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Understanding kidney disease relies on defining the complexity of cell types

and states, their associated molecular profiles and interactions within tissue
neighbourhoods'. Here we applied multiple single-cell and single-nucleus assays
(>400,000 nuclei or cells) and spatial imaging technologies to abroad spectrum of
healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has
provided a high-resolution cellular atlas of 51 main cell types, which include rare

and previously undescribed cell populations. The multi-omic approach provides
detailed transcriptomic profiles, regulatory factors and spatial localizations spanning
the entire kidney. We also define 28 cellular states across nephron segments and
interstitium that were altered in kidney injury, encompassing cycling, adaptive
(successful or maladaptive repair), transitioning and degenerative states. Molecular
signatures permitted the localization of these states within injury neighbourhoods
using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million
neighbourhoods) provided corresponding linkages to active immune responses.
These analyses defined biological pathways that are relevant to injury time-course
and niches, including signatures underlying epithelial repair that predicted
maladaptive states associated with a decline in kidney function. This integrated
multimodal spatial cell atlas of healthy and diseased human kidneys represents a
comprehensive benchmark of cellular states, neighbourhoods, outcome-associated
signatures and publicly available interactive visualizations.

The human kidneys have vital systemic roles in the preservation of
body fluid homeostasis, metabolic waste product removal and blood
pressure maintenance. After injury, dynamic acute and chronic changes
occurin therenal tubules and surrounding interstitial niche. The bal-
ance between successful or maladaptive repair processes may ulti-
mately contribute to the progressive decline in kidney function®>.
Defining the underlying molecular diversity at asingle-cell level is key
to understanding progression of acute kidney injury (AKI) to chronic
kidney disease (CKD), kidney failure, heart disease or death—issues
that remain a global concern®’.

Wereportamultimodal single-cell and spatial atlas with integrated
transcriptomic, epigenomic and imaging data over three major con-
sortia: the Human Biomolecular Atlas Program (HuBMAP)®, the Kidney
Precision Medicine Project (KPMP)® and the Human Cell Atlas (HCA)™.
To ensure robust cell state profiles, healthy reference tissues were

obtained from multiple sources, and biopsies were collected from
patients with AKl and CKD under rigorous quality assurance and con-
trol procedures®®!, We define niches for healthy and altered states
across different regions of the human kidney spanning the cortex to
the papillary tip, and identify gene expression and regulatory mod-
ules in altered states associated with worsening kidney function. The
resultant atlas greatly expands on existing efforts? ** and will serve as
animportantresource forinvestigators and clinicians working towards
abetter understanding of kidney pathophysiology.

Constructing akidney cellular atlas

To fully examine the molecular profile of kidney cell types, we
used droplet-based transcriptomic assays (Chromium v3) for sin-
gle nuclei (snCv3) and single cells (scCv3) and the multiomic assay
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Fig.1|Overview of the technologies used to generate ahumankidney cell
atlas. a, Humankidney samplesconsisted of healthy reference, AKl or CKD
nephrectomies (Nx), deceased donors (DD) or biopsies. Tissues were processed
forone or moreassays, including snCv3,scCv3,SNARE2, 3D imaging or spatial
transcriptomics (Slide-seq2, Visium). Scale bars,1 mm (top) and 300 um

for single-nucleus chromatin accessibility and mRNA expression
sequencing (SNARE-seq2, or SNARE2)'**® (Supplementary Tables1-3).
Integrative transcriptome analyses were performed on more than
400,000 high-quality nuclei/cells (Methods) from 58 reference tissues
(35donors) and 52 diseased tissues (36 patients) that covered the spec-
trum of conditions from healthy to AKland CKD (Fig. 1, Extended Data
Figs.1-3 and Supplementary Fig.1). Unsupervised clustering was first
performed on snCv3 data, permitting the discovery of 100 distinct
cell populations, which were annotated to 77 subclasses of epithelial,
endothelial, stromal, immune and neural cell types (Fig. 2, Methods,
Extended Data Figs.1and 2 and Supplementary Tables 4 and 5). To
further extend cell type annotations across omic platforms, snCv3 data
were used toanchor scCv3 and SNARE2 datasets to the same embedding
space, and cell type labels were assigned through integrative clustering
(Methods, Extended Data Fig. 3 and Supplementary Tables 6 and 7).
For spatial localization of these cell types or states in situ, we applied
3D label-free imaging, multiplex fluorescence imaging (15 individuals)
and spatial transcriptomic Slide-seq2'*?° (6 individuals, 67 pucks)
and Visium assays (22 individuals, 23 samples) (Fig. 1, Methods and
Supplementary Table 2). To ensure consistency and agreement of find-
ings across technologies and minimize procurement- and assay-related
biases, multiple samples were processed with more than one assay
(Supplementary Table 3 and Extended DataFig.1a). Our approach per-
mitted deep and cross-validated molecular profiles for aligned kidney
cell types, leveraging the distinct advantages of each technology; for
example, the addition of cytosolic transcripts from scCv3, regulatory
elements from SNARE2 accessible chromatin, and insitu cell type/state
localization and interactions from spatial technologies.

Reference and altered states

We provide a very high level of complexity for all cell types along the
depthofthekidney from the cortex to the papillary tip, in each nephron
segmentand theinterstitium (Fig. 2a), identifying 51 canonical human
kidney cell types with associated biomarkers (Methods and Supplemen-
tary Tables 5-8). This includes cell type epigenetic maps, comprising
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(bottom). b, Summary of the samples. Ref, reference.c, Omic RNA datawere
integrated, as shown by joint UMAP embedding, for alignment of cell type
annotations across the three different data modalities. IC, intercalated cells;
PC, principal cells; VSM/P, vascular smooth muscle cell or pericyte.

open chromatin regions and cis-regulatory elements with enriched
transcription-factor-binding motifs (Supplementary Fig. 1 and Sup-
plementary Table 9). To spatially localize cell types within the tissue,
snCv3subclasses were used to predictidentitiesin Slide-seq and Visium
transcriptomic data at different resolutions (10 pm and 55 pm beads,
respectively) (Fig. 2c-g, Methods and Extended Data Fig. 4-5). This
enabled ustorecapitulate renal corpuscle, tubular, vascular and inter-
stitial cell types with proportions, marker profiles and spatial organiza-
tions consistent with expected or observed (Visium) histopathology
(Extended DataFig. 5). Proximity enrichment analysis based on the cell
type composition of adjacent Slide-seq beads across 32 cortical and
35medullary tissue pucks (6 participants) delineated region-specific
cellular neighbourhoods (Extended DataFig.4d,e), including the renal
corpuscle composition of podocytes (PODs), glomerular capillaries
(EC-GC), mesangial cells and parietal epithelial cells. These renal cor-
puscle neighbourhoods localized adjacent to the juxtaglomerular
apparatus cells—renin-producing granular (REN) cells and macula
densa cells—and endothelial cells of the afferent/efferent arterioles
(EC-AEA) leading into and out of the renal corpuscle (Fig. 2e-f). This
neighbourhood analysis further confirmed a distinct vascular smooth
muscle cell (VSMC) population flanking the afferent/efferent arterioles
(Extended Data Fig. 4f). Consistent with these annotations, we validated
the appropriate localization of associated cell type markers across
platforms (Fig. 2f and Extended DataFig. 5d-j).In addition to the renal
corpuscle, we spatially anchored cell type subpopulations to the cortex
or medulla (Fig. 2c and Extended Data Fig. 5a). The transition of the
ascending thinlimbs (ATL) of the inner medulla to the medullary thick
ascending limb (M-TAL) of the outer medullary stripe was observedin
Slide-seq (Fig. 2c), along with the transition from descending thinlimb
(DTL2) and M-TAL in the medulla to the cortical thick ascending limb
(C-TAL) inthe cortexin Visium (Fig. 2g and Extended Data Fig. 5d). Thus,
the unique strengths of each spatial technology enabled the validation
of our omic-defined cell types.

Acriticaland new element of this reference atlasis the characterization
of cellular states associated with pathophysiological stress orinjury. We
carefully defined these altered states on the basis of previous studies and
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Fig.2|Spatially resolved atlas of molecular cell types. a, Schematic of the
human nephronshowing cell types and states. b, UMAP embedding showing
celltypes (subclass level 3) for snCv3. Insets: overlays for both regional origin
and altered-state status. Cyc, cycling; degen, degenerative; trans, transitioning.
See Supplementary Table 4 for cell type definitions. c, Heat map of Slide-seq
celltype frequencies along the corticomedullary axis (three individuals) (left).
Middle, representative tissue puck region showing the transition of ATL to
M-TAL segments. Right, corresponding expression of marker genes (scaled).
Scalebar,300 pm.d, Schematic of the renal corpuscle showing resolved cell
types.e, TheSlide-seq puck areaindicated in Extended Data Fig.4cand

known features of injury (Methods and Supplementary Table 10). We
established multiple putative states—namely cycling, transitioning, adap-
tive (successful or maladaptive repair) and degenerative (damaged or
stressed). These altered states wereidentified for epithelial cellsalong the
nephron, aswell as within the stromaand vasculature (Fig. 2a,d). Altered
states, fromreference and disease tissues in different proportions, were
found to exist across technologies (Extended Data Figs.1and 3) and
showed distinct expression signatures (Supplementary Tables 11-15).
We used several methods to confirm these altered states. Mapping
ourannotations onto an existing mouse AKImodel* provided insights
into their timecourse after an acuteinjury event (Extended Data Fig. 6).
Degenerative states, coinciding with elevated expression of the known

Visium

predicted celltypes for renal corpuscles (top). Bottom, mapped expression
values for corresponding marker genes (scaled). Scale bar,100 um. f, The
average expression values for renal corpuscle cell types for markers shownine
and Extended Data Fig. 4ffor all datasets. Ave., average; Exp., expression.

g, Visium dataonahealthy reference kidney (cortex, top; medulla, bottom).
Left, haematoxylin and eosin (H&E)-stained tissue. Right, the per-bead
predicted transfer scores for cell types or transcript expression values. Scale
bar,300 pm. Cx, cortex; OM, outer medulla; IM, inner medulla. The black lines
outline histologically confirmed medullary rays leading into medulla.

injury markers SPPI1,CST3, CLUand IGFBP7*inhumans (Supplementary
Fig.2), arose early inmice afterinjury (Extended DataFig. 6¢-e). These
states showed a common expression and regulatory signature across
cell types associated with FOS/JUN signalling (Supplementary Fig. 2)
and werelargely depleted inrecovered mouse kidneys, consistent with
possible cell death or a progression into repair states. Putative adap-
tive (successful or maladaptive tubular repair) states were primarily
found within the proximal tubule (PT) and TAL subclasses in mouse
and human kidneys. Both adaptive epithelial (aEpi) cell types showed
expression profiles associated with epithelial differentiation, mor-
phogenesis, mesenchymal differentiationand EMT, while also exhibit-
ing a marked downregulation of transporters critical to their normal
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function (Extended DataFig. 7a—c). The adaptive PT (aPT) population
bothmappedto and correlated with failed repairin rodents (Extended
Data Fig. 2g), with characteristic expressions of VCAM1, DCDC2 and
HAVCRI** (Extended Data Fig. 7c). Notably, we now identify a similar
state within the TAL (aTAL), marked in humans by PROMI (encoding
CD133)and DCDC2 (Supplementary Table 13). These are consistent with
CD133"PAX2"lineage-restricted progenitors that are known to exist in
the proximal and distal tubules of the adult kidney**?*. Analysis of the
mouse AKI data revealed that these originated predominantly from
C-TAL, and followed a similar time course as aPT, persisting 6 weeks
after AKI, consistent with a potential failed-repair population®. This
suggests acommon aEpi state, sharing molecular signatures associ-
ated with injury and repair, that occurs in higher abundance within
the PT and cortical TAL.

Distinct altered states were identified within the stroma (aStr) that
were consistent with cell typesinvolved in wound healing and fibrosis
after tissue injury® (Extended Data Fig. 2i). These cell populations
encompass myofibroblasts (MyoF), cycling MyoF (cycMyoF) and a
group of adaptive fibroblasts (aFIB) representing potential MyoF
progenitors®. Their expression signatures included genes encoding
periostin (POSTN), fibroblast activation protein alpha (FAP), smooth
muscle actin (ACTA2) and collagens (Extended Data Fig. 7d). aStr cells
were enriched after mouse AKI, and they persisted at later timepoints
(Extended Data Fig. 6d,e). Furthermore, they exhibited high matri-
some expression®, consistent with their predicted role in extracellular
matrix deposition and fibrosis (Extended Data Fig. 7e). Thus, careful
annotation of altered states across kidney cell types has provided a
means for labelling injury populations. This isimportant not only for
diseased tissues, but alsoinreference tissuesin which they might arise
fromischaemic stress during sample acquisition or normal ageing. Key
outcomes are the ability to annotate healthy reference cell clusters
(Supplementary Fig. 3) as well as providing insights into the pathoge-
netic mechanisms of disease.

Spatially mapped injury neighbourhoods

For spatiallocalization of injury, altered states were mapped to Visium
data generated on a range of healthy reference, AKI and CKD tissues
(Supplementary Tables 2 and 3). As expected, altered cell state sig-
natures were enriched in AKI and CKD samples compared with in ref-
erence tissues (Fig. 3a,b). On the basis of cell type colocalization in
therelatively larger area of Visium spots, immune and stromal cells
colocalized more frequently with altered epithelial cells (Fig. 3c), con-
sistent with increased fibrosis and inflammation around damaged
tubules. Furthermore, cell-type-specific altered states in Visium data
that showed expression profiles consistent with snCv3/scCv3 (Fig. 3d)
were directly mapped to histological areas of injury. For example, stro-
mal (fibroblast (FIB)), aStr (aFIB) and immune cells (monocyte-derived
cells (MDCs)) localized to aregion of fibrosis within the cortex of a CKD
biopsy (Fig. 3e,f). This region abutted dilated and atrophic tubules
thatshowed an aPT signature marked by CDH6* (Extended DataFig. 7f
and Supplementary Table 11). We also found evidence for injury of the
medullary tubules (Extended Data Fig. 7g-i), with an area showing
intraluminal cellular cast formation, cell sloughing and loss of nuclei
that were associated with degenerative CD cells, including degenera-
tive medullary principal cells (dM-PCs) and transitioning principal and
intercalated cells. This regionincreased expression of the degenerative
marker DEFBI1, which was previously shown to contribute to fibrosis
throughimmune cell recruitment?. These results support co-mapping
of snCv3/scCv3 reference and altered cell types to histological areas
of injury.

Tofurtheruncoverinsitu cellular niches and injured microenviron-
ments across kidney disease, we performed 3D multiplexed immuno-
fluorescence imaging and label-free cytometry (3DTC) with second
harmonic generation for collagen content” on KPMP AKI and CKD
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kidney biopsy samples (Extended Data Fig. 8a and Supplementary
Tables 2 and 3). 3DTC defined cellular niches for 1,540,563 cells by
neighbourhood analysis of 14 classes of cells covering renal cortical and
medullary structures (Fig. 4a, Methods and Extended Data Fig. 8b-i).
We identified 14 cellular niches through community detection that
included expected niches of cortical or medullary epithelium (N7
and N8 versus N14, N9 and N1, respectively; Fig. 4b,c). The TALand PT
neighbourhoods (N7 and N8) were enriched in areas of injury (Fig. 4c
and Extended Data Fig. 8i). Furthermore, areas of injury were associ-
ated with infiltrating leukocytes, including CD68" (myeloid), MPO*
(N) and CD3* (lymphoid or T) cells (N6, N11 and N13, respectively).
Uniquely, CD3" cells were almost exclusively detected in a subset of
neighbourhoods with areas of tissue damage including presumptive
epithelial degeneration (loss of markers and simplification) and fibrosis
(N13; Fig. 4a (iii) and 4c and Extended Data Fig. 8h), consistent with
degenerative epithelial enrichment found using Visium (Fig. 3c). By
contrast, myeloid cells were found in cellular diverse niches with corti-
calor medullary epithelium (N6 and N11; Fig. 4c). This is consistent with
the association of M2 macrophages (MAC-M2) with adaptive rather
than degenerative epitheliain Visium data (Fig. 3c) and their sustained
presence inmouse ischaemia-reperfusioninjury (IRI) (Extended Data
Fig. 6d). The leukocyte diversity was specific in 3D neighbourhoods,
as MPO" and CD3’ cells were overlapping, whereas CD3" cells were
conspicuously lowin neighbourhoods with CD68" cells (N11versus N6;
Fig.4cand Extended DataFig. 8g). As neutrophils colocalized with puta-
tive adaptive and degenerative states (Fig. 3c) and transiently infiltrate
early in mouse IRI (Extended Data Fig. 6d), neutrophils may infiltrate
along with T cells predominantly in areas of acute injury marked by
mixed degenerative and adaptive states. Alternatively, myeloid cells
(such as MAC-M2) may occur more predominantly within relatively
healthy areas showing active repair (adaptive or maladaptive). Overall,
the results from spatial transcriptomics, histological correlation and
3DTC demonstrate that altered states were enriched in PT and TAL
neighbourhoods, with distinctimmune-active cellular niches associ-
ated with healthy and injured tubules.

Stages and niches of epithelial repair

Toobtain adeeper understanding of the genetic networks underlying
the progression and potential pathology of altered tubular epithe-
lium, we performed trajectory inference on the snCv3/SNARE2 and
scCv3 subpopulations (Fig. 5a,b, Methods and Extended Data Fig. 9).
Although most degenerative states appeared too disconnected, aEpi
trajectories showed dynamic gene expression and regulatory transi-
tions from dedifferentiated to mature functional states (Supplemen-
tary Tables16-21). We further identified transitory states or modules
that may be associated with either successful or maladaptive repair.
Early repair cells showed expression signatures associated with pro-
genitor states (PROMI), microtubule reorganization (DCDCI) and AKI
(HAVCRI1,SPPI1) (Fig. 5b and Extended Data Fig. 9c,f). The directionality
of these repair trajectories was confirmed from RNA velocities esti-
mated from dynamical modelling of transcript splicing kinetics, and
the alignment with mouse AKI subpopulations (Fig. 5a and Extended
Data Fig. 9b,g). These analyses enabled the identification of TAL
repair signatures that were either conserved across species or human
specific (Fig. 5b).

Epithelial repair signalling was enriched for several growth factors
and pathways with known roles in promoting normal tubulogenesis,
aswellas maladaptive repair, fibrosis and inflammation. These include
Wnt, Notch, TGF-B, EGF, MAPK (FOS/JUN),JAK/STAT and Rho/Rac signal-
ling?*¢ (Fig. 5¢c, Extended DataFig. 9d and Supplementary Tables19-21),
with dynamic transcription of several pathway regulators mapped to
the TAL repair modules (Extended DataFig. 9h, i). In support of MAPK
signalling, PT cells that showed expression of PROM1 were subjacent
to phosphorylatedJUN (p-JUN) (Extended DataFig. 9e). Progressively
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Fig.3|Transcriptomically defined injury neighbourhoods. a, Themean
proportion of altered-state expression signatures (see Methods, 10x Visium
spatial transcriptomics) for all Visium spots (146,460 total spots over 22
individuals). Pvalues were calculated using Fisher’s exact tests over the spot
proportions. b, Feature plots of the aEpi cell state. Scale bar, 300 pm. The top
boundedregionisshownin Extended DataFig. 7h. ¢, Colocalization ofimmune
and stromal cells with epithelial cell injury states. The y axis shows the odds
ratio of colocalization (40,326 total spots over 22 individuals). Pvalues were
calculated using Fisher’s exact tests over the colocalization events. Ad/Mal,

active REL/NF-kB signalling along the aTAL and aPT trajectories further
expands on previous roles for this pathway in injured PTs" (Fig. Scand
Supplementary Table 19). We also found increased cAMP signalling
(CREB transcription factorsin aPT) capable of promoting dedifferen-
tiation*” and increased ELF3 activities that are potentially required for
mesenchymal-epithelial transition®, both indicating that adaptive
states may be poised for re-epithelialization.

