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Abstract

Current approaches to de novo design of proteins harboring a desired binding or catalytic motif

require pre-specification of an overall fold or secondary structure composition, and hence
considerable trial and error can be required to identify protein structures capable of scaffolding
an arbitrary functional site. Here we describe two complementary approaches to the general
functional site design problem that employ the RosettaFold and AlphaFold neural networks
which map input sequences to predicted structures. In the first “constrained hallucination”
approach, we carry out gradient descent in sequence space to optimize a loss function which
simultaneously rewards recapitulation of the desired functional site and the ideality of the
surrounding scaffold, supplemented with problem-specific interaction terms, to design candidate
immunogens presenting epitopes recognized by neutralizing antibodies, receptor traps for
escape-resistant viral inhibition, metalloproteins and enzymes, and target binding proteins with
designed interfaces expanding around known binding motifs. In the second “missing information
recovery” approach, we start from the desired functional site and jointly fill in the missing
sequence and structure information needed to complete the protein in a single forward pass
through an updated RoseTTAFold trained to recover sequence from structure in addition to

structure from sequence. We show that the two approaches have considerable synergy, and


https://doi.org/10.1101/2021.11.10.468128
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.10.468128; this version posted November 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

AlphaFold2 structure prediction calculations suggest that the approaches can accurately

generate proteins containing a very wide array of functional sites.

Main text

The biochemical functions of proteins are generally carried out by a small number of residues in
a protein which constitute a functional site--for example, an enzyme active site or a protein or
small molecule binding site--and hence the design of proteins with new functions can be divided
into two steps. The first step is to identify functional site geometries and amino acid identities
which produce the desired activity--this can be done using quantum chemistry calculations in
the enzyme case (to identify ideal theozymes for catalyzing a desired reaction) (7-3) or
fragment docking calculations in the protein binder case (4, 5); alternatively functional sites can
be extracted from native protein having the desired activity (6, 7). In this paper, we focus on the
second step: given a functional site description from any source, design an amino acid
sequence which folds up to a three dimensional structure containing the site. Methods have
been developed for functional site scaffolding for sites made up of one or two contiguous chain
segments (6—10), but with the exception of helical bundles (8) these do not extend readily to
more complex sites composed of three or more chain segments. Current methods also have the
limitations that assumptions must be made about the secondary structure of the scaffold, and
that the amino acid sequence must be generated in a subsequent sequence step, so there is no
guarantee that the generated backbones are in fact designable (encodable by some amino acid

sequence).

An ideal method for functional de novo protein design would 1) embed the functional site with
minimal distortion in a designable scaffold protein; 2) be applicable to arbitrary site geometries,
searching over all possible scaffold topologies and secondary structure compositions for those
optimal for harboring the specified site, and 3) jointly generate backbone structure and amino

acid sequence. We reasoned that the trRosetta neural network (77), which maps input
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sequences to predicted structures, could be adapted for this purpose. Completely new proteins
can be designed using trRosetta by starting from a random amino acid sequence, and carrying
out Monte Carlo sampling in sequence space maximizing the probability that the sequence folds
to some (unspecified) three dimensional structure (72). We refer to this process as
“hallucination” as it produces solutions that the network considers ideal proteins but do not
correspond to any actual natural protein (Fig. 1A); crystal and NMR structures confirm that the
hallucinated sequences fold to the hallucinated structures (72). trRosetta can also be used to
design sequences that fold into a target backbone structure by carrying out sequence
optimization using a structure recapitulation loss function that rewards similarity of the predicted
structure to the target structure (73). We sought to extend this approach to scaffold functional
sites using trRosetta by sampling in sequence space with a combination of the hallucination loss
to favor folding to a unique structure, and a structure recapitulation loss to favor formation of the
desired functional site (rather than the entire structure as in (73); Fig. 1B; Methods). While we
succeeded in generating structures that had segments which closely recapitulated functional
sites, Rosetta structure predictions suggested that the sequences poorly encoded the
structures, and hence we used Rosetta design calculations to generate more optimal
sequences (74). Several designs targeting PD-L1 generated by constrained hallucination with
binding motifs derived from PD-1, followed by Rosetta design, were found to have binding
affinities in the mid-nanomolar range (Fig. S1). While this experimental validation is
encouraging, the requirement for sequence design using Rosetta is at odds with property (3)

above-the joint design of sequence and structure.

