
151  determined experimentally, but the rationale is that for 1bp indels that are easy to call, look
152  into the differences between the “s” counts, but reduce the quality if the “z” counts and

153  discrepancy between positions increase. The pileup output is the same as that for Clair, but
154  short of the two indel length tasks. The indel allele (or two indel alleles) with the highest
155 reads support is used as the output according to the decision made in the 21-genotype task.
156  The full-alignment input is 23,496 integers — 8 channels of 33 genome positions and 89

157  maximum representable reads. The description of the eight channels is in the
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158  Supplementary Note. The full-alignment output is the same as that of Clair. The two indel
159 length tasks can represent the exact indel length from -15 to 15bp, or below -15bp/ above
160  15bp. An indel call with an exact length will output the most reads-supported allele at that
161  length. Otherwise, the most reads-supported allele below -15bp/ above 15bp is outputted.
162  Intraining, indel length task 1 is given the smaller number, and in all our variant calling
163  experiments, no length predictions in task 1 larger than in task 2 were observed. The

164  maximum supported coverage of pileup/full-alignment input was 144/89. Random

165 subsampling was done on excessive coverage. If the coverage in a full-alignment input was
166  below 89, the reads were centered.

167

168  Network architecture

169  The pileup and full-alignment networks are shown in Supplementary Figure 5. The pileup
170  network uses two bidirectional long short-term memory (Bi-LSTM) layers with 128 and 160
171  LSTM units. Stacked LSTM layers enable the network to learn the characteristics of raw
172  sequential signal from different aspects at each position, but without increasing memory
173  capacity, which enables the network to converge faster. Compared to Clair, the transpose-
174  split layer is removed for a 40% speedup with a small performance loss that is taken care of
175 in full-alignment calling. The full-alignment network is residual neural network (ResNet)
176  alike and uses three standard residual blocks. A convolutional layer is added on top of each
177  residual block to expand channels but reduce dimensionality across channels. A spatial

178  pyramid pooling®® (SPP) layer is used to tackle the problem of varying coverage in full-

179  alignment input. SPP is a pooling layer that removes a network's fixed-size constraint, thus
180 avoiding the need for input cropping or warping at the beginning. The SPP layer generates
181  various receptive fields using three pooling scales (1x1, 2x2, and 3x3) in each channel. It
182  then pools the receptive fields of all channels and generates a fixed-length output for the
183  next layer. In both networks, the dropout rates of 0.2 for the flatten layer, 0.5 for the

184  penultimate dense layer, and 0.2 for the task-specific final dense layers, are empirically
185  determined.

186
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187 Model availability and training
188  Pretrained models are provided in Clair3’s installation. Models for specific chemistries and
189  basecallers that are tested and supported by the ONT developers are available through

190 Rerio (https://github.com/nanoporetech/rerio). The detailed steps, options and caveats for

191  training a pileup model and a full-alignment model are available in Clair3’s GitHub repo and
192  are continually updated. The pretrained models, while targeted for use in production, were
193  trained using multiple GIAB samples with known variants and 10 coverages for each sample,
194  as described in Clair, but they always hold out chromosome 20 in Clair3. We used the

195 following new training technics in Clair3. (1) Representation Unification: a variant can be
196  represented in multiple forms!. Traditional variant calling methods rely on postprocessing
197 (e.g., hap.py, RTG Tools) to equate multiple forms. However, to generate correct training
198 samples, Clair3 must unify a variant’s representations between the alignments and the truth
199  variants. Supplementary Figure 6 shows four cases in which the alignments and the truth
200 variants have different representations that would confuse the training if not unified. Clair3
201  chooses to align the truth variants' representation to the alignments. The five detailed steps
202  are shown in Supplementary Figure 7. First, the truth variants and alignments are phased (if
203  not yet done) using WhatsHap. Second, among the candidates with alternative allele

204  frequency 20.15, confident and in situ matches between the alignments and truth variants
205 areidentified and excluded from computationally intensive step 3. Third, the best match
206  between the possible haplotypes of the truth variants and candidates is sought. Each of the
207  truth variants can be either positive (using its reported genotype) or negative (using 0|0),
208  and their Cartesian product forms possible haplotypes of the truth variants. Similarly, each
209 candidate can be either 0|0, 0|1 (or 1|0 according to the phased alighments), or 1|1, and
210 their Cartesian product forms the possible haplotypes of the candidates. A pairwise

211  comparison is then done to find equivalent haplotypes between the two Cartesian products,
212 and among all equivalents, the candidate haplotype with the most reads support is selected.
213  The variants in the haplotype are used as the new truth variants. This step is

214  computationally intensive, so in practice, we applied the step to partitions with at most 15
215 candidates and required less than 100bp between the candidates. Fourth, low alternative
216  allele frequency (20.08 but <0.15) candidates with in situ matches between the alignments
217  and the truth variants were chosen. Fifth, the truth variants or unified variants generated in

218  steps 2, 3 and 4 were merged. In our benchmarks, representation unification alone in
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219  general increased the SNP recall by ~0.2% and Indel recall by ~2%. (2) Ratio of variants to
220 non-variants samples for training: In Clair, the ratio was fixed at 1:2. In Clair3, we tested
221  ratios up to 1:10 for both pileup and full-alignment model training, and we observed a