Throughintegration of SNARE2 epigenomic profiles withsnCv3tran-
scriptomes, detailed gene regulatory networks (GRNs) were inferred
for TAL trajectory modules. Transcription factors with high network
importance were identified in each repair state, confirming key roles
for several major signalling pathways, including their downstream
target genes and processes (Extended Data Fig. 9j and Supplementary

adaptive/maladaptive representing successful or maladaptive tubular repair.
d, The average expression values for healthy reference and altered-state
markers across cell typesidentified using Visium. e, Histology and predicted
celltypesinacortical region (CKD) of interstitial fibrosis and neighbouring PT
atrophy (altered PT). The pie charts show the proportions of predicted transfer
scores for cell type annotations from snCv3 (Fig. 2b). The area corresponds to
thebottomboundedregioninb.Scalebar,100 um.f, The per-bead predicted
transfer scores for cell types for areashownine.Scalebar,100 pm.*P< 0.01,
**P<1x1075,***P<1x107°, Exact Pvalues are provided with the Source Data.

Tables 22-24). This highlighted a critical role for TRAP2B (AP-2[3), which
was previously found to be required for terminal differentiation of
distal tubule cells through activated expression of KCTDI*. Both fac-
tors were active or expressed within mid-repair states (Fig. 5¢) and
simulated perturbation of TRAP2B disrupted the repair trajectory tran-
sition (Extended Data Fig. 91,m). We therefore find adaptive epithelial
trajectories sharing common molecular profiles that progressively
upregulate cytokine signallinginvolved in tubule regeneration, while
also providing molecular links to pathways associated with fibrosis,
inflammation and end-stage kidney disease.

Slide-seq, Visium, immunofluorescence staining and RNA in situ
hybridization (ISH) experiments confirmed spatial localization of adap-
tive statesintoinjury niches (Fig. 5d,e and Extended Data Fig.10).aTAL
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Fig.4 |Defining cellular nichesinrenal disease from 3D fluorescence
imaging. a, Maximume-intensity projections of representative biopsies (cortex
or medulla) showing classification label examples (insets i-iii). Altered, altered
morphology orinjury; C-DN, cortical distal nephron; Glom, glomeruli; V, vessels;
VB, vascular bundle. Examples of MPO" and CD68" are indicated (i). The symbols
*and #indicate CD68"and MPO" cells, respectively, in (i) and insets. Arrowhead
indicates T cellin (iii) and inset. Scale bars, 1 mm (biopsy images), 100 pm
(iandii) and 5 um (insets). b, Community-based clustering on cell composition

populations in Slide-seq-processed tissues (3 niches, 2 individuals;
Fig. 5d and Extended Data Fig. 11a) were marked by an upregulation
of the aTAL marker /TGB6 and downregulated EGF expression, which
isknown to occur after TALinjury*’. These were identified adjacent to
areas of aStr enrichment, evidenced by elevated COL1AI expression.
These potentially fibrotic regions also showed diverse inflammation
for both lymphoid (T cell) and myeloid (MAC-M2/MDC) cell types that
co-localized around vessels (Fig. 5d). Analogously, aTAL injury niches
wereidentified in Visium data as spots (55 um) colocalizing with stro-
mal, lymphoid and myeloid cells (Fig. 5e, Methods and Extended Data
Fig.11b-e). Localization of aTAL states to injured tubules was further
confirmed by ISH, in which PROMI-expressing cells showed clear his-
tological evidence of injury, including epithelial simplification (thin-
ning), loss of nuclei and loss of brush border in PTs (Extended Data
Fig.10e). Overall, aTAL, aStr and immune expression profiles from
spatial transcriptomics were consistent with those identified from
snCV3and scCv3, providing both validation and spatial co-localization
of these cell types and states into niches of ongoing injury and repair.

Given the upregulation of fibrotic cytokine signalling in epithelial
repair, these regenerating cells may represent maladaptive states if
they accumulate or fail to complete tubulogenesis. We therefore inves-
tigated the contribution of these states to cell-cell secreted ligand-
receptorinteractions within afibrotic niche (Supplementary Table 25).
From spatial assays, this niche may comprise aEpi cells adjacent to
normal and altered arteriole cells and fibroblasts, and immune cells that
include lymphoid and myeloid cells (Figs. 3-5). Using snCv3 and scCv3
datasets associated with trajectory modules, we identified aTAL repair
states as having a higher number of interactions first with immune
cells (early repair), then with the stroma (mid-repair; Fig. 6a,b). This
was associated with secreted growth factors of the FGF, BMP, WNT,
EGF, IGF and TGF-3 families and the gain of interactions with MAC-M2
and T cells (Extended Data Fig. 11f). Thisindicates that adaptive tubule
states may recruit activated fibroblasts and MyoF both primarily and
secondarily through their recruitment of immune cells.

Wealso found additional evidence for the activation of EGF pathway
signalling within the adaptive epithelial trajectories, which in itself
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foraround 20,000 randomly chosen neighbourhoods (15 individuals). The

red outline indicates neighbourhoods including the medulla. ¢, The cellular
compositionof the neighbourhoods identified inb. d, Pairwise analysis of cells
within1.2 million neighbourhoods (15 individuals); colours are asindicatedinc.
e, Pearson’s coefficients for selectinteractions, the colourindicatesboth the
value and direction of the correlation. Pvalues were generated using two-sided
t-tests.

may lead to activation of TGF-3 signalling and create a niche capable
of promoting fibrosis*. Consistently, EGF ligands NRG1and NRG3 both
become expressedin aEpistates forapossible role in stromal cells (STR)
and MAC-M2 recruitment (Figs. 5d,e and 6c,d). Early and mid-repair
TAL states may also recruit or stimulate T cells through expression
of the CD226-interacting protein NECTIN2 (Fig. 6¢,d). Alternatively,
BMP6 signalling from mid-repair states may have arole in preventing
fibrosis* through possible SMAD1 activation of fibroblast differentia-
tion within aFIB populations (Fig. 6¢,d, Extended Data Fig. 11g,h and
Supplementary Tables 26-28). BMP6 expression was also detected
inrepair states of the mouse AKI model at late timepoints when aFIB
cells already showed reduced /GFI expression (Extended Data Fig. 11g).
IGF1secreted from aFIB cells may signal to both stimulate MYOF dif-
ferentiation*? and promote regeneration of the repairing epithelial
cells through IGFIR* (Fig. 6¢,d). Given the timing of BMP6 and IGF1
expression after acute injury, BMP6-induced differentiation pathways
within the aFIB cells may represent a late aTAL signal to dampen the
fibroblast response. We therefore identify state-and niche-dependent
signalling for reparative states in proximal and distal tubules that may
ultimately influence the extent of fibrosis and inflammation.

Adaptive states can be maladaptive

Although recruitment of stromal and immune cells is necessary for
normal wound healing, persistent recruitment by aEpi cells may
impair epithelial function or lead to continued release of cytokines
promoting disease progression. Consistent with this, we found that
aEpi gene signatures that were conserved across snCv3 and scCv3
(Supplementary Table 29) were associated with poor renal function
in CKD cases (Extended Data Fig. 12a). Thus, successful or maladap-
tive repair within the TAL may have a role in the transition to chronic
disease. Notably, aTAL signatures underlying early repair states were
significantly associated with disease progression using unadjusted and
sequentially adjusted survival models within the Nephrotic Syndrome
Study Network (NEPTUNE) cohort of 193 patients** (Fig. 6e, Methods,
Extended Data Fig. 12b and Supplementary Table 30). Furthermore,
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Fig.5|Expressionand regulatory signatures of adaptive epithelial cells.

a, Trajectory of TAL cells for snCv3, scCv3 and mouse AKI* data, showing
mouse to human mapping. Top right, latent time heat map from RNA velocity
estimates. Bottomright, bar plot of collection groups after IRIacross mouse
trajectory modules. b, Heat map of smoothened gene expression (conserved
or human specific) along the inferred TAL pseudotime. State modules based on
the gene expression profiles are shown.M, M-TAL; C, C-TAL; Ad/Mal, adaptive/
maladaptive, representing successful or maladaptive tubular repair.c, SNARE2
average accessibilities (access.) (chromVAR) and the proportion accessible for
transcription-factor-binding sites (TFBSs) (right), and the averaged gene
expression values (log scale) and the proportion expressed for integrated

inanindependent cohort of 131 patients with kidney disease in the
European Renal cDNA Bank (ERCB) cohort, aEpi scores varied by kid-
ney disease diagnosis relative to living donors®. Specifically, patients
with diabetes, hypertension and focal segmental glomerular sclerosis
had higher aPT and common aPT-aTAL signatures compared with
that of living donors after adjusting for age and sex. In the diabetes
group, the aPT and common aPT-aTAL signatures remained higher
than that of living donors even after adjusting for age, sex and esti-
mated glomerular filtration rate (eGFR; Methods and Supplementary
Table 30). Nevertheless, it isimportant to note that the clinical cor-
relations are based on a small sample size and should therefore be
interpreted with care.

snCv3/scCv3 modules (left). TF, transcription factor. d, Slide-seq fibrotic
regions. Top and bottomright, bead locations for arepresentative region,
coloured by predicted subclasses, prediction weights or scaled gene
expression values. Marker genes are /TGB6 (aTAL), EGF and SLC12A1 (TAL), CD14
(MAC-M2/MDC), MYH11 (VSMC/MyoF) and COL1A1 (aStr). The bar plot shows
theimmune subclass counts and the dot plots show the average expression of
marker genes generated from three fibrotic regions (two individuals; Extended
DataFig.11a).Scale bar, 50 pm. e, Visium TAL niches identified from all Visium
spots and defined by colocalized cells (Methods and Extended Data Fig.11b-e),
showing the proportion of component cell type signatures. The dot plots show
the niche marker gene average expression values.

These findings indicate that altered TAL functionality, including
its GFR-regulatory role through tubuloglomerular feedback, may
represent a major contributing factor to progressive kidney failure.
Furthermore, causal variants for eGFR and chronic kidney failure
were enriched within TAL regulatory regions that were also enriched
for oestrogen-related receptor (ESSR) transcription-factor motifs
(Extended Data Fig. 12c and Supplementary Table 31). ESRR tran-
scription factors (especially ESRRB), which are key playersin TAL ion
transporter expression*, are central regulators of the TAL expression
network (Extended Data Fig. 12d), become inactivated in adaptive
states (Fig. 5c) and, in experimental models, could exacerbate AKl and
fibrosis*’. Expression quantitative trait loci (eQTL) associated with
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kidney function that were previously shown to be enriched primarily
in PTs also showed enrichment within the TAL, along with signatures
associated with acute injury and fibrosis in a human AKI to CKD pro-
gression study (Extended Data Fig. 12e). Thus, we demonstrate both
apotential maladaptiverole for the aEpistates and a potential central
role for the TAL segment in maintaining the health and homeostasis
of the human kidney. This is consistent with the finding that the top
renal genes showing decline in a mouse ageing cell atlas were associ-
ated with the TAL*,

Our findings implicate an accumulation of maladaptive epithelia
during disease progression that may also be consistent with chroni-
cally senescent cells. This is supported by both increased expres-
sion of ageing-related genes, stress-response transcription factor
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integrated data.d, Dot plots validating select markers shownin cinthe Visium
data. e, Unadjusted Kaplan-Meier curves by cell state scores for composite of
end-stagerenal disease (ESRD) or for40% drop in eGFR from time of biopsy in
the NEPTUNE adult patient cohort (199 patients; Supplementary Table 30).
Patientswho reached the end point between screening and biopsy were
excluded. Enrich., enrichment. Pvalues calculated using log-rank tests for
trend areshown (P=0.021(aPT), P=0.003 (aTAL), P=0.55 (degenerative)).

activitiesand an apparent senescence-associated secretory phenotype
(SASP) for these cells (Extended Data Fig. 12f,g). As such, we detected
CDKNIA (also known as p21°?Y), CDKNIB (also known as p275%Y), CDKN2A
(alsoknown as p16™?) and CCL2 expressioninlate aPT and aTAL states.
Furthermore, expression signatures for reparative processes in aEpi
states were downregulated in the CKD (n = 28) over AKI (n =22) cases
used in this study (snCv3/scCv3; Supplementary Table 32). This is dis-
tinct from the immune response signatures that were more enriched
in AKI cases more globally across cell types (Extended Data Fig. 12h
and Supplementary Table 33). Overall, our findings are consistent with
pro-inflammatory repair processes that may persist after injury®, or
may subsequently transition to maladaptive or senescent pro-fibrotic
states during disease progression.



Discussion

In contrast to recent work to broadly integrate major healthy kidney
celltypes across disparate datamodalities*’, here we present acompre-
hensive spatially resolved healthy and injured single-cell atlas across
the corticomedullary axis of the kidney. Signals between tubuli, stroma
and immune cells that underlie normal and pathological cell neigh-
bourhoods were identified, including putative adaptive or maladap-
tiverepair signatures within the epithelial segments that may reflect a
failure to complete differentiation and tubulogenesis. Spatial analyses
identified that these epithelial repair states have elevated cytokine
production, increased interactions with the distinct fibrotic and
inflammatory cell types, and expression signatures linked to senes-
cence and progression to end-stage kidney disease. Failure of these
cellsto complete tubulogenesis, which might arise from anincompat-
ible cytokine milieu within the fibrotic niche, initself might ultimately
contribute to a progressive decline in kidney function. In turn, the
high-cytokine-producing nature of these cells may further contribute to
kidney disease through promotion of fibrosis. We portray aclear role for
therelatively understudied TAL segment of the nephron, aregion that
is critical for maintaining osmotic gradient and blood pressure through
tubuloglomerular feedback. The insights, discoveries and interactive
data visualization tools provided here will serve as key resources for
studies into normal physiology and sex differences, pathways associ-
ated with transitions from healthy and injury states, clinical outcomes,
disease pathogenesis and targeted interventions.
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Methods

Statistics and reproducibility

For 3D imaging and immunofluorescence staining experiments, each
staining was repeated on at least two separate individuals or separate
regions. Forimmunofluorescence validation studies, commercially
available antibodies were used; 13 out of the 15 tissue samples were also
analysed using snCv3 or scCv3. For ISH, 6 tissue samples (4 biopsies
and 2 nephrectomies) were analysed. For Slide-seq, 67 tissue pucks
(6 individuals) were analysed, with 2 individuals also analysed using
snCv3 or Visium. For Visium, 23 kidney tissue sections (22 individu-
als) were imaged, including 6 that were also analysed using snCv3 or
scCv3 and one examined using Slide-seq. Orthogonal validation of
spatial transcriptomic annotations revealed similar marker gene
expression in snCv3/scCv3 and these technologies, as well as spatial
localization that corresponded with histologically validated Visium
spot mapping. Although multiomic data fromthe same samples would
be the most informative, this remains technically challenging. However,
wherever possible, several technologies were performed on a subset
of samples from the same patient and, in some cases, the same tissue
block was used to generate multimodal data (Extended Data Fig. 1a
and Supplementary Table 3). This heterogeneous sampling approach
ensured cell type discovery while minimizing assay-dependent biases
orartifactsencountered when using different sources of kidney tissue.
We recognize that the heterogeneity of sample sources for several
technologiesis a potential limitation due logistics and limited patient
biopsy material.

Ethical compliance

We have complied with all ethical regulations related to this study. All
experiments on human samples followed all relevant guidelines and
regulations. Human samples (Supplementary Table 1) collected as
part of the KPMP consortium (https://KPMP.org) were obtained with
informed consent and approved under a protocol by the KPMP single
IRB of the University of Washington Institutional Review Board (IRB
20190213). Samples as part of the HuBMAP consortium were collected
by theKidney Translational Research Center (KTRC) under a protocol
approved by the Washington University Institutional Review Board (IRB
201102312). Informed consent was obtained for the use of data and
samples for all participants at Washington University, including living
patients undergoing partial or total nephrectomy or rejected kidneys
from deceased donors. Cortical and papillary biopsy samples from
patients with stone disease were obtained withinformed consent from
Indiana University and approved by the Indiana University Institutional
Review Board (IRB1010002261). For Visium spatial gene expression,
reference nephrectomies and kidney biopsy samples were obtained
from the KPMP underinformed consent or the Biopsy Biobank Cohort
of Indiana (BBCI)*® under waived consent as approved by the Indiana
University Institutional Review Board (IRB1906572234). Living donor
biopsies as part of the HCA were obtained with informed consent under
the HumanKidney Transplant Transcriptomic Atlas (HKTTA) under the
University of Michigan IRBHUM00150968. Deidentified leftover frozen
COVID-19 AKI kidney biopsies were obtained from the Johns Hopkins
University pathology archive under waived consent approved by the
Johns Hopkins Institutional Review Board (IRB 00090103).

Single-cell and single-nucleus human tissue samples

For single-nucleus omic assays, tissues were processed according
to a protocol available online (https://doi.org/10.17504/protocols.
i0.568g9hw). For nucleus preparation, around 7 sections of 40 umthick-
nesswere collected and stored in RNAlater solution (RNA assays) or kept
ondryice (accessible chromatinassays) until processing or used fresh.
To confirm tissue composition, 5 pmsections flanking these thick sec-
tions were obtained for histology and the relative amount of cortex or
medullacompositionincluding glomeruliwas determined. For single-

cellomicassays, tissues used (15 CKD,12 AKl and 18 living donor biopsy
cores) were preserved using CryoStor (StemCell Technologies).

Single-cell, single-nucleus and SNARE2 RNA-seq, quality control
and clustering

Isolation of single nuclei. Nuclei were isolated from cryosec-
tioned tissues according to a protocol available online (https://
doi.org/10.17504/protocols.io.ufketkw) with the exception that
4’,6-diamidino-2-phenylindole (DAPI) was excluded from the nuclear
extraction buffer and used only to stain a subset of nuclei used for
counting. Nuclei were used directly for omic assays.

Isolation of single cells. Single cells were isolated from frozen tissues
according to a protocol available online (https://doi.org/10.17504/
protocols.io.7dthién). The single-cell suspension was immediately
transferred to the University of Michigan Advanced Genomics Core
facility for further processing.

10x Chromium v3 RNA-seq analysis. 10x single-nucleus RNA-seq
and 10x single-cell RNA-seq were performed according to protocols
available online (https://doi.org/10.17504/protocols.io.86khzcw and
https://doi.org/10.17504/protocols.io.7dthién, respectively), both
using the 10x Chromium Single-Cell 3’ Reagent Kit v3. Sample demulti-
plexing, barcode processing and gene expression quantifications were
performed using the 10x Cell Ranger (v.3) pipeline using the GRCh38
(hg38) reference genome with the exception of a subset of scCv3
experiments that used hgl9 (indicated in Supplementary Table1). For
single-nucleus data, introns were included in the expression estimates.