We found following the development of RosettaFold (75) that using it, rather than trRosetta, to
guide motif-constrained hallucination resulted in designed protein sequences that more strongly
encoded their structures (Fig. S2), likely reflecting the better overall modeling of protein

sequence-structure relationships evidenced by the superior structure prediction performance
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(75). Constrained hallucination with RosettaFold has the further advantages that since 3D
coordinates are explicitly modeled (trRosetta only generates residue-residue distances and
orientations), motif recapitulation can be assessed at the coordinate level, and additional
problem-specific loss terms can be implemented in coordinate space that assess interactions

with a protein target (Fig. 1B, 1D).

In the following sections, we explore the use of the constrained RosettaFold hallucination
method to design proteins containing a wide range of functionally diverse motifs (Fig. 2-4, Table
S1). Itis impractical to experimentally validate many designs for many different applications; we
instead evaluate these designs using the AlphaFold (AF) protein structure prediction network
(76) which has very high accuracy on de novo designed proteins (717). Although RoseTTAFold
was inspired by AF, the two models were developed and trained independently, and hence AF
predictions can be regarded as an orthogonal in silico test of whether RF designed sequences
fold into the intended structures, analogous to traditional ab initio folding benchmarks (713, 18).
For almost all problems, we obtained designs that are closely recapitulated by AF with overall
and motif RMSD typically <2 A and <1 A respectively with model confidence pLDDT > 80 (Table
S2). While solving current challenges with protein design clearly requires making and
characterizing proteins in the lab, this in silico AF test is well suited for testing performance of

design methods on a wide range of problems, and is quite stringent, as discussed below.

Hallucinating immunogen candidates and receptor traps

We first applied the constrained hallucination method to the problem of antigen presentation for
immunogen design, where the goal is to scaffold a native epitope recognized by a neutralizing
antibody as accurately as possible (and thus elicit antibodies binding the target protein upon
immunization). Additional interactions with the target antibody are undesirable because the goal
is to elicit antibodies recognizing the original antigen, and hence we incorporate an additional

repulsive term assessed on the complex 3D coordinates in the composite loss function to
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penalize interactions with the antibody beyond those present in the epitope being scaffolded
(Fig. 1D, S3). As a test case, we focused on respiratory syncytial virus, a leading cause of
infant mortality whose F protein (RSV-F) contains antigenic epitopes for which structures with
neutralizing antibodies have been determined (7, 9, 10). We sought to scaffold RSV-F site Il, a
contiguous helix-turn-helix motif that had previously been grafted successfully onto a 3-helix
bundle architecture (7), as well as RSV-F site V, a helix-turn-strand motif that has not yet been
scaffolded successfully (79). We were able to hallucinate designs for both epitopes with a
variety of folds and motifs recapitulated to sub-angstrom Ca RMSD in the AF predicted structure
of the designed sequence (Fig. 2A, Fig. S8, S11; for these and all designs below, full amino acid
sequence and PDB files are in the SM, and comparisons of the design models to AF
predictions, in Fig. S8-10--since they are virtually identical, to save space we show only one of

these in the main text figures).

We next applied the hallucination method to the design of receptor traps, which neutralize
viruses by mimicking their natural binding targets and thus are inherently robust against
mutational escape. We again augmented the loss function with an explicit penalty on
interactions beyond those present in the receptor to avoid opportunities for viral escape. As a
test case, we scaffolded the interfacial helix of human angiotensin-converting enzyme 2
(hACE2) interacting with the receptor-binding domain (RBD) of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike protein (20). The hallucinated hACE2 mimetics
have a diverse set of helical topologies, and AF2 structure predictions recapitulate the binding

interface with sub A accuracy (Fig. 2B, S8, S10).

