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Understanding kidney disease relies on defning the complexity of cell types  

and states, their associated molecular profles and interactions within tissue 

neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays 

(>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of 

healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has 

provided a high-resolution cellular atlas of 51 main cell types, which include rare  

and previously undescribed cell populations. The multi-omic approach provides 

detailed transcriptomic profles, regulatory factors and spatial localizations spanning 

the entire kidney. We also defne 28 cellular states across nephron segments and 

interstitium that were altered in kidney injury, encompassing cycling, adaptive 

(successful or maladaptive repair), transitioning and degenerative states. Molecular 

signatures permitted the localization of these states within injury neighbourhoods 

using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2)million 

neighbourhoods) provided corresponding linkages to active immune responses. 

These analyses defned biological pathways that are relevant to injury time-course 

and niches, including signatures underlying epithelial repair that predicted 

maladaptive states associated with a decline in kidney function. This integrated 

multimodal spatial cell atlas of healthy and diseased human kidneys represents a 

comprehensive benchmark of cellular states, neighbourhoods, outcome-associated 

signatures and publicly available interactive visualizations.

The human kidneys have vital systemic roles in the preservation of 

body fluid homeostasis, metabolic waste product removal and blood 

pressure maintenance. After injury, dynamic acute and chronic changes 

occur in the renal tubules and surrounding interstitial niche. The bal-

ance between successful or maladaptive repair processes may ulti-

mately contribute to the progressive decline in kidney function235. 

Defining the underlying molecular diversity at a single-cell level is key 

to understanding progression of acute kidney injury (AKI) to chronic 

kidney disease (CKD), kidney failure, heart disease or death4issues 

that remain a global concern6,7.

We report a multimodal single-cell and spatial atlas with integrated 

transcriptomic, epigenomic and imaging data over three major con-

sortia: the Human Biomolecular Atlas Program (HuBMAP)8, the Kidney 

Precision Medicine Project (KPMP)9 and the Human Cell Atlas (HCA)10. 

To ensure robust cell state profiles, healthy reference tissues were 

obtained from multiple sources, and biopsies were collected from 

patients with AKI and CKD under rigorous quality assurance and con-

trol procedures8,9,11. We define niches for healthy and altered states 

across different regions of the human kidney spanning the cortex to 

the papillary tip, and identify gene expression and regulatory mod-

ules in altered states associated with worsening kidney function. The 

resultant atlas greatly expands on existing efforts12315 and will serve as 

an important resource for investigators and clinicians working towards 

a better understanding of kidney pathophysiology.

Constructing a kidney cellular atlas

To fully examine the molecular profile of kidney cell types, we 

used droplet-based transcriptomic assays (Chromium v3) for sin-

gle nuclei (snCv3) and single cells (scCv3) and the multiomic assay 

https://doi.org/10.1038/s41586-023-05769-3

Received: 31 July 2021

Accepted: 30 January 2023

Published online: 19 July 2023

Open access

 Check for updates

A list of affiliations appears at the end of the paper.

https://doi.org/10.1038/s41586-023-05769-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-05769-3&domain=pdf


586 | Nature | Vol 619 | 20 July 2023

Article

for single-nucleus chromatin accessibility and mRNA expression 

sequencing (SNARE-seq2, or SNARE2)16318 (Supplementary Tables 133).  

Integrative transcriptome analyses were performed on more than 

400,000 high-quality nuclei/cells (Methods) from 58 reference tissues  

(35 donors) and 52 diseased tissues (36 patients) that covered the spec-

trum of conditions from healthy to AKI and CKD (Fig. 1, Extended Data 

Figs. 133 and Supplementary Fig. 1). Unsupervised clustering was first 

performed on snCv3 data, permitting the discovery of 100 distinct 

cell populations, which were annotated to 77 subclasses of epithelial, 

endothelial, stromal, immune and neural cell types (Fig. 2, Methods, 

Extended Data Figs. 1 and 2 and Supplementary Tables 4 and 5). To 

further extend cell type annotations across omic platforms, snCv3 data 

were used to anchor scCv3 and SNARE2 datasets to the same embedding 

space, and cell type labels were assigned through integrative clustering 

(Methods, Extended Data Fig. 3 and Supplementary Tables 6 and 7). 

For spatial localization of these cell types or states in situ, we applied 

3D label-free imaging, multiplex fluorescence imaging (15 individuals)  

and spatial transcriptomic Slide-seq219,20 (6 individuals, 67 pucks) 

and Visium assays (22 individuals, 23 samples) (Fig. 1, Methods and  

Supplementary Table 2). To ensure consistency and agreement of find-

ings across technologies and minimize procurement- and assay-related 

biases, multiple samples were processed with more than one assay 

(Supplementary Table 3 and Extended Data Fig. 1a). Our approach per-

mitted deep and cross-validated molecular profiles for aligned kidney 

cell types, leveraging the distinct advantages of each technology; for 

example, the addition of cytosolic transcripts from scCv3, regulatory 

elements from SNARE2 accessible chromatin, and in situ cell type/state 

localization and interactions from spatial technologies.

Reference and altered states

We provide a very high level of complexity for all cell types along the 

depth of the kidney from the cortex to the papillary tip, in each nephron 

segment and the interstitium (Fig. 2a), identifying 51 canonical human 

kidney cell types with associated biomarkers (Methods and Supplemen-

tary Tables 528). This includes cell type epigenetic maps, comprising 

open chromatin regions and cis-regulatory elements with enriched 

transcription-factor-binding motifs (Supplementary Fig. 1 and Sup-

plementary Table 9). To spatially localize cell types within the tissue, 

snCv3 subclasses were used to predict identities in Slide-seq and Visium 

transcriptomic data at different resolutions (10)µm and 55)µm beads, 

respectively) (Fig. 2c3g, Methods and Extended Data Fig. 435). This 

enabled us to recapitulate renal corpuscle, tubular, vascular and inter-

stitial cell types with proportions, marker profiles and spatial organiza-

tions consistent with expected or observed (Visium) histopathology 

(Extended Data Fig. 5). Proximity enrichment analysis based on the cell 

type composition of adjacent Slide-seq beads across 32 cortical and 

35 medullary tissue pucks (6 participants) delineated region-specific 

cellular neighbourhoods (Extended Data Fig. 4d,e), including the renal 

corpuscle composition of podocytes (PODs), glomerular capillaries 

(EC-GC), mesangial cells and parietal epithelial cells. These renal cor-

puscle neighbourhoods localized adjacent to the juxtaglomerular 

apparatus cells4renin-producing granular (REN) cells and macula 

densa cells4and endothelial cells of the afferent/efferent arterioles 

(EC-AEA) leading into and out of the renal corpuscle (Fig. 2e3f). This 

neighbourhood analysis further confirmed a distinct vascular smooth 

muscle cell (VSMC) population flanking the afferent/efferent arterioles 

(Extended Data Fig. 4f). Consistent with these annotations, we validated 

the appropriate localization of associated cell type markers across 

platforms (Fig. 2f and Extended Data Fig. 5d3j). In addition to the renal 

corpuscle, we spatially anchored cell type subpopulations to the cortex 

or medulla (Fig. 2c and Extended Data Fig. 5a). The transition of the 

ascending thin limbs (ATL) of the inner medulla to the medullary thick 

ascending limb (M-TAL) of the outer medullary stripe was observed in 

Slide-seq (Fig. 2c), along with the transition from descending thin limb 

(DTL2) and M-TAL in the medulla to the cortical thick ascending limb 

(C-TAL) in the cortex in Visium (Fig. 2g and Extended Data Fig. 5d). Thus, 

the unique strengths of each spatial technology enabled the validation 

of our omic-defined cell types.

A critical and new element of this reference atlas is the characterization 

of cellular states associated with pathophysiological stress or injury. We 

carefully defined these altered states on the basis of previous studies and 
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Fig. 1 | Overview of the technologies used to generate a human kidney cell 

atlas. a, Human kidney samplesconsisted of healthy reference, AKI or CKD 

nephrectomies (Nx), deceased donors (DD) or biopsies. Tissues were processed 

for one or more assays, including snCv3, scCv3, SNARE2, 3D imaging or spatial 

transcriptomics (Slide-seq2, Visium). Scale bars, 1)mm (top) and 300)µm 

(bottom). b, Summary of the samples. Ref, reference. c, Omic RNA data were 

integrated, as shown by joint UMAP embedding, for alignment of cell type 

annotations across the three different data modalities. IC, intercalated cells; 

PC, principal cells; VSM/P, vascular smooth muscle cell or pericyte.
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known features of injury (Methods and Supplementary Table 10). We 

established multiple putative states4namely cycling, transitioning, adap-

tive (successful or maladaptive repair) and degenerative (damaged or 

stressed). These altered states were identified for epithelial cells along the 

nephron, as well as within the stroma and vasculature (Fig. 2a,d). Altered 

states, from reference and disease tissues in different proportions, were 

found to exist across technologies (Extended Data Figs. 1 and 3) and 

showed distinct expression signatures (Supplementary Tables 11315).

We used several methods to confirm these altered states. Mapping 

our annotations onto an existing mouse AKI model4 provided insights 

into their timecourse after an acute injury event (Extended Data Fig. 6). 

Degenerative states, coinciding with elevated expression of the known 

injury markers SPP1, CST3, CLU and IGFBP721 in humans (Supplementary 

Fig. 2), arose early in mice after injury (Extended Data Fig. 6c3e). These 

states showed a common expression and regulatory signature across 

cell types associated with FOS/JUN signalling (Supplementary Fig. 2) 

and were largely depleted in recovered mouse kidneys, consistent with 

possible cell death or a progression into repair states. Putative adap-

tive (successful or maladaptive tubular repair) states were primarily 

found within the proximal tubule (PT) and TAL subclasses in mouse 

and human kidneys. Both adaptive epithelial (aEpi) cell types showed 

expression profiles associated with epithelial differentiation, mor-

phogenesis, mesenchymal differentiation and EMT, while also exhibit-

ing a marked downregulation of transporters critical to their normal 
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Fig. 2 | Spatially resolved atlas of molecular cell types. a, Schematic of the 

human nephron showing cell types and states. b, UMAP embedding showing 

cell types (subclass level 3) for snCv3. Insets: overlays for both regional origin 

and altered-state status. Cyc, cycling; degen, degenerative; trans, transitioning. 

See Supplementary Table 4 for cell type definitions. c, Heat map of Slide-seq 

cell type frequencies along the corticomedullary axis (three individuals) (left). 

Middle, representative tissue puck region showing the transition of ATL to 

M-TAL segments. Right, corresponding expression of marker genes (scaled). 