SNARE2 dual RNA and ATAC-seq analysis. SNARE-seq2”, as outlined
previously™, was performed according to a protocol available online
(https://doi.org/10.17504/protocols.io.be5gjg3w). Accessible chroma-
tinand RNA libraries were sequenced separately on the NovaSeq 6000
(Illumina) system (NovaSeq Control Software v.1.6.0 and v.1.7.0) using
the 300 cycle and 200 cycle reagentkits, respectively.

SNARE2 data processing. Detailed step-by-step processing for
SNARE2data hasbeen outlined previously™. This has now been devel-
oped as an automated data processing pipeline that is available at
GitHub (https://github.com/huqiwen0313/snarePip). snarePip (v.1.0.1)
was used to process all the SNARE2 datasets. The pipeline provides
an automated framework for complex single-cell analysis, including
quality assessment, doublet removal, cell clustering and identification,
robust peak generation and differential accessible region identification,
with flexible analysis modules and generation of summary reports for
both quality assessment and downstream analysis. The directed acyclic
graphwasusedtoincorporate the entirety of the data-processing steps
for better error control and reproducibility. For RNA processing, this
involved removal of accessible chromatin contaminating reads using
cutadapt (v.3.1)*, dropEst (v.0.8.6)°2to extract cell barcodes and STAR
(version 2.5.2b)* to align tagged reads to the genome (GRCh38). For
accessible chromatin data, thisinvolved snaptools (v.1.2.3)%* and mini-
map (v.2-2.20)* for alignment to the genome (GRCh38).

Quality control of sequencing data. 10x snRNA-seq (snCv3). Cell
barcodes passing 10x Cell Ranger filters were used for downstream
analyses. Mitochondrial transcripts (MT-*) were removed, doublets
were identified using the DoubletDetection software (v.2.4.0)% and
removed. All of the samples were combined across experiments and
cellbarcodes withgreater than400 and less than 7,500 genes detected
were retained for downstream analyses. To further remove low-quality
datasets, a gene UMl ratio filter (gene.vs.molecule.cell.filter) was ap-
plied using Pagoda2 (https://github.com/hms-dbmi/pagoda2).

10xscRNA-seq (scCv3). Asaquality-control step,acut-off of <50% mito-
chondrial reads per cellwas applied. The ambient mRNA contamination
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was corrected using SoupX (v.1.5.0)”. The mRNA content and the num-
ber of genes for doublets are comparatively higher than for single cells.
To reduce doublets or multiplets from the analysis, we used a cut-off
of >500 and <5,000 genes per cell.

SNARE2RNA. Cellbarcodes for each sample were retained with the fol-
lowing criteria: having an DropEst cell score of greater than 0.9; having
greater than 200 UMI detected; having greater than200 and less than
7,500 genes detected. Doublets identified by both DoubletDetection
(v.3.0) and Scrublet (https://github.com/swolock/scrublet; v.0.2.2)
were removed. To further remove low-quality datasets, a gene UMI
ratio filter (gene.vs.molecule.cell.filter) was applied using Pagoda2.
SNARE2 ATAC. Cell barcodes for each sample that had already passed
quality filtering from RNA data were further retained with the follow-
ing criteria: having transcriptional start site (TSS) enrichment greater
than 0.15; having at least 1,000 read fragments and at least 500 UMI;
having fragments overlapping the promoter region ratio of greater
than 0.15. Samples were retained only if they exhibited greater than
500 dual omic cells after quality filtering.

Clustering snCv3. Clustering analysis was performed using Pagoda2,
whereby counts were normalized to the total number per nucleus,
batch variations were corrected by scaling expression of each gene
to the dataset-wide average. After variance normalization, all 5,526
significantly variant genes were used for principal component analysis
(PCA). Clustering was performed at different k values (50,100, 200,
500) on the basis of the top 50 principal components, with cluster
identities determined using the infomap community detection
algorithm. The primary cluster resolution (k =100) was chosen on the
basis of the extent of clustering observed. Principal components and
cluster annotations were thenimported into Seurat (v.4.0.0) and uni-
form manifold approximation and projection (UMAP) dimensional-
ity reduction was performed using the top 50 principal components
identified using Pagoda2. Subsequent analyses were then performed
in Seurat. A cluster decision tree was implemented to determine
whether a cluster should be merged, split further or labelled as an alt-
ered state. For this, differentially expressed genes between clusters
were identified for each resolution using the FindAlIMarkers function
in Seurat (only.pos = TRUE, max.cells.per.ident =1000, logfc.thresh-
old =0.25, min.pct = 0.25). Possible altered states were initially defined
for clusters with one or more of the following features: low genes
detected, a highnumber of mitochondrial transcripts, ahighnumber of
endoplasmic-reticulum-associated transcripts, upregulation of injury
markers (CST3, IGFBP7, CLU, FABP1, HAVCRI1, TIMP2, LCN2) or enrich-
mentin AKI or CKD samples. Clusters (k =100) that showed no distinct
markers were assessed for altered-state features; if present, then these
clusters were tagged as possible altered states, if absent then clusters
were merged on the basis of their cluster resolution at k=200 or 500.
If this merging occurred across major classes (epithelial, endothelial,
immune, stromal) at higher k values, then these clusters were instead
labelled as ambiguous or low quality (including possible multiplets).
For k=100 clusters (non-epithelial only) that did show distinct mark-
ers, their k=50 subclusters were assessed for distinct marker genes; if
present, then these clusters were split further. The remaining splitand
unsplit clusters were then assessed for altered-state features. If present,
they were tagged as possible altered states, if absent they were assessed
asthefinal cluster. Annotations of clusters were based on known posi-
tive and negative cell type markers™'>%8¢° (Supplementary Table 5),
the regional distribution of the clusters across the corticomedullary
axis and altered state (including cell cycle) features. For separation of
EC-DVR fromEC-AEA, the combined population wasindependently clus-
tered using Pagoda2 and clusters associated with medullary sampling
were annotated as EC-DVR. For separation of the REN cluster, stromal
cellsexpressing REN were selected on the basis of normalized expression
values of greater than 3. Final overall assessment of clustering accuracy
was performed using the Single Cell Clustering Assessment Framework

(SCCAF v.0.0.10) using the default settings, and compared against that
associated with broad cell type classifications (subclass level 1).

Annotating snCv3 clusters. To overcome the challenge of dis-
parate nomenclature for kidney cell annotations, we leveraged a
cross-consortium effort to use the extensive knowledge base from
human and rodent single-cell gene expression datasets, as well as the
domain expertise from pathologists, biologists, nephrologists and
ontologists™>?>%8°¢! (see also Supplementary Tables 4 and 5 and the
HuBMAP ASCT+B Reporter at GitHub (https://hubmapconsortium.
github.io/ccf-asct-reporter)). This enabled the adoption of astandard-
ized anatomical and cell type nomenclature for major and minor cell
types and their subclasses (Supplementary Table 4), showing distinct
and consistent expression profiles of known markers and absence of
specific segment markers for some of the cell types (Extended Data
Fig.2aand Supplementary Table 5). The knowledge of the regions dis-
sected and histological composition of snCv3 data further enabled
stratification of distinct cortical and outer and inner medullary cell
populations (Fig.2b and Extended Data Fig.1). The cell type identities
and regional locations were confirmed through orthogonal valida-
tion using spatial technologies presented here and correlations with
existing human or rodent stromal,immune, endothelial and epithelial
datasets**>*8596162 (Extended Data Fig. 2b-1).

Atlas cell type resolution

Our atlas nowincludes a higher granularity for the loop of Henle, distal
convoluted tubule and collecting duct segments, now resolving three
descending thin limb cell types (DTL1I, 2, 3); different subpopulations
of medullary or cortical thick ascending limb cells (M-TAL/C-TAL); two
types of distal convoluted tubule cells (DCT1, 2); intercalated and prin-
cipal cells of the connecting tubules (CNT-IC and CNT-PC); cortical,
outer medullary and inner medullary collecting duct subpopulations
(CCD, OMCD, IMCD); and papillary tip epithelial cells abutting the calyx
(PapE).Molecular profiles for rare cell types important in homeostasis
were annotated, including juxtaglomerular renin-producing granular
cells (REN); maculadensa cells (MD); and a cell population with enriched
Schwann/neuronal (SCI/NEU) genes NRXN1, PLP1 and SI00B. Major
endothelial cell types were stratified, including endothelial cells of
the lymphatics (EC-LYM) and vasa recta (EC-AVR, EC-DVR). Specific
stromal and immune cell types were distinguished, including distinct
fibroblast populations across the cortico-medullary axis and 12immune
cell types from lymphoid and myeloid lineages.

Integrating snCv3 and SNARE2 datasets

Integration of snCv3 and SNARE RNA data was performed using Seurat
(v.4.0.0) using snCv3 as reference. All counts were normalized using
sctransform, anchors were identified between datasets based on the
snCv3 Pagoda2 principal components. SNARE2 data were then pro-
jected onto the snCv3 UMAP structure and snCv3 cell type labels were
transferred to SNARE2 using the MapQuery function. Both datasets
were then merged and UMAP embeddings were recomputed using the
snCv3 projected principal components. Integrated clusters were identi-
fied using Pagoda2, with the k-nearest neighbour graph (k =100) based
ontheintegrated principal components and using the infomap com-
munity detectionalgorithm. The SNARE2 component of theintegrated
clusters was then annotated to the most overlapping, correlated and/
or predicted snCv3 cluster label, with manual inspection of cell type
markers used to confirmidentities. Integrated clusters that overlapped
different classes of cell types were labelled as ambiguous or low-quality
clusters. Segregation of EC-AEA, EC-DVR and REN subpopulations was
performed as described for snCv3 above.

Integrating snCv3 and scCv3 datasets
Integration of snCv3 and scCv3 data was performed using Seurat
v.4.0.0 with snCv3 as a reference. All counts were normalized using
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sctransform, anchors were identified between datasets based on the
snCv3 Pagoda2 principal components. scCv3 datawere then projected
onto the snCv3 UMAP structure and snCv3 cell type labels were trans-
ferred to scCv3 using the MapQuery function. Both datasets were
then merged and UMAP embeddings recomputed using the snCv3
projected principal components. Integrated clusters were identified
using Pagoda2, with the k-nearest neighbour graph (k=100) based
ontheintegrated principal components and using the infomap com-
munity detection algorithm. The scCv3 component of the integrated
clusters was then annotated to the most overlapping or correlated
snCv3 subclass, with manual inspection of cell type markers used to
confirm identities. Cell types that could not be accurately resolved
(PT-S1/PT-S2) were kept merged. Integrated clusters that overlapped
different classes of cell types or that were too ambiguous to anno-
tate were considered to be low quality and were removed from the
analysis. Segregation of EC-AEA, EC-DVR and REN subpopulations was
performed as described above.

Assessment of snCv3, scCv3 and SNARE2 data integration
Asdescribed above, we used the demonstrated Seuratv.4.0.0 integra-
tion strategy® to project query datasets (scCv3, SNARE2RNA) into the
same PCA space as our snCv3reference. These imputed principal com-
ponents were used to generate anintegrated embedding and integrated
clustering through Pagoda2. Query datasets within these integrated
clusters were manually annotated on the basis of co-clustering with the
reference data, predicted subclass levels and the manual inspection of
marker genes. This process was necessary to account for misalignments
thatoccurred for altered states showing more ambiguous marker gene
expression profiles, especially for mapping betweensingle-nucleus and
single-cell technologies. To assess the accuracy in our alignments, we
performed correlation of average expression signatures between the
assigned query cell populations and the original reference cell popula-
tions (Extended DataFig. 3e). Although several samples were examined
using more than one platform (Supplementary Table 3 and Extended
Data Fig. 1a), not all conditions could be covered by all technologies,
with AKI/CKD biopsies too limited in size to process with SNARE2 and
deeper medullaryregion capture beingless likely for needle biopsies.
Despite the differences in patient conditions and regions sampled,
we were able to confirm cross-platform sampling with minimal batch
contributions for a majority of our subclass (level 3) assignments (77
total). This was demonstrated through integrated bar plots for assay,
patient, sex and condition contributions (Extended Data Fig. 3e). The
degree to which cells/nuclei between assays were mixed within these
subclasses was confirmed using normalized relative entropy weighted
by subclass size®*, with an average assay entropy across subclasses
(covered by more than one technology) of 0.71and an average patient
entropy of 0.71 (out of 1). Mixing within the subclasses was also assessed
on the cell embeddings (principal components) using the average
silhouette width or ASW (scib.metrics.silhouette_batch function of
the sclB package v.1.0.3%), with an average score of 0.86 for assays and
0.82for patients (out of 1). Finally, the average of k-nearest neighbour
batch effect test (KBET) score per subclass, computed for all patients
using the scib.metrics.kBET function of the scIB package, was 0.49 (out
of 1), which is consistent with other integration efforts®.

Integrating snCv3 with published datasets

Integration with published data was performed using Seurat v.4.0.0
with snCv3 as a reference. All counts were normalized using sctrans-
form, anchors were identified between datasets on the basis of the
snCv3 Pagoda2 principal components. Published data were then pro-
jected ontothe snCv3 UMAP structure and snCv3 cell type labels were
transferred to the published dataset using the MapQuery function.
Ref.>snDrop-seq data are available at the Gene Expression Omnibus
(GEO: GSE121862). Ref. P single-nucleus RNA-seq and ref. ** single-cell
RNA-seq count matrices and metadata tables were downloaded from

the UCSC Cell Browser (Cell Browser dataset IDs human-kidney-atac
and kidney-atlas, respectively).

NSForest marker genes

To identify a minimal set of markers that can identify snCv3 clusters
andsubclasses (subclass.I3), or scCv3integrated subclasses (subclass.
13), we used the Necessary and Sufficient Forest® (NSForest v.2; https://
github.com/JCVenterInstitute/NSForest/releases/tag/v2.0) software
using the default settings.

Correlation analyses

For correlation of RNA expression values between snCv3 and scCv3,
or SNARE2, average scaled expression values were generated, and
pairwise correlations were performed using variable genes identi-
fied from Pagoda2 analysis of snCv3 (top 5,526 genes). For compari-
sonwith mouse single-cell RNA-seq data of healthy reference tissue®,
raw counts were downloaded from the GEO (GSE129798). For com-
parison with mouse single-cell RNA-seq from IRI tissue*, raw counts
were downloaded from the GEO (GSE139107). For human fibroblast
and myofibroblast data®, raw counts were downloaded from Zenodo
(https://doi.org/10.5281/zenod0.4059315). For each dataset, raw
counts were processed using Seurat: counts for all cell barcodes were
scaled by total UMI counts, multiplied by 10,000 and transformed to
log space. For comparison with mouse single-cell types of the distal
nephron®, the precomputed Seurat object was downloaded from the
GEO (GSE150338). For mouse bulk distal segment data®, normalized
countswere downloaded from the GEO (GSE150338) and added to the
‘data’ slot in a Seurat object. Bulk-sorted immune cell reference data
were obtained using the celldex package® using the Monacolmmune-
Data()®* and ImmGenData()®®® functions and log counts imported
into the ‘data’ slot of Seurat. For correlation against these reference
datasets, averaged scaled gene expression values for each cluster were
calculated (Seurat) using an intersected set of variable genes identi-
fied for each dataset (identified using Padoda2 for snCv3 and Seurat
for reference datasets). Forimmune reference correlations, a list of
immune-related genes downloaded from ImmPort (https://immport.
org) was used instead of the variable genes. Correlations were plot-
ted using the corrplot package (https://github.com/taiyun/corrplot).
Immune annotations within our atlas were further confirmed by manual
comparisonwith recently reported data™.

Cross-species alignment of cell types/states

For mouse single-nucleus RNA-seq data from IRI tissue*, raw counts
were downloaded from the GEO (GSE139107). Integration was per-
formed using Seuratv.4.0.0 with snCv3 as areference. All counts were
normalized using sctransform, anchors wereidentified between data-
sets on the basis of the snCv3 Pagoda2 principal components. Mouse
data were then projected onto the snCv3 UMAP structure and snCv3
cell type labels were transferred using the MapQuery function.

Computing single-nucleus/cell-level expression scores

To identify markers associated with altered states (degenerative;
adaptive—epithelial or aEpi; adaptive—stromal or aStr; cycling), snCv3
and scCv3 data were independently used to identify differentially
expressed genes betweenreference and corresponding altered states
for each subclass level 1 (subclass.l1). To ensure general state-level
markers, differentially expressed genes were identified using the
FindConservedMarkers function (grouping.var = “condition.I1”,
min.pct = 0.25, max.cells.per.ident =300) in Seurat. A minimal set
of general degenerative conserved genes was identified as enriched
(P<0.05)inthe degenerative state of each condition.l1 (reference, AKI
and CKD) and in atleast 4 out of the 11 (snCv3) or 9 (scCv3) subclass.I1
cellgroupings. Aminimal set of conserved aEpi genes was identified as
enriched (P<0.05) inthe adaptive state of each condition.l1 (reference,
AKland CKD)inboththe aPTand aTAL cell populations. This aEpi gene
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set was then further trimmed to include only those genes that were
enriched within the adaptive epithelial population (aPT/aTAL) versus all
othersusing the FindMarkers function and with aminimum Pvalue of
0.05and average log,-transformed fold change of >0.6. A minimal set of
conserved aStr genes was identified as enriched (P < 0.05) inthe adap-
tive state of each condition.I1 (reference, AKland CKD for snCv2; refer-
ence and AKI for scCv3) for stromal cells. To increase representation
from MyoF inscCv3 showing asmall number of these cells, MyoF-alone
enriched genes (average log,-transformed fold change > 0.6; adjusted
P<0.05)wereincluded for thescCv3 gene set. The aStr gene sets were
then further trimmed to include only those genes that were enriched
withinthe adaptive stromal population (aFIB and MYOF) compared with
all others using the FindMarkers function and with a minimum Pvalue
of 0.05 and average log,-transformed fold change of >0.6. Aminimal set
of cycling-associated genes was identified as those enriched (adjusted
P<0.05and average log,-transformed fold change > 0.6) in the cycling
state across all associated subclass.l1 cell groupings.

Scores for altered state, extracellular matrix and for gene sets associ-
ated with ageing or SASP were computed for each cell from averaged
normalized counts using only the genes showing a minimum correla-
tion to the averaged whole gene set of 0.1 (ref. *) (https://github.com/
mahmoudibrahim/KidneyMap). Ageing and SASP genes were obtained
fromref. *® (top 20 genes upregulated in ageing kidney)*8, ref. ® (genes
fromtable S3, group.age A), ref.”® (SASP genes from figure 2¢) or ref. !
(from table S1 (sheet IR Epithelial SASP), having a positive AVE log,
ratio)”’.

Gene set enrichment analyses (GSEA)

To compute gene set enrichments for aPT and aTAL, conserved genes
differentially expressed in the adaptive over reference states wereiden-
tified asindicated above. Gene set ontologies from the Molecular Signa-
tures Database (MSigDB) were downloaded from https://gsea-msigdb.
organd pathway enrichments were computed using fgsea’ and gage”,
retaining only Gene Ontology terms that were significant (P < 0.05) for
both. Redundant pathways were collapsed using the fgsea function
collapsePathways and visualized using ggplot.