Hallucinating metal binding and enzyme active sites
We next explored the scaffolding of functional sites involved in metal-binding and catalysis. We
designed scaffolds around a di-iron binding site, which is important in biological systems for iron

storage (27) and also potentially harnessable for catalysis (22, 23). The motif, composed of four
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roughly parallel helical segments from E. coli bacterioferritin (cytochrome b1), was recapitulated
with sub-angstrom RMSDs (Fig. 3A), in scaffolds with quite different helix connectivities than the
parent (Fig. S9). For the calcium-binding EF-hand motif (24) composed of a 12 residue loop
flanked by helices, the hallucination method readily generates a variety of scaffolds
recapitulating either 1 or 2 EF-hand motifs within 0.5 A RMSD of the calcium binding motif (Fig.
3C). When tasked with scaffolding one EF-hand motif, the method chooses to buttress the loop

with a helix, avoiding the need for another long loop.

We next sought to hallucinate enzyme active sites. Carbonic anhydrase Il, which catalyzes the
interconversion of carbon dioxide and bicarbonate, enables CO- transport in humans (25), plays
a key role in photosynthesis (26), and is emerging as a tool for CO, sequestration (27). The
active site contains 3 Zn?* coordinating histidines (PDB ID 5yui: His94,His96,His119) on two
strands, and a hydrophobic loop containing Thr199 which sequesters and orients the CO..
Despite the complexity of the irregular, discontinuous, 3 segment site, the method generated
designs with sub angstrom motif RMSDs with correct His placement for Zn?* coordination (Fig.
3E, S9); these are less than 100 residues, significantly smaller than the 261 residue long native

protein.

To enable specification of sidechain geometry, we carried out iterative gradient descent using
gradient information obtained by backpropagation through the AF neural network rather than
RF, which currently does not explicitly model side chains (see Methods). As a test, we used the
catalytic sidechain geometry of A%-3-ketosteroid isomerase (1QJG: residues 14, 38, 99), which
catalyzes the isomerization of A®- to A*-3-ketosteroid needed for synthesis of steroid hormones
in mammals (28). In initial experiments, we were only able to obtain designs that fully
recapitulated the catalytic sidechain geometry when optimization was over a multiple sequence
alignment rather than a single sequence; the landscape may be too rugged with the high

resolution sidechain-based loss in the single sequence case. To overcome this problem, we
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developed a two-stage approach; with a first stage using both AF and trRosetta (to reduce the
structure-prediction resolution and thus smoothen the loss landscape) and a description of the
active site at the backbone level, followed by a second all-atom AF-only stage once the overall
backbone was roughly in place. This two-stage approach led to multiple plausible solutions with
predicted structures having a nearly exact match to the catalytic sidechain geometry (Fig. 3G,
S9); however, we cannot use AF as an independent test of design accuracy in this case (given
the very large number of model parameters, direct optimization against the output of a neural
network has the potential to identify false optima, and hence independent in silico validation is

important).

Hallucinating protein-protein interfaces

We next sought to design binding proteins which extend beyond an input binding motif to make
additional favorable interactions with the target by explicitly including the sequence and
structure of the target in the hallucination process (Figs S6, Methods). We designed binders of
the anti-inflammatory cytokine interleukin 10 (IL-10) a-receptor that incorporate one of the two
discontinuous binding sites in the domain-swapped IL10 dimer in a single chain; the resulting
scaffolds recapitulate the IL10 binding region within 0.5A (Fig. 4A, S10). Starting from the
complement cascade protein C3d which enhances immune responses to covalently attached
antigens (29) we designed binders to complement receptor 2 (CR2) present on B-cell and
dendritic cells (30). The designs are much smaller (<100 AAs) than native C3d (306 AAs),

recapitulate the binding interface with sub angstrom accuracy (Fig. 4B, S6C).

As a test of building around beta strand motifs, we sought to design binders of the immune
checkpoint protein CTLA-4 starting from B7-2, which binds CTLA-4 through four beta strands.
Starting from a single five residue strand, hallucination in the presence of CTLA-4 generated
designs having both alpha-beta and all beta topologies with novel binding modes and

comparable interface contacts to native B7-2 (Fig. 4C, S10). As expected, designs hallucinated
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in the presence of the target had considerably better Rosetta protein-protein interface metrics

(4) (binding free energy, etc) than those designed without the receptor (Fig. S6).

