

1 **Title:** Hydroxychloroquine Proves Ineffective in Hamsters and Macaques Infected with SARS-

2 CoV-2

3

4 **Authors:** Kyle Rosenke^{1\$}, Michael A. Jarvis^{2\$}, Friederike Feldmann^{3\$}, Benjamin Schwarz⁴,
5 Atsushi Okumura¹, Jamie Lovaglio³, Greg Saturday³, Patrick W. Hanley³, Kimberly Meade-
6 White¹, Brandi N. Williamson¹, Frederick Hansen¹, Lizette Perez-Perez¹, Shanna Leventhal¹,
7 Tsing-Lee Tang-Huau¹, Martha Nason⁵, Julie Callison¹, Elaine Haddock¹, Dana Scott³, Graham
8 Sewell⁶, Catharine M. Bosio⁴, David Hawman¹, Emmie de Wit¹, Heinz Feldmann^{1*}

9

10 **Affiliation:** ¹Laboratory of Virology, ³Rocky Mountain Veterinary Branch and ⁴Laboratory of
11 Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious
12 Diseases, National Institutes of Health, Hamilton, MT, USA; ²University of Plymouth; and The
13 Vaccine Group Ltd, Plymouth, Devon, UK; ⁵Biostatistics Research Branch, Division of Clinical
14 Research, National Institute of Allergy and Infectious Diseases, National Institute of Health;
15 ⁶The Leicester School of Pharmacy, De Montfort University, Leicester, UK

16

17 ^{\$}Authors contributed equally

18

19 *Corresponding author: Heinz Feldmann, Rocky Mountain Laboratories, 903 S 4th Street,
20 Hamilton, MT, US-59840; Tel: (406)-375-7410; Email: feldmannh@niaid.nih.gov

21

22 **Short Title:** Hydroxychloroquine in COVID-19 models

23 **One Sentence Summary:** Hydroxychloroquine prophylaxis/treatment showed no beneficial
24 effect in SARS-CoV-2 hamster and macaque disease models.

25

26 **We remain largely without effective prophylactic/therapeutic interventions for COVID-19.**

27 **Although many human clinical trials are ongoing, there remains a deficiency of supportive
28 preclinical drug efficacy studies. Here we assessed the prophylactic/therapeutic efficacy of
29 hydroxychloroquine (HCQ), a drug of interest for COVID-19 management, in two animal
30 models. When used for prophylaxis or treatment neither the standard human malaria dose
31 (6.5 mg/kg) nor a high dose (50 mg/kg) of HCQ had any beneficial effect on clinical disease
32 or SARS-CoV-2 kinetics (replication/shedding) in the Syrian hamster disease model.**

33 **Similarly, HCQ prophylaxis/treatment (6.5 mg/kg) did not significantly benefit clinical
34 outcome nor reduce SARS-CoV-2 replication/shedding in the upper and lower respiratory
35 tract in the rhesus macaque disease model. In conclusion, our preclinical animal studies do
36 not support the use of HCQ in prophylaxis/treatment of COVID-19.**

37

38 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of
39 coronavirus disease 2019 (COVID-19) (1). SARS-CoV-2 infections were initially reported in
40 China near the beginning of December 2019 (2). Following early spread through Asia, and
41 subsequently to European, American and African countries, the virus is responsible for the third
42 pandemic of the 21st Century. With currently over 6.6 million confirmed cases and >390,000
43 deaths worldwide, health systems are stretched beyond limit with largely no proven treatment or

44 prophylaxis available to reduce the burden (3). Public health measures combined with
45 increasingly severe restrictions on public life have been implemented in many countries to stop
46 SARS-CoV-2 transmission. The goal of current public health strategies is to flatten the
47 epidemiologic SARS-CoV-2/COVID-19 curve to ease the burden on health care systems
48 challenged by the highly intensive care required for a significant proportion of COVID-19 cases.

49 Over 1,000 clinical trials are currently open or being established in different countries testing
50 drugs such as lopinavir/ritonavir, dexamethasone, hydroxychloroquine (HCQ) and inhaled
51 interferon beta-1a (4). Yet, many of these treatments have not been empirically tested in relevant
52 SARS-CoV-2 animal disease models to determine preclinical efficacy, and thereby provide
53 valuable insight into prioritization of drugs to move forward in humans.

54 At the time this work was started, the US FDA had given emergency approval for the use of
55 chloroquine and HCQ in COVID-19 patients (5). *In vitro* data on the inhibitory effect of
56 chloroquine and HCQ on SARS-CoV-2 replication had been published (6-8) and HCQ alone or
57 in combination with the macrolide antibiotic azithromycin had been used in early clinical trials to
58 treat COVID-19 cases with varying effect (9-11). Despite ongoing clinical trials, preclinical
59 efficacy data on the effect of HCQ in SARS-CoV-2 animal disease models were lacking. Herein,
60 we assessed the efficacy of HCQ prophylaxis and treatment in two established animal disease
61 models, the Syrian hamster and rhesus macaque (12, 13).

62 First, we confirmed the *in vitro* inhibitory effect of HCQ on SARS-CoV-2 replication in Vero E6
63 cells. Cells were pretreated with differing drug concentrations and the effect on viral RNA load
64 in tissue culture supernatant was determined 72 hours after infection by quantitative reverse
65 transcriptase polymerase chain reaction (qRT-PCR) (fig. S1). The half-maximal effective
66 concentration (EC₅₀) value for HCQ was 164.7nM, consistent with low/sub-micromolar levels

67 previously reported for the established *in vitro* inhibitory effect of HCQ on SARS-CoV-2
68 replication (6-8).