SNARE2 accessible chromatin analyses

SNARE2 chromatin datawere analysed using Signac™ (v.1.1.1). Peak call-
ing was performed using the CallPeaks function and MACS (v.3.0.0a6;
https://github.com/macs3-project/MACS) separately for clusters, sub-
class.l1and subclass.I3 annotations. Peak regions were then combined
and used to generate a peak count matrix using the FeatureMatrix func-
tion, then used to create a new assay within the SNARE2 Seurat object
using the CreateChromatinAssay function. Gene annotation of the
peaks was performed using GetGRangesFromEnsDb(ensdb = EnsDb.
Hsapiens.v86). TSS enrichment, nucleosome signal and blacklist frac-
tions were all computed using Signac. Jaspar motifs (JASPAR2020, all
vertebrate) were used to generate a motif matrix and motif object that
was added to the Seurat object using the AddMotifs function. For motif
activity scores, chromVAR” (v.1.12.0; https://greenleaflab.github.io/
chromVAR) was performed using the RunChromVAR function. The
chromVAR deviation score matrix was then added to a separate assay
slot of the Seurat object. To assess the chromatin data, UMAP embed-
dings were computed from cis-regulatory topics that were identified
through latent Dirichlet allocation using CisTopic™ (v.0.3.0; https://
github.com/aertslab/cisTopic) and the runCGSModels function. Only
regions accessiblein 50 nucleiand nucleiwith 200 of these accessible
regions were used for cisTopic and downstream analyses. The UMAP
coordinates for the remaining nuclei were added to the Seurat object.
To ensure high-quality accessible chromatin profiles, only clusters
with more than 50 nuclei were retained for downstream analyses
(Supplementary Table 7). For joint embedding of SNARE2 accessible
chromatin and gene expression, aweighted nearest-neighbour graph
was computed using the FindMultiModalNeighbors function (Seurat)

based on PCA (RNA) and latent semantic indexing or LSI (accessible
chromatin) dimensionality reductions. UMAP dimensionality reduc-
tion was performed to visualize the joint embedding.

DAR analyses

Sites that were differentially accessible for agiven cell grouping (sub-
class) were identified against a selection of background cells with the
best matched total peak counts, to best account for technical differ-
ences in the total accessibility for each cell. For this, the total peaksin
each cell were used for estimation of the distribution of total peaks
(depth distribution) for the cells belonging to the test cluster, and
10,000 background cells with a similar depth distribution to the test
cluster were randomly selected. Differentially accessible sites (DARs)
were thenidentified as significantly enriched in the positive cells over
selected background cells using the CalcDiffAccess function (https://
github.com/yanwu2014/chromfunks), where Pvalues were calculated
using Fisher’s exact tests ona hypergeometric distribution and adjusted
Pvalues (or g values) were calculated using the Benjamini-Hochberg
method. Forsubclass level 2DARs, VSM/P clusters were merged and the
MD was combined with C-TAL before to DAR calling. Subclasses with
>100 DARs with g < 0.01were used for further analysis. Co-accessibility
between all peak regions was computed using Cicero”” (v.1.8.1). Sites
werethen linked to genes on the basis of co-accessibility with promoter
regions, occurring within 3,000 bp of agene’s TSS, using the Region-
GenelLinks function (https://github.com/yanwu2014/chromfunks)
and the ChIPSeeker package’®. DARs associated with markers for each
subclass (identified at the subclass.|2 level using snCv3, P < 0.05) and
showing g < 0.01and alog-transformed fold change of >1 were selected
forvisualization. For this, DAR accessibility (peak counts) was averaged,
scaled (trimming values to a minimum of 0 and a maximum of 5) and
visualized using the ggHeat plotting function of the SWNE package”.
Motifenrichment within cell type DARs was computed using the hyper-
geometric test (FindMotifs function) in Signac.

Transcription factor analyses

Toidentify active transcription factors from SNARE2 accessible chro-
matindata, differential activities (or deviation scores) of TFBSs between
different populations were assessed using the Find[All]Markers func-
tion throughlogistic regression and using the number of peak counts
asalatentvariable. Only transcription factors with expression detected
within the corresponding cluster, subclass or state grouping were
included. For PT and TAL clusters, TFBSs that were differentially active
(P<0.05, average log,-transformed fold change of >0.35) and associ-
ated with transcription factors with expression detected in at least
2.5% of nuclei (SNARE2) were identified between clusters. Common
aPT/aTAL TFBS activities were identified from anintersection of those
differentially active and expressed within adaptive PT and TAL clusters.
ForaPT and aTAL trajectory modules, TFBSs showing differential activ-
ity between modules (adjusted P < 0.05, average log,-transformed fold
change of >0.35) and expression detected within at least 2.5% of nuclei/
cells (snCv3/scCv3) were identified. For common degenerative state
TFBS activities, differentially active TFBSs were identified between
reference and degenerative states for each level 1subclass. Significant
degenerative state TFBS activities (P < 0.05, average log,-transformed
fold change of >0.35) in three or more subclass.l1 were trimmed to those
showing expression detected in more than 20% of the degenerative
state nuclei/cells for snCv3/scCv3.

Ligand-receptor interaction analyses

Ligand-receptor analyses were performed on the basis of the Cell-
Chat package (v.1.0.0; https://github.com/sqjin/CellChat). Only cells
inTAL,immune and stroma of subclass level 2 (immune: cDC, cycMNP,
MAC-M2, MAST,MDC, N,ncMON, NKT, pDC, PL, T and B; stroma: MyoF,
FIB, dFIB, cycMyoF and aFIB) and interactions for secreted ligands
were used to infer the cell-cell communication. For cells in the TAL
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trajectory, we computed theintercellular cell communication probabil-
ity between each module and other cell populations using the CellChat
function computeCommunProb (see ref. *° for a detailed description of
the method). The overall scaled communication probability was then
visualized based onacircle plot using a customized plot_communica-
tion function (Code availability). To further understand which signals
contribute most to the ligand-receptor (LR) interaction pathways,
we generated the pathway enrichment heat map of each interaction
forincoming, outgoing and overall signals using the plotSigHeatmap
function (Code availability). The contribution of significant LR pairs
of eachinteraction was alsoidentified using netAnalysis_contribution
inthe CellChat package.

GWAS analyses

To link SNARE2 cell types to kidney genome-wide association study
(GWAS) traits and diseases, we first summed the binary peak acces-
sibility profiles for all cells belonging to the same cell type to create a
pseudobulk peak-by-subclass accessibility matrix. Pseudobulk analyses
give more stable results, especially as SNARE2 accessibility datacanbe
sparse. To ensure sufficient coverage, we used subclass level 2 group-
ings with the following modifications: VSM/P clusters were merged; MD
was combined with C-TAL; subclasses with <100 DARs with g < 0.01 were
excluded. We used g-chromVAR® (v.0.3.2), an extension of chromVAR
for GWAS data, to identify cell types with higher than expected acces-
sibility of genomicregions overlapping GWAS-linked single-nucleotide
polymorphisms (SNPs). Running g-chromVAR requires first identi-
fying GWAS-linked SNPs that are more likely to be causal, a process
known as fine-mapping. For the chronic kidney failure GWAS traits, we
used existing fine-mapped SNPs from the CausalDB database, using
the posterior probabilities generated by CAVIARBF®>®, The original
GWAS summary statistics files were obtained from an atlas of genetic
associations from the UK BioBank®*. We manually fine-mapped the
CKD, eGFR, blood urea nitrogen and gout traits using the same code
thatwas used to generate the CausalDB database (https://github.com/
mulinlab/CAUSALdb-finemapping-pip). The summary statistics for all
of these traits are available at the CKDGen Consortium site (https://
ckdgen.imbi.uni-freiburg.de/)®%¢, We also manually fine-mapped the
hypertension trait and the original summary statistics can be found
on the EBI GWAS Catalog®. We looked only at causal SNPs with a pos-
terior causal probability of at least 0.05 to ensure that SNPs with low
causal probabilities did not cause false-positive signals. Moreover, as
g-chromVAR selects a semi-random set of peaks with similar average
accessibility and GC content as background peaks, the method has an
element of randomness. To ensure stable results, we ran g-chromVAR
20 times and averaged the results. Cluster/trait z-scores were plotted
using ggheat (https://github.com/yanwu2014/swne).

To link causal SNPs to genes, we used functions outlined in the
chromfunks repository (https://github.com/yanwu2014/chromfunks;
/R/link_genes.R). This involved the identification of causal peaks for
each cell type and trait (minimum peak Zscore of 1, minimum peak
posterior probability score of 0.025). Sites were then linked to genes on
the basis of co-accessibility (Cicero) with promoter regions, occurring
within 3,000 bp of a gene’s TSS. Only sites associated with genes
detected as expressed in 10% of TAL nuclei/cells (snCv3/scCv3) were
included. Motif enrichment within the causal SNP and TAL-associated
peaks was performed using the FindMotifs functionin Seurat and only
motifs for transcription factors expressed in 10% of TAL nuclei/cells
(snCv3/scCv3) were included (Supplementary Table 31). For a TAL-
associated ESRRB transcription factor subnetwork, peaks were linked
to genes using Cicero, then subset to those associated with TAL (C-TAL,
M-TAL) marker genes that were identified using the Find[All]Markers
functionin Seurat for subclass.I3 (P < 0.05). Transcription factors were
then linked to gene-associated peaks on the basis of the presence of
the motif and correlation of peak and TFBS co-accessibility (chrom-
VAR), using a correlation cut-off of 0.3. Only transcription factors with

expression detected within 20% of TAL cells or nuclei (snCv3/scCv3)
were included. Eigenvector centralities were then computed using
igraph and the transcription-factor-to-gene network was visualized
using PlotNetwork in chromfunks.

Disease-associated gene set enrichment analyses

Genes linked with CKDGen consortium GWAS loci for the kidney func-
tional traits eGFR and urinary albumin-creatinine ratio (UACR) were
obtained from table S14 of ref. ®8. These included the top 500 genes
per trait or only those genes alsoimplicated in monogenic glomerular
diseases. eQTLs associated with eGFR, systolic blood pressure and
general kidney function were obtained from tables S20, S21and S22 of
ref. ¥, respectively. Genes associated with the transition from acute to
chronicorganinjury afterischaemia-reperfusion were obtained from
ref.?° from the following supplementary tables: Acute_Human_Specific
(table S3, Human specific column); Acute_Mouse_Overlap (table S3,
Shared column); Mid_Acute (table S8, cluster 2 genes); Late_ Human_
Specific (table S9, Human specific column); Late_Mouse_Overlap
(table S9, Shared column); Late_Fibrosis (table S6, positive logFC);
Late_Recovery (table S6, negative logFC). Each gene set was assessed
foritsenrichmentwithin combined snCv3 and scCv3 subclass (level 3)
differentially expressed genes (adjusted P < 0.05, log-transformed
fold change of >0.25). Enrichments were performed using Fisher’s
exact tests and the resultant —log,,[P] values were scaled and visual-
ized using ggplot2.

Patient cohorts used for clinical association analyses

NEPTUNE™ (193 adult patients) and ERCB* (131 patients) expression
data were used as validation cohorts to determine the significance
between patients with different levels of cell state gene expression.
NEPTUNE (NCT01209000) is a multicentre (21 sites) prospective
study of children and adults with proteinuria recruited at the time
of first clinically indicated kidney biopsy (Supplementary Table 34).
The study participants were followed prospectively, every 4 months
for the first year, and then biannually thereafter for up to 5 years. At
each study visit, medical history, medication use and standard local
laboratory test results were recorded, while blood and urine samples
were collected for central measurement of serum creatinine and urine
protein/creatinine ratio (UPCR) and eGFR (ml per min per 1.73 m?).
End-stage kidney disease (ESKD) was defined as initiation of dialysis,
receipt of kidney transplant or eGFR <15 ml per min per 1.73 m?> meas-
ured at two sequential clinical visits; and the composite end point of
kidney functional loss by a combination of ESKD or 40% reduction in
eGFR”. Genome-wide transcriptome analysis was performed on the
research core obtained at the time of a clinically indicated biopsy using
RNA-seq by the University of Michigan Advanced Genomics Core using
thelllumina HiSeq2000 system. Read counts were extracted fromthe
fastq files using HTSeq (v.0.11). NEPTUNE mRNA-seq data and clinical
dataare controlled access data and will be available to researchers on
request to NEPTUNE-STUDY@umich.edu.

ERCB is the European multicentre study that collects biopsy tissue
for gene expression profiling across 28 sites. Transcriptional profiles
of biopsies from patients in the ERCB were obtained from the GEO
(GSE104954).

Clinical association of cell state scores

Thegene expression datafromthe tubulointerstitial compartment of
the kidney biopsies from NEPTUNE patients was used to calculate the
composite scores for the genes enriched in degenerative, aPT,aTAL and
aStr states. The expression of the genes that were uniquely enriched
in the cell state (described above) and that were found in both snCv3
and scCv3 were used to calculate the composite cell state score (Sup-
plementary Table 29). As scCv3 did not efficiently identify all stromal
celltypes, the union of the enriched genes from scCv3 and snCv3 data
were used to calculate the aStr cell state score. We also generated a
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cellstate score for the genes that were commonly enrichedinaPT and
aTAL cells (common).

For outcome analyses (40% loss of eGFR or ESKD) in the NEPTUNE
cohort, patient profiles were binned according to the degree of cell state
score by tertile. Clinical outcomes were available on 193 participants
withatotal of 30 events. Kaplan-Meier analyses were performed using
log-rank tests to determine significance between patients in different
tertiles of cell state gene expression. Moreover, for the different cell
state scores, multivariable adjusted Cox proportional hazard analyses
were performed using five statistical models adjusting for different sets
of potential confounding effects given the overall few number of events:
(1) age, sexandrace; (2) baseline eGFR and UPCR; (3) immunosuppressive
treatment and FSGSstatus; (4) eGFR, UPCR and race self-reported as Black
(factorsthat were associated with outcomein this dataset); and (5) immu-
nosuppressive treatment, eGFR and UPCR (Supplementary Table 30).
Note that the adjusted models simply assess whether the association with
outcome persists after adjusting for common clinical features (that is,
confounding effects), but do not assess for prediction accuracy.

In the ERCB cohort, differential expression analyses using multi-
variable regression modelling were performed between the cell state
scoresinthe disease groups and living donors. Age and sex were used
as covariates. The cell state scores for both NEPTUNE and ERCB bulk
mRNA transcriptomics data were generated®. In brief, the cell state
scores were generated by creating Zscores for each of the cell state gene
setsand then using the average Zscore as the cell state composite score.
These analyses found scores for all adaptive epithelial, but not degen-
erative, states were significantly higher in the patients with diabetic
nephropathy patients compared to that of living donors (Supplemen-
tary Table 30). After adjusting for sex and age, both aPT and aTAL were
significant when scores from patients with diabetic nephropathy were
compared with those of living donors and aPT scores were significant
even after correcting for the different disease groups.

Sample-level analysis and clustering on clinical association
genesets

Tofind association of patients based on altered-state gene signatures that
were used in clinical association analyses (Supplementary Table 30), we
performed sample-level clustering. All of the cells from the same patient
insnCv3and scCv3 were aggregated to get pseudo-bulk count matrices
onthebasis of the associated clinical gene set. The matrices were further
normalized by RPKM followed by ¢-distributed stochastic neighbour
embedding (¢-SNE) dimensionality reduction. Groups of patients were
thenidentified based on k-means clustering and density-based spatial
clustering (DBSCAN) methods in the reduced space. To associate the
patient clusters with clinical features, we calculated the distribution
of eGFRin eachidentified group (Code availability).

To identify gene sets that best differentiate between AKI and CKD
patientsinthe PT and TAL cell populations, we trained a gene-specific
logistic regression model based on the sample-level gene expression.
The model was used to assess the predictive power that differentiate
patients with AKland CKD in both snCv3 and scCv3 measured by area
under the curve (AUC). The genes with AUC > 0.65 on both snCV3 and
scCv3wereselected for downstream analysis (Supplementary Table 32).

Toidentify genes that were differentially expressed between AKland
CKD acrossall cell types, we aggregated the cells associated with each
subclass (level1) to generate cell-type-specific pseudocounts for each
sample and performed differential gene expression analysis based on
the DEseq2 method using the estimatePerCellTypeDE functionin the
Cacoa package (v.0.2.0; https://github.com/kharchenkolab/cacoa).

Pseudotime analysis of PT and TAL cells

To find cells associated with disease progression, we performed tra-
jectory analysis for PT and TAL cells. To get accurate pseudotime and
trajectory estimation, we removed degenerative cell populations in
bothPTand TAL and inferred the trajectory for single nuclei and single

cells separately using the Slingshot package®* (v.2.0.0). We specified
normal cell populations as the end points for trajectory inference
(S1-S3in PT and M-TAL in TAL) using the Slingshot parameter end.
clus. The correspondent trajectory embedding was visualized using
the plotEmbedding functionin the Pagoda2 package.

Toidentify whether the gene expression was statistically significantly
associated with the inferred trajectory, we modelled the expression
of agene as a function of the estimated pseudotime by fitting a gam
model with cubicspline regression using formula exp; =f(t) + €, where
tis the pseudotime andfis the function of cubic spline. The model is
then compared to areduced model exp;=£{(1) + eto get P-value estimates
using the F-test. The Benjamin-Hochberg method was used to calculate
the adjusted P values. To further identify candidate genes showing
potential differences between patients with AKIand CKD, we extended
the base gam model by fitting a conditional-smoothinteraction using
CKD as areference.

Gene module detection and cell assignment

To identify expression modules for significant gene sets along the
estimated trajectories, we applied the module detection algorithm
implemented in the WGCNA package® (v.1.70-3) based on the smoothed
gene expression matrix with parameters softPower =10 and minMod-
uleSize =20. The similar modules detected by the original parameters
were further merged. In total, we identified five different modules in
PT and six modules in TAL cells. For the gene sets in each module, we
further performed pathway analysis using the Reactome online tool®®
(https://reactome.org/PathwayBrowser/). The enrichment of clinical
associated gene sets for each module (Fig. 6e) was assessed by per-
forminglog ratio enrichment tests. To predict the transcription factor
activities of PTand TAL subclass genes, we used the DoRothEA package
(v.1.7.2) astargets. DoRothEA transcription factors and transcriptional
targets were curated from both human and mouse evidence. The tran-
scription factor activity scores for each cell type were calculated based
ontherun_viper function of the viper package (v.3.15; https://biocon-
ductor.org/packages/release/bioc/html/viper.html).

Toidentify cells that are associated with each module, we developed
asystematic approach. In brief, for the cells in the smoothed expres-
sion matrix, we performed dimension reduction using PCA followed
by Louvain clustering. This enabled the identification of cell clusters
alongthetrajectory.For theidentified cell clusters, we then performed
hierarchical clustering to calculate the correlation of each module on
the basis of mean gene expression values and further linked the clus-
ters with associated modules by cutting the hierarchical tree. Finally,
modulelabels for each cell were assigned on the basis of its associated
clusters. To link single-cell datasets with single-nucleus modules, we
performed k-means clustering based on the joint embedding of PT or
TAL cells and assigned the cellsin scCv3 to modules on the basis of the
majority voting from its k’s nearest neighbours (Code availability).