Generalized protein function design by missing information recovery using RoseTTAFold
While quite powerful and general, the constrained hallucination approach is compute intensive,
as a forward and backward pass through the network is required for each gradient descent step
in sequence optimization. In the original training of RosettaFold for structure prediction a small
fraction (15%) of tokens in the MSA are masked, and the network learns to recover this missing
sequence information in addition to predicting structure. We reasoned that this ability to recover
sequence information along with structural information could provide a second solution to the
functional site scaffolding problem: given a functional site description, a forward pass through
the network could potentially be used to complete, or “inpaint”, both protein sequence and
structure (Fig. 1C; Methods). Here, the design challenge is formulated as an information
recovery problem, analogous to the completion of a sentence given its first few words using
language models (37) and completion of corrupted images using inpainting methods (32). As
illustrated in Fig. 1E, a wide variety of protein structure prediction and design challenges can be
similarly formulated as missing information recovery problems. We began from a RoseTTAFold
model trained for structure prediction (75) and carried out further training on both fixed-
backbone sequence design and fixed-sequence structure prediction tasks (Methods; Fig. S13;
Algorithm S1). After training, the mean amino acid sequence recovery of the resulting model,
denoted RFjsint, ON @ de novo protein test set was 33% (Fig. 5A; this is similar to Rosetta fixed
backbone design performance), and there was also a slight increase in structure prediction
accuracy (Fig. 5B). Thus, the model can both recover missing structure information given

sequence and missing sequence information given structure.

We next considered design challenges where both sequence and structure information were

missing for a portion of the protein. For smaller masked regions, the sequences and structures
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recovered by RFjint are close to those of the input native structure, and as the size of the
masked regions increases the divergence of both sequence and structure increases as
expected (Fig. S14). The extent of variation in the resulting designs can be controlled by the
amount of input sequence and structure information provided (Fig. S18C). Since the
calculations require a single forward pass (including recycling outputs back as input) through the
network, only 1-10 seconds on an NVIDIA RTX2080 GPU (Methods) are required to generate

both sequence and structure.

Encouraged by the excellent performance of RFji»: on simultaneous sequence and structure
recovery despite being only trained on recovery of one or the other, we sought to improve this
further by explicitly training on joint sequence/structure recovery tasks. Sequence and structure
diversity is useful when designing proteins containing functional motifs, as subtle variations in
the structure of the motif can drastically affect function (33), and hence we trained this new
model to predict the sequence and structure of masked regions between two provided residue
coordinates, in the absence of structural and sequence information of the residues flanking the
two residue coordinates (to force the model to place structural elements based more on larger
protein context than the local structure of the immediately connected chain segments). With this
second model, which we call RFjoint2, the two residue coordinates can, at inference time, be
varied, enabling the rapid generation of further sequence/structure diversity (Fig. 5D; a similar
problem has been explored using Rosetta (33)). Of note, the degree of diversification in the
inpainted region can be controlled by varying the distance by which the two residue coordinates
are translated (Fig. 5D, left panel), while the structure of the templated (unmasked) protein

remains remarkably stable.

We next explored the use of RFjuins and RFjoint2 to generate complete protein structures around
the functional sites described in Figs 2-4, and found that success depended on the size and

context of the input functional regi
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on. With the RF;,in: model, we found that best results were obtained for the more minimalist
functional sites by first building up extended versions using the constrained hallucination
approach. Many alternative structure and sequence completions can then be generated by
RFjoint in @ network forward pass (Figure 6A, Figure S18). Almost all designs shown have sub-
angstrom RMSD from the AF prediction to the native motif and <2 A RMSD between design
model and AF prediction (Fig. 6A, Fig. S19), and > 80 pLDDT. Diverse ensembles of such
solutions to a specific design challenge can be very rapidly generated by varying the input
sequence and structure information (Fig. S18). While RFoint Struggled to generate well-predicted
proteins from native/minimalist motifs, we found that RF,in2 was able to generate complete and
confidently-predicted (by AF2) protein models from smaller regions, such as a single EF hand
motif (Fig. S18B). Further, RFjoin2 could simultaneously scaffold two motifs while retaining good
(<1 A RMSD) alignment to both (Fig. 6B, top row). Remarkably, in some cases, RFjoinz Was
able to generate well-predicted scaffolds to complex, multi-chain motifs taken directly from a
native crystal structure (Fig. 6B, middle and bottom row), as well as translationally symmetric
proteins (Fig. S20), provided little more than the desired motif, in a single forward pass through

the network.