222 monotonic but decelerated performance increase with more non-variants added to the
223  training. Since focal loss is used to alleviate the effect of training class imbalance, another
224  possible explanation is that the 21-genotype output task that Clair3 relies primarily on is
225 insensitive to the ratio because it judges only the genotype of a candidate instead of

226  whether a candidate is a variant or not. We chose 1:5 and 1:1 as the default ratio for pileup
227  and full-alignment model training, respectively, to strike a balance between model

228 performance and training speed. (3) Use of phased alignments: Deep-learning and full-
229  alignment based variant callers DeepVariant and PEPPER concluded that using phased

230 alignments is essential to their high performance. In Clair3, high-quality heterozygous pileup
231  calls are used to phase the input alignments using the ‘phase’ and ‘haplotag’ modules in
232 WhatsHap. The phased alignments are used as input for full-alignment calling. When

233 training a full-alignment model, two training samples for each variant, one using phased
234  alignments and the other unphased, are used to ensure the model works when alighments
235  cannot be properly phased. In our benchmarks, the use of phased alignments alone, in
236  general, increased the SNP F1-score by ~0.1%, and the Indel F1-score by ~6%. (4) New

237  optimization methods: Clair3 removed both the cyclical learning rate and learning rate
238  decay strategies used in Clair, and now uses the Ranger optimizer (RectifiedAdam?® plus
239  Lookahead'’) for automated warm-up, faster convergence, minimal computational

240 overhead, etc. In our benchmarks, compared to Clair, the new optimizer alone, in general,
241  increased the overall F1-score of pileup calling by ~0.2%.

242

243  Benchmarking methods and computational concerns

244  We used five GIAB samples, HGOO01 to 5, for either model training or testing. When using
245  either HGOO03 or HGOO4 for testing, the other four samples were used for training. We

246  selected 10% of the training samples for validation and chose the best-performing epoch in
247  the first 30 epochs in the validation data for benchmarking. We used hap.py** to compare
248  the called variants against the true variants, and used Clair3’s ‘GetOverallMetrics’ module to

249  generate three metrics, ‘precision’, ‘recall’, and ‘F1-score’, for five categories: ‘overall’,
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250  ‘SNP’,’Indel’, ‘Insertion’, and ‘Deletion’. We used gfy.py with V2.0 GIAB genome

251  stratifications to evaluate Clair3’s performance in challenging and targeted regions of the
252  genome. Runtimes were gauged on a server with two 2.1GHz Intel Xeon Silver 4116s, with
253 24 cores, and 256GB memory at 2666MHz. With the same setting, Clair3 finished in ~8

254  hours using ~50x of ONT Guppy 4 data and in ~4.5 hours with the same amount of Guppy 5
255  data. The memory consumption of each Clair3 calling process was capped at 1GB.

256

257  Brief summary of methods tested showing no or negligible improvement

258 (1) Use of more residual blocks in the full-alignment network: We added a fourth residual
259  block with 512 channels. The number of parameters increased from 2,989,210 to 9,812,634.
260 The runtime doubled, but the performance change was negligible, even though the terminal
261  training loss fell. (2) Local realignment: This technique is essential for high indel calling

262  performance in state-of-the-art, short-read, small variant callers. But it worked differently
263  onlong-read. We tried local realignment using a 2000bp window in regions with a high

264  density of candidates using a local realignment algorithm similar to that of DeepVariant. We
265  observed that while it increased the recall a bit, local realignment tripled the runtime and
266  introduced ~10% of new non-variant candidates, which in turn, lowered the precision a bit.
267 In Clair3, we implemented local realignment, but disabled it on long-read as the default. (3)
268 Including variants outside high-confidence regions in training: To increase variant training
269 samples, we explored including variants outside the high-confidence regions in training, but
270  observed negative performance improvement in Clair. In Clair3, the GIAB truth datasets we
271  used were upgraded from version 3.3.2 to 4.2.1, but we had the same observation that

272  including variants outside the high-confidence regions in training jeopardized model

273  performance. (4) Selecting candidates for full-alignment calling based on reference

274  sequence complexity: Variant calling is more difficult in the “low complexity” and “difficult
275 to map” regions. In addition to selecting candidates by pileup calling quality ranking for full-
276  alignment calling, we added those candidates at positions with relatively low sequence

277  entropy (the lowest 30% of the whole genome). About three times more candidates were
278  selected for full-alignment calling, but the performance increase was negligible.

279
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280 Code availability

281  Clair3 is open-source software (BSD 3-Clause license), hosted by GitHub at
282  https://github.com/HKU-BAL/Clair3, and available through Docker, Bioconda, and

283  Singularity.
284

285 Data availability

286  The 1) links to the reference genomes, truth variants, benchmarking materials, and ONT
287  data, and 2) the commands and parameters used in this study, are available in the
288  Supplementary Notes. All analysis output, including the VCFs and running logs, are available

289  at http://www.bio8.cs.hku.hk/clair3/analysis result.
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