To further investigate cluster-free compositional change between
disease conditions, we also performed cell density analysis, in which
we compared the normalized cell density between AKland CKD condi-
tionsthrough 2D kernel estimates using Cacoa Package. Zscores were
calculated to identify the regions that showed significant differences
in cell density.

To validate the direction of modules inferred from human data,
we performed joint alignment of the human and mouse trajectories.
Theindividualtrajectoriesinferred separately from these two species
(Slingshot, described above) were aligned to generate ajoint trajectory
using CellAlign (https://github.com/shenorrLab/cellAlign) with param-
eterswinSz = 0.1and NumPts =1000. The collectiongroups (timepoints
frominjury) derived from mouse data were then projected to human
cells based on the joint trajectory. The genes that were conserved or
divergent between the two species were specified as overlapping/
distinct gene sets that were tested for significance based on a gam
modelinferred from the trajectory (see above).
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RNA velocity analyses

Spliced and unspliced reads were counted from Cell Ranger BAM files
for each snCv3 run using velocyto® (v.0.17.17) and using the GRCh38
gene annotations prepackaged with the Cell Ranger pipeline. Repeti-
tive elements were downloaded from the UCSC genome browser and
masked from these counts. Corresponding loom files were loaded into
R using the SeuratWrappers function ReadVelocity and converted to
Seurat objects using the as.Seurat function. aPT or aTAL trajectory
populations were then subset and RNA velocity estimates were calcu-
lated using scVelo?® (v.0.2.4) through a likelihood-based dynamical
model. Velocity embeddings on the trajectory UMAPs were visual-
ized using the pl.velocity_embedding_stream function. Latent times
based on transcriptional dynamics predicted from splicing kinetics
were computed and the top 300 dynamical genes were plotted using
the pl.heatmap function. Top likelihood genes were computed for
each TAL module to identify potential drivers for these states. Spliced
versus unspliced or latent time scatter plots were generated using the
pl.scatter function.

GRN analyses

GRNs associated with TAL trajectory modules were constructed using
Celloracle (v.0.9.1) with the default parameters outlined in the pro-
vided tutorials (https://morris-lab.github.io/CellOracle.documenta-
tion). The base GRN was first constructed from SNARE2 accessible
chromatin data. Co-accessible peaks across cell typesidentified using
Cicero (v.1.8.1) were linked to genes through their TSS peaks toiden-
tify accessible promoter/enhancer DNA regions. Peaks were then
scanned for transcription-factor-binding motifs (gimme.vertebrate.
v5.0) to generate a base GRN. snCv3 data were then used to identify
TAL state-specific GRNs. To ensure that relevant genes were used, we
included genes that varied across the aTAL trajectory (Supplemen-
tary Table 17), showed dynamic module-specific transcription from
scVelo analyses (Supplementary Table 21), were variably expressed
across TAL cells (Pagoda2) or that were associated with differential
transcription factor activities (Supplementary Table 20). GRN infer-
ence through regularized machine learning regression models was
performed to prune inactive (insignificant or weak) connections
and to select active edges associated with regulatory connections
withineachmodule or state, retaining the top 2,000 edges ranged by
edge strength. Network scores for different centrality metrics were
then calculated and visualized using Celloracle plotting functions.
For insilico transcription factor perturbation analyses, target gene
expression was set to 0 and resultant gene expression values were
extrapolated or interpolated using the default parameters of Cellora-
cleand accordingto the provided tutorial. Stromal GRN construction
was performed as indicated above, except using a gene subset that
included variable STR genes identified using Pagoda2; subclass level
3 markers for FIB, aFIB, MyoF (adjusted P < 0.05); or transcription
factors with expression detected in at least 2.5% of nuclei (SNARE2)
and having binding sites that were differentially active between STR
subclasses (P < 0.05). Toensure BMP target SMADs were represented,
SMAD1/5/8 were also included.

SLIDE-seq2

Puck preparation and sequencing. Tissue pucks were prepared
from fresh frozen kidney tissue either embedded in Optimal Cut-
ting Temperature (OCT) compound or frozen in liquid nitrogen and
sequenced?®®® according to a step-by-step protocol (https://doi.org/
10.17504/protocols.io.bvvén69e). Libraries were sequenced on the
NovaSeq S2 flowcell (NovaSeq 6000) with a standard loading con-
centration of 2 nM (read structure: read 1,42 bp; index 1, 8 bp; read 2,
60 bp; index 2, 0 bp). Demultiplexing, genome alignment and spatial
matching was performed using Slide-seq tools (https://github.com/
MacoskoLab/slideseq-tools/releases/tag/0.1).

Deconvolution. We used Giotto'® (v.1.0.3) for handling the slide-seq
dataand RCTD' (v.1.2.0) for the cell type deconvolution. As only ref-
erence tissue was used for slide-seq, all degenerative states as well as
PapE, NEU, B and N were removed from the snCv3 Seurat object prior
to deconvolution. The Seurat object was randomly subsampled to
have at most 3,000 cells from each level 2 (12) subtype and the level 1
(I1) subclasses of ATL and DTL were merged. For each datasource, that
is, HUBMAP or KPMP (Supplementary Table 2), the counts from all
beads across all pucks were pooled and deconvolved hierarchically:
first,beads with less than100 UMIs and genes detected inless than150
beads were removed. Then, the broad 11 subclass annotations in the
Seurat object were used to deconvolve all beads (gene_cutoff=0.0003,
gene_cutoff_reg = 0.00035, fc_cutoff = 0.45, fc_cutoff_reg = 0.6, manu-
allyadding RENinthe RCTD genelistand merging ATL and DTL subtypes
asTL). The prediction weights were normalized to sum to 100 per bead.
Beads for whichone cell type had arelative weight of 40% or higher were
classified as that 11 subclass. Then, for each I1 subclass, all classified
beads were further deconvolved using the 12 annotation of that sub-
class, as well as the remaining subclass I1annotations (same parameters
asl1). Note that, for each 12 deconvolution, the bulk parametersin RCTD
were fitted using allbeads and then the RCTD object was subsetted to
only contain the selected beads for the 12 deconvolution. Classifica-
tion at subclass 12 was done similar to 11 with the maximum relative
weight cut-off of 30% or 50% depending on the stringency needed for
ananalysis (50% for Figs. 2c,fand Extended Data Fig. 4b and 30% in other
analyses). For plotting gene counts, the scaling was performed with the
command normalizeGiotto(gObj, scalefactor =10000, log_norm =T,
scale_genes =T, scale_cells = F). The marker gene dot plots were plotted
using the DotPlot functionin Seurat (v.4.0.0).

Cell type interaction. Coarse cell-cellinteractions can be revealed by
looking for cell types that tend to be in close proximity. For each puck,
we created a neighbourhood graph based on Delaunay triangulation
inwhicheachbeadis connected by anedge to at least one other neigh-
bouring bead, provided that their distance is smaller than 50 um. For
each pair of cell types, we count the number of times they are connected
by edges. Then, the cell typelabels are randomly permuted 2,500 times
toform the null distribution of the number of connections. The expec-
ted number of connections between pairs of cell types is calculated
from this simulation and the proximity enrichment is defined as the
ratio of the observed over the expected frequency of connections.
The network construction and enrichment analysis were performed
using Giotto’s createSpatialNetwork and cellProximityEnrichment
commands, respectively. Those beads with maximum level 2 weight
less than30% were removed. We further excluded spurious beads that
were outside of the visual boundary of the tissue (only for the pucks
of which the names start with ‘Puck_210113") by manually specifying
straight lines that follow the tissue boundary. For cortical pucks (Sup-
plementary Table 2), M-PC, C-PC and IMCD labels were relabelled as PC;
M-TAL and C-TAL as TAL; and EC-DVR was merged into EC-AEA. Other
medullary and cycling subtypes were removed. For medullary pucks,
M-PCand C-PCwererelabelled as PC; M-TAL and C-TAL as TAL; all DTL
subtypes as DTL; and EC-AEA was merged into EC-DVR. Other cortical
and cycling subtypes were removed.

To generate the proximity plots in Extended Data Fig. 4, the enrich-
ment values for each cell type pair were averaged across all pucks from
the same region and plots were generated using the R package ggGally
(v.2.1.2).For the cortexand medulla, respectively, only the connections
with mean enrichment values higher than 0.7 and 0.8 were plotted.

10x Visium spatial transcriptomics

Preparation, imaging and sequencing. Human kidney tissue was
prepared and imaged according to the Visium Spatial Gene Expression
(10x Genomics) manufacturer’s protocol (CG000240, Visium Tissue
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Preparation Guide) and as previously described'® Nephrectomy (n = 6),
AKI (n=6)and CKD (n =11) samples were sectioned at 10 um thickness
from OCT-compound-embedded blocks. These 23 samples represent 22
participants because 2 samples (1 cortex and 1 medulla) were obtained
from the same participant with CKD. A Keyence BZ-X810 microscope
equipped with a Nikon x10 CFIPlan Fluor objective was used to acquire
H&E-stained bright-field mosaics, which were subsequently stitched.
mRNA was isolated from stained tissue sections after permeabiliza-
tion for 12 min. Released mRNA was bound to oligonucleotides in the
fiducial capture areas. mRNA was thenreverse-transcribed and under-
went second strand synthesis, denaturation, cDNA amplification and
SPRIselect cDNA cleanup (Visium CG000239 protocol) as part of library
preparation. Sequencing was performed on the llluminaNovaSeq 6000
system'®,

Gene expression analysis. Space Ranger (v.1.0 or higher) with the
reference genome GRCh38 was used to perform expression analysis,
mapping, counting and clustering. Summary statistics and quality-
control metricsareincludedin Extended DataFig.5and Supplementary
Table 2. Normalization was performed using SCTransform'®, Final data
processing was performed in Seurat (v.3.2.3). Expression feature plots
depicttheintensity of transcript expressionin each spot.In each Visium
sample, the outermost layer of spots was eliminated from comparative
analysesif the edge was manually cut by arazor.

Deconvolution. Using Seurat (v.3.2.0), a transfer score system was
used to assess and map the proportion of signatures arising fromeach
55 umspot. Thetransfer score reflects aprobability between each spot’s
signature anditsassociation withagiven snCv3 subclass (level 2). The
highest probability transfer scores have the highest proportionmapped
withineach spatial transcriptomics spot pie graph. For cell type feature
plots (Figs.2g and 3f and Extended DataFig. 7i), subclass level 2 cell type
transfer scores were mapped to convey the proportion of signature
underlying each spot. For cell state feature plots (Fig. 3b), instead of
mapping subclass level 2 cell types, the aEpi cell state annotated in
snCv3 was mapped across all spots in the samples. We summed the
proportion of signatures arising from all cell types corresponding to
eachofthe 6 cellstatesinall spots of all samples (Fig. 3a). The propor-
tions of cell state were compared across nephrectomy, AKl and CKD
samples using Fisher’s exact tests.

Colocalization of epithelial, immune and stromal cells. Inall spots
across all samples, we categorized spots into healthy, adaptive or
degenerative epithelial cell states on the basis of the highest propor-
tion of epithelial cell state signature as calculated in Fig. 3a. For stro-
mal orimmune cell type colocalization, we first selected spots with
non-zerotransferscores of each celltypeinall 23 samples. The presence
of stromal orimmune cell signature was considered colocalized with an
epithelial cellif its stromal orimmune transfer score exceeded its mean
transfer score across all selected spots. An odds ratio was calculated
for colocalization between the healthy, adaptive and degenerative
epithelial cell state with stromal orimmune cell signature.

Cell state marker expression. To compare marker gene expression
associated with the healthy, adaptive and degenerative cell states
(Fig.3d), we first categorized a subset of spots from AKl and CKD sam-
plesinto1of 5 predominant cell types: POD, PT, TAL, CD or FIB. For
the PT, TAL and fibroblasts, a spot was selected if the highest propor-
tion of its signature (level 1 mapping) corresponded to one of these
cell types. For the CD subset, a spot was selected if the sum of level 1
mapping proportions for the PC and IC contributed most to its signa-
ture. POD spots were defined by the presence of a minimum of 20%
signature arising from the level 1 POD label. Once the subsets of PT,
TAL, fibroblast, CD and POD spots were selected, each spot was fur-
ther divided into healthy, adaptive or degenerative cell state groups

based on the highest proportion of cell state signature as calculated
in Fig. 3a. For PODs, the presence of EC-GC signature was considered
to be a degenerative equivalent given that a loss of POD markers was
associated with an observed gain in EC-GC signatures within DKD
samples.

Niche analysis. To examine the diversity of cell types colocalizing with
TAL epithelial cells, we selected spots with more than 20% TAL signa-
tureand inwhich the highest proportion of signature arose fromlevel
1TAL mapping. Using Seurat clustering methodology, selected spots
werereclustered after Seurat label transfer scores were substituted in
lieu of gene expression. Spots with similar proportions of signature
arising from TAL cell types and states, stromal cells and immune cells
were clusteredinto13 niches. Niches were mapped over the 23 kidney
samples and the marker gene expression in each niche was determined.
To depict the relative proportion of each cell type, the transfer score
average was first computed in each niche. Next, azscore for each cell
type was calculated across the niches.

Histological validation. To determine whether the 74 snCv3 subclasses
(level 2) were appropriately mapped to histological structures, the
proportion of signaturein each spot was compared to a histologically
validated set of six unsupervised clusters defined by Space Ranger'®
(Extended Data Fig. 5a). These six unsupervised clusters (glomerulus,
PT,loop of Henle, distal convoluted tubule, connecting tubule and col-
lecting duct, and the interstitium) had an overall alignment of 97.6%
with the underlying histopathologic structures in the H&E image. In
eachsample, regions of cortex and medullawere defined by histological
evaluation, including the presence of glomeruli. Of the 23 samples, 18
samples were composed of only cortex, 4 samples were acombination
of cortex and medulla and 1sample was completely medulla.

Label-free and multifluorescence large-scale 3D imaging

Kidney biopsy cores frozen in OCT from patients with AKI or CKD
enrolled in KPMP were used for label-free imaging followed by
multiplexed-fluorescence large-scale 3D imaging as outlined in the pro-
tocol (https://doi.org/10.17504/protocols.io.9avh2e6) and described in
arecent publication”. Frozen biopsies were sectioned to a thickness of
50 pmusingacryostatand thenimmediately fixed in 4% fresh paraform-
aldehyde (PFA) for 24 h and subsequently stored at 4 °Cin 0.25% PFA.

The first step in imaging consists of label-free imaging with mul-
tiphoton microscopy to collect autofluorescence and second harmonic
images of the unlabelled tissue mounted in non-hardening mounting
medium. Imaging was conducted using a Leica SP8 confocal scan-head
mounted to anupright DM6000 microscope. For large-scale imaging
of tissues at the sub-micrometer resolution, the Leica Tile Scan func-
tion was used to collect a mosaic of smaller image volumes using a
high-power, high-numerical aperture objective. Leica LASX software
(v.3.5) was then used to stitch these component volumes into a single
image volume of the entire sample. The scanner zoom and focus motor
control were set to provide voxel dimensions of 0.5 x 0.5 um laterally
and 1 pum axially.

Labelling of tissue for fluorescence microscopy was preceded by
washing in phosphate-buffered saline (PBS) and blocking with PBS
with 0.1% Triton X-100 (MP Biomedical) and 10% normal donkey serum
(JacksonImmuno Research). Antibodies for indirectimmunofluores-
cence were applied first for 8-16 h at room temperature, followed by
washing cycles of PBSwith 0.1% Triton X-100. An incubation cycle with
secondary antibodies occurred next, followed by washing and finally
application of directly labelled antibodies. Antibodies targeting mark-
ersfor tubular cells and structures (aquaporin-1, uromodulin, F-actin)
and immune cells (myeloperoxidase, CD68, CD3, siglec 8) were used,
in addition to nuclei labelling using DAPI (Supplementary Table 35).
After the final washing cycles, the tissue was mounted in Prolong Glass
(Thermo Fisher Scientific).
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Confocal microscopy was conducted using a Leica x20/0.75 NA
multi-immersion objective (adjusted for oil immersion), with excita-
tionsequentially provided by asolid-state laser launch with laser lines
at405nm, 488 nm, 552 nm and 635 nm.Imagesin 16 channels (emission
spectracollected by PMT detectors adjusted for the following ranges:
410-430 nm, 430-450 nm, 450-470 nm, 470-490 nm, 500-509 nm,
510-519 nm, 520-530 nm, 530-540 nm, 570-590 nm, 590-610 nm,
610-630 nm, 631-651 nm, 643-664 nm, 664-685 nm, 685-706 nm
and 706-726 nm) were collected for each focal plane of each panel
of the 3D mosaic. The resulting 16-channel image was then spectrally
deconvolved (by linear unmixing using the Leica LASX linear unmixing
software) to discriminate the eight fluorescent probes in the sample.
Validation of the linear unmixing was described previously?.

Confocal immunofluorescence microscopy

Human kidney tissue samples from the cortex or medullawere fixed in
4% PFA, cryopreserved in 30% sucrose and frozen in OCT cryomolds,
and were cutinto 5 pmsections. The sections were post-fixed with 4%
PFAfor15 minatroomtemperature, blocked in blocking buffer (1% BSA,
0.2% skimmed milk, 0.3% Triton X-100 in1x PBS) for 30 min atroom tem-
perature and then immunofluorescence microscopy was performed,
first by overnight incubation at 4 °C with primary antibodies, fol-
lowed by labelling with secondary antibodies. The primary antibodies
included NRXN-1p3, TUJ1, collagenland Ill, synapsin-1, NPSH-1, SLC14A2,
UMOD, CD31, CD34, CD11b, PROM]1, KIM1, VCAM1, AQP1, AQP2, CD45
and S100 (Supplementary Table 36). After washing, labelling with the
secondary antibodies was performed using Alexa-488-conjugated goat
anti-mouse IgG, Cy3-conjugated goat anti-rabbit IgG or Cy5-conjugated
donkey anti-goat IgG at room temperature for 1 h. After washing, the
sections were counterstained with DAPI for nuclear staining. Images
were acquired with a Nikon 80i C1 confocal microscope.

Insitu hybridization

Humankidney tissues were sectioned with 3 pum from formalin-fixed,
paraffin-embedded (FFPE) blocks. In situ detections of PROM1, CST3
and EGF mRNA transcripts were performed with the use of RNAscope
Probes Hs-PROMI1 (311261, Advanced Cell Diagnostics), Hs-CST3
(528181, Advanced Cell Diagnostics), and Hs-EGF (605771, Advanced
Cell Diagnostics) and RNAscope kit (322330, Advanced Cell Diagnos-
tics) according to the manufacturer’s protocol. RNAscope Positive
Control Probe Hs-UBC (310041, Advanced Cell Diagnostics) was used
asapositive control. A horseradish-peroxidase-based signal amplifica-
tionsystem (322310, RNAscope 2.0 HD Detection Kit-Brown, Advanced
Cell Diagnostics) was used to hybridize with target probes followed by
DAB staining. The sections were then counterstained with haematoxy-
lin (3535-16, RICCA Chemical Company). Positive staining was deter-
mined by brown dots. After rehydrating, the sections were immersed
in periodicacid solution (0.5%, P7875, Sigma-Aldrich) for 5 min, rinsed
in three changes of distilled water, incubated with Schiff’s reagent
(3952016, Sigma-Aldrich) for 15 minand thenrinsed inrunning tap water
for 5 min. Nuclei were counterstained with haematoxylin 2 (220-102,
Thermo Fisher Scientific) for 2 min. The sections were then rinsed in
water, dehydrated in alcohol, cleared in xylene and finally mounted
with Cytoseal XYL (8312-4, Thermo Fisher Scientific).

Tissue cytometry and in situ cell classification

Tissue cytometry and analysis were conducted using the Volumetric
Tissue Exploration and Analysis (VTEA) software (v.1.0a-r9). VTEA is
a3Dimage processing workspace that was developed as a plug-in for
Image)'®. The version of VTEA, which includes the supervised and
unsupervised labelling of cells and combining spatial and features
based gating strategies, used hereisavailable at GitHub (https://github.
com/icbm-iupui/volumetric-tissue-exploration-analysis) and through
the FlJlupdater. In this analytical pipeline, eachindividual nucleus was
segmented using intensity thresholding and connected component

segmentation built into VTEA and Image). Each surveyed nucleus
becameasurrogate for acell, to which the location and marker staining
around or withinthe nucleus could be registered. This captured infor-
mation could be used to classify cells on the basis of marker intensity
or spatial features using scatterplot displays that enable various gating
strategies and statistical analysis, including export as .csv files of all
segmented cells and the associated features'®. Cells classified on the
basis of marker intensity are summarized in Supplementary Table 37.
Gated cellswere mapped back directly into theimage volumes, which
enabled immediate validation of the gates. Moreover, direct gating
on the image could be performed, which could trace all of the cells
within the chosen region-of-interest back to the data display on the
scatter plot. Thus, cell classification could also be performed based
on direct annotation of regions-of-interest (ROIs) within the image
volumes. Annotated ROIs were determined by the pixel-wise agree-
mentbetween 3 of 4 experts who performed annotation oneach biopsy
specimen separately.

Using tissue cytometry, 14 cell classes were defined based on the
following features: (1) PT cells: AQP1" cells in cortex + brush border
staining. (2) C-TAL cells: UMOD" cells in cortex. (3) Glomerular cells
(which encompass PODs, glomerular endothelium and mesangial cells)
annotated ROIs based on morphology and F-actin staining. (4) Cortical
large and medium vessel cells: annotated ROIs based on morphology
and F-actin staining. (5) Cortical distal nephron cells (distal tubules
(CD), connecting tubules (CNT) and collecting ducts (C-CD) or cortical
distal nephrons): AQP1'UMOD™ and annotated ROIs based on unique
morphology in cortex. (6) M-TAL cells: UMOD" cells in the medulla.
(7) DTL: AQPT" cells in the medulla. (8) Medullary collecting ducts:
AQP1"'UMOD™and annotated ROIs based on unique morphologyinthe
medaulla. (9) Vascular bundles in the medulla: annotated ROIs based
onunique morphology in the medulla and F-actin staining. (10) Neu-
trophils: MPO" cells. (11) Activated macrophages: MPO"CD68" cells.
(12) T cells: CD3" cells. (13) Cells in altered regions: annotated ROIs
based onloss of (unrecognizable) tubular morphology, expanded inter-
stitium, increased fibrosis (by second harmonic generation imaging)
and cellinfiltrates. (14) Not determined: unable to be classified on the
basis of the above criteria.

Using such an approach,1,540,563 cells were labelled from all the
biopsies used in this analysis.

3D neighbourhood building and representation

3D neighbourhoods were calculated for every cell in each biopsy
using VTEA and a radius of 25 um (50 voxels in x and y and 25 voxels
in z). We reasoned the largest measurable neighbourhood/niche in
our 3D approach is limited by the 50 pm thickness of the sections
imaged (z dimension). Thus, per Nyquist sampling, the radius used
was about 25 pm, which is consistent with previous approaches'® 1%,
Foreach3D neighbourhood, VTEA was used to calculate the features:
fraction-of-total and sum of each labelled cell per neighbourhood. A
listof neighbourhoods, positionsin3D and their features was exported
by biopsy sample as .csv files.

Neighbourhood visualization and statistical analysis

CSVfiles of neighbourhoods by biopsy sample were generatedin VTEA
and imported into R (v.4.0.4), parsed for the sum of each labelled cell
and monotypic neighbourhoods removed. These features were scaled
by Z-standardization and used for Louvain community detection
(R packages FNN (v.1.1.3) and igraph (v.1.2.6)) and ¢-SNE manifold
projection (R package Rtsne (v.0.15)). To understand the interactions
within neighbourhoods, pairwise interactions by neighbourhood
weretallied and plotted on achord plot (R package: circlize (v.0.4.12))
and Pearson’s correlation coefficients were calculated and plotted
(R packages Hmisc (v.4.5.0) and corrplot (v.0.84)). Subclasses of neigh-
bourhoods, those withatleast one cell withaspecific label were selected
and plotted as network plots (R packageigraph (v.1.2.6)) withedgesin
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CD3and Altered neighbourhoods scaled at 40% of all other subclasses
to facilitate visualization. All scripts are provided as an annotated
RStudio notebook file (.rmd).

Plots and figures

UMAP, feature, dot and violin plots for snCv3, scCv3, SNARE2 and
Visium data were generated using Seurat. Correlation plots were
generated using the corrplot package. Genome coverage plots were
performed using Signac. Plots for 3D cytometry and neighbourhood
analysis were generated in R with circlize, ggplot2 and igraph.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Processed data, interactive and visualization tools: the snCv3, scCv3,
SNARE2, Slide-seq and Visium processed data files are all available
for download at the GEO (Superseries GSE183279). snCv3 healthy
reference data are available for reference-based single-cell mapping
using the Azimuth tool (https://azimuth.hubmapconsortium.orgy/).
All snCv3 and scCv3 processed data can be accessed and viewed at
cellxgene (https://cellxgene.cziscience.com/collections/bcb61471-
2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD
nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging
canallbevisualized and examined using the KPMP Data Atlas Explorer
(https://atlas.kpmp.org/explorer/). For 3D imaging, the cytometry data,
cell classifications, gates and neighbourhood analysis data are available
atZenodo (https://doi.org/10.5281/zenodo0.7120941). Raw sequencing
and imaging data: raw sequencing data are under controlled access
(human data) as they are potentially identifiable and can be accessed
from the respective sources indicated below (summarized in Supple-
mentary Tables1and 2). Raw and processed sequencing and imaging
data (snCv3, scCv3, 3D imaging and Visium) generated as part of the
KPMP have been deposited (https://atlas.kpmp.org/repository/) and
compiled (https://doi.org/10.48698/3z31-8924) online. 3D imaging
raw data are freely available to download; however, KPMP raw sequenc-
ing data (snCv3, scCv3, Visium) have restricted access. These can be
requested from KPMP by contacting A.L.D. (info@kpmp.org) and are
available by signing a data use agreement (DUA) promising to abide
by KPMP security standards and to not re-identify participants, share
data outside those named on the DUA Exhibit A or sell the data. Data
access is granted to anyone signing the KPMP DUA as is. KPMP will
respond toinitial data requests within12-36 h and provide dataup to
one month after the DUA has been signed. Manuscripts resulting from
KPMP controlled access data are requested to go through the KPMP
publications and presentations (P&P) committee to ensure that KPMP is
acknowledged appropriately and authorship follows ICJME standards.
The KPMP P&P committee reviews and approves manuscripts every
2 weeks and, to date, no manuscript has been rejected. Any analysis
resulting from KPMP data may be published or shared provided that
it does not re-identify KPMP participants. Slide-seq raw sequencing
datagenerated as part of KPMP pilot nephrectomy tissue are available
for download fromthe GEO (Superseries GSE183279). Raw sequencing
data (snCv3, SNARE2, Slide-seq) generated as part of the Human Bio-
molecular Atlas Project (HuBMAP) have been deposited (https://portal.
hubmapconsortium.org/) and compiled (https://doi.org/10.35079/
hbm776.rgsw.867) online. The HuBMAP raw sequencing data have
restricted access and are available for download from the database
of Genotypes and Phenotypes (dbGaP: phs002249) by requesting for
authorized access following instructions on the dbGaP website. The
processtorequestaccess tothisdbGaP study is available online (https://
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?adddataset=phs002249&page=
login). Inbrief, to download the human sequencing data for this study

after obtaining authorization from the NIH DAC, one would go through
the SRA (https://www.ncbi.nlm.nih.gov/bioproject/PRINA671343).
snCv3 data not deposited to KPMP or HuBMAP are available from the
GEO (GSE183279) or, for Covid AKI raw sequencing files, on request
from Washington University Kidney Translational Research Center
(KTRC) to S.J. (sanjayjain@wustl.edu) due to patient confidentiality.
Response to requests or questions will be addressed within a week.
Code access and data use agreement forms can be accessed online
(https://research.wustl.edu/core-facilities/ktrc/). Once the executed
formisreceived and approved, datawill be distributed withinamonth.
Thereis noauthorship restriction on the use of COVID data. Additional
published/public datasets: the following publicly available RNA-seq
datasets were used in this study: mouse kidney single cell (GEO:
GSE129798); mouse kidney injury single nucleus (GEO: GSE139107);
human fibroblast and myofibroblast single cell (Zenodo: https://doi.
org/10.5281/zenodo.4059315); mouse distal nephron single cell and
bulk distal segment (GEO: GSE150338); human kidney mature immune
single cell (https://kidney-atlas.cells.ucsc.edu); and human kidney
single nucleus (GEO: GSE151302; https://human-kidney-atac.cells.ucsc.
edu). GWAS summary statistics were from the CKDGen Consortium
(alleGFR; https://ckdgen.imbi.uni-freiburg.de/files/Wuttke2019), EBI
GWAS Catalog (hypertension; https://www.ebi.ac.uk/gwas/efotraits/
EFO_0000537) and the CausalDB database (release 1.12019-09-29;
http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical
datawere obtained from NEPTUNE. Owing to patient confidentiality,
these data have restricted access and are available only on request to
NEPTUNE-STUDY@umich.edu. ERCB data were obtained from the GEO
(GSE104954).Raw sequencing data (scCv3) onliving donor biopsies as
partofthe ChanZuckerbergInitiative (CZI) and HCA are available from
the GEO (GSE169285). Additional Visium spatial transcriptomic data
not in the KPMP repository are available from the GEO (GSE171406).
Figures: schemata of the human nephron and renal corpuscle were
developed by the KPMP and HuBMAP (https://doi.org/10.48698/DEM4-
0Q93). Source data are provided with this paper.

Code availability

Code to reproduce figures are available to download from GitHub
(https://github.com/KPMP/Cell-State-Atlas-2022). No additional
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Extended DataFig.2|snCv3 marker genes and comparison withreference
data. a. Dot plot showing averaged marker gene expression values (logscale)
and proportion expressed for snCv3 clusters. b. Cell type labels predicted from
Lake et.al.2019"*mapped on the snCv3 UMAP embedding. Inset shows the
corresponding predictionscore values. c. UMAP of Lake et. al. 20192 data
mapped tosnCv3 embeddings showing subclasslevel 3 predicted labels. Inset
shows the corresponding prediction score values. d. UMAP of Muto et al. 2021
datamappedtosnCv3 embeddings showing subclasslevel 3 predicted labels.
Inset shows the corresponding predictionscore values. e. Heatmap showing
correlation of averaged scaled gene expression values for snCv3 epithelial
(reference state) clusters and mouse bulk segmental RNA-seq data from Chen
etal.,2021°. f. Heatmap showing correlation of averaged scaled gene expression
values forsnCv3 distal tubule clusters (reference states) and mouse scRNA-seq
datafrom Chenetal.,2021%. g. Heatmap showing correlation of averaged
scaled gene expression values for snCv3 clusters (reference and altered/

adaptive states) and mouse snRNA-seq clusters fromKiritaetal.,2020*
h.Heatmap showing correlation of averaged scaled gene expression values
(reference states) for snCv3 clusters and mouse scRNA-seq clusters from
Ransick etal.,2019%.i. Heatmap showing correlation of averaged scaled gene
expression values for snCv3 stromal clusters (reference and altered/adaptive
states) against human scRNA-seq clusters from Kuppe et al., 2020%. j. Heatmap
showing correlation of averaged scaled gene expression values for snCv3
immune cell clusters and mouse immune cell types from Immgen.org.
k.Heatmap showing correlation of averaged scaled gene expression values for
snCv3immune cell clusters and humanimmune cell types from Monaco et al.
20192 1. UMAP of Stewart et al., 2019** immune single-cell RNA-seq data
mappedtosnCv3embeddings showing subclasslevel 3 predicted labels (top)
and the prior published cell type annotations (bottom). Inset shows the
corresponding prediction score values.
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Extended DataFig. 3 |See next page for caption.
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Extended DataFig. 3 |scCv3integrationand quality metrics.a. UMAP
plotshowingintegrated snCv3,scCv3 and SNARE2 (RNA) subclass level 3
annotations.scCv3and SNARE2 (RNA) datasets were projected onto the snCv3
embeddings.b. UMAP plots asin (a) show mapping of the corresponding sex,
patientidentities and conditions for scCv3 and SNARE2 datasets. c. Joint
embedding of SNARE2 RNA and AC modalities. d. Barplots showing the total
number of post-QC nuclei and subclass level 1 cell types detected per scCv3 or
SNARE2 patient. Violin plots show the percentage of transcripts associated
with the mitochondria (Mt) or endoplasmicreticulum (ER), as well as mean

genes, mean transcripts, mean accessible peaks or mean TSS enrichment
scores detected per patient. e. Barplots showing the total number of post-QC
nuclei/cells per subclass (level 3) combined across platforms (snCv3, scCv3,
SNARE2).Patiententropy as well as tissue type, region, condition, sex and
assay proportions are shown. Heatmap of correlation values for each scCv3
and SNARE2 subclass against the corresponding snCv3 subclass is shown (top
panel). Grey valuesindicate absence of acomparison where subclasses were
not covered by one or more of the technologies.
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Extended DataFig.4 |Slide-seqpredicted celltypes.a. UMIcounts per

bead for classified beads. Normalized RCTD weights for the beads classified at
subclasslevel 2 (Methods). Region of the tissue associated with beads for each
subclass. Frequency of cell types predicted across pucks. b. Dot plot showing
expression of celltype markersidentified by snCv3inthe classified Slide-seq
beads. c.Representative pucks showing subclass level 2 classifications. Cell
typesaregrouped into 3 categories and plotted separately for clarity. Scale bar

Inner Medulla

is300 um. d-e. Cell proximity networks for Slide-seq cell types associated with
cortical ormedullary regions. For panelsa, b, d and e all pucks (6 individuals)
were combined. f. Left panel: Slide-seq puck areaindicated in (c) and predicted
celltypesfor the AEAs and surrounding cell types. Right panel: mapped
expression values for corresponding marker genes (scaled). AEA mapping over
Visium histology is depicted in Extended Data Fig. 5j, colocalized with REN
expression.Scalebaris100 pm.
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Extended DataFig. 5|See next page for caption.



Extended DataFig.5|10X Visium predicted cell types. a. Analysis of subclass
(level 2) predictions on10x Visium spots (23 samples, 22 individuals). The top
panel presents thedistribution of transfer scores for the subclass (level 2) with
the highestscoreineach spot. The UMI count panel presents the UMI counts
associated with these spots. The cell type proportion panel depictsthe
proportion of transcriptomic signatures for each subclass, corresponding to
its transfer score relative to all non-zero transfer scores in that spot. The
relative proportion of cell type subclass signatures arising from the cortex or
medullainthe 23 samplesisshown. The bottom panel reveals the alignment
betweenthe predicted cell type subclass and unsupervised clusters that were
histologically validated (Methods). b. Dot plot showing gene expression of
select cell markers by predicted subclass (level 2) for all 23 Visium samples.
c.Theproportion of transcriptomic signaturesinthe 23 samplesrevealed a
similar distribution of cell types across healthy reference nephrectomies,
chronickidney disease (CKD), and acute kidney injury (AKI) samples. d. Cortical
(left, 1) and medullary (right, U) portions of specimen 21-0063 reveal POD
signatures confined to the cortex, while M-TAL signatures were found in the
medulla. White arrows denote the connection point between the cortex and

medullaportionsofthesample. e. A histologicimage of the cortex (bounded
ind) revealslevel1cell type mapping of POD, EC-GC,and VSM/P cellstoa
glomerulus. PTand TAL signatures were seen mapped over distinct regions of
tubules. f. Expression of NPHS2 (for glomeruli), ALDOB (for PT),and SLCI2A1
(for TAL) inthe cortex.g. A histologicimage of the medulla (boundedind)
revealslevel1celltype mappingofahigh proportion of TAL cells within the
medulla. h. Feature plots showing SLCI2A1but not NPHS2 or ALDOB expression
inthe medulla.i.Proportion of cortexand medulla cell types for sample
21-0063 (9555 total spots over two sections of the same individual). j. A cortical
imageinahealthy reference sample (19-M61) showing EC-AEA entering the
glomerular corpuscle near the MD. Two glomeruli contain signatures arising
predominantly from POD and EC-GC. Two TAL niches are outlined. TAL niche 1
isenrichedin healthy cortical TAL signature and TAL niche 8 near the afferent
arterioleis enriched for Macula Densa (MD) signature. NPHS2 expressionis
found within the glomeruliand renin (REN) expressionis highestin the EC-AEA.
Afulllevel 2 celltype deconvolutionis provided in the final panel (right). Scale
barsare300 pminlength.
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Extended DataFig. 6 | Altered statesinamouse model of AKI.a. UMAP
showing mouse AKI (IRI) data* with cell types predicted from snCv3. Mouse
datasets were projected onto the snCv3 UMAP embeddings (Fig. 2b).
Histograms of prediction scores for subclasses (level1and 3) are shown.
b.UMAP plotsasin (a) showing the original cell type annotations*and injury
groups (time points following IRI) for mouse data. c¢. Barplot showing the

proportion of altered states for each mouse injury group. d. Barplot showing
proportionofeachinjury group for asubset of predicted subclasses. Arrows
indicate altered states orimmune cells (MAC-M2) that persisted at 6 weeks
followinginjury.e. UMAP as in (a) showing the distribution of reference and
altered states over the differentinjury groups.
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Extended DataFig.7|Altered state expressionsignatures. a-b. Gene Set
Enrichment Analyses (GSEA) for genes upregulated or downregulatedin
adaptive PT (a) and TAL (b) states compared to reference states. c. Dot plot
showing averaged marker gene expression values (log scale) and proportion
expressed for snCv3 clusters.d. Dot plot showing averaged marker gene
expression values (log scale) and proportion expressed for integrated snCv3/
scCv3reference, degenerative and adaptive stromal clusters. e. Violin plots
showing aSTR and ECM (matrisome) scores for snCv3 clusters. f. Visium feature

plots of normalized counts for select markers mapped to regions shownin
Fig.3e.Scalebaris100 pm.g. Visium feature plot of normalized counts fora
select marker mappedtoregionshownin (h).Scalebaris100 pm. h. Histology
and predicted cell types foramedullary region of acute tubular necrosis (cellular
cast formation within tubular lumens, loss of brush border, loss of nuclei, and
epithelial simplification). Pie charts are proportions of predicted transfer
scores. Area corresponds to the upper bounded regionin Fig.3b. Scale bar is
100 um.i.Predicted transfer scores for areashownin (h). Scale baris100 pm.
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Extended DataFig. 8|3Dimagingidentifiesinjury neighbourhoods.
a.Maximum intensity projections ofimmunofluorescence and second
harmonicimages for 13 example biopsies, scale bars 500 pm. b. Overview of
neighbourhood classes as giveninFig. 4b for reference. c. Distribution of
neighbourhoods by specimenin neighbourhood clusters plotted in tSNE space
fromFig. 4.d.Feature plots of the number of cells per neighbourhood for
cortical TAL (C-TAL), altered morphology and proximal tubule (PT). C-TALs and

PTsare foundin neighbourhoods with altered morphology, cyanand orange vs.

red and magentaarrowheads. e-h. Neighbourhoods with at least one cell for
thelabelsindicated were subsetted and neighbourhood graphs generated to
indicate the pairwise interaction between cell labels. At right: maximum

DAPI FActin

!

DAPI CD68 UMOD

Second harmonics

DAPI FActin

Z-projections of 3D confocal fluorescence images with white arrow indicating
MPO+ cells (e and f) or CD68+ cells (g), orange arrows indicating CD3+ cells and
asterisks highlighting fibrosis (white) or areas of altered morphology/injury
(yellow).Scalebar =100 pm. handi, pairwise subset analysis of CD3+, PT and
TAL (orange, magenta and cyan arrows respectively). CD3+ cells clusterin
regions of fibrosis (orange arrowhead and white asterisks). UMOD positive
castsassociate withregions of injury and CD3+ cells (orange asterisk), the
tubularepitheliumisintact with brush borders (white #), has evidence of
epithelial simplification (orange #) or less AQP1 marker and epithelial
simplification (red #). Scale bar =100 pum.



Article

c d Expression TF Activities

a (snCv3/scCv3) (SNARE2) Ave. Exp.

HNF4A O 15
THRB % Exp.
NR3C2 Y )
o
JUND{@®® | JUND Ave. Access.
JUN e |
Fos2 O S
FOS::JUNB % Access.
FOS X J
BACH2 25 75

A

)’HI I
1|

‘ IU II‘IH‘I1

,\‘ (L1} | 0 |
Rt i el
J‘Il\l‘ ‘ ‘II ) J‘F‘II ‘Ilb‘ M I,‘
w" \ \)1\ H”I J Il \;“HIJI\

T

RNA Velocities

SMAD2::SMAD3

NFKB1

RELB

o REL

ATF3

NFKB2

° RELA

° STAT1::STAT2
CREBS5

Repair (Ad./Mal.)

Degenerative dPT
Path S
-«

dPT/DTL

Condition Density UMAPs Differential Density
Zscore

- -

2 2

dpT

late

il
[ I

CREB1
CREM
ELF3
ETV6
PAX2
ETS1
EGR1
MEIS1

aPT

Ref State
[PT-51-3 1

bl dild

—
P1:81:3 Pseudo-time

Differential Density g
Zscore

snCv3
RNA Velocities

aTAL2,

PROM1 PLSCR1 ‘ | io & po-JUN
| ° AKI i ;
®CKD |

100 100 10
Pseudo-time

I TNIK ARHGAP29 ITGB6 TSPAN1
© WhtActivator Rho Activator TGFbeta Activator EMTActivator

[T aTAL Modules m

»
@
c
@

o

2
£
S
c
>

a

Inferred Latent Time

J Gene Regulatory Networks (TAL Trajectory States) k snCv3 g
= SPP1 NR2F2 ZEB1 TRAP2B PROM1 ERBB4 STAT3 TCF7L2 NR3C1 Repair (Ad./Mal.) Flow *
s EI - . ol o D . - . . ]
o|o
<z
"ﬁ £
ggl e ° ° ° ° ° . ° -
K]
slo
2]
EEI . & . . . . .
0.0 05 1.0 02 04| 02 04 0.3 0.4 05| 0.02004 |p3 04 05 || 030405 04 06 |[02 04 a "
- - Pseudo-time
Network Influence (Eigenvector Centrality Scores) 2_—17

m NR3C1

Simulated Perturbation

TFAP2B

Simulated Perturbation 7~

. & 77
o 04 ¢ 04 iz o 04 04
8 g.e S
? 02 02 » 02 0.2
g g
8 0.0 0.0 H 00 0.0
o o
502 0.2 502 0.2
c L' 2 SR v . ¢
£ 13 £ A
04, ° o 04 S ¥ 0.4
. .
024 68101214 0246 8101214
Pseudo-time Pseudo-time

Extended DataFig. 9|See next page for caption.



Extended DataFig.9|PTand TAL repair trajectories. a. Trajectory of PT
cells for snCv3 and scCv3 datasets. Bottom UMAPs are coloured by cell density
foreach condition (AKI/CKD), including the cell density difference between
AKland CKD.b.UMAP of PT subclasses (PT-S1-S3, aPT) with projected RNA
velocities, derived from adynamical model of PT repair modules, visualized as
streamlines (Methods). c. Heatmap of smoothed gene expression profiles
along theinferred pseudo-time for PT cells. Colour blocks on the left show
different repair states or modulesidentified based on the gene expression
profiles.d.Right panel: dot plot of SNARE2 average accessibilities (chromVAR)
and proportionaccessible for TFBSs showing differential activity inaPT
modules. Left panel: dot plot of averaged gene expression values (log scale)
and proportion expressed for integrated snCv3/scCv3 modules. e. 3D confocal
imaging of areference kidney tissue section stained for PROM-1(red), Phopho-
c-Jun (p-c-JUN, yellow), F-actin (with FITC phalloidin, green) and DNA with DAPI
(cyan) (scalebar 100 pm). Regions of PROM-1withinaglomerulus (G) and a
proximal tubule (PT) areindicated and enlarged in the right panels (rendered
3D volumes, scale bar 10 um). This area shows the association of PROM-1
expressionwith p-c-Jun+cellsinthe tubules.3D rendering was performed
using the Voxx software from the Indiana Center for Biological Microscopy

(voxx.sitehost.iu.edu/).f. Top panels: TALUMAPs as in Fig. 5a (snCv3) showing
conditiondensities asin (a). Bottom panels: changes of smoothed gene
expression (snCv3) for representative genes as afunction ofinferred pseudotime
coloured by disease conditions.g. TALUMAP asin Fig. 5a (snCv3) with projected
RNA velocities, derived from a dynamical model for TAL repair modules,
visualized as streamlines (Methods). h. Heatmap showing expression value
dynamics (snCv3) along latent time inferred from RNA velocities for the top
300 likelihood-ranked genes. Top colour barindicates aTAL repair modules.
i.Scatter plots (u, unspliced; s, spliced; t, latent time) for putative driver genes
(snCv3)identified by highlikelihoods in the dynamicalmodel.j. Generegulatory
networks associated with TAL repair modules (Methods, see Supplementary
Table 23). Eigenvector centrality scores were plotted for select factors with
highinfluence ondifferent states. k. UMAP embedding (snCv3) showing
pseudotime gradient and the derived vector field associated with TAL repair.
I-m. UMAP embedding showing simulated vector fields following TFAP2B (1) or
NR3CI (m) perturbation. Barplots showinner product calculations (perturbation
scores) comparing directionality and size of TAL repair flow vectors and the
simulated perturbation vectors. Negative perturbationscores indicate ablock
indifferentiation.
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a  aPT: VCAM1+KIMA- aPT: VCAM1-KIM1+ b aPT: VCAM1+KIM1+ aTAL: KIM1+PROM1+

Extended DataFig.10|See next page for caption.



Extended DataFig.10|Adaptive epithelialocalized to areas of injury.
a.Immunofluorescent (IF) staining of VCAM1, AQP1, KIM1(HAVCR1) in the
aPT (performed onreplicate sections from 3 individuals). Scale bars represent
20 pm. b. IF staining of UMOD, PROM1and KIM1in the TAL (performed on
replicate sections from 3 individuals). Scale barsrepresent 20 pm. c-e. RNA
insituhybridization (ISH) for PROMI, CST3 or EGF (performed on adjacent
sections from 6 individuals). c.ISH for PROMI and CST3in adjacent sections.
PROMI1islocalized to an areashowinginterstitial fibrosis and tubular atrophy.
Scalebaris100 pm.d.RNAISH for PROMI (left panel) and EGF (right panel) in

adjacent corticomedullary sections. PROMI positive epithelial cells seenin
injured tubules (epithelial simplification, loss of nuclei) that are EGF negative
(blue asterisks, upperinsetimage) and EGF positive healthy TAL (red asterisks,
lower insetimage). Scale baris 100 pm. e. ISH for PROMI and EGF (healthy TAL)
showing PROMI localization to PT (blue asterisks, leftinset) and TAL (red
asterisks, rightinset) showing histological evidence of injury (epithelial thinning,
nucleiloss, brushborderlossin PT). Adjacent section (lower panel) shows EGF
positivity in healthy TAL cells. Scale baris 50 pm.
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Extended DataFig.11|See next page for caption.

cell differentiation (FDR = 0.000584)

cell projection morphogenesis (FDR = 0.0000215)

cell adhesion (FDR = 0.000725)

muscle contraction (FDR = 0.0451)
muscle cell differentiation (FDR = 0.0211)
actin filament-based process (FDR = 0.02)



Extended DataFig.11|TAL adaptive or maladaptive repair niches.
a.Slide-seq fibrotic/inflammatory niches from Fig. 5d showing full predicted
subclasslevel 3 cell type distributions. Scale baris 100 pm.b. Visium TAL niches
were identified by clustering TAL dominant spots according to Seurat label
transfer scores. The UMAP denotes 13 TAL niches which were distributed across
the23 samples (patientinset) and across disease state conditions (condition
inset). c. Visium niche cluster compositions. Signature proportions of TAL cell
types, injury cell states, stromal cells,and immune cells. Niche 5 contained
significant stromal, niche 7 contained lymphoid, and niche 11 contained myeloid
cellsignatures. Some niches (e.g. 9) had significant contributions from
neighbouring non-TAL epithelial cells (“Proportion Other” bar plot). The
colocalizationscore (Methods) for cell types within each nicheis based on
Seurat label transfer scores and provided asadot plot.d. Asubset of TAL niches
(1,3,5,7) wereoverlaid upon a histologicimage of the cortexin sample M19-F52_3,
with eachniche often represented by multiple contiguous spots. Scale bar is

300 pminlength. e.Representative region (patient 28-12265) showing niche 5
(STR) localized in proximity to interstitial fibrosis, and niche 3 (aTAL) localized
adjacent tomyeloid cellinfiltration. Scale baris 300 um. f. Circle plot of ligand-
receptor cell cell communications between TAL repair modules or states and
immune cell subclasses. Dot size indicates relative proportion of the subclasses
and TAL module, edge width represents strength of the communication.
g.Dotplotsshowing expression level and percent expressed for selectligands
orreceptors within the mouse AKI data. Data were grouped into injury groups
lessthan or equal to 2 days (including control cells) and groups greater than
2days post-injury. The asterix highlights an /GFI expression difference found
betweenearly and late injury groups of the aFIB population. h. Gene regulatory
networks associated with STR cell types (see Supplementary Table 27).
Eigenvector centrality scores were plotted for select factors with highinfluence
ondifferentsubclasses. Ontologies for target genes downstream of select
transcription factors are shown.
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Extended DataFig.12|See next page for caption.



Extended DataFig.12|Association of cell state scores with clinical
phenotypes. a. Embedding plots: grouping of patient-level expression profiles
fortheaTAL,aStr, Degen, and aPT genesets used for clinical outcome association
(Supplementary Table 27) for snCv3 (Top) and scCv3 (Bottom). Barplots: the
distribution of eGFRamongthe identified groups. b. Unadjusted Kaplan Meier
curvesbyaStr (P=0.001) and common aPT and aTAL (P=0.03) state scores for
composite of ESRD or 40% drop in eGFR from time of biopsy in Neptune adult
patientcohort (see Supplementary Table 30). Ascore generated using 100
randomly selected genes failed to show any correlation (P= 0.52) with disease
survival. c. Heatmap of causal variants (z-scores) that were enriched in SNARE2
cell-type specificaccessible chromatin. Dots represent Z-scores > 2 (or Pvalue
<0.05). Dotplots show averaged ESRRB binding site accessibility or gene
expression (log values) and percent accessible or expressed.d. ESRRB
subnetwork of TF connections to target genes generated using SNARE2 RNA
and AC data, demonstrating a central role for ESRRB in regulating TAL marker

genes. Inset shows the ESRRB motif. Boxes represent ESRRB target genes
showing causal variant enrichment (c) within linked regulatory regions (AC
peaks). e. Heatmap showing enrichment scores (scaled -log10(p values)) for
the RNA expression (snCv3/scCv3) of gene sets associated witheQTL linked to
kidney function or disease®* or associated with progression of acute to
chronicinjury®.f. Dot plots of averaged gene expression values (snCv3/scCv3)
or TFbinding site accessibilities (SNARE) and proportion expressed/accessible.
Violin plots show gene expression scores for gene sets associated with aging
(Tabula Muris Consortium*®and Takemon et al.*®) or SASP (Ruscettietal.”’ or
Basisty etal.”). g. Violin plots showing expression scores for gene setsshownin
(f) for allnon-immune subclasses. h. Bottom: Number of differentially expressed
genes between AKland CKD cases for each major cell typeinsnCv3andscCv3
datasets. Top: enrichment of functional gene ontology terms for each major
celltype. Colourindicates-log adjusted p-value (derived from GSEA and
calculated based on permutation).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

3
S~
(1)

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

X X

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

m

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X X X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O 0O 00odn

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX
X OO

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection ~ 10x Chromium v3 and Illumina Novaseq 6000 instrument control software (v1.6.0 and 1.7.0); Leica LASX software (v. 3.5); 3D label free
autofluorescence and fluorescence imaging data were captured using a Leica SP8 confocal scan-head mounted to an upright DM6000
microscope. For large-scale imaging of tissues at submicron resolution, the Leica Tile Scan function was used to collect a mosaic of smaller
image volumes using a high-power, high-numerical aperture objective. Leica LASX software (v. 3.5) was then used to stitch these component
volumes into a single image volume of the entire sample. The scanner zoom and focus motor control were set to provide voxel dimensions of
0.5x0.5 um laterally and 1 um axially. 2D Immunofluorescence images and data were captured using Nikon EZ-C1 (3.91) confocal system and
images produced using NIS-elements software (BR3.2 64 bit).

Data analysis Code to reproduce figures are available to download from github.com/KPMP/Cell-State-Atlas-2022.

snCv3 and scCv3 sample demultiplexing, barcode processing, and gene expression quantifications were performed with the 10X Cell Ranger
v3 pipeline using the GRCh38 (hg38) or GRCh37 (hg19, indicated in Comments column of Supplementary Table 1)) reference genome. For
single nucleus data, introns were also included in the expression estimates. SNARE2 data processing pipeline (snarePIP v1.0.1) is available at
github.com/hugiwen0313/snarePip. For SNARE2 RNA processing, this involved removal of AC contaminating reads using cutadapt (version
3.1), dropEst (version 0.8.6) to extract cell barcodes and STAR (version 2.5.2b) to align tagged reads to the genome (GRCh38). For SNARE2 AC
data, this involved snaptools (version v1.2.3) and minimap (version 2-2.20) for alignment to the genome (GRCh38). snCv3 doublets were
identified using DoubletDetection software (version 2.4.0). SNARE2 doublets were identified by both DoubletDetection (version 3.0) and
Scrublet (github.com/swolock/scrublet, version 0.2.2). Ambient RNA in scCv3 was corrected using SoupX (version 1.5.0). snCv3/scCv3/SNARE
analyses involved the following R packages: Seurat (version 4.0.0), Pagoda2 (version 1.0.2), corrplot (version 0.84), Signac (version 1.1.1),
MACS (version 3.0.0a6), chromVAR (version 1.12.0), CisTopic (version 0.3.0), Cicero (version 1.8.1), swne (version 0.6.20), ggdendro (version
0.1.20), circlize (version 0.4.12), g-chromVAR (version 0.3.2), Slingshot (version 2.0.0), WGCNA package (version 1.70-3), Cacao (version 0.2.0),
SCCAF (version 0.0.10), sclB (version 1.0.3), DoRothEA (version 1.7.2), viper (version 3.15), CellAlign (https://github.com/shenorrLab/cellAlign),
velocyto (version 0.6), CellChat (version 1.0.0). The following python packages were also used: NSFaorest (version 2.0), velocyto (version
0.17.17), scVelo (version 0.2.4), Celloracle (version 0.9.1), CausalDB database (github.com/mulinlab/CAUSALdb-finemapping-pip). Additional
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code for analysis of chromatin data is provided at github.com/yanwu2014/chromfunks.

Slide-seq2 demultiplexing, genome alignment and spatial matching was performed using Slide-seq tools github.com/Macoskolab/slideseq-
tools/releases/tag/0.1. Slide-seq analysis was performed using: Giotto (version 1.0.3), RCTD (version 1.2.0), ggGally (version 2.1.2) and Seurat
(version 4.0.0). 10X visium expression analysis, mapping, counting, and clustering was performed using Space Ranger (version 1.0.0) and final
data processing was done in Seurat (version 3.2.0 and 3.2.3). Tissue cytometry and analysis were conducted using the Volumetric Tissue
Exploration and Analysis (VTEA) software (version 1.0a-r9, www.github.com/icbm-iupui/volumetric-tissue-exploration-analysis) and RStudio
(version 1.4) with R (version 4.0.2), corrplot (version 0.84), igraph (version 1.2.6), FNN (version 1.1.3), circlize (version 0.4.12), Hmisc
(version 4.5.0), corrplot (version 0.84) and Rtsne (version 0.15).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Processed data, interactive and visualization tools: The snCv3, scCv3, SNARE2, Slide-seq and Visium processed data files are all available for download from GEO
(Superseries GSE183279). snCv3 healthy reference data is available for reference-based single cell mapping by the Azimuth tool: https://
azimuth.hubmapconsortium.org/. All snCv3 and scCv3 processed data can be accessed and viewed at cellxgene (https://cellxgene.cziscience.com/collections/
bcb61471-2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging can all be
visualized and interrogated using the KPMP Data Atlas Explorer: https://atlas.kpmp.org/explorer/. For 3D imaging, the cytometry, cell classifications, gates and
neighborhood analysis data are located at: https://doi.org/10.5281/zenodo.7120941.

Raw sequencing and imaging data: Raw sequencing data are under controlled access (human data) as they are potentially identifiable and can be accessed from the
respective sources indicated below (summarized in Supplementary Table 1). Raw and processed sequencing and imaging data (snCv3, scCv3, 3D imaging, Slide-seq,
Visium) generated as part of the Kidney Precision Medicine Project (KPMP) has been deposited at https://atlas.kpmp.org/repository/ and compiled at https://
doi.org/10.48698/3231-8924. Raw sequencing data can be requested and are available by signing a data use agreement with KPMP. Raw sequencing data (snCv3,
SNARE?, Slide-seq) generated as part of the Human Biomolecular Atlas Project (HuBMAP) has been deposited at https://portal.hubmapconsortium.org/ and
compiled at https://doi.org/10.35079/hbm776.rgsw.867. The HUBMAP raw data are available for download from the database of Genotypes and Phenotypes
(dbGaP, phs002249). snCv3 data not deposited to KPMP or HUBMAP are available from GEO (GSE183279) or, for Covid AKI raw sequencing files, upon request from
WU KTRC (sanjayjain@wustl.edu) due to patient confidentiality.

Additional published/public data sets: The following publicly available RNA-seq data sets were used in this study: mouse kidney single-cell (GEO, GSE129798); mouse
kidney injury single-nucleus (GEO, GSE139107); human fibroblast and myofibroblast single-cell (Zenodo, 10.5281/zenodo0.4059315); mouse distal nephron single-
cell and bulk distal segment (GEO, GSE150338); human kidney mature immune single-cell (https://kidney-atlas.cells.ucsc.edu); and human kidney single-nucleus
(GEO, GSE151302; https://human-kidney-atac.cells.ucsc.edu). GWAS summary statistics were from the CKDGen Consortium (all eGFR, https://ckdgen.imbi.uni-
freiburg.de/files/Wuttke2019), EBI GWAS Catalog (hypertension, https://www.ebi.ac.uk/gwas/efotraits/EFO_0000537), and the CausalDB database (Release 1.1
2019-09-29, http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical data were obtained from the Nephrotic Syndrome Study Network and are
available upon request to NEPTUNE-STUDY@umich.edu due to patient confidentiality. ERCB data was obtained from GEO (GSE104954). Raw sequencing data
(scCv3) on living donor biopsies as part of the Chan Zuckerberg Initiative (CZI) and Human Cell Atlas (HCA) are available from GEO (GSE169285). Additional visium
spatial transcriptomic data not in the KPMP repository are available from GEO (GSE171406).

Figures: Source data are provided with this paper. Additional figures can be accessed at Zenodo https://doi.org/10.5281/zenodo.6987337. Schemata of the human
nephron and renal corpuscle were developed by the Kidney Precision Medicine Project and HuBMAP (https://doi.org/10.48698/DEM4-0Q93).
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Sample size Sample sizes were not predetermined by statistical methods due to nature of this study. The strength lies in the number of individuals
analyzed, technologies represented for orthogonal validation and cells analyzed (more than any existing study for the kidney). ForsnCv3 (n =
36), scCv3 (n =45), SNARE2 (n = 7), 3D imaging (n = 15), 10X Visium (n = 22) and Slide-seq (n = 6) single nuclei, single cells or tissue sections
were obtained from living or deceased donor tissues ("'n" here refers to individuals, the number of independent samples is explained in detail
in the "Replication" section below). These were obtained from healthy reference, AKI or CKD individuals. To ensure robust cell state profiles,
reference tissues were obtained from multiple sources, and biopsies were collected from AKI and CKD patients under rigorous quality
assurance and control procedures. This ensured that cell type clusters were not driven by technical artifacts and that our analyses showed
rigor and reproducibility.
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Data exclusions  Low quality cells or nuclei were excluded from analyses based on established quality filtering metrics:

snCv3:

CellRanger Empty barcode filter

Doublets identified using DoubletDetection software
<400 or > 7500 genes detected per cell

Gene/UM I ratio filter (Pagoda2)

scCv3:
> 50% mitochondrial reads
< 500 or > 5000 genes detected per cell

SNARE2 - RNA:

Dropést cell score < 0.9

Doublets identified using DoubletDetection and Scrublet software
< 200 or > 7500 genes detected per cell

Gene/UM I ratio filter (Pagoda2)
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SNARE2 - AC:

Cell barcodes not passing RNA QC filters

< 0.15 tss enrichment

<1000 read fragments or 500 UMI per cell

<0.15 of read fragments overlapping promoter regions
samples showing < 500 dual omic cells after quality filtering
Gene/UM I ratio filter (Pagoda2)

Visium 10x:
In each Visium sample, spots were eliminated if they did not overly tissue. In addition, the outermost layer of spots was eliminated from
comparative analyses if the edge was manually cut by a razor.

Replication RNA-Seq: snCv3 data was generated from 44 independent samples or experiments to cover 36 individuals, scCv3 was generated from 49
samples covering 45 individuals, and SNARE2 was generated from 17 samples covering 7 individuals. snCv3 clustering analysis was performed
at multiple k values and cluster assignments were performed using a defined process (see Methods). Reproducibility of assigned cell type
annotations was evident from consistent aligned populations found across technologies (scCv3, SNARE, Slide-seq, Visium) and high correlation
values with reference (published) data sets.

Imaging: For 3D imaging and immunofluorescence staining experiments, each staining was repeated on at least 2 separate individuals or
separate regions. For ISH, each stain was performed on 6 separate individuals. For Visium spatial transcriptomics, 23 samples from 22
individuals were included in the analysis. These included at least 6 samples from each of the reference, CKD, and AKI categories. For Slide-seq
we generated 31 cortical and 36 medullary pucks from 6 individuals. For immunofluorescence validation studies, commercially available
antibodies were used; the immunostaining included tissue from patients not contributing to omics data. Similarly, orthoganal validation of
omics annotations and spatial localization in Visium studies also included more than four samples each from reference and disease biopsies
that were not used to generate single cell gene expression data. This heterogeneity in sampling demonstrated the reproducibility and rigor of
the atlas. All attempts at replication were successful for these imaging experiments.

Further, several technologies were performed on samples from the same individual and in some cases the same tissue block was used to
generate multimodal data.

Randomization = Randomization was not used as it was not relevant for this study design as healthy and disease samples were obtained as available.
Generation of data and processed files were agnostic to the disease conditions. Batch effects were corrected by scaling expression of each
gene to the dataset-wide average and shown to have minimal effect from cell type or cluster contribution plots.

Blinding All human specimens used in this study were de-identified, however select attributes (condition, age, sex) were available to all investigators. A

majority of the analyses were not performed blind as these sample attributes were needed for accurate annotation of cell types or states and
for the design of downstream analyses to create maps.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample e the research sample (e.q. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
P PIE group o [ ¢l /

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age ranqe and
/ + ‘] 2, / ‘)

any manipulations. State what population the

ample is meant to represent when opplicable. For studies involving existing datasets,
describe the data and ils source

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the dato collection procedure, inctuding who recorded the dato and he

imin ial scale Indicate the start and stop dotes of dota collection, noting the frequency and periodicity of sampling and providing a rationale for
g and spa )i g the frequency / v of pling ( ]
hese choices. If there is a gap between collection periods, state the date ify the spatial scale from which

lor each sample cohort.

the data are taken

Data exclusions If no data were excluded from the analyses, stote so OR if data were scribe the exclusions and the rationale behind them,

indicating whether exclusion criterio were pre-established,

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
peat the experiment failed OR state that all attempts to repeat the experiment were successful

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates v

controlled. If this is not relevant to your study, e

dlain why.

r

Blinding [

blinding was not relevant to your study

Did the study involve field work? [ ] Yes No

ribe the extent of blinding used during data acquisition and anclysis. If blinding was not possible, describe why OR explain why

Field work, collection and transport

emperature, rainfall).

Field conditions Describe the study conditior work, prov

ont perameters (e.q. latitude and longitude, elevation, water depth).

the location of the sampling or experiment, providing re
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habitats and to collect ond impo
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Access & import/export [

compliance with local, nationa

id international laws, noting any permits thaot were obtained {give the name of the issuing authority,

the date of issue, and any identifying information).
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s minimized

Disturbance Describe any disturbance cau tudy and how it
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Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies

Antibodies used The antibodies used and associated details are tabulated in Supplemental tables 35 and 36.
For 3D cytometry studies
Primary antibody or Fluorescent probe, Target, Vendor, Dilution, Secondary antibody, Vendor, Dilution
Goat anti-aquaporin1(AQP1), Proximal tubules, Santa Cruz (sc-9878), 1:50, (please note, very minimal content about this
discontinued antibody)
Alexa568 donkey anti-goat, ThermoFisher(A-11057), 1:200
Rabbit anti-myeloperoxidase(MPO), Neutrophils, Abcam (ab9535), 1:50
DyLight 594 donkey anti-rabbit, ThermoFisher(SA5-10040), 1:200
Mouse anti-CD68, Macrophages, Dako (M0876), 1:50, Alexa 633donkey anti-mouse, ThermoFisher(A16019)(Conjugated in-house
with ThermoFisher (A20170), 1:200
Mouse Alexa660 anti-SIGLECS8, Eosinophils, Biolegend (347102)(Conjugated in-house with ThermoFisher (A20171)), 1:50
Sheep Alexa546 anti-Uromodulin(UMOD), Thick ascending limb, R&D Systems (AF5144), 1:200, conjugated in house with kit (https://
www.thermofisher.com/order/catalog/product/A20183)
Mouse Alexa647 anti-CD3, T-cells, BD Pharmingen (557706), 1:50
DAPI, Nuclei, ThermoFisher (D1306), 1:100
Oregon Green Phalloidin, Filamentous actin (vasculature, brush border), ThermoFisher 07466, 1:200
For 2D confocal immunofluorescence microscopy
Primary Antibody, Against Raised in, Company Cat #, Primary antibody dilution, secondary Antibody, secondary Antibody dilution,
Uromodulin human mouse Ray biotech 119-13298 1:100 Goat anti-mouse alexa-488 1:400
CD133 (PROM1) human, mouse, rat Rabbit ThermoFisher PA5-38014 1:50 goat anti-ratbbit-cy3 1:400
KIM1 human Rabbit ThermoFisher PA5-79345 1:250 goat anti-rabbit -cy3 1:400
VCAM1 human, rat mouse ThermoFisher MA5-11447 1:50 Goat anti-mouse alexa-488 1:400
AQP1 human Rabbit santa cruz sc-20810 1:100 goat anti-rabbit -cy3 1:400

Validation Validation of antibodies and confidence in their staining is derived from several sets of data including vendors specifications, omitting

primary antibody, well-established expected cell-type staining pattern for the indicated antibodies in the literature, referring to
human protein atlas data where available and orthogonal validations in the multiomics data presented.

3D IF antibodies:

AQP1 - https://www.scbt.com/p/aqpl-antibody-I-19

AF-568 - https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-11057

MPO - https://www.abcam.com/myeloperoxidase-antibody-ab9535.html|

DyLight-594 - https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/SA5-10040

CD68 - https://www.agilent.com/en/product/immunohistochemistry/antibodies-controls/primary-antibodies/cd68-%28concentrate
%29-76550

Conjugated in-house to AF-633 — kit # https://www.thermofisher.com/order/catalog/product/A20170

SIGLEC8 (AF660) - https://www.biolegend.com/de-at/products/purified-anti-human-siglec-8-antibody-6383

Conjugated in-house to AF-660 — kit # https://www.thermafisher.com/order/catalog/product/A20171

UMOD - https://www.rndsystems.com/products/human-uromodulin-antibody_afS144

Conjugated in-house to AF-546 — kit # https://www.thermofisher.com/order/catalog/product/A20183 (https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC8363780/)

CD3 - https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-
antibodies-ruo/alexa-fluor-647-mouse-anti-human-cd3.557706

DAPI - https://www.thermofisher.com/order/catalog/product/D21490

Phalloidin - https://www.thermofisher.com/order/catalog/product/07466

2D Antibodies:

Uromodulin - https://www.raybiotech.com/mouse-anti-human-uromodulin/

CD133 (PROM1) - https://www.thermofisher.com/antibody/product/CD133-Antibody-Polyclonal/PA5-38014

KIM1 - https://www.thermofisher.com/antibody/product/KIM-1-Antibody-Polyclonal/PA5-79345

VCAM1 - https://www.thermofisher.com/antibody/product/VCAM-1-Antibody-clone-1-4C3-Monoclonal/MA5-11447
AQP1 - https://www.citeab.com/antibodies/789773-sc-20810-aqpl-antibody-h-55
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Eukaryotic cell lines

Policy information about cell lines

|l fine used.

> the source of each ce

Cell line source(s)

procedures for each cell line used OR declare that none of the cell lines used were authenticated

Authentication Describe the authenticatior

Mycoplasma contamination Confirm that all cell lines tes

mycopitasma contamination OR declare that the cell lines

I negative f describe the results of the testing for

mycaoplasma contaminat

! for mycoplasma contamination.

Commonly misidentified lines  jyne any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

cess by other researchers

Specimen deposition Indicate where the specimens have been deposited to permit free

collection, storage, sample pretreatment and measurement), where

Dating methods If new dates are provided, describe how they were obtained (e.q.

re obtoined (ie. lab name), the calibration program and the protocol for quolity assurance OR state that no new dates are

they wi

D Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics overs]ght ldentify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance

was required and explain why not

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For luboratory animals, report species, strain, sex and age OR state that the study did not involve laborotory animals

Is on animals observed in or captured in the field: report species, sex and age where possible. Describe how animals we

ide deta

Wild animals Pr

caught and transported and what hap;

fter the study (if

ned to captive snimal

say where and w

rwork with field-collected has housing, mointenance, temperature,

Field-collected samples  /or laboratos

photoperiod ¢

samples collected from the field

1 enda-of expernment pro

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state thot no ethical approval or guidance

was required and explain why not

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics The population used here were adults in the age interval 20-80 and included both sexes and participants of different races.
The associated clinical metadata includes age, sex, race, comorbidities, eGFR, certain medications and is detailed in
supplemental table 3. The clinical conditions include AKI and CKD.

Recruitment Participants were recruited from different sites and IRB approval was obtained for use of tissue and data for research in a
deidentifiable manner. To obtain consent, the coordinators would approach the participant after consultations with the
clinical team, go over the study with them, address any questions and concerns. Once consent was obtained, samples are
procured and preserved in a timely manner using standardized protocols that have been published and available on
KPMP.org. Recruitment of AKI and CKD patients were per established clinical criteria (https://www.kpmp.org/for-clinicians).
The reference tissue samples were selected from patients with normal kidney function and/or age appropriate
histopathology as they became available. Samples under waived consent are described in the ethics statement. The
associated clinical and pathological data is provided in Supplemental Table3 for readers to interpret the study results.

Ethics oversight We have complied with all ethical regulations related to this study. Human samples (Supplementary Table 1) collected as part
of the Kidney Precision Medicine Project (KPMP) consortium (KPMP.org) were obtained with informed consent and approved
under a protocol by the KPMP single IRB of the University of Washington Institutional Review Board (IRB#20190213). Samples
as part of the Human Biomolecular Atlas Program (HuBMAP) consortium were collected by the Kidney Translational Research
Center (KTRC) under a protocol approved by the Washington University Institutional Review Board (IRB #201102312).
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Informed consent was obtained for the use of data and samples for all participants at Washington University, including living
patients undergoing partial or total nephrectomy or from discarded deceased kidney donors. Cortical and papillary biopsy
samples from patients with stone disease were obtained with informed consent from Indiana University and approved by the
Indiana University Institutional Review Board (IRB #1010002261). For Visium Spatial Gene Expression, reference
nephrectomies and kidney biopsy specimens were obtained from the KPMP under informed consent or the Biopsy Biobank
Cohort of Indiana (BBCI)49 under waived consent as approved by the Indiana University Institutional Review Board (IRB #
1906572234). Living donor biopsies as part of the Human Cell Atlas (HCA) were obtained with informed consent under the
Human Kidney Transplant Transcriptomic Atlas (HKTTA) under IRB HUM00150968. Deidentified leftover frozen COVID-19 AKI
kidney biopsies were obtained from the Johns Hopkins University pathology archive under waived consent approved by the
Johns Hopkins Institutional Review Board (IRB 00090103).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.
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Clinical trial registration NOT APPLICABLE

Note where the full trial protocol cun be accessed OR if nol available, explain why.

Y protoco / J ! y

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and dota collection.
QOutcomes Describe how you pre D condary outcome measures and how you assessed these meosures

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

=2
o

Yes

[ ] Public health

[] National security

D Crops and/or livestock
[] Ecosystems

X

XX X

X

D Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No | Yes

@ I:] Demonstrate how to render a vaccine ineffective

X D Confer resistance to therapeutically useful antibiotics or antiviral agents
X I:] Enhance the virulence of a pathogen or render a nonpathogen virulent
X D Increase transmissibility of a pathogen

g D Alter the host range of a pathogen

[] Enable evasion of diagnostic/detection modalities

X D Enable the weaponization of a biological agent or toxin

@ D Any other potentially harmful combination of experiments and agents

ChlP-seq

Data deposition
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[:] Confirm that both raw and final processed data have been deposited in a public database such as GEO.

D Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication Drovic




Files in database submission Frovide a list of all files available in the database submission

Genome browser session Provide a link to an anonymized genome brov, n for "Initial subrission” ond "Revised version” documents only, to
(e.g UCSC) enable peer review. Write "no longer applice al submission” documents.

Methodology

i Describe the experimental replicates, specifying number, type and replicate agreement
plicates f f f Y 7 / g
i Describe the sequencing depth for eac ng the total number of ids, uniquely mapped reads, /"’/H(f/] of ds and
I ep 1 ] J J L f { J

whether they were paired- or single-end.

he antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and loi

Antibodies

/

Peak calling parameters  Specify the command line program and parameters used for read mapping and peak calling, including the ChiP, control and index files

used

Data quality

> software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community

Software

Flow Cytometry

scribe the methods used to ensure dato quality in full detail, including how many peaks are at FOR 5% and above 5-fold enrichment.

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

[:] The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
D All plots are contour plots with outliers or pseudocolor plots.

D A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data col ion, specifying make and model number

Software flow cytometry data. For custom code that has been deposited into a
community repository, provi

Cell p0pulation abundance Describe the abunde s within post-sorl fractions, providing details on the purity of the
samples ond how il w

Gating strategy Describe the gating strateay used for all SC gates of oll

population, indicating where boundaries pulations are

]:] Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

1 session and/or subject, and sp

Design specifications
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Acquisition

n, perfusion

Imaging type(s) Specify: functional, structural, diff

ify in Tesla

Field strength

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, simoothing kernel size, etc.).

Normalization ! If data were normalized/standardized, describe the approach(e pecify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space
original Taleirach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration)

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

e (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and

Model type and settings

els (e.¢

fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested

fect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

orial designs were used,

Specify type of analysis: [ ] Whole brain [ ] ROl-based [ ] Both

Statistic type for inference
(See Eklund et al. 2016)

ecify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods
Correction Describe the type of correction und how it is obtained for imultinle comparisons (e.g. FWE, FDR, permutation or Monte Carla).

Models & analysis

n/a | Involved in the study
,:] D Functional and/or effective connectivity

[:] I:] Graph analysis

I:] D Multivariate modeling or predictive analysis

penadence usead ana tl

e mode! de

Functional and/or effective connectivity

ent variable and conne

rt the depent

vity measure, specifying

Graph énalysis

or grouy;

and the global an

s independent variables, features extroction and dimension reduction, model, training and evaluation

Multivariate modeling and predictive analysis
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