Tests on the full range of challenges described here suggest that the two function design
approaches are complementary: the constrained hallucination approach can build protein
structures harboring minimalist functional sites but is quite compute and memory intensive since
it requires a forward and backward pass (to generate gradient information to guide sequence
optimization) through the neural network at each step of sequence optimization (Methods), while
the missing information recovery method in most but not all cases requires extended functional
site description but is much less compute intensive, and generally outperforms the hallucination
method when more starting information is provided, as illustrated by the lower RMSDs on

constrained regions (Fig. S15). This difference in performance can be understood by
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considering the manifold in sequence-structure space corresponding to folded proteins; the
space of all possible sequence-structure pairs is far larger than the set of sequence-structure
pairs of folded proteins, and hence this manifold occupies a tiny fraction of the overall space.
The missing information recovery approach can be viewed as projecting an incomplete or
corrupted input sequence-structure pair onto the subset of this manifold (as represented by
RosettaFold) containing the functional site--if insufficient starting information is provided, this
projection is not necessarily well determined, but with sufficient information, it readily produces
protein-like solutions, updating sequence and structure information simultaneously. The loss
function used in the hallucination approach is constructed with the goal that minima lie in the
protein manifold, but there will likely not be a perfect correspondence, and hence stochastic
optimization of the loss function in sequence space may not produce as protein-like solutions as
the inpainting approach-- on the other hand, since stochastic search can be initiated from any
starting point, the hallucination approach can start from minimalist functional site descriptions,

or, as in the fully unconstrained case (72), no sequence and structural information at all.

Evaluation of designs using AF2

New protein design methods have traditionally been evaluated by experimental testing, and for
actual applications it is essential to make and characterize proteins in the lab. The high
structure prediction accuracy of AF2 now enables evaluation of new design methodology in
silico, which has the considerable advantage that a much wider variety of design challenges can
be evaluated. In the work described here, AF2 was not used for any of the design calculations
except for the sidechain active site design case of Fig. 3E, and hence provides an independent
test of design accuracy. Both the backbone design challenge--generating a plausible protein
backbone with a geometry capable of hosting a desired site, and the sequence design
challenge--generating a sequence which strongly encodes this backbone, are quite formidable.

For the backbone design problem, the very large set of structures predicted for naturally
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occurring proteins using AF and recently made available (34) provides an excellent point of
comparison: for the RSV-F site V immunogen design challenge described above, the frequency
of non-homologous proteins in the AF proteomes database and the Protein Data Bank (PDB)
(35) matching the functional site with equal or lower RMSDs than our designs was 3.9x10° (Fig.
S17; Supplementary Text); similarly low frequencies of suitable natural scaffolds in the PDB
were observed for other targets (Table S3). For the sequence design problem, the accuracy of
native protein structure prediction based on single amino acid sequences provides a point of
comparison; as shown in Fig. S16, our designs are predicted more confidently from sequence
than the vast majority of native proteins with known crystal structures, and on par with
structurally validated de novo designed proteins. This success in designing sequences
confidently predicted to fold to structures harboring a wide range of functional sites derives in
part from a key advance over classical protein design pipelines, which treat backbone
generation and sequence design as two separate problems: our methods simultaneously
generate both sequence and structure, taking advantage of the ability of RoseTTAFold to

reason over and jointly optimize both data types.

Conclusions

The deep learning methods presented here are quite general, requiring no inputs other than the
structure and sequence of the desired functional site, and unlike current non-deep-learning
methods, do not require specification of the secondary structure or topology of the scaffold, and
simultaneously generate both sequence and structure. Despite a recent surge of interest in
using machine learning to design protein sequences (36—43), the design of protein structure is
relatively underexplored, likely due to the difficulty of efficiently representing and learning
structure (44). Generative adversarial networks (GANs) and variational autoencoders (VAES)
trained on specific fold families have been used to design biophysically plausible protein