Scale bar, 300)µm. d, Schematic of the renal corpuscle showing resolved cell 

types. e, The Slide-seq puck area indicated in Extended Data Fig. 4c and 

predicted cell types for renal corpuscles (top). Bottom, mapped expression 

values for corresponding marker genes (scaled). Scale bar, 100)µm. f, The 

average expression values for renal corpuscle cell types for markers shown in e 

and Extended Data Fig. 4f for all datasets. Ave., average; Exp., expression.  

g, Visium data on a healthy reference kidney (cortex, top; medulla, bottom). 

Left, haematoxylin and eosin (H&E)-stained tissue. Right, the per-bead 

predicted transfer scores for cell types or transcript expression values. Scale 

bar, 300)µm. Cx, cortex; OM, outer medulla; IM, inner medulla. The black lines 

outline histologically confirmed medullary rays leading into medulla.
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function (Extended Data Fig. 7a3c). The adaptive PT (aPT) population 

both mapped to and correlated with failed repair in rodents (Extended 

Data Fig. 2g), with characteristic expressions of VCAM1, DCDC2 and 

HAVCR14,22 (Extended Data Fig. 7c). Notably, we now identify a similar 

state within the TAL (aTAL), marked in humans by PROM1 (encoding 

CD133) and DCDC2 (Supplementary Table 13). These are consistent with 

CD133+PAX2+ lineage-restricted progenitors that are known to exist in 

the proximal and distal tubules of the adult kidney23,24. Analysis of the 

mouse AKI data revealed that these originated predominantly from 

C-TAL, and followed a similar time course as aPT, persisting 6)weeks 

after AKI, consistent with a potential failed-repair population4. This 

suggests a common aEpi state, sharing molecular signatures associ-

ated with injury and repair, that occurs in higher abundance within 

the PT and cortical TAL.

Distinct altered states were identified within the stroma (aStr) that 

were consistent with cell types involved in wound healing and fibrosis 

after tissue injury25 (Extended Data Fig. 2i). These cell populations 

encompass myofibroblasts (MyoF), cycling MyoF (cycMyoF) and a 

group of adaptive fibroblasts (aFIB) representing potential MyoF 

progenitors25. Their expression signatures included genes encoding 

periostin (POSTN), fibroblast activation protein alpha (FAP), smooth 

muscle actin (ACTA2) and collagens (Extended Data Fig. 7d). aStr cells 

were enriched after mouse AKI, and they persisted at later timepoints 

(Extended Data Fig. 6d,e). Furthermore, they exhibited high matri-

some expression25, consistent with their predicted role in extracellular 

matrix deposition and fibrosis (Extended Data Fig. 7e). Thus, careful 

annotation of altered states across kidney cell types has provided a 

means for labelling injury populations. This is important not only for 

diseased tissues, but also in reference tissues in which they might arise 

from ischaemic stress during sample acquisition or normal ageing. Key 

outcomes are the ability to annotate healthy reference cell clusters 

(Supplementary Fig. 3) as well as providing insights into the pathoge-

netic mechanisms of disease.

Spatially mapped injury neighbourhoods

For spatial localization of injury, altered states were mapped to Visium 

data generated on a range of healthy reference, AKI and CKD tissues 

(Supplementary Tables 2 and 3). As expected, altered cell state sig-

natures were enriched in AKI and CKD samples compared with in ref-

erence tissues (Fig. 3a,b). On the basis of cell type colocalization in 

the relatively larger area of Visium spots, immune and stromal cells 

colocalized more frequently with altered epithelial cells (Fig. 3c), con-

sistent with increased fibrosis and inflammation around damaged 

tubules. Furthermore, cell-type-specific altered states in Visium data 

that showed expression profiles consistent with snCv3/scCv3 (Fig. 3d) 

were directly mapped to histological areas of injury. For example, stro-

mal (fibroblast (FIB)), aStr (aFIB) and immune cells (monocyte-derived 

cells (MDCs)) localized to a region of fibrosis within the cortex of a CKD 

biopsy (Fig. 3e,f). This region abutted dilated and atrophic tubules 

that showed an aPT signature marked by CDH622 (Extended Data Fig. 7f 

and Supplementary Table 11). We also found evidence for injury of the 

medullary tubules (Extended Data Fig. 7g3i), with an area showing 

intraluminal cellular cast formation, cell sloughing and loss of nuclei 

that were associated with degenerative CD cells, including degenera-

tive medullary principal cells (dM-PCs) and transitioning principal and 

intercalated cells. This region increased expression of the degenerative 

marker DEFB1, which was previously shown to contribute to fibrosis 

through immune cell recruitment26. These results support co-mapping 

of snCv3/scCv3 reference and altered cell types to histological areas 

of injury.

To further uncover in situ cellular niches and injured microenviron-

ments across kidney disease, we performed 3D multiplexed immuno-

fluorescence imaging and label-free cytometry (3DTC) with second 

harmonic generation for collagen content27 on KPMP AKI and CKD 

kidney biopsy samples (Extended Data Fig. 8a and Supplementary 

Tables 2 and 3). 3DTC defined cellular niches for 1,540,563 cells by 

neighbourhood analysis of 14 classes of cells covering renal cortical and 

medullary structures (Fig. 4a, Methods and Extended Data Fig. 8b3i). 

We identified 14 cellular niches through community detection that 

included expected niches of cortical or medullary epithelium (N7 

and N8 versus N14, N9 and N1, respectively; Fig. 4b,c). The TAL and PT 

neighbourhoods (N7 and N8) were enriched in areas of injury (Fig. 4c 

and Extended Data Fig. 8i). Furthermore, areas of injury were associ-

ated with infiltrating leukocytes, including CD68+ (myeloid), MPO+ 

(N) and CD3+ (lymphoid or T) cells (N6, N11 and N13, respectively). 

Uniquely, CD3+ cells were almost exclusively detected in a subset of 

neighbourhoods with areas of tissue damage including presumptive 

epithelial degeneration (loss of markers and simplification) and fibrosis 

(N13; Fig. 4a (iii) and 4c and Extended Data Fig. 8h), consistent with 

degenerative epithelial enrichment found using Visium (Fig. 3c). By 

contrast, myeloid cells were found in cellular diverse niches with corti-

cal or medullary epithelium (N6 and N11; Fig. 4c). This is consistent with 

the association of M2 macrophages (MAC-M2) with adaptive rather 

than degenerative epithelia in Visium data (Fig. 3c) and their sustained 

presence in mouse ischaemia3reperfusion injury (IRI) (Extended Data 

Fig. 6d). The leukocyte diversity was specific in 3D neighbourhoods, 

as MPO+ and CD3+ cells were overlapping, whereas CD3+ cells were 

conspicuously low in neighbourhoods with CD68+ cells (N11 versus N6; 

Fig. 4c and Extended Data Fig. 8g). As neutrophils colocalized with puta-

tive adaptive and degenerative states (Fig. 3c) and transiently infiltrate 

early in mouse IRI (Extended Data Fig. 6d), neutrophils may infiltrate 

along with T cells predominantly in areas of acute injury marked by 

mixed degenerative and adaptive states. Alternatively, myeloid cells 

(such as MAC-M2) may occur more predominantly within relatively 

healthy areas showing active repair (adaptive or maladaptive). Overall, 

the results from spatial transcriptomics, histological correlation and 

3DTC demonstrate that altered states were enriched in PT and TAL 

neighbourhoods, with distinct immune-active cellular niches associ-

ated with healthy and injured tubules.

Stages and niches of epithelial repair

To obtain a deeper understanding of the genetic networks underlying 

the progression and potential pathology of altered tubular epithe-

lium, we performed trajectory inference on the snCv3/SNARE2 and 

scCv3 subpopulations (Fig. 5a,b, Methods and Extended Data Fig. 9). 

Although most degenerative states appeared too disconnected, aEpi 

trajectories showed dynamic gene expression and regulatory transi-

tions from dedifferentiated to mature functional states (Supplemen-

tary Tables 16321). We further identified transitory states or modules 

that may be associated with either successful or maladaptive repair. 

Early repair cells showed expression signatures associated with pro-

genitor states (PROM1), microtubule reorganization (DCDC1) and AKI 

(HAVCR1, SPP1) (Fig. 5b and Extended Data Fig. 9c,f). The directionality 

of these repair trajectories was confirmed from RNA velocities esti-

mated from dynamical modelling of transcript splicing kinetics, and 

the alignment with mouse AKI subpopulations (Fig. 5a and Extended 

Data Fig. 9b,g). These analyses enabled the identification of TAL 

repair signatures that were either conserved across species or human  

specific (Fig. 5b).

Epithelial repair signalling was enriched for several growth factors 

and pathways with known roles in promoting normal tubulogenesis, 

as well as maladaptive repair, fibrosis and inflammation. These include 

Wnt, Notch, TGF-³, EGF, MAPK (FOS/JUN), JAK/STAT and Rho/Rac signal-

ling28336 (Fig. 5c, Extended Data Fig. 9d and Supplementary Tables 19321),  

with dynamic transcription of several pathway regulators mapped to 

the TAL repair modules (Extended Data Fig. 9h, i). In support of MAPK 

signalling, PT cells that showed expression of PROM1 were subjacent 

to phosphorylated JUN (p-JUN) (Extended Data Fig. 9e). Progressively 
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active REL/NF-»B signalling along the aTAL and aPT trajectories further 

expands on previous roles for this pathway in injured PTs15 (Fig. 5c and 

Supplementary Table 19). We also found increased cAMP signalling 

(CREB transcription factors in aPT) capable of promoting dedifferen-

tiation37 and increased ELF3 activities that are potentially required for 

mesenchymal3epithelial transition38, both indicating that adaptive 

states may be poised for re-epithelialization.

Through integration of SNARE2 epigenomic profiles with snCv3 tran-

scriptomes, detailed gene regulatory networks (GRNs) were inferred 

for TAL trajectory modules. Transcription factors with high network 

importance were identified in each repair state, confirming key roles 

for several major signalling pathways, including their downstream 

target genes and processes (Extended Data Fig. 9j and Supplementary 

Tables 22324). This highlighted a critical role for TRAP2B (AP-2³), which 

was previously found to be required for terminal differentiation of 

distal tubule cells through activated expression of KCTD139. Both fac-

tors were active or expressed within mid-repair states (Fig. 5c) and 

simulated perturbation of TRAP2B disrupted the repair trajectory tran-

sition (Extended Data Fig. 9l,m). We therefore find adaptive epithelial 

trajectories sharing common molecular profiles that progressively 

upregulate cytokine signalling involved in tubule regeneration, while 

also providing molecular links to pathways associated with fibrosis, 

inflammation and end-stage kidney disease.