69 Having confirmed *in vitro* efficacy, we next tested the ability of HCQ to alter the course of
70 SARS-CoV-2 in the Syrian hamster disease model (12). Five groups of hamsters (n=6 per group)
71 were prophylactically or therapeutically treated with an intraperitoneal infection of a standard
72 (6.5 mg/kg in PBS; human dose for malaria prophylaxis/treatment) or high (50 mg/kg in PBS)
73 dose HCQ regimen; control groups were treated with vehicle only. Hamsters were intranasally
74 infected with SARS-CoV-2 using a dose of 1×10^4 median tissue culture infectious doses
75 (TCID₅₀). For prophylaxis, a single treatment was performed 24 hours prior to infection. The
76 therapeutic treatment started 1 hour after SARS-CoV-2 infection and was continued for 3
77 consecutive days. Disease manifestation in this model is transient and clinical signs peak
78 between days 3 and 5 post-infection with ruffled fur, increased respiration rate and reduced
79 mobility (12). Virus replication and shedding was determined by qRT-PCR in swab samples
80 (oral and rectal) collected on days 2 and 4, and lung tissue taken at necropsy on day 4 post-
81 infection. Regardless of HCQ administration, all animals showed comparable high levels of
82 genome copy numbers for oral swabs ($>10^7$ genome copies/mL) and comparable lower numbers
83 for rectal swabs ($<10^6$ genome copied/mL) decreasing in all groups over time (Fig. 1, A and B).
84 Like viral RNA loads in swabs, there was no significant difference in disease manifestation over
85 the time of the study. Gross lung pathology was similar among the groups consisting of focally
86 extensive areas of consolidation that failed to collapse upon removal (fig. S2). Viral lung loads
87 on day 4 were high (10^{14} genome copies/g) but indistinguishable between all groups (Fig. 1C).
88 Lung to body weight ratios were similar in all animals with no significant difference between
89 groups (Fig. 1D). Overall, HCQ administered either as prophylaxis or treatment at standard or

90 high doses did not have any significant impact on SARS-CoV-2 replication and shedding, nor
91 disease manifestation and progression in the Syrian hamster model.

92 Next, we assessed HCQ efficacy in the rhesus macaque; a recently developed nonhuman primate
93 model displaying mild to moderate COVID-like disease upon SARS-CoV-2 infection (13).

94 Similar to the hamster study, we investigated the effect of HCQ when administered either
95 prophylactically or as a treatment after infection. For the prophylactic arm, 10 healthy rhesus
96 macaques were randomly divided into vehicle control and HCQ prophylaxis groups (n=5 per
97 group). Animals were treated by oral gavage with either vehicle (PBS) or HCQ (6.5mg/kg in
98 PBS) three times one week apart (day -9, day -2 and day 5) (Fig. 2A). To test the efficacy of
99 HCQ as a treatment, a separate group of 10 healthy rhesus macaques were randomly divided into
100 vehicle control and HCQ treatment groups (n=5 per group). Animals were treated by oral gavage
101 with either vehicle (PBS) or HCQ (6.5mg/kg in PBS) starting 12 hours post-infection followed
102 by treatment at 18, 36, 60, 84 and 108 hours post-infection (Fig. 2B). Animals in all groups were
103 infected on day 0 with SARS-CoV-2 (total dose 2.8×10^6 TCID₅₀ by a combination of four routes
104 (intratracheal, oral, intranasal and ocular) as previously described (13, 14). Animals were
105 monitored at least twice daily using an established scoring sheet designed to assess clinical signs
106 of disease (13,15). Multiple physical examinations were performed on different days pre- and
107 post-inoculation including a clinical evaluation, radiographs, blood collection, and swabs (oral
108 and nasal). Bronchoalveolar lavage (BAL) was performed on days 3, 5 and 7 (post-mortem) (Fig.
109 2, A and B). The endpoint for both studies was day 7 post-infection, at which time all animals
110 were euthanized and necropsied.

111 To ensure that drug was present in therapeutic quantities plasma levels of HCQ and its secondary
112 metabolites were measured. HCQ was detected in plasma samples post-administration in all

113 prophylactically or therapeutically treated animals with concentration ranging from 1.2 to
114 10.5ng/mL (3.6 nM to 31.3 nM) and 8 to 98 ng/mL (23.8 nM to 291.8 nM), respectively (Fig. 2,
115 C and D). HCQ was also detected in lung tissue at time of necropsy in all prophylactically or
116 therapeutically treated animals ranging from 0.85 to 4.18 ng/mg tissue and 1.39 to 11.54 ng/mg
117 tissue, respectively. These numbers are in good agreement with the reported long half-life and
118 large volume of distribution of HCQ (16). HCQ cytochrome p450 catalyzed secondary amine
119 metabolites desethylchloroquine and desethylhydroxychloroquine, and the primary amine
120 metabolite bisdesethylchloroquine are considered to be active forms of the drug in other disease
121 models (17). Both desethylchloroquine and desethylhydroxychloroquine were detected in
122 intermediate concentrations, while trace amounts of bisdesethylchloroquine were detected in
123 both plasma and lung homogenate suggesting substantial persistence of active drug forms over
124 the course of treatment (fig. S3). The plasma HCQ levels measured here fall within or near
125 human therapeutically relevant ranges for other disease such as malaria and systemic lupus
126 erythematosus (15 to 100 ng/mL plasma) (18,19). However, since SARS-CoV2 is a respiratory
127 disease, levels of drug in lung tissue are a better indicator of therapeutic potential.
128 Volume/concentration is difficult to estimate in tissue due to compartmentalization resulting in a
129 non-homogenous distribution of the drug. However, using a water content of 80% by weight
130 (20), day 7 levels in the lung indicated conservative estimates of at least 1 μ g/mL (~3.0 uM) in
131 all animals, which is above the cell culture EC₅₀ which we determined to be ~ 0.2 uM (164.7
132 nM, 55 ng/mL here (fig. S1).
133 Macaques in both the prophylactic and treatment arms of the study first displayed clinical signs
134 of SARS-CoV-2 infection on day 1, which peaked at day 2 and animals remained mildly to
135 moderately ill until the study endpoint at day 7 (Fig. 2, E and F). Clinical signs included reduced

136 appetite and ruffled fur followed by pale appearance and irregular increased abdominal
137 respiration (table S1). Overall, animals in the vehicle treated groups appeared to have slightly
138 higher clinical scores throughout, but daily differences were not statistically significant.
139 Hematology and serum chemistry were unremarkable for all animals in both study arms.
140 Radiographic signs in the prophylaxis, treatment and control groups were minimal over the study
141 course (fig. S4). Pulmonary infiltrates, when seen, were noted to be of a mild unstructured
142 interstitial pattern. The pattern was rarely seen in the upper lung, being more commonly found in
143 middle and caudal lung lobes. No differences were noted in severity or appearance of
144 radiographic signs between HCQ prophylaxis, treatment or control groups.
145 Nasal and oropharyngeal swabs were positive for SARS-CoV-2 RNA in all animals of both
146 studies with the highest load on either day 1 or day 3, which then gradually decreased until the
147 end of the study (Fig. 3, A – D). Viral load in nasal swabs were consistently higher than in
148 oropharyngeal swabs. BAL samples were collected on days 3, 5 and 7 (post-mortem) and viral
149 loads were similar to nasal and oropharyngeal swabs with decreasing loads over time (Fig. 3, E
150 and F). Overall, there were no statistically significant differences in virus load and shedding
151 between HCQ- and vehicle-administered animals in the prophylaxis and treatment regimens.
152 At necropsy, gross pathology revealed consolidated lungs in animals of all groups with lesions
153 observed largely in the lower lung lobes, although some of the lesions may have been the result
154 of the post-mortem BAL (Fig. 4, A and B). All other gross pathology was normal except for
155 enlarged cervical and mediastinal lymph nodes in several animals across the groups. Histological
156 analysis of the lungs of animals in the different prophylaxis and treatment groups determined a
157 comparable degree of pulmonary pathology when inoculated with SARS-CoV-2 similar to what
158 had been published previously (13,14) (Fig. 4C). Lesions were mild to moderate and

159 characterized as multifocal interstitial pneumonia frequently centered on terminal bronchioles.
160 The pneumonia was evident by a thickening of alveolar septae by edema fluid and fibrin and
161 small to moderate numbers of macrophages and fewer neutrophils. Infiltration of small numbers
162 of pulmonary macrophages and neutrophils were noticed in alveoli. Lungs with moderate
163 changes also had alveolar edema and fibrin with formation of hyaline membranes. There was
164 minimal to moderate type II pneumocyte hyperplasia. Occasionally, bronchioles had necrosis,
165 and loss and attenuation of the epithelium with infiltrates of neutrophils, macrophages and
166 eosinophils. Perivascular infiltrates of small numbers of lymphocytes forming perivascular cuffs
167 were noticed multifocally (Fig. 4C). Overall, there was no significant difference between vehicle
168 and HCQ treated animals in either of the regimens, prophylaxis or treatment.

169 Viral RNA loads were determined in several respiratory tissues using qRT-PCR (Fig. 5, A and
170 C). Highest genome copy numbers were found in lung tissue with a marginal but not significant
171 benefit for the HCQ- over the vehicle-treated group in the prophylaxis study arm when all lung
172 lobe samples were combined (Fig. 5, B and D). Virus isolation from tissues was inconsistent
173 among animals in the different groups, but at least one sample in each group showed infectious
174 virus for almost all respiratory tissues (Fig. 5, A and C). There was no difference between
175 animals of vehicle- and HCQ-treated groups in the prophylaxis and treatment study arms, which
176 is consistent with the lack of any observed effect of HCQ on virus shedding parameters.

177 In this study we used two established COVID-like animal models (12,13) and applied the
178 standard weight-based oral administration of HCQ prophylaxis and treatment of malaria in
179 humans (21). For the Syrian hamster model, we also included a high HCQ dose regimen (7.5
180 times the standard dose regimen) both prophylactically and as a treatment. For prophylaxis we
181 used a weekly dosing regimen. For treatment, we administered HCQ starting shortly after

182 infection and continued daily until study end. HCQ pharmacokinetic studies in humans and
183 animal models have demonstrated a rapid blood bioavailability following oral administration
184 with peak levels being reached in 2 to 4 hours followed by rapid absorption in various tissues
185 including the lung (22,23). Samples for drug pharmacokinetics in plasma were collected when
186 the drug levels were low, just before the administration of the next treatment. Nevertheless, the
187 measurements taken during both studies are in good agreement with data from humans and
188 animal models and suggest accumulation of drug in the lung at therapeutic levels (18,19).

189 The use of HCQ and chloroquine as treatment options for COVID-19 patients may have been
190 partially rooted in early observations for their effect in impairing SARS-CoV-2 replication *in*
191 *vitro* (6-8). These *in vitro* studies, which we confirmed herein, identified HCQ (and other 4-
192 aminoquinolines) as potent inhibitors of coronaviruses, including SARS-CoV-2, with low EC₅₀
193 values within the range of antivirals such as remdesivir (6); a drug that is now approved for
194 COVID-19 cases by the FDA. The mechanism of action of 4-aminoquinolones against SARS-
195 CoV-2 *in vitro* is not well defined, but increasing endosomal pH, inhibition of autophagosome-
196 lysosome fusion, impairment of enzymes important for virus replication, and effects on protein
197 glycosylation have been proposed, which may result in interference with SARS-CoV-2
198 entry/fusion, replication and spread (24, 25). However, despite the promising *in vitro* effect
199 observed by us and others, we did not observe any significant prophylactic or therapeutic benefit
200 of HCQ following *in vivo* infection in two animal disease models.

201 The use of HCQ to treat COVID-19 has been controversial since the results of the first clinical
202 trials (9-11). Nevertheless, HCQ has been promoted as a COVID-19 treatment option and
203 became part of multiple recent large-scale clinical trials including one of four initial treatment
204 options in the multinational WHO “Solidarity” clinical trial for COVID-19 (26). However, HCQ

205 treatment does not come without risks as the 4-aminoquinolones are associated with multiple
206 adverse effects such cutaneous adverse reactions, hepatic failure, and ventricular arrhythmia;
207 overdose is also difficult to treat (21). The US FDA recently updated its guidance by warning
208 against use of HCQ outside of the hospital setting because of the potential for serious adverse
209 effects (27). Over past weeks, several clinical trials, such as the WHO Solidarity study, have
210 been stopped or have excluded HCQ arms due to a lack of evidence for therapeutic efficacy, and
211 an increase level of adverse effects in COVID-19 patients (26, 28, 29). One influential study that
212 had indicated a detrimental effect of HCQ in COVID-19 patients has subsequently been retracted
213 by the authors due to their inability to confirm the veracity of the data (29, 30), and the Solidarity
214 HCQ arm has been resumed (26). Similarly, a multinational UK-based (COPCOV) HCQ
215 prophylactic trial involving healthcare workers at high risk for SARS-CoV-2 infection was
216 paused less than a week after starting due to safety concerns (31); the impact of the retraction on
217 the status of this trial remains to be ascertained. Clearly, the effectiveness of HCQ to prevent or
218 reduce infection and thereby impact the clinical course of COVID-19 remains highly contentious
219 at this time.

220 In conclusion, HCQ prophylaxis and treatment had no beneficial effect in the two animal disease
221 models tested. There is always the consideration as to what extent animal data can be extended to
222 the situation in humans, but in general the nonhuman primate models are considered good
223 indicators and the ultimate preclinical models before moving drugs into clinical trials.
224 Independent of the safety issues associated with HCQ, the preclinical data presented here does
225 not support HCQ and likely other 4-aminoquinolines as being either an effective prophylactic
226 treatment to reduce SARS-CoV-2 infection or therapeutic for use in COVID-19 patients.

227

228 **Acknowledgements.** This work was funded by the Intramural Research Program of the National
229 Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), and
230 partially funded through awards to The Vaccine Group Ltd, and the University of Plymouth. We
231 thank Hillary Marston, Karyl Baron and Steven Holland (all NIAID, NIH) for helpful discussion
232 and access to the drug. We are thankful to the animal caretakers and histopathology group of the
233 Rocky Mountain Veterinary Branch (NIAID, NIH) for their support with animal related work,
234 and Anita Mora (NIAID, NIH) for help with the display items.

235

236 **Disclaimer.** The opinions, conclusions and recommendations in this report are those of the
237 authors and do not necessarily represent the official positions of the National Institute of Allergy
238 and Infectious Diseases (NIAID) at the National Institutes of Health (NIH). There were no
239 conflict in interests identified for any individual involved in the study.

240

241 **References**

- 242 1. R. Lu *et al.*, Genomic characterisation and epidemiology of 2019 novel coronavirus:
243 implications for virus origins and receptor binding. *Lancet* **395**, 565-574 (2020).
- 244 2. N. Chen *et al.*, Epidemiological and clinical characteristics of 99 cases of 2019 novel
245 coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* **395**, 507-13 (2020).
- 246 3. World Health Organization (WHO), “Coronavirus disease (COVID-2019) Situation
247 Report - 129” (WHO, 2020); https://www.who.int/docs/default-source/coronavirus/situation-reports/20200528-covid-19-sitrep-129.pdf?sfvrsn=5b154880_2

249 4. National Institutes of Health (NIH), US National Library of Medicine (NIH, 2020);
250 https://clinicaltrials.gov/ct2/results?cond=COVID-19&age_v=&gndr=&type=Intr&rslt=&Search=Apply

252 5. Lenzer J COBID-19: US gives emergency approval to hydroxychloroquine despite lack
253 of evidence. *BMJ*, **369**, m1335 (2020).

254 6. M. Wang *et al.*, Remdesivir and chloroquine effectively inhibit the recently emerged
255 novel coronavirus (2019-nCoV) *in vitro*. *Cell Research* **30**, 269-271 (2020).

256 7. J. Liu *et al.*, Hydrochloroquine, a less toxic derivative of chloroquine, is effective in
257 inhibiting SARS-CoV-2 infection *in vitro*. *Cell Discovery* **6**, 16 (2020).

258 8. X. Yao *et al.* *In vitro* antiviral activity and projection of optimized dosing design of
259 hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2
260 (SARS-CoV-2). [published online ahead of print, 2020 Mar 9]. *Clin Infect Dis*. (2020),
261 <https://doi:10.1093/cid/ciaa237>

262 9. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent
263 efficacy in treatment of COVID-19 associated pneumonia in clinical studies. *BioScience*
264 *Trends* **14**, 72-73 (2020).

265 10. Z. Chen Z *et al.*, Efficacy of hydroxychloroquine in patients with COVID-19; results of a
266 randomized clinical trial. *medRxiv* (2020), <https://www.medrxiv.org/content/10.1101/2020.03.22.20040758v3>

268 11. P. Gautret *et al.*, Hydroxychloroquine and azithromycin as a treatment of COVID-19:
269 results of an open-label non-randomized clinical trial [published online ahead of print,

270 2020 Mar 20]. *International Journal of Antimicrobial Agents* (2020),

271 <https://doi.org/10.1016/j.ijantimicag.2020.105949>

272 12. J.F. Chan *et al.*, Simulation of the clinical and pathological manifestations of Coronavirus

273 Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease

274 pathogenesis and transmissibility [published online ahead of print, 2020 Mar 26].

275 *Clinical Infectious Diseases* (2020), <https://doi.org/10.1093/cid/ciaa325>

276 13. V.J. Munster *et al.*, Respiratory disease in rhesus macaques inoculated with SARS-CoV-

277 2 [published online ahead of print, 2020 May 12].

278 *Nature* (2020), <https://doi.org/10.1038/s41586-020-2324-7>

279 14. B.N. Williamson *et al.*, Clinical benefit of remdesivir in rhesus macaques infected with

280 SARS-CoV-2. *bioRxiv* (2020), <https://doi.org/10.1101/2020.04.15.043166>

281 15. D.L. Brining *et al.*, Thoracic radiography as a refinement methodology for the study of

282 H1N1 influenza in cynomolgus macaques (*Macaca fascicularis*). *Comparative*

283 *Medicine* **60**, 389-395 (2010).

284 16. E. Schrezenmeier and T. Dörner. "Mechanisms of action of hydroxychloroquine and

285 chloroquine: implications for rheumatology." *Nature Reviews Rheumatology* **16**, 155-166

286 (2020).

287 17. H. Fan *et al.* "Pharmacokinetics and bioequivalence study of hydroxychloroquine sulfate

288 tablets in Chinese healthy volunteers by LC-MS/MS." *Rheumatology and Therapy* **2**,

289 183-195 (2015):

290 18. L. Durcan et al., Hydroxychloroquine blood levels in systemic lupus erythematosus:
291 clarifying dosing controversies and improving adherence. *The Journal of Rheumatology*
292 **42**, 2092-2097 (2015).

293 19. R.I. Fox, In Mechanism of action of hydroxychloroquine as an antirheumatic drug.
294 *Seminars in Arthritis and Rheumatism*, Elsevier; pp 82-91 (1993).

295 20. N.R. Lange and D.P. Schuster. The measurement of lung water. *Critical Care* **3**, R19
296 (1999).

297 21. American Hospital Formulary Service (AHFS) Drug Information, 2020.

298 22. E.W. McChesney, Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate.
299 *American Journal of Medicine* **75**, 11-18 (1983).

300 23. H.S. Lim et al., Pharmacokinetics of hydroxychloroquine and its clinical implications in
301 chemoprophylaxis against malaria caused by *Plasmodium vivax*. *Antimicrobial Agents
302 and Chemotherapy* **53**, 1468-1475 (2009).

303 24. C. Salata et al., Antiviral activity of cationic amphiphilic drugs. *Expert Review of Anti-
304 infective Therapy* **15**, 483-492 (2017).

305 25. M.J. Vincent et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and
306 spread. *Virology Journal* **2**, 69 (2005).

307 26. World Health Organization (WHO). “Solidarity” clinical trial for COVID-19 treatments.
308 (WHO, 2020); <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments>

311 27. US Food and Drug Administration (US FDA). “Drug Safety and Availability” (US FDA,
312 2020); <https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or>).

314 28. M.R. Mehra *et al.*, Hydroxychloroquine or chloroquine with or without a macrolide for
315 treatment of COVID-19: a multinational registry analysis [published online ahead of
316 print, 2020 May 22]. *Lancet*, [https://doi.org/10.1016/S0140-6736\(20\)31180-6](https://doi.org/10.1016/S0140-6736(20)31180-6) (2020).

317 29. J. Magagnoli *et al.*, Outcomes of hydroxychloroquine usage in United States veterans
318 hospitalized with Covid-19. medRxiv (2020), <https://doi.org/10.1101/2020.04.16.20065920>

320 30. M.R. Mehra et al., Retraction– Hydroxychloroquine or chloroquine with or without a
321 macrolide for treatment of COVID-19: a multinational registry analysis [published online
322 ahead of print, 2020 June 4]. *Lancet*, [https://doi.org/10.1016/S0140-6736\(20\)31324-6](https://doi.org/10.1016/S0140-6736(20)31324-6)
323 (2020).

324 31. MORU Tropical Health Network. “COPCOV Trial” (2020); (<https://www.tropmedres.ac/covid-19/copcov/copcov-news>)

326

327 **Figure Legends**

328 **Figure 1: Syrian hamster model - viral shedding, viral load and pathology.** Hamsters were
329 infected with SARS-CoV-2 by the intranasal route. HCQ was administered either
330 prophylactically one time at 24 hours prior to infection (6.5mg/kg and 50mg/kg) or treatment
331 started 1 hour post-infection for 3 consecutive days (6.5mg/kg and 50mg/kg). Hamsters were

332 scored for clinical signs daily and swabs (oral and rectal) were collected on day 2 and 4. Animals
333 were euthanized on day 4 and lungs were harvested for pathology and virology. Swab and lung
334 loads were determined by qRT-PCR. (A and B) Viral shedding. Oral and rectal swabs from day 2
335 and 4 were analyzed for viral genome copies by qRT-PCR. Swabs were analyzed as a correlate
336 for viral shedding. (C) Viral load in lung tissue. Lung viral loads (genome copies) were
337 determined by as a correlate for lower respiratory tract infection. No statistical significance was
338 found among the groups presented in parts (A) to (C). (D) Lung to body weight ratio. Lung to
339 body weight ratio was determined as an indicator for pneumonia with lung edema. Statistically
340 significant differences were only found when compared to lung to body weight ratios of naïve
341 hamsters. Multiple t tests were used to analyze differences among groups.

342 **Figure 2: Rhesus macaque model – design, drug concentrations and clinical scoring.**

343 Macaques were infected with SARS-CoV-2 by the combined intratracheal, intranasal, oral and
344 ocular routes. Animals were treated by oral gavage with either vehicle (PBS) or HCQ (6.5mg/kg
345 in PBS). Administration was either one time per week for the prophylaxis arm or starting 12
346 hours post-infection followed by treatment at 18, 36, 60, 86 and 108 hours post-infection for the
347 treatment arm. Animals were scored for clinical disease twice daily and examinations were
348 performed as indicated. (A and B) Study design. The schematic depicts infection ('I'), HCQ or
349 vehicle treatment ('T') and examinations ('E'). (C and D) Plasma levels of HCQ. HCQ levels
350 were determined in both the prophylaxis and treatment study arms. Measurements reflect pre-
351 dose levels of HCQ at each timepoint (limit of quantification = 0.5 ng/mL). (E and F) Clinical
352 scores. Clinical scoring was performed twice daily by observation of non-anesthetized animals.
353 The morning score is graphed here. Multiple t tests performed on individual days found no
354 significance difference between groups. Area under the curve analysis was performed on each

355 individual animal in each study. This analysis found a significant difference ($p=0.004$) between
356 groups in the therapeutic study only. *Note:* red squares, vehicle-treated animals; blue circles,
357 HCQ-treated animals; PS, prophylaxis; TS, treatment.

358 **Figure 3: Rhesus macaque model – viral loads in lower and upper respiratory tract.**

359 Macaques were infected with SARS-CoV-2 as described in the legend of Figure 2. Swab
360 samples (nasal and oropharyngeal) and bronchioalveolar lavage (BAL) were collected at all or
361 indicated examination time points. Viral loads were determined by qRT-PCR as genome copies.
362 (A and B) Nasal swabs. (C and D) Oropharyngeal swabs. (E and F) Bronchioalveolar lavage
363 (BAL). No statistical significance was found among the groups presented in (A) to (F). Multiple
364 t tests were used to analyze data and no significant difference was found. *Note:* red squares,
365 vehicle-treated animals; blue circles, HCQ-treated animals; PS, prophylaxis; TS, treatment.

366 **Figure 4: Rhesus macaque model – gross and histopathology.** Macaques were infected with
367 SARS-CoV-2 as described in the legend of Figure 2. Animals were euthanized on day 7 post-
368 infection for gross pathology and histopathology. (A and B) Gross pathology with consolidated
369 lower left lung lobe and area of post-mortem-BAL in the lower right lung lobe (asterisk). (C)
370 Hematoxylin and eosin (H&E) staining revealed multifocal, minimal to moderate, interstitial
371 pneumonia frequently centered on terminal bronchioles. Alveolar edema and fibrin with
372 formation of hyaline membranes was only seen in lungs with moderate changes. Multifocal
373 perivascular infiltrates of small numbers of lymphocytes that form perivascular cuffs. The left
374 panels show areas of unaffected lung tissue. *Note:* PS, prophylaxis; TS, treatment.

375 **Figure 5: Rhesus macaque model – viral loads in respiratory tissues.** Macaques were
376 infected with SARS-CoV-2 as described in the legend of Figure 2. Animals were euthanized on
377 day 7 post-infection for viral tissue load determination performed by qRT-PCR (genome copies)

378 and virus isolation (infectious virus). (A) Viral loads in lower and upper respiratory tissues and
379 mediastinal lymph nodes for the prophylaxis study arm (PS). Virus isolation is indicated in
380 numbers on top (n/5). (B) Viral lung loads (PS). All lung lobe genome copy data were combined.
381 (C) Viral loads in lower and upper respiratory tissues and mediastinal lymph nodes for the
382 treatment study arm (TS). Virus isolation frequency (number of animals per group) is indicated
383 at top (n/5). (D) Viral lung loads (TS). All lung lobe genome copy data were combined. No
384 statistical significance was found among groups presented in parts (A) to (D). A linear model
385 was used to analyze viral RNA levels in tissues and lung lobes. No significant difference was
386 found between groups in either study. *Note:* red squares, vehicle-treated animals; blue circles,
387 HCQ-treated animals; PS, prophylaxis; TS, treatment.

388

Figure 1

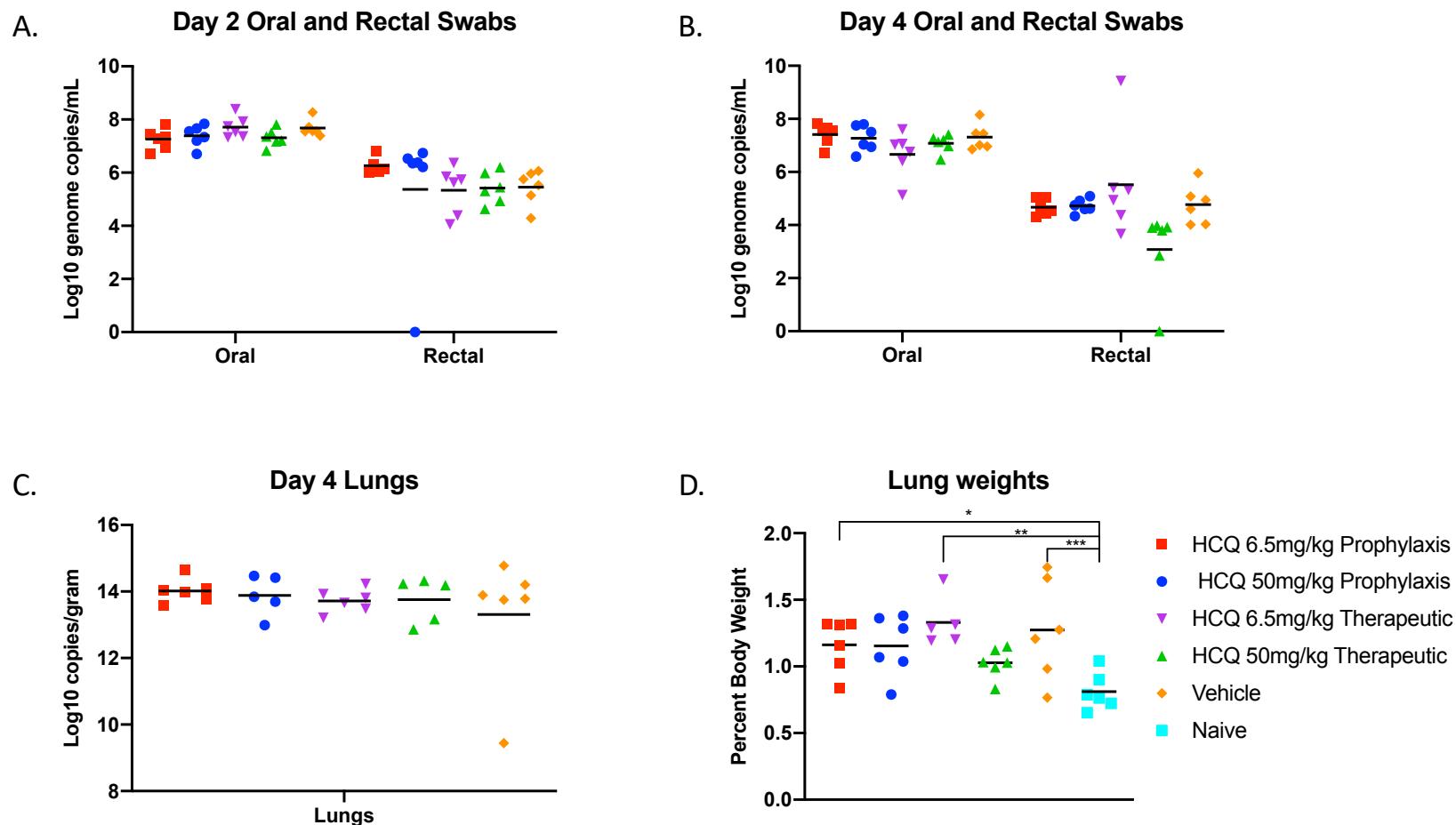
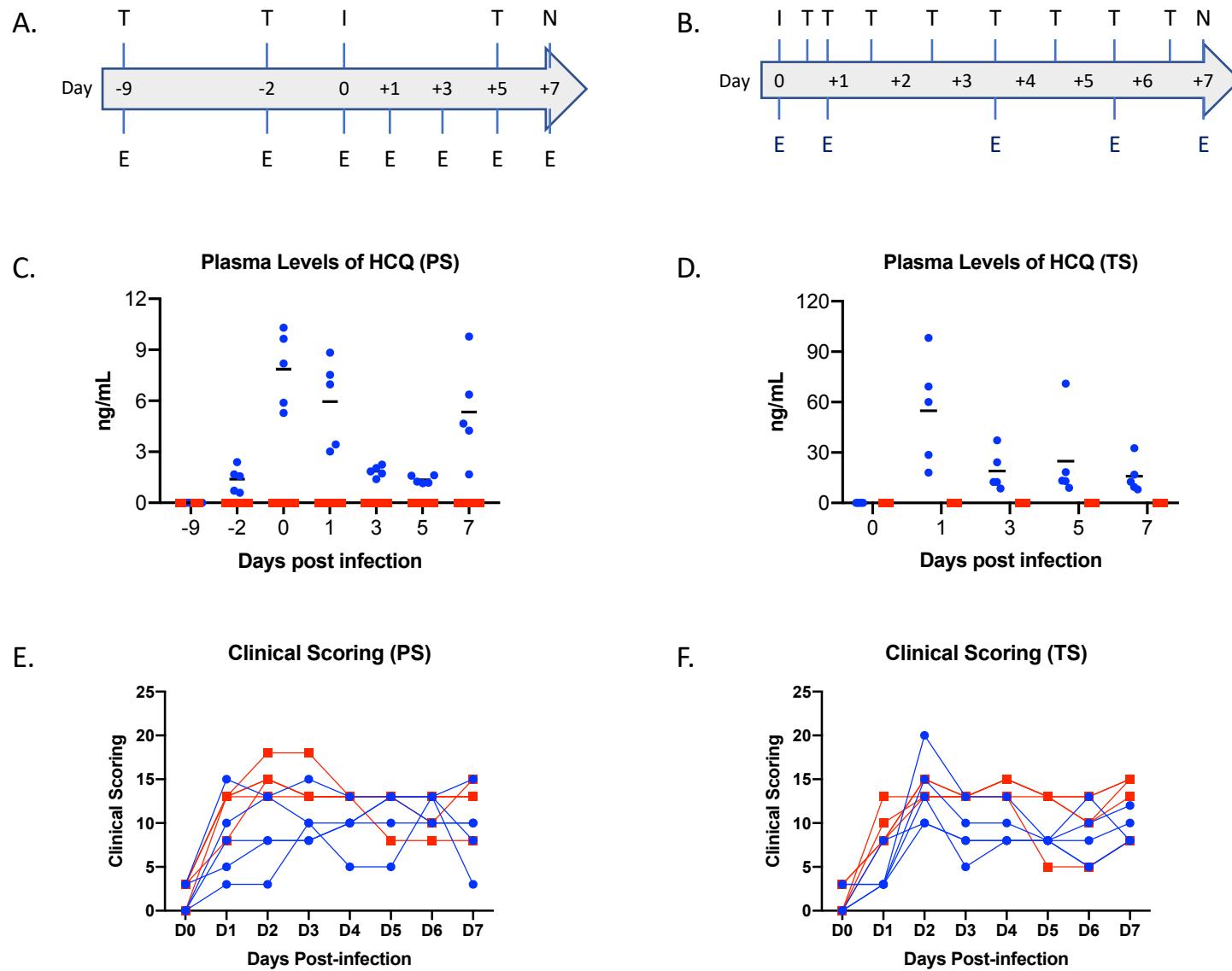



Figure 2

Figure 3

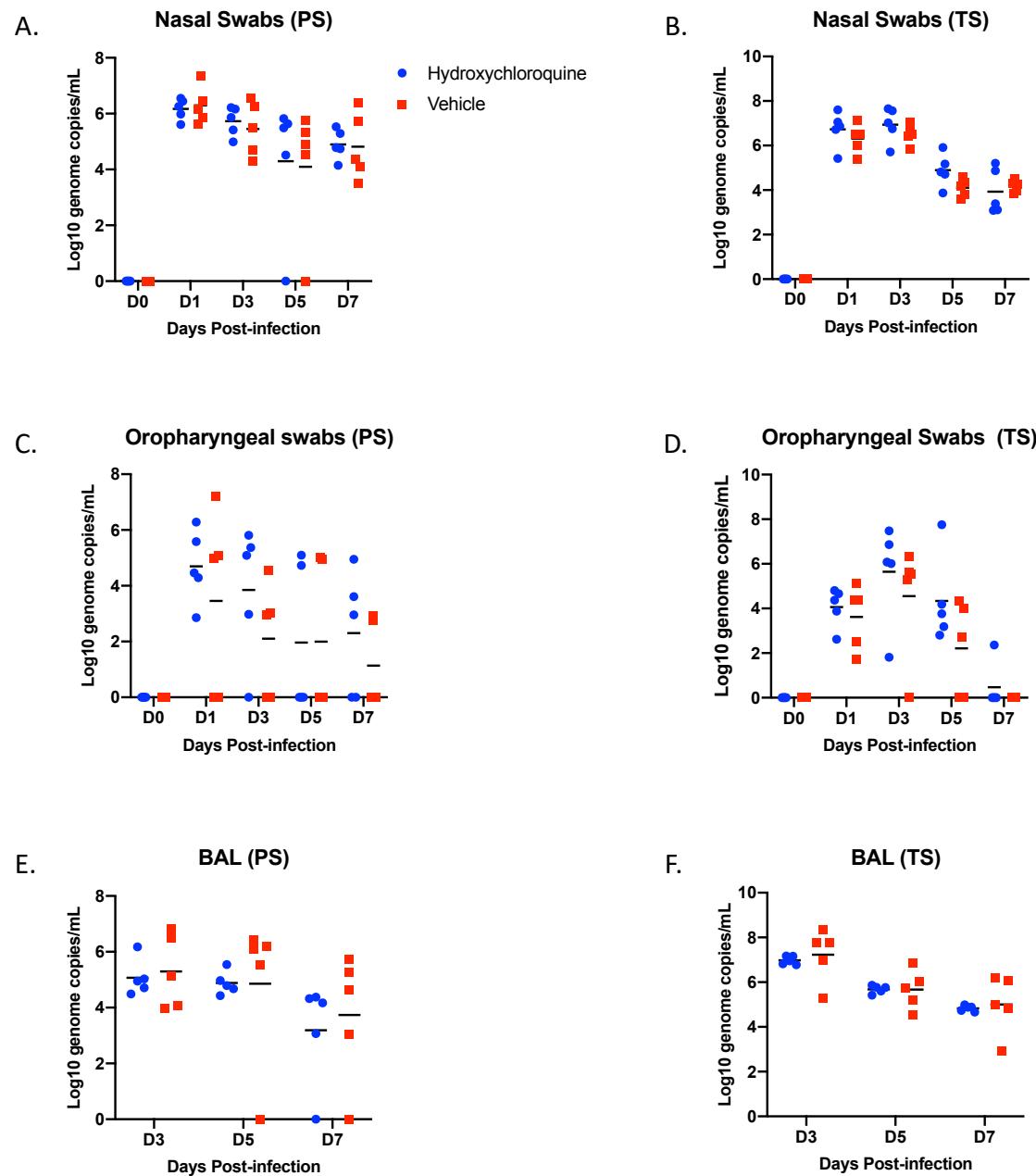


Figure 4

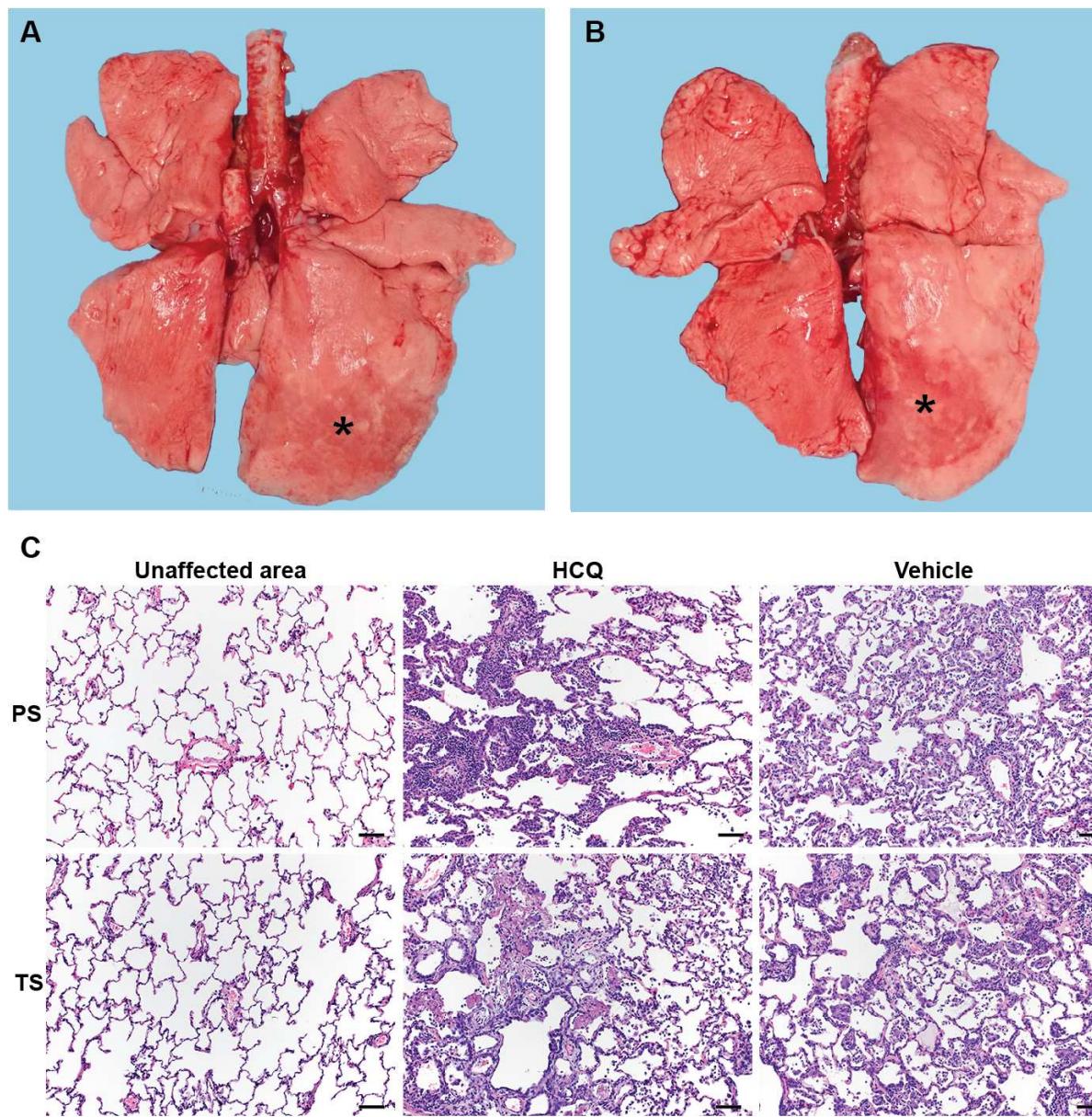
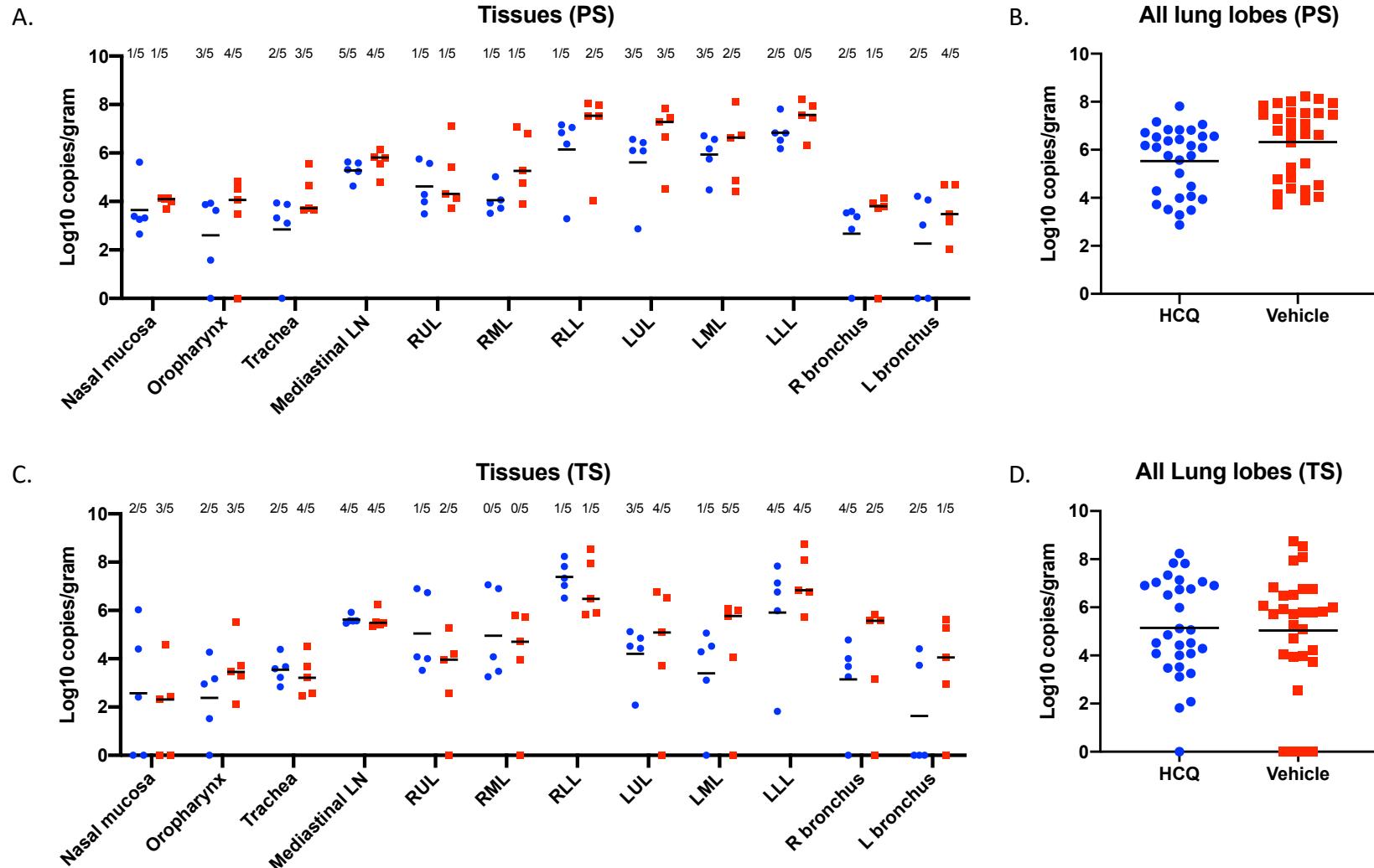



Figure 5