backbones (45, 46), but not ones containing functional sites. RoseTTAFold and Alphafold have
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been trained on the entire PDB, and thus generalize from a very wide range of known protein
structures. Our “activation maximization” hallucination approach enables use of arbitrary loss
functions tailored to specific problems without retraining for any sequence length.
Complementary to this, the ability of our “missing information recovery” inpainting approach to
expand from a given functional site to generate a coherent sequence-structure pair should find
wide application in protein design because of its speed and generality. The combination of the
two approaches is more powerful than either one alone, as ensembles of solutions to a given
functional design problem can be generated very rapidly using the second approach starting
from extended site descriptions identified in the first. The hallucination approach could, in
theory, also be used to refine the more extensive designs generated by inpainting. The two
approaches individually, and the combination of the two, should increase in power as more and
more accurate protein structure, interface, and small molecule binding prediction networks are

developed moving forward.
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Figure 1. Methods for protein function design
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(A) Free hallucination. At each iteration, a sequence is passed to the trRosetta or RoseTTAFold
neural network, which predicts 3D coordinates and residue-residue distances and orientations
(Fig. S3) which are scored by a loss function that rewards certainty of the predicted structure.
The sequence is updated either by back propagating the gradient of the loss to the inputs or by
MCMC, and passed back into the network for the next iteration. (B) Constrained hallucination.
Same approach as in (A) but the loss function rewards motif recapitulation and other task-
specific functions in addition to structural certainty. (C) Missing information recovery. Partial
sequence and/or structural information is input into the network, and complete sequence and
structure are output. (D) Design problems that can be addressed by constrained hallucination,
and the corresponding loss functions (Fig. S3; Methods). (E) Protein design challenges
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formulated as missing information recovery problems. Colors in all panels: native functional
motif (orange); hallucinated scaffold (gray); constrained motif (purple); binding partner (blue);
non-masked region (green); masked region (light gray, dotted lines)

B Ace2

rsvf-v_854 rsvf-v_870 rsvf-ii_171 ace2_1007

Figure 2. Hallucination of epitope scaffolds and receptor traps.

(A) Design of proteins scaffolding immunogenic epitopes on RSV protein F (site |l: PDB 3IXT
chain P residues 254-277; site V: 5TPN chain A residues 163-181). Comparisons of the RF
hallucinated models to unbiased AF2 structure predictions from the design sequence are in Fig.
S8; here because of space constraints we show only the AF2 model; the two are very close in
all cases. Here and in the following figures, we assess the extent of success in designing
sequences which fold to structures harboring the desired motif through two metrics computed
on the AF2 predictions: prediction confidence (AF pLDDT), and the accuracy of recapitulation of
the original scaffolded motif (motif RMSD AF versus native). For RSV-F designs, these metrics
are rsvf_ii_141 (85.0, 0.53 A), rsvf_ii_158 (82.9, 0.51 A), rsvf_ii_171 (88.4, 0.69 A); rsvf-v_854
(81.5, 0.75 A); rsvf-v_870 (80.4, 0.76 A). (B) Design of COVID-19 receptor trap based on ACE2
interface helix (6VW1 chain A residues 24-42). Design metrics: ace2_76 (89.1, 0.55 A);
ace2_1157 (80.4, 0.47 A); ace2_1007 (83.3, 0.57 A). Colors: native protein scaffold (light
yellow); native functional motif (orange); hallucinated scaffold (gray); hallucinated motif (purple);
binding partner (blue). See Table S2 for additional metrics on each design.
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Figure 3. Hallucination of metal binding and enzyme active sites.

(A-F) Hallucinations using backbone description of site using RF. (G-H) Hallucination using
sidechain description of site using trRosetta followed by AF2. (A) Di-iron binding site from E.
coli cytochrome b1 (1BCF chain A residues 18-25, 27-54, 94-97, 123-130). (C) EF-hand
Calcium binding site. (E) Carbonic anhydrase |l active site (5YUI chain A residues 62-65, 93-97,
118-120). (G) A°®-3-ketosteroid Isomerase active site (1QJG chain A residues 14, 38, 99).
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Colors: native protein scaffold (light yellow); native functional motif (orange); hallucinated
scaffold (gray); hallucinated motif (purple); bound metal (blue). Active site residues shown for
boxed designs in panel B, D, F, and H for di-iron, EF-hand, carbonic anhydrase I, and A5-3-
Ketosteroid Isomerase respectively. Design metrics (AF pLDDT, motif RMSD AF versus native):
Di-Fe_86 (84, 0.90 A), Di-Fe_56 (84, 0.86 A) EF-hand_1 (84, 0.37 A), EF-hand_2 (80, 0.37 A),
hcA_1 (73, 1.04 A), hcA_2 (71, 0.62 A), KSI_1 (84, 0.30 A Cb), KSI_2 (72, 0.53 A Cb)
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Figure 4. Hallucination of protein-protein interactions.