Slide-seq, Visium, immunofluorescence staining and RNA in situ 

hybridization (ISH) experiments confirmed spatial localization of adap-

tive states into injury niches (Fig. 5d,e and Extended Data Fig. 10). aTAL 
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populations in Slide-seq-processed tissues (3 niches, 2 individuals; 

Fig. 5d and Extended Data Fig. 11a) were marked by an upregulation 

of the aTAL marker ITGB6 and downregulated EGF expression, which 

is known to occur after TAL injury40. These were identified adjacent to 

areas of aStr enrichment, evidenced by elevated COL1A1 expression. 

These potentially fibrotic regions also showed diverse inflammation 

for both lymphoid (T cell) and myeloid (MAC-M2/MDC) cell types that 

co-localized around vessels (Fig. 5d). Analogously, aTAL injury niches 

were identified in Visium data as spots (55)µm) colocalizing with stro-

mal, lymphoid and myeloid cells (Fig. 5e, Methods and Extended Data 

Fig. 11b3e). Localization of aTAL states to injured tubules was further 

confirmed by ISH, in which PROM1-expressing cells showed clear his-

tological evidence of injury, including epithelial simplification (thin-

ning), loss of nuclei and loss of brush border in PTs (Extended Data 

Fig. 10e). Overall, aTAL, aStr and immune expression profiles from 

spatial transcriptomics were consistent with those identified from 

snCV3 and scCv3, providing both validation and spatial co-localization 

of these cell types and states into niches of ongoing injury and repair.

Given the upregulation of fibrotic cytokine signalling in epithelial 

repair, these regenerating cells may represent maladaptive states if 

they accumulate or fail to complete tubulogenesis. We therefore inves-

tigated the contribution of these states to cell3cell secreted ligand3

receptor interactions within a fibrotic niche (Supplementary Table 25). 

From spatial assays, this niche may comprise aEpi cells adjacent to 

normal and altered arteriole cells and fibroblasts, and immune cells that 

include lymphoid and myeloid cells (Figs. 335). Using snCv3 and scCv3 

datasets associated with trajectory modules, we identified aTAL repair 

states as having a higher number of interactions first with immune 

cells (early repair), then with the stroma (mid-repair; Fig. 6a,b). This 

was associated with secreted growth factors of the FGF, BMP, WNT, 

EGF, IGF and TGF-³ families and the gain of interactions with MAC-M2 

and T cells (Extended Data Fig. 11f). This indicates that adaptive tubule 

states may recruit activated fibroblasts and MyoF both primarily and 

secondarily through their recruitment of immune cells.

We also found additional evidence for the activation of EGF pathway 

signalling within the adaptive epithelial trajectories, which in itself 

may lead to activation of TGF-³ signalling and create a niche capable 

of promoting fibrosis36. Consistently, EGF ligands NRG1 and NRG3 both 

become expressed in aEpi states for a possible role in stromal cells (STR) 

and MAC-M2 recruitment (Figs. 5d,e and 6c,d). Early and mid-repair 

TAL states may also recruit or stimulate T cells through expression 

of the CD226-interacting protein NECTIN2 (Fig. 6c,d). Alternatively, 

BMP6 signalling from mid-repair states may have a role in preventing 

fibrosis41 through possible SMAD1 activation of fibroblast differentia-

tion within aFIB populations (Fig. 6c,d, Extended Data Fig. 11g,h and 

Supplementary Tables 26328). BMP6 expression was also detected 

in repair states of the mouse AKI model at late timepoints when aFIB 

cells already showed reduced IGF1 expression (Extended Data Fig. 11g). 

IGF1 secreted from aFIB cells may signal to both stimulate MYOF dif-

ferentiation42 and promote regeneration of the repairing epithelial 

cells through IGF1R43 (Fig. 6c,d). Given the timing of BMP6 and IGF1 

expression after acute injury, BMP6-induced differentiation pathways 

within the aFIB cells may represent a late aTAL signal to dampen the 

fibroblast response. We therefore identify state- and niche-dependent 

signalling for reparative states in proximal and distal tubules that may 

ultimately influence the extent of fibrosis and inflammation.

Adaptive states can be maladaptive

Although recruitment of stromal and immune cells is necessary for 

normal wound healing, persistent recruitment by aEpi cells may 

impair epithelial function or lead to continued release of cytokines 

promoting disease progression. Consistent with this, we found that 

aEpi gene signatures that were conserved across snCv3 and scCv3 

(Supplementary Table 29) were associated with poor renal function 

in CKD cases (Extended Data Fig. 12a). Thus, successful or maladap-

tive repair within the TAL may have a role in the transition to chronic 

disease. Notably, aTAL signatures underlying early repair states were 

significantly associated with disease progression using unadjusted and 

sequentially adjusted survival models within the Nephrotic Syndrome 

Study Network (NEPTUNE) cohort of 193 patients44 (Fig. 6e, Methods, 

Extended Data Fig. 12b and Supplementary Table 30). Furthermore, 
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in an independent cohort of 131 patients with kidney disease in the 

European Renal cDNA Bank (ERCB) cohort, aEpi scores varied by kid-

ney disease diagnosis relative to living donors45. Specifically, patients 

with diabetes, hypertension and focal segmental glomerular sclerosis 

had higher aPT and common aPT3aTAL signatures compared with 

that of living donors after adjusting for age and sex. In the diabetes 

group, the aPT and common aPT3aTAL signatures remained higher 

than that of living donors even after adjusting for age, sex and esti-

mated glomerular filtration rate (eGFR; Methods and Supplementary 

Table 30). Nevertheless, it is important to note that the clinical cor-

relations are based on a small sample size and should therefore be 

interpreted with care.

These findings indicate that altered TAL functionality, including 

its GFR-regulatory role through tubuloglomerular feedback, may 

represent a major contributing factor to progressive kidney failure. 

Furthermore, causal variants for eGFR and chronic kidney failure 

were enriched within TAL regulatory regions that were also enriched 

for oestrogen-related receptor (ESSR) transcription-factor motifs 

(Extended Data Fig. 12c and Supplementary Table 31). ESRR tran-

scription factors (especially ESRRB), which are key players in TAL ion 

transporter expression46, are central regulators of the TAL expression 

network (Extended Data Fig. 12d), become inactivated in adaptive 

states (Fig. 5c) and, in experimental models, could exacerbate AKI and 

fibrosis47. Expression quantitative trait loci (eQTL) associated with 
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a, Trajectory of TAL cells for snCv3, scCv3 and mouse AKI4 data, showing  

mouse to human mapping. Top right, latent time heat map from RNA velocity 

estimates. Bottom right, bar plot of collection groups after IRI across mouse 

trajectory modules. b, Heat map of smoothened gene expression (conserved 

or human specific) along the inferred TAL pseudotime. State modules based on 
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the immune subclass counts and the dot plots show the average expression of 

marker genes generated from three fibrotic regions (two individuals; Extended 

Data Fig. 11a). Scale bar, 50)µm. e, Visium TAL niches identified from all Visium 

spots and defined by colocalized cells (Methods and Extended Data Fig. 11b3e), 

showing the proportion of component cell type signatures. The dot plots show 

the niche marker gene average expression values.
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kidney function that were previously shown to be enriched primarily 

in PTs also showed enrichment within the TAL, along with signatures 

associated with acute injury and fibrosis in a human AKI to CKD pro-

gression study (Extended Data Fig. 12e). Thus, we demonstrate both 

a potential maladaptive role for the aEpi states and a potential central 

role for the TAL segment in maintaining the health and homeostasis 

of the human kidney. This is consistent with the finding that the top 

renal genes showing decline in a mouse ageing cell atlas were associ-

ated with the TAL48.

Our findings implicate an accumulation of maladaptive epithelia 

during disease progression that may also be consistent with chroni-

cally senescent cells5. This is supported by both increased expres-

sion of ageing-related genes, stress-response transcription factor 

activities and an apparent senescence-associated secretory phenotype 

(SASP) for these cells (Extended Data Fig. 12f,g). As such, we detected 

CDKN1A (also known as p21cip1), CDKN1B (also known as p27kip1), CDKN2A  

(also known as p16ink4a) and CCL2 expression in late aPT and aTAL states. 

Furthermore, expression signatures for reparative processes in aEpi 

states were downregulated in the CKD (n)=)28) over AKI (n)=)22) cases 

used in this study (snCv3/scCv3; Supplementary Table 32). This is dis-

tinct from the immune response signatures that were more enriched 

in AKI cases more globally across cell types (Extended Data Fig. 12h 

and Supplementary Table 33). Overall, our findings are consistent with 

pro-inflammatory repair processes that may persist after injury22, or 

may subsequently transition to maladaptive or senescent pro-fibrotic 

states during disease progression.
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Fig. 6 | Maladaptive repair signatures. a,b, The ligand3receptor signalling 

strength between TAL states and IMM subclasses (a) or STR subclasses (b).  

The coloured bars indicate the total signalling strength of the cell group by 

summarizing signalling pathways. The grey bars indicate the total signalling 

strength of a signalling pathway by summarizing cell groups. Members of key 

signaling pathways described in the main text are in bold. c, The average gene 

expression values for select ligand3receptor combinations using snCv3/scCv3 

integrated data. d, Dot plots validating select markers shown in c in the Visium 

data. e, Unadjusted Kaplan3Meier curves by cell state scores for composite of 

end-stage renal disease (ESRD) or for 40% drop in eGFR from time of biopsy in 

the NEPTUNE adult patient cohort (199 patients; Supplementary Table 30). 

Patients who reached the end point between screening and biopsy were 

excluded. Enrich., enrichment. P values calculated using log-rank tests for 

trend are shown (P)=)0.021 (aPT), P)=)0.003 (aTAL), P)=)0.55 (degenerative)).
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Discussion

In contrast to recent work to broadly integrate major healthy kidney  

cell types across disparate data modalities49, here we present a compre-

hensive spatially resolved healthy and injured single-cell atlas across 

the corticomedullary axis of the kidney. Signals between tubuli, stroma 

and immune cells that underlie normal and pathological cell neigh-

bourhoods were identified, including putative adaptive or maladap-

tive repair signatures within the epithelial segments that may reflect a 

failure to complete differentiation and tubulogenesis. Spatial analyses 

identified that these epithelial repair states have elevated cytokine 

production, increased interactions with the distinct fibrotic and 

inflammatory cell types, and expression signatures linked to senes-

cence and progression to end-stage kidney disease. Failure of these 

cells to complete tubulogenesis, which might arise from an incompat-

ible cytokine milieu within the fibrotic niche, in itself might ultimately 

contribute to a progressive decline in kidney function. In turn, the 

high-cytokine-producing nature of these cells may further contribute to 

kidney disease through promotion of fibrosis. We portray a clear role for 

the relatively understudied TAL segment of the nephron, a region that 

is critical for maintaining osmotic gradient and blood pressure through 

tubuloglomerular feedback. The insights, discoveries and interactive 

data visualization tools provided here will serve as key resources for 

studies into normal physiology and sex differences, pathways associ-

ated with transitions from healthy and injury states, clinical outcomes, 

disease pathogenesis and targeted interventions.
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Methods

Statistics and reproducibility

For 3D imaging and immunofluorescence staining experiments, each 

staining was repeated on at least two separate individuals or separate 

regions. For immunofluorescence validation studies, commercially 

available antibodies were used; 13 out of the 15 tissue samples were also 

analysed using snCv3 or scCv3. For ISH, 6 tissue samples (4 biopsies 

and 2 nephrectomies) were analysed. For Slide-seq, 67 tissue pucks 

(6 individuals) were analysed, with 2 individuals also analysed using 

snCv3 or Visium. For Visium, 23 kidney tissue sections (22 individu-

als) were imaged, including 6 that were also analysed using snCv3 or 

scCv3 and one examined using Slide-seq. Orthogonal validation of 

spatial transcriptomic annotations revealed similar marker gene 

expression in snCv3/scCv3 and these technologies, as well as spatial 

localization that corresponded with histologically validated Visium 

spot mapping. Although multiomic data from the same samples would 

be the most informative, this remains technically challenging. However, 

wherever possible, several technologies were performed on a subset 

of samples from the same patient and, in some cases, the same tissue 

block was used to generate multimodal data (Extended Data Fig. 1a 

and Supplementary Table 3). This heterogeneous sampling approach 

ensured cell type discovery while minimizing assay-dependent biases 

or artifacts encountered when using different sources of kidney tissue. 

We recognize that the heterogeneity of sample sources for several 

technologies is a potential limitation due logistics and limited patient 

biopsy material.

Ethical compliance

We have complied with all ethical regulations related to this study. All 

experiments on human samples followed all relevant guidelines and 

regulations. Human samples (Supplementary Table 1) collected as 

part of the KPMP consortium (https://KPMP.org) were obtained with 

informed consent and approved under a protocol by the KPMP single 

IRB of the University of Washington Institutional Review Board (IRB 

20190213). Samples as part of the HuBMAP consortium were collected 

by the Kidney Translational Research Center (KTRC) under a protocol 

approved by the Washington University Institutional Review Board (IRB 

201102312). Informed consent was obtained for the use of data and 

samples for all participants at Washington University, including living 

patients undergoing partial or total nephrectomy or rejected kidneys 

from deceased donors. Cortical and papillary biopsy samples from 

patients with stone disease were obtained with informed consent from 

Indiana University and approved by the Indiana University Institutional 

Review Board (IRB 1010002261). For Visium spatial gene expression, 

reference nephrectomies and kidney biopsy samples were obtained 

from the KPMP under informed consent or the Biopsy Biobank Cohort 

of Indiana (BBCI)50 under waived consent as approved by the Indiana 

University Institutional Review Board (IRB 1906572234). Living donor 

biopsies as part of the HCA were obtained with informed consent under 

the Human Kidney Transplant Transcriptomic Atlas (HKTTA) under the 

University of Michigan IRB HUM00150968. Deidentified leftover frozen 

COVID-19 AKI kidney biopsies were obtained from the Johns Hopkins 

University pathology archive under waived consent approved by the 

Johns Hopkins Institutional Review Board (IRB 00090103).

Single-cell and single-nucleus human tissue samples

For single-nucleus omic assays, tissues were processed according 

to a protocol available online (https://doi.org/10.17504/protocols.

io.568g9hw). For nucleus preparation, around 7 sections of 40)µm thick-

ness were collected and stored in RNAlater solution (RNA assays) or kept 

on dry ice (accessible chromatin assays) until processing or used fresh. 

To confirm tissue composition, 5)µm sections flanking these thick sec-

tions were obtained for histology and the relative amount of cortex or 

medulla composition including glomeruli was determined. For single- 

cell omic assays, tissues used (15 CKD,12 AKI and 18 living donor biopsy 

cores) were preserved using CryoStor (StemCell Technologies).

Single-cell, single-nucleus and SNARE2 RNA-seq, quality control 

and clustering

Isolation of single nuclei. Nuclei were isolated from cryosec-

tioned tissues according to a protocol available online (https://

doi.org/10.17504/protocols.io.ufketkw) with the exception that 

42,6-diamidino-2-phenylindole (DAPI) was excluded from the nuclear 

extraction buffer and used only to stain a subset of nuclei used for 

counting. Nuclei were used directly for omic assays.

Isolation of single cells. Single cells were isolated from frozen tissues 

according to a protocol available online (https://doi.org/10.17504/

protocols.io.7dthi6n). The single-cell suspension was immediately 

transferred to the University of Michigan Advanced Genomics Core 

facility for further processing.

10x Chromium v3 RNA-seq analysis. 10x single-nucleus RNA-seq 

and 10x single-cell RNA-seq were performed according to protocols 

available online (https://doi.org/10.17504/protocols.io.86khzcw and 

https://doi.org/10.17504/protocols.io.7dthi6n, respectively), both 

using the 10x Chromium Single-Cell 32 Reagent Kit v3. Sample demulti-

plexing, barcode processing and gene expression quantifications were 

performed using the 10x Cell Ranger (v.3) pipeline using the GRCh38 

(hg38) reference genome with the exception of a subset of scCv3  

experiments that used hg19 (indicated in Supplementary Table 1). For 

single-nucleus data, introns were included in the expression estimates.

SNARE2 dual RNA and ATAC-seq analysis. SNARE-seq217, as outlined 

previously18, was performed according to a protocol available online 

(https://doi.org/10.17504/protocols.io.be5gjg3w). Accessible chroma-

tin and RNA libraries were sequenced separately on the NovaSeq 6000 

(Illumina) system (NovaSeq Control Software v.1.6.0 and v.1.7.0) using 

the 300 cycle and 200 cycle reagent kits, respectively.

SNARE2 data processing. Detailed step-by-step processing for 

SNARE2 data has been outlined previously18. This has now been devel-

oped as an automated data processing pipeline that is available at 

GitHub (https://github.com/huqiwen0313/snarePip). snarePip (v.1.0.1) 

was used to process all the SNARE2 datasets. The pipeline provides 

an automated framework for complex single-cell analysis, including 

quality assessment, doublet removal, cell clustering and identification, 

robust peak generation and differential accessible region identification, 

with flexible analysis modules and generation of summary reports for 

both quality assessment and downstream analysis. The directed acyclic 

graph was used to incorporate the entirety of the data-processing steps 

for better error control and reproducibility. For RNA processing, this 

involved removal of accessible chromatin contaminating reads using 

cutadapt (v.3.1)51, dropEst (v.0.8.6)52 to extract cell barcodes and STAR 

(version 2.5.2b)53 to align tagged reads to the genome (GRCh38). For  

accessible chromatin data, this involved snaptools (v.1.2.3)54 and mini-

map (v.2-2.20)55 for alignment to the genome (GRCh38).

Quality control of sequencing data. 10x snRNA-seq (snCv3). Cell 

barcodes passing 10x Cell Ranger filters were used for downstream 

analyses. Mitochondrial transcripts (MT-*) were removed, doublets 

were identified using the DoubletDetection software (v.2.4.0)56 and 

removed. All of the samples were combined across experiments and 

cell barcodes with greater than 400 and less than 7,500 genes detected 

were retained for downstream analyses. To further remove low-quality 

datasets, a gene UMI ratio filter (gene.vs.molecule.cell.filter) was ap-

plied using Pagoda2 (https://github.com/hms-dbmi/pagoda2).

10x scRNA-seq (scCv3). As a quality-control step, a cut-off of <50% mito-

chondrial reads per cell was applied. The ambient mRNA contamination 
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was corrected using SoupX (v.1.5.0)57. The mRNA content and the num-

ber of genes for doublets are comparatively higher than for single cells. 

To reduce doublets or multiplets from the analysis, we used a cut-off 

of >500 and <5,000 genes per cell.

SNARE2 RNA. Cell barcodes for each sample were retained with the fol-

lowing criteria: having an DropEst cell score of greater than 0.9; having 

greater than 200)UMI detected; having greater than 200 and less than 

7,500 genes detected. Doublets identified by both DoubletDetection 

(v.3.0) and Scrublet (https://github.com/swolock/scrublet; v.0.2.2) 

were removed. To further remove low-quality datasets, a gene UMI 

ratio filter (gene.vs.molecule.cell.filter) was applied using Pagoda2.

SNARE2 ATAC. Cell barcodes for each sample that had already passed 

quality filtering from RNA data were further retained with the follow-

ing criteria: having transcriptional start site (TSS) enrichment greater 

than 0.15; having at least 1,000 read fragments and at least 500)UMI; 

having fragments overlapping the promoter region ratio of greater 

than 0.15. Samples were retained only if they exhibited greater than 

500 dual omic cells after quality filtering.

Clustering snCv3. Clustering analysis was performed using Pagoda2, 

whereby counts were normalized to the total number per nucleus, 

batch variations were corrected by scaling expression of each gene 

to the dataset-wide average. After variance normalization, all 5,526 

significantly variant genes were used for principal component analysis 

(PCA). Clustering was performed at different k values (50, 100, 200, 

500) on the basis of the top 50 principal components, with cluster  

identities determined using the infomap community detection  

algorithm. The primary cluster resolution (k)=)100) was chosen on the 

basis of the extent of clustering observed. Principal components and 

cluster annotations were then imported into Seurat (v.4.0.0) and uni-

form manifold approximation and projection (UMAP) dimensional-

ity reduction was performed using the top 50 principal components 

identified using Pagoda2. Subsequent analyses were then performed  

in Seurat. A cluster decision tree was implemented to determine  

whether a cluster should be merged, split further or labelled as an alt-

ered state. For this, differentially expressed genes between clusters 

were identified for each resolution using the FindAllMarkers function 

in Seurat (only.pos)=)TRUE, max.cells.per.ident = 1000, logfc.thresh-

old)=)0.25, min.pct)=)0.25). Possible altered states were initially defined  

for clusters with one or more of the following features: low genes  

detected, a high number of mitochondrial transcripts, a high number of  

endoplasmic-reticulum-associated transcripts, upregulation of injury 

markers (CST3, IGFBP7, CLU, FABP1, HAVCR1, TIMP2, LCN2) or enrich-

ment in AKI or CKD samples. Clusters (k)=)100) that showed no distinct 

markers were assessed for altered-state features; if present, then these 

clusters were tagged as possible altered states, if absent then clusters 

were merged on the basis of their cluster resolution at k)=)200 or 500. 

If this merging occurred across major classes (epithelial, endothelial, 

immune, stromal) at higher k values, then these clusters were instead 

labelled as ambiguous or low quality (including possible multiplets). 

For k)=)100 clusters (non-epithelial only) that did show distinct mark-

ers, their k)=)50 subclusters were assessed for distinct marker genes; if 

present, then these clusters were split further. The remaining split and 

unsplit clusters were then assessed for altered-state features. If present, 

they were tagged as possible altered states, if absent they were assessed 

as the final cluster. Annotations of clusters were based on known posi-

tive and negative cell type markers11,12,58360 (Supplementary Table 5), 

the regional distribution of the clusters across the corticomedullary 

axis and altered state (including cell cycle) features. For separation of 

EC-DVR from EC-AEA, the combined population was independently clus-

tered using Pagoda2 and clusters associated with medullary sampling 

were annotated as EC-DVR. For separation of the REN cluster, stromal 

cells expressing REN were selected on the basis of normalized expression 

values of greater than 3. Final overall assessment of clustering accuracy 

was performed using the Single Cell Clustering Assessment Framework 

(SCCAF v.0.0.10) using the default settings, and compared against that 

associated with broad cell type classifications (subclass level 1).

Annotating snCv3 clusters. To overcome the challenge of dis-

parate nomenclature for kidney cell annotations, we leveraged a 

cross-consortium effort to use the extensive knowledge base from 

human and rodent single-cell gene expression datasets, as well as the 

domain expertise from pathologists, biologists, nephrologists and 

ontologists11,12,22,58361 (see also Supplementary Tables 4 and 5 and the 

HuBMAP ASCT+B Reporter at GitHub (https://hubmapconsortium.

github.io/ccf-asct-reporter)). This enabled the adoption of a standard-

ized anatomical and cell type nomenclature for major and minor cell 

types and their subclasses (Supplementary Table 4), showing distinct 

and consistent expression profiles of known markers and absence of 

specific segment markers for some of the cell types (Extended Data 

Fig. 2a and Supplementary Table 5). The knowledge of the regions dis-

sected and histological composition of snCv3 data further enabled 

stratification of distinct cortical and outer and inner medullary cell 

populations (Fig. 2b and Extended Data Fig. 1). The cell type identities 

and regional locations were confirmed through orthogonal valida-

tion using spatial technologies presented here and correlations with 

existing human or rodent stromal, immune, endothelial and epithelial 

datasets4,25,58,59,61,62 (Extended Data Fig. 2b3l).

Atlas cell type resolution

Our atlas now includes a higher granularity for the loop of Henle, distal 

convoluted tubule and collecting duct segments, now resolving three 

descending thin limb cell types (DTL1, 2, 3); different subpopulations 

of medullary or cortical thick ascending limb cells (M-TAL/C-TAL); two 

types of distal convoluted tubule cells (DCT1, 2); intercalated and prin-

cipal cells of the connecting tubules (CNT-IC and CNT-PC); cortical, 

outer medullary and inner medullary collecting duct subpopulations 

(CCD, OMCD, IMCD); and papillary tip epithelial cells abutting the calyx 

(PapE). Molecular profiles for rare cell types important in homeostasis 

were annotated, including juxtaglomerular renin-producing granular 

cells (REN); macula densa cells (MD); and a cell population with enriched 

Schwann/neuronal (SCI/NEU) genes NRXN1, PLP1 and S100B. Major 

endothelial cell types were stratified, including endothelial cells of 

the lymphatics (EC-LYM) and vasa recta (EC-AVR, EC-DVR). Specific 

stromal and immune cell types were distinguished, including distinct 

fibroblast populations across the cortico-medullary axis and 12 immune 

cell types from lymphoid and myeloid lineages.

Integrating snCv3 and SNARE2 datasets

Integration of snCv3 and SNARE RNA data was performed using Seurat 

(v.4.0.0) using snCv3 as reference. All counts were normalized using 

sctransform, anchors were identified between datasets based on the 

snCv3 Pagoda2 principal components. SNARE2 data were then pro-

jected onto the snCv3 UMAP structure and snCv3 cell type labels were 

transferred to SNARE2 using the MapQuery function. Both datasets 

were then merged and UMAP embeddings were recomputed using the 

snCv3 projected principal components. Integrated clusters were identi-

fied using Pagoda2, with the k-nearest neighbour graph (k)=)100) based 

on the integrated principal components and using the infomap com-

munity detection algorithm. The SNARE2 component of the integrated 

clusters was then annotated to the most overlapping, correlated and/

or predicted snCv3 cluster label, with manual inspection of cell type 

markers used to confirm identities. Integrated clusters that overlapped 

different classes of cell types were labelled as ambiguous or low-quality 

clusters. Segregation of EC-AEA, EC-DVR and REN subpopulations was 

performed as described for snCv3 above.

Integrating snCv3 and scCv3 datasets

Integration of snCv3 and scCv3 data was performed using Seurat 

v.4.0.0 with snCv3 as a reference. All counts were normalized using 

https://github.com/swolock/scrublet
https://hubmapconsortium.github.io/ccf-asct-reporter
https://hubmapconsortium.github.io/ccf-asct-reporter


sctransform, anchors were identified between datasets based on the 

snCv3 Pagoda2 principal components. scCv3 data were then projected 

onto the snCv3 UMAP structure and snCv3 cell type labels were trans-

ferred to scCv3 using the MapQuery function. Both datasets were 

then merged and UMAP embeddings recomputed using the snCv3 

projected principal components. Integrated clusters were identified 

using Pagoda2, with the k-nearest neighbour graph (k)=)100) based 

on the integrated principal components and using the infomap com-

munity detection algorithm. The scCv3 component of the integrated 

clusters was then annotated to the most overlapping or correlated 

snCv3 subclass, with manual inspection of cell type markers used to 

confirm identities. Cell types that could not be accurately resolved 

(PT-S1/PT-S2) were kept merged. Integrated clusters that overlapped 

different classes of cell types or that were too ambiguous to anno-

tate were considered to be low quality and were removed from the 

analysis. Segregation of EC-AEA, EC-DVR and REN subpopulations was 

performed as described above.

Assessment of snCv3, scCv3 and SNARE2 data integration

As described above, we used the demonstrated Seurat v.4.0.0 integra-

tion strategy63 to project query datasets (scCv3, SNARE2 RNA) into the 

same PCA space as our snCv3 reference. These imputed principal com-

ponents were used to generate an integrated embedding and integrated 

clustering through Pagoda2. Query datasets within these integrated 

clusters were manually annotated on the basis of co-clustering with the 

reference data, predicted subclass levels and the manual inspection of 

marker genes. This process was necessary to account for misalignments 

that occurred for altered states showing more ambiguous marker gene 

expression profiles, especially for mapping between single-nucleus and 

single-cell technologies. To assess the accuracy in our alignments, we 

performed correlation of average expression signatures between the 

assigned query cell populations and the original reference cell popula-

tions (Extended Data Fig. 3e). Although several samples were examined 

using more than one platform (Supplementary Table 3 and Extended 

Data Fig. 1a), not all conditions could be covered by all technologies, 

with AKI/CKD biopsies too limited in size to process with SNARE2 and 

deeper medullary region capture being less likely for needle biopsies. 

Despite the differences in patient conditions and regions sampled, 

we were able to confirm cross-platform sampling with minimal batch 

contributions for a majority of our subclass (level 3) assignments (77 

total). This was demonstrated through integrated bar plots for assay, 

patient, sex and condition contributions (Extended Data Fig. 3e). The 

degree to which cells/nuclei between assays were mixed within these 

subclasses was confirmed using normalized relative entropy weighted 

by subclass size64, with an average assay entropy across subclasses 

(covered by more than one technology) of 0.71 and an average patient 

entropy of 0.71 (out of 1). Mixing within the subclasses was also assessed 

on the cell embeddings (principal components) using the average 

silhouette width or ASW (scib.metrics.silhouette_batch function of 

the scIB package v.1.0.365), with an average score of 0.86 for assays and 

0.82 for patients (out of 1). Finally, the average of k-nearest neighbour 

batch effect test (kBET) score per subclass, computed for all patients 

using the scib.metrics.kBET function of the scIB package, was 0.49 (out 

of 1), which is consistent with other integration efforts65.

Integrating snCv3 with published datasets

Integration with published data was performed using Seurat v.4.0.0 

with snCv3 as a reference. All counts were normalized using sctrans-

form, anchors were identified between datasets on the basis of the 

snCv3 Pagoda2 principal components. Published data were then pro-

jected onto the snCv3 UMAP structure and snCv3 cell type labels were 

transferred to the published dataset using the MapQuery function. 

Ref. 12 snDrop-seq data are available at the Gene Expression Omnibus 

(GEO: GSE121862). Ref. 15 single-nucleus RNA-seq and ref. 14 single-cell 

RNA-seq count matrices and metadata tables were downloaded from 

the UCSC Cell Browser (Cell Browser dataset IDs human-kidney-atac 

and kidney-atlas, respectively).

NSForest marker genes

To identify a minimal set of markers that can identify snCv3 clusters 

and subclasses (subclass.l3), or scCv3 integrated subclasses (subclass.

l3), we used the Necessary and Sufficient Forest66 (NSForest v.2; https://

github.com/JCVenterInstitute/NSForest/releases/tag/v2.0) software 

using the default settings.

Correlation analyses

For correlation of RNA expression values between snCv3 and scCv3, 

or SNARE2, average scaled expression values were generated, and 

pairwise correlations were performed using variable genes identi-

fied from Pagoda2 analysis of snCv3 (top 5,526 genes). For compari-

son with mouse single-cell RNA-seq data of healthy reference tissue59, 

raw counts were downloaded from the GEO (GSE129798). For com-

parison with mouse single-cell RNA-seq from IRI tissue4, raw counts 

were downloaded from the GEO (GSE139107). For human fibroblast 

and myofibroblast data25, raw counts were downloaded from Zenodo 

(https://doi.org/10.5281/zenodo.4059315). For each dataset, raw 

counts were processed using Seurat: counts for all cell barcodes were 

scaled by total UMI counts, multiplied by 10,000 and transformed to 

log space. For comparison with mouse single-cell types of the distal 

nephron61, the precomputed Seurat object was downloaded from the 

GEO (GSE150338). For mouse bulk distal segment data61, normalized 

counts were downloaded from the GEO (GSE150338) and added to the 

8data9 slot in a Seurat object. Bulk-sorted immune cell reference data 

were obtained using the celldex package67 using the MonacoImmune-

Data()62 and ImmGenData()67,68 functions and log counts imported 

into the 8data9 slot of Seurat. For correlation against these reference 

datasets, averaged scaled gene expression values for each cluster were 

calculated (Seurat) using an intersected set of variable genes identi-

fied for each dataset (identified using Padoda2 for snCv3 and Seurat 

for reference datasets). For immune reference correlations, a list of 

immune-related genes downloaded from ImmPort (https://immport.

org) was used instead of the variable genes. Correlations were plot-

ted using the corrplot package (https://github.com/taiyun/corrplot). 

Immune annotations within our atlas were further confirmed by manual 

comparison with recently reported data14.

Cross-species alignment of cell types/states

For mouse single-nucleus RNA-seq data from IRI tissue4, raw counts 

were downloaded from the GEO (GSE139107). Integration was per-

formed using Seurat v.4.0.0 with snCv3 as a reference. All counts were 

normalized using sctransform, anchors were identified between data-

sets on the basis of the snCv3 Pagoda2 principal components. Mouse 

data were then projected onto the snCv3 UMAP structure and snCv3 

cell type labels were transferred using the MapQuery function.

Computing single-nucleus/cell-level expression scores

To identify markers associated with altered states (degenerative;  

adaptive4epithelial or aEpi; adaptive4stromal or aStr; cycling), snCv3 

and scCv3 data were independently used to identify differentially 

expressed genes between reference and corresponding altered states 

for each subclass level 1 (subclass.l1). To ensure general state-level 

markers, differentially expressed genes were identified using the 

FindConservedMarkers function (grouping.var)=)<condition.l1=,  

min.pct)=)0.25, max.cells.per.ident)=)300) in Seurat. A minimal set 

of general degenerative conserved genes was identified as enriched 

(P)<)0.05) in the degenerative state of each condition.l1 (reference, AKI 

and CKD) and in at least 4 out of the 11 (snCv3) or 9 (scCv3) subclass.l1 

cell groupings. A minimal set of conserved aEpi genes was identified as 

enriched (P)<)0.05) in the adaptive state of each condition.l1 (reference, 

AKI and CKD) in both the aPT and aTAL cell populations. This aEpi gene 
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set was then further trimmed to include only those genes that were 

enriched within the adaptive epithelial population (aPT/aTAL) versus all 

others using the FindMarkers function and with a minimum P value of 

0.05 and average log2-transformed fold change of >0.6. A minimal set of 

conserved aStr genes was identified as enriched (P)<)0.05) in the adap-

tive state of each condition.l1 (reference, AKI and CKD for snCv2; refer-

ence and AKI for scCv3) for stromal cells. To increase representation 

from MyoF in scCv3 showing a small number of these cells, MyoF-alone 

enriched genes (average log2-transformed fold change)g)0.6; adjusted 

P)<)0.05) were included for the scCv3 gene set. The aStr gene sets were 

then further trimmed to include only those genes that were enriched 

within the adaptive stromal population (aFIB and MYOF) compared with 

all others using the FindMarkers function and with a minimum P value 

of 0.05 and average log2-transformed fold change of >0.6. A minimal set 

of cycling-associated genes was identified as those enriched (adjusted 

P)<)0.05 and average log2-transformed fold change)>)0.6) in the cycling 

state across all associated subclass.l1 cell groupings.

Scores for altered state, extracellular matrix and for gene sets associ-

ated with ageing or SASP were computed for each cell from averaged 

normalized counts using only the genes showing a minimum correla-

tion to the averaged whole gene set of 0.1 (ref. 25) (https://github.com/

mahmoudibrahim/KidneyMap). Ageing and SASP genes were obtained 

from ref. 48 (top 20 genes upregulated in ageing kidney)48, ref. 69 (genes 

from table S3, group.age A), ref. 70 (SASP genes from figure 2c) or ref. 71  

(from table S1 (sheet IR Epithelial SASP), having a positive AVE log2 

ratio)71.

Gene set enrichment analyses (GSEA)

To compute gene set enrichments for aPT and aTAL, conserved genes 

differentially expressed in the adaptive over reference states were iden-

tified as indicated above. Gene set ontologies from the Molecular Signa-

tures Database (MSigDB) were downloaded from https://gsea-msigdb.

org and pathway enrichments were computed using fgsea72 and gage73, 

retaining only Gene Ontology terms that were significant (P)<)0.05) for 

both. Redundant pathways were collapsed using the fgsea function 

collapsePathways and visualized using ggplot.

SNARE2 accessible chromatin analyses

SNARE2 chromatin data were analysed using Signac74 (v.1.1.1). Peak call-

ing was performed using the CallPeaks function and MACS (v.3.0.0a6; 

https://github.com/macs3-project/MACS) separately for clusters, sub-

class.l1 and subclass.l3 annotations. Peak regions were then combined 

and used to generate a peak count matrix using the FeatureMatrix func-

tion, then used to create a new assay within the SNARE2 Seurat object 

using the CreateChromatinAssay function. Gene annotation of the 

peaks was performed using GetGRangesFromEnsDb(ensdb)=)EnsDb. 

Hsapiens.v86). TSS enrichment, nucleosome signal and blacklist frac-

tions were all computed using Signac. Jaspar motifs ( JASPAR2020, all 

vertebrate) were used to generate a motif matrix and motif object that 

was added to the Seurat object using the AddMotifs function. For motif 

activity scores, chromVAR75 (v.1.12.0; https://greenleaflab.github.io/

chromVAR) was performed using the RunChromVAR function. The 

chromVAR deviation score matrix was then added to a separate assay 

slot of the Seurat object. To assess the chromatin data, UMAP embed-

dings were computed from cis-regulatory topics that were identified 

through latent Dirichlet allocation using CisTopic76 (v.0.3.0; https://

github.com/aertslab/cisTopic) and the runCGSModels function. Only 

regions accessible in 50 nuclei and nuclei with 200 of these accessible 

regions were used for cisTopic and downstream analyses. The UMAP 

coordinates for the remaining nuclei were added to the Seurat object. 

To ensure high-quality accessible chromatin profiles, only clusters 

with more than 50 nuclei were retained for downstream analyses 

(Supplementary Table 7). For joint embedding of SNARE2 accessible 

chromatin and gene expression, a weighted nearest-neighbour graph 

was computed using the FindMultiModalNeighbors function (Seurat) 

based on PCA (RNA) and latent semantic indexing or LSI (accessible 

chromatin) dimensionality reductions. UMAP dimensionality reduc-

tion was performed to visualize the joint embedding.

DAR analyses

Sites that were differentially accessible for a given cell grouping (sub-

class) were identified against a selection of background cells with the 

best matched total peak counts, to best account for technical differ-

ences in the total accessibility for each cell. For this, the total peaks in 

each cell were used for estimation of the distribution of total peaks 

(depth distribution) for the cells belonging to the test cluster, and 

10,000 background cells with a similar depth distribution to the test 

cluster were randomly selected. Differentially accessible sites (DARs) 

were then identified as significantly enriched in the positive cells over 

selected background cells using the CalcDiffAccess function (https://

github.com/yanwu2014/chromfunks), where P values were calculated 

using Fisher9s exact tests on a hypergeometric distribution and adjusted 

P values (or q values) were calculated using the Benjamini3Hochberg 

method. For subclass level 2 DARs, VSM/P clusters were merged and the 

MD was combined with C-TAL before to DAR calling. Subclasses with 

>100 DARs with q)<)0.01 were used for further analysis. Co-accessibility 

between all peak regions was computed using Cicero77 (v.1.8.1). Sites 

were then linked to genes on the basis of co-accessibility with promoter 

regions, occurring within 3,000)bp of a gene9s TSS, using the Region-

GeneLinks function (https://github.com/yanwu2014/chromfunks) 

and the ChIPSeeker package78. DARs associated with markers for each 

subclass (identified at the subclass.l2 level using snCv3, P)<)0.05) and 

showing q)<)0.01 and a log-transformed fold change of >1 were selected 

for visualization. For this, DAR accessibility (peak counts) was averaged, 

scaled (trimming values to a minimum of 0 and a maximum of 5) and 

visualized using the ggHeat plotting function of the SWNE package79. 

Motif enrichment within cell type DARs was computed using the hyper-

geometric test (FindMotifs function) in Signac.

Transcription factor analyses

To identify active transcription factors from SNARE2 accessible chro-

matin data, differential activities (or deviation scores) of TFBSs between 

different populations were assessed using the Find[All]Markers func-

tion through logistic regression and using the number of peak counts 

as a latent variable. Only transcription factors with expression detected 

within the corresponding cluster, subclass or state grouping were 

included. For PT and TAL clusters, TFBSs that were differentially active 

(P)<)0.05, average log2-transformed fold change of >0.35) and associ-

ated with transcription factors with expression detected in at least 

2.5% of nuclei (SNARE2) were identified between clusters. Common 

aPT/aTAL TFBS activities were identified from an intersection of those 

differentially active and expressed within adaptive PT and TAL clusters. 

For aPT and aTAL trajectory modules, TFBSs showing differential activ-

ity between modules (adjusted P)<)0.05, average log2-transformed fold 

change of >0.35) and expression detected within at least 2.5% of nuclei/

cells (snCv3/scCv3) were identified. For common degenerative state 

TFBS activities, differentially active TFBSs were identified between 

reference and degenerative states for each level 1 subclass. Significant 

degenerative state TFBS activities (P)<)0.05, average log2-transformed 

fold change of >0.35) in three or more subclass.l1 were trimmed to those 

showing expression detected in more than 20% of the degenerative 

state nuclei/cells for snCv3/scCv3.

Ligand–receptor interaction analyses

Ligand3receptor analyses were performed on the basis of the Cell-

Chat package (v.1.0.0; https://github.com/sqjin/CellChat). Only cells 

in TAL, immune and stroma of subclass level 2 (immune: cDC, cycMNP, 

MAC-M2, MAST, MDC, N, ncMON, NKT, pDC, PL, T and B; stroma: MyoF, 

FIB, dFIB, cycMyoF and aFIB) and interactions for secreted ligands 

were used to infer the cell3cell communication. For cells in the TAL 
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trajectory, we computed the intercellular cell communication probabil-

ity between each module and other cell populations using the CellChat 

function computeCommunProb (see ref. 80 for a detailed description of 

the method). The overall scaled communication probability was then 

visualized based on a circle plot using a customized plot_communica-

tion function (Code availability). To further understand which signals 

contribute most to the ligand3receptor (LR) interaction pathways, 

we generated the pathway enrichment heat map of each interaction 

for incoming, outgoing and overall signals using the plotSigHeatmap 

function (Code availability). The contribution of significant LR pairs 

of each interaction was also identified using netAnalysis_contribution 

in the CellChat package.

GWAS analyses

To link SNARE2 cell types to kidney genome-wide association study 

(GWAS) traits and diseases, we first summed the binary peak acces-

sibility profiles for all cells belonging to the same cell type to create a 

pseudobulk peak-by-subclass accessibility matrix. Pseudobulk analyses 

give more stable results, especially as SNARE2 accessibility data can be 

sparse. To ensure sufficient coverage, we used subclass level 2 group-

ings with the following modifications: VSM/P clusters were merged; MD 

was combined with C-TAL; subclasses with <100 DARs with q)<)0.01 were 

excluded. We used g-chromVAR81 (v.0.3.2), an extension of chromVAR 

for GWAS data, to identify cell types with higher than expected acces-

sibility of genomic regions overlapping GWAS-linked single-nucleotide 

polymorphisms (SNPs). Running g-chromVAR requires first identi-

fying GWAS-linked SNPs that are more likely to be causal, a process 

known as fine-mapping. For the chronic kidney failure GWAS traits, we 

used existing fine-mapped SNPs from the CausalDB database, using 

the posterior probabilities generated by CAVIARBF82,83. The original 

GWAS summary statistics files were obtained from an atlas of genetic 

associations from the UK BioBank84. We manually fine-mapped the 

CKD, eGFR, blood urea nitrogen and gout traits using the same code 

that was used to generate the CausalDB database (https://github.com/

mulinlab/CAUSALdb-finemapping-pip). The summary statistics for all 

of these traits are available at the CKDGen Consortium site (https://

ckdgen.imbi.uni-freiburg.de/)85,86. We also manually fine-mapped the 

hypertension trait and the original summary statistics can be found 

on the EBI GWAS Catalog87. We looked only at causal SNPs with a pos-

terior causal probability of at least 0.05 to ensure that SNPs with low 

causal probabilities did not cause false-positive signals. Moreover, as 

g-chromVAR selects a semi-random set of peaks with similar average 

accessibility and GC content as background peaks, the method has an 

element of randomness. To ensure stable results, we ran g-chromVAR 

20 times and averaged the results. Cluster/trait z-scores were plotted 

using ggheat (https://github.com/yanwu2014/swne).

To link causal SNPs to genes, we used functions outlined in the 

chromfunks repository (https://github.com/yanwu2014/chromfunks;  

/R/link_genes.R). This involved the identification of causal peaks for 

each cell type and trait (minimum peak Z score of 1, minimum peak 

posterior probability score of 0.025). Sites were then linked to genes on 

the basis of co-accessibility (Cicero) with promoter regions, occurring  

within 3,000)bp of a gene9s TSS. Only sites associated with genes 

detected as expressed in 10% of TAL nuclei/cells (snCv3/scCv3) were 

included. Motif enrichment within the causal SNP and TAL-associated 

peaks was performed using the FindMotifs function in Seurat and only 

motifs for transcription factors expressed in 10% of TAL nuclei/cells  

(snCv3/scCv3) were included (Supplementary Table 31). For a TAL- 

associated ESRRB transcription factor subnetwork, peaks were linked 

to genes using Cicero, then subset to those associated with TAL (C-TAL, 

M-TAL) marker genes that were identified using the Find[All]Markers 

function in Seurat for subclass.l3 (P)<)0.05). Transcription factors were 

then linked to gene-associated peaks on the basis of the presence of 

the motif and correlation of peak and TFBS co-accessibility (chrom-

VAR), using a correlation cut-off of 0.3. Only transcription factors with 

expression detected within 20% of TAL cells or nuclei (snCv3/scCv3) 

were included. Eigenvector centralities were then computed using 

igraph and the transcription-factor-to-gene network was visualized 

using PlotNetwork in chromfunks.

Disease-associated gene set enrichment analyses

Genes linked with CKDGen consortium GWAS loci for the kidney func-

tional traits eGFR and urinary albumin-creatinine ratio (UACR) were 

obtained from table S14 of ref. 88. These included the top 500 genes 

per trait or only those genes also implicated in monogenic glomerular 

diseases. eQTLs associated with eGFR, systolic blood pressure and 

general kidney function were obtained from tables S20, S21 and S22 of 

ref. 89, respectively. Genes associated with the transition from acute to 

chronic organ injury after ischaemia3reperfusion were obtained from 

ref. 90 from the following supplementary tables: Acute_Human_Specific 

(table S3, Human specific column); Acute_Mouse_Overlap (table S3, 

Shared column); Mid_Acute (table S8, cluster 2 genes); Late_Human_

Specific (table S9, Human specific column); Late_Mouse_Overlap 

(table S9, Shared column); Late_Fibrosis (table S6, positive logFC); 

Late_Recovery (table S6, negative logFC). Each gene set was assessed 

for its enrichment within combined snCv3 and scCv3 subclass (level 3)  

differentially expressed genes (adjusted P)<)0.05, log-transformed 

fold change of >0.25). Enrichments were performed using Fisher9s 

exact tests and the resultant 2log10[P] values were scaled and visual-

ized using ggplot2.

Patient cohorts used for clinical association analyses

NEPTUNE91 (193 adult patients) and ERCB45 (131 patients) expression 

data were used as validation cohorts to determine the significance 

between patients with different levels of cell state gene expression. 

NEPTUNE (NCT01209000) is a multicentre (21 sites) prospective 

study of children and adults with proteinuria recruited at the time 

of first clinically indicated kidney biopsy (Supplementary Table 34). 

The study participants were followed prospectively, every 4)months 

for the first year, and then biannually thereafter for up to 5)years. At 

each study visit, medical history, medication use and standard local 

laboratory test results were recorded, while blood and urine samples 

were collected for central measurement of serum creatinine and urine 

protein/creatinine ratio (UPCR) and eGFR (ml per min per 1.73)m2). 

End-stage kidney disease (ESKD) was defined as initiation of dialysis, 

receipt of kidney transplant or eGFR <15)ml per min per 1.73)m2 meas-

ured at two sequential clinical visits; and the composite end point of 

kidney functional loss by a combination of ESKD or 40% reduction in 

eGFR92. Genome-wide transcriptome analysis was performed on the 

research core obtained at the time of a clinically indicated biopsy using 

RNA-seq by the University of Michigan Advanced Genomics Core using 

the Illumina HiSeq2000 system. Read counts were extracted from the 

fastq files using HTSeq (v.0.11). NEPTUNE mRNA-seq data and clinical 

data are controlled access data and will be available to researchers on 

request to NEPTUNE-STUDY@umich.edu.

ERCB is the European multicentre study that collects biopsy tissue 

for gene expression profiling across 28 sites. Transcriptional profiles 

of biopsies from patients in the ERCB were obtained from the GEO 

(GSE104954).

Clinical association of cell state scores

The gene expression data from the tubulointerstitial compartment of 

the kidney biopsies from NEPTUNE patients was used to calculate the 

composite scores for the genes enriched in degenerative, aPT, aTAL and 

aStr states. The expression of the genes that were uniquely enriched 

in the cell state (described above) and that were found in both snCv3 

and scCv3 were used to calculate the composite cell state score (Sup-

plementary Table 29). As scCv3 did not efficiently identify all stromal 

cell types, the union of the enriched genes from scCv3 and snCv3 data 

were used to calculate the aStr cell state score. We also generated a 
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cell state score for the genes that were commonly enriched in aPT and 

aTAL cells (common).

For outcome analyses (40% loss of eGFR or ESKD) in the NEPTUNE 

cohort, patient profiles were binned according to the degree of cell state 

score by tertile. Clinical outcomes were available on 193 participants 

with a total of 30 events. Kaplan3Meier analyses were performed using 

log-rank tests to determine significance between patients in different 

tertiles of cell state gene expression. Moreover, for the different cell 

state scores, multivariable adjusted Cox proportional hazard analyses 

were performed using five statistical models adjusting for different sets 

of potential confounding effects given the overall few number of events: 

(1) age, sex and race; (2) baseline eGFR and UPCR; (3) immunosuppressive 

treatment and FSGS status; (4) eGFR, UPCR and race self-reported as Black 

(factors that were associated with outcome in this dataset); and (5) immu-

nosuppressive treatment, eGFR and UPCR (Supplementary Table 30). 

Note that the adjusted models simply assess whether the association with 

outcome persists after adjusting for common clinical features (that is, 

confounding effects), but do not assess for prediction accuracy.

In the ERCB cohort, differential expression analyses using multi-

variable regression modelling were performed between the cell state 

scores in the disease groups and living donors. Age and sex were used 

as covariates. The cell state scores for both NEPTUNE and ERCB bulk 

mRNA transcriptomics data were generated93. In brief, the cell state 

scores were generated by creating Z scores for each of the cell state gene 

sets and then using the average Z score as the cell state composite score. 

These analyses found scores for all adaptive epithelial, but not degen-

erative, states were significantly higher in the patients with diabetic 

nephropathy patients compared to that of living donors (Supplemen-

tary Table 30). After adjusting for sex and age, both aPT and aTAL were 

significant when scores from patients with diabetic nephropathy were 

compared with those of living donors and aPT scores were significant 

even after correcting for the different disease groups.

Sample-level analysis and clustering on clinical association  

gene sets

To find association of patients based on altered-state gene signatures that 

were used in clinical association analyses (Supplementary Table 30), we 

performed sample-level clustering. All of the cells from the same patient 

in snCv3 and scCv3 were aggregated to get pseudo-bulk count matrices 

on the basis of the associated clinical gene set. The matrices were further 

normalized by RPKM followed by t-distributed stochastic neighbour 

embedding (t-SNE) dimensionality reduction. Groups of patients were 

then identified based on k-means clustering and density-based spatial 

clustering (DBSCAN) methods in the reduced space. To associate the 

patient clusters with clinical features, we calculated the distribution 

of eGFR in each identified group (Code availability).

To identify gene sets that best differentiate between AKI and CKD 

patients in the PT and TAL cell populations, we trained a gene-specific 

logistic regression model based on the sample-level gene expression. 

The model was used to assess the predictive power that differentiate 

patients with AKI and CKD in both snCv3 and scCv3 measured by area 

under the curve (AUC). The genes with AUC)>)0.65 on both snCV3 and 

scCv3 were selected for downstream analysis (Supplementary Table 32).

To identify genes that were differentially expressed between AKI and 

CKD across all cell types, we aggregated the cells associated with each 

subclass (level 1) to generate cell-type-specific pseudocounts for each 

sample and performed differential gene expression analysis based on 

the DEseq2 method using the estimatePerCellTypeDE function in the 

Cacoa package (v.0.2.0; https://github.com/kharchenkolab/cacoa).

Pseudotime analysis of PT and TAL cells

To find cells associated with disease progression, we performed tra-

jectory analysis for PT and TAL cells. To get accurate pseudotime and 

trajectory estimation, we removed degenerative cell populations in 

both PT and TAL and inferred the trajectory for single nuclei and single 

cells separately using the Slingshot package94 (v.2.0.0). We specified 

normal cell populations as the end points for trajectory inference  

(S13S3 in PT and M-TAL in TAL) using the Slingshot parameter end.

clus. The correspondent trajectory embedding was visualized using 

the plotEmbedding function in the Pagoda2 package.

To identify whether the gene expression was statistically significantly 

associated with the inferred trajectory, we modelled the expression 

of a gene as a function of the estimated pseudotime by fitting a gam 

model with cubic spline regression using formula expi)= f(t) + ÷, where 

t is the pseudotime and f is the function of cubic spline. The model is 

then compared to a reduced model expi = f(1) + ÷ to get P-value estimates 

using the F-test. The Benjamin3Hochberg method was used to calculate 

the adjusted P values. To further identify candidate genes showing 

potential differences between patients with AKI and CKD, we extended 

the base gam model by fitting a conditional-smooth interaction using 

CKD as a reference.

Gene module detection and cell assignment

To identify expression modules for significant gene sets along the 

estimated trajectories, we applied the module detection algorithm 

implemented in the WGCNA package95 (v.1.70-3) based on the smoothed 

gene expression matrix with parameters softPower)=)10 and minMod-

uleSize)=)20. The similar modules detected by the original parameters 

were further merged. In total, we identified five different modules in 

PT and six modules in TAL cells. For the gene sets in each module, we 

further performed pathway analysis using the Reactome online tool96 

(https://reactome.org/PathwayBrowser/). The enrichment of clinical 

associated gene sets for each module (Fig. 6e) was assessed by per-

forming log ratio enrichment tests. To predict the transcription factor 

activities of PT and TAL subclass genes, we used the DoRothEA package 

(v.1.7.2) as targets. DoRothEA transcription factors and transcriptional 

targets were curated from both human and mouse evidence. The tran-

scription factor activity scores for each cell type were calculated based 

on the run_viper function of the viper package (v.3.15; https://biocon-

ductor.org/packages/release/bioc/html/viper.html).

To identify cells that are associated with each module, we developed 

a systematic approach. In brief, for the cells in the smoothed expres-

sion matrix, we performed dimension reduction using PCA followed 

by Louvain clustering. This enabled the identification of cell clusters 

along the trajectory. For the identified cell clusters, we then performed 

hierarchical clustering to calculate the correlation of each module on 

the basis of mean gene expression values and further linked the clus-

ters with associated modules by cutting the hierarchical tree. Finally, 

module labels for each cell were assigned on the basis of its associated 

clusters. To link single-cell datasets with single-nucleus modules, we 

performed k-means clustering based on the joint embedding of PT or 

TAL cells and assigned the cells in scCv3 to modules on the basis of the 

majority voting from its k9s nearest neighbours (Code availability).

To further investigate cluster-free compositional change between 

disease conditions, we also performed cell density analysis, in which 

we compared the normalized cell density between AKI and CKD condi-

tions through 2D kernel estimates using Cacoa Package. Z scores were 

calculated to identify the regions that showed significant differences 

in cell density.

To validate the direction of modules inferred from human data, 

we performed joint alignment of the human and mouse trajectories. 

The individual trajectories inferred separately from these two species 

(Slingshot, described above) were aligned to generate a joint trajectory 

using CellAlign (https://github.com/shenorrLab/cellAlign) with param-

eters winSz)=)0.1 and NumPts)=)1000. The collection groups (timepoints 

from injury) derived from mouse data were then projected to human 

cells based on the joint trajectory. The genes that were conserved or 

divergent between the two species were specified as overlapping/ 

distinct gene sets that were tested for significance based on a gam 

model inferred from the trajectory (see above).
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RNA velocity analyses

Spliced and unspliced reads were counted from Cell Ranger BAM files 

for each snCv3 run using velocyto97 (v.0.17.17) and using the GRCh38 

gene annotations prepackaged with the Cell Ranger pipeline. Repeti-

tive elements were downloaded from the UCSC genome browser and 

masked from these counts. Corresponding loom files were loaded into 

R using the SeuratWrappers function ReadVelocity and converted to 

Seurat objects using the as.Seurat function. aPT or aTAL trajectory 

populations were then subset and RNA velocity estimates were calcu-

lated using scVelo98 (v.0.2.4) through a likelihood-based dynamical 

model. Velocity embeddings on the trajectory UMAPs were visual-

ized using the pl.velocity_embedding_stream function. Latent times 

based on transcriptional dynamics predicted from splicing kinetics 

were computed and the top 300 dynamical genes were plotted using 

the pl.heatmap function. Top likelihood genes were computed for 

each TAL module to identify potential drivers for these states. Spliced 

versus unspliced or latent time scatter plots were generated using the 

pl.scatter function.

GRN analyses

GRNs associated with TAL trajectory modules were constructed using 

Celloracle (v.0.9.1) with the default parameters outlined in the pro-

vided tutorials (https://morris-lab.github.io/CellOracle.documenta-

tion). The base GRN was first constructed from SNARE2 accessible 

chromatin data. Co-accessible peaks across cell types identified using 

Cicero (v.1.8.1) were linked to genes through their TSS peaks to iden-

tify accessible promoter/enhancer DNA regions. Peaks were then 

scanned for transcription-factor-binding motifs (gimme.vertebrate.

v5.0) to generate a base GRN. snCv3 data were then used to identify 

TAL state-specific GRNs. To ensure that relevant genes were used, we 

included genes that varied across the aTAL trajectory (Supplemen-

tary Table 17), showed dynamic module-specific transcription from 

scVelo analyses (Supplementary Table 21), were variably expressed 

across TAL cells (Pagoda2) or that were associated with differential 

transcription factor activities (Supplementary Table 20). GRN infer-

ence through regularized machine learning regression models was 

performed to prune inactive (insignificant or weak) connections 

and to select active edges associated with regulatory connections 

within each module or state, retaining the top 2,000 edges ranged by 

edge strength. Network scores for different centrality metrics were 

then calculated and visualized using Celloracle plotting functions. 

For in silico transcription factor perturbation analyses, target gene 

expression was set to 0 and resultant gene expression values were 

extrapolated or interpolated using the default parameters of Cellora-

cle and according to the provided tutorial. Stromal GRN construction 

was performed as indicated above, except using a gene subset that 

included variable STR genes identified using Pagoda2; subclass level 

3 markers for FIB, aFIB, MyoF (adjusted P)<)0.05); or transcription 

factors with expression detected in at least 2.5% of nuclei (SNARE2) 

and having binding sites that were differentially active between STR 

subclasses (P)<)0.05). To ensure BMP target SMADs were represented, 

SMAD1/5/8 were also included.

SLIDE-seq2

Puck preparation and sequencing. Tissue pucks were prepared  

from fresh frozen kidney tissue either embedded in Optimal Cut-

ting Temperature (OCT) compound or frozen in liquid nitrogen and  

sequenced20,99 according to a step-by-step protocol (https://doi.org/ 

10.17504/protocols.io.bvv6n69e). Libraries were sequenced on the 

NovaSeq S2 flowcell (NovaSeq 6000) with a standard loading con-

centration of 2)nM (read structure: read 1, 42)bp; index 1, 8)bp; read 2, 

60)bp; index 2, 0)bp). Demultiplexing, genome alignment and spatial 

matching was performed using Slide-seq tools (https://github.com/

MacoskoLab/slideseq-tools/releases/tag/0.1).

Deconvolution. We used Giotto100 (v.1.0.3) for handling the slide-seq 

data and RCTD101 (v.1.2.0) for the cell type deconvolution. As only ref-

erence tissue was used for slide-seq, all degenerative states as well as 

PapE, NEU, B and N were removed from the snCv3 Seurat object prior 

to deconvolution. The Seurat object was randomly subsampled to 

have at most 3,000 cells from each level 2 (l2) subtype and the level 1  

(l1) subclasses of ATL and DTL were merged. For each data source, that 

is, HuBMAP or KPMP (Supplementary Table 2), the counts from all 

beads across all pucks were pooled and deconvolved hierarchically: 

first, beads with less than 100)UMIs and genes detected in less than 150 

beads were removed. Then, the broad l1 subclass annotations in the 

Seurat object were used to deconvolve all beads (gene_cutoff)=)0.0003, 

gene_cutoff_reg)=)0.00035, fc_cutoff)=)0.45, fc_cutoff_reg)=)0.6, manu-

ally adding REN in the RCTD gene list and merging ATL and DTL subtypes 

as TL). The prediction weights were normalized to sum to 100 per bead. 

Beads for which one cell type had a relative weight of 40% or higher were 

classified as that l1 subclass. Then, for each l1 subclass, all classified 

beads were further deconvolved using the l2 annotation of that sub-

class, as well as the remaining subclass l1 annotations (same parameters 

as l1). Note that, for each l2 deconvolution, the bulk parameters in RCTD 

were fitted using all beads and then the RCTD object was subsetted to 

only contain the selected beads for the l2 deconvolution. Classifica-

tion at subclass l2 was done similar to l1 with the maximum relative 

weight cut-off of 30% or 50% depending on the stringency needed for 

an analysis (50% for Figs. 2c,f and Extended Data Fig. 4b and 30% in other 

analyses). For plotting gene counts, the scaling was performed with the 

command normalizeGiotto(gObj, scalefactor)=)10000, log_norm)=)T, 

scale_genes)=)T, scale_cells)=)F). The marker gene dot plots were plotted 

using the DotPlot function in Seurat (v.4.0.0).

Cell type interaction. Coarse cell3cell interactions can be revealed by 

looking for cell types that tend to be in close proximity. For each puck, 

we created a neighbourhood graph based on Delaunay triangulation 

in which each bead is connected by an edge to at least one other neigh-

bouring bead, provided that their distance is smaller than 50)µm. For 

each pair of cell types, we count the number of times they are connected 

by edges. Then, the cell type labels are randomly permuted 2,500 times 

to form the null distribution of