Designs containing extended target binding interfaces built around native complex derived
binding motifs. Targets are in blue and native scaffolds in yellow. (A) Target: IL10 receptor;
scaffold: Interleukin 10 (1Y6K chain A residues 23-29). (B) Target: complement receptor;
scaffold: Complement protein C3d (1GHQ chain A 104-126, 170-185). (C) B7-2 (1185 chain B
residues 84-88). Native functional motifs (orange); hallucinated scaffold (gray); hallucinated
motif (purple). Design metrics (AF pLDDT, motif RMSD AF versus native): IL10_179 (82, 0.35
A), IL10_65 (88, 0.37 A), IL10_71 (75, 0.45 A), C3D_45 (81, 0.71 A), C3D_79 (70, 0.28 A),
C3D_58 (86, 0.47 A), B72_10 (81, 0.29 A), B72_5 (87, 0.23 A), B72_3 (81,0.25 A)
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Figure 5. Joint sequence-structure recovery using RosettaFold

(A) Joint RoseTTAFold (RFuint) outperforms baseline RF in fixed-backbone sequence design on
a held out set of de novo designed proteins. (B) RFjuin: preserves or exceeds the baseline model
structure prediction quality on the de novo protein set. (C) Given a template sequence and
structure (green) with regions of both sequence and structure masked (gray), RFj.int Can recover
the missing sequence and structure in a single forward pass. The sequence and structure in
contiguous regions of test set protein 2KL8 were both masked prior to input into RFjoint. TOp row:
alpha helix. Middle row: four strand beta sheet. Bottom row: a 10-residue loop. (D) RFjoint2 builds
sequence/structure between two given residue coordinates which enables tunable
diversification of rebuilt segments. The depicted gray region was masked from 2KL8, and the
two coordinates shown in red were randomly translated up to 8A in any direction (within the
illustrated red spheres). RFjoin2 is able to build back an ensemble of helical inpainted regions
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(right panel, AF2 predictions, AF2 pLDDT > 0.8 for all designs shown). Increasing structural
diversity could be achieved in the central inpainted region (in both the RF inpainted structure
models and the AF2 structure predictions of the inpainted sequences) by increasing the
distance by which the red coordinates could be translated (left graph, gray points) without
substantial disruption to the remainder of the template structure (left graph, green points,
n=5000 structures/point).
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Figure 6. Protein function design by joint sequence-structure information recovery.

Design of proteins harboring functional motifs via information recovery using RFjoint and RFjointo.
All structures of designs shown are the AF2 prediction of that design. In all cases, template
inputs (sequence and structure) that are functional and their corresponding outputs are colored
in purple, template inputs that are not directly related to function are in green, along with their
corresponding outputs. Functional template inputs derived from a native structure are in orange,
with corresponding outputs in purple. Depicted in gray are the regions of sequence and
structure masked from the original protein (input column) or that were generated via
RFoint/ RF joint2 (Output column). (A) RFine functional motif design examples. From top to bottom
row with (AF2 motif RMSD to native, AF2 pLDDT): IL-10 (93.1, 0.57 A), Di-Iron (91.0, 0.49 A)
carbonic anhydrase (78.8, 1.09 A), RSVF-V (81.8, 1.39 A). (B) RFin;, 2 functional motif design
examples. From top to bottom row with (AF pLDDT, motif RMSD AF vs native): EF hand double
motif starting from a hallucination (85.4, 0.69 A motif #1, 0.86 A motif #2), EF hand double motif
starting from native crystal structure (PDB: 1PRW, chain A 16-35, 52-71) (78.7, 1.13 A motif #1,
1.10 A motif #2), IL10 motif (light/dark orange) starting from native crystal structure (PDB: 6X93,
chain A 16-41, 83-88, chain D 96-101,143-156) (75.6, 1.16 A).
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Data and code availability

All source code will be made freely available upon publication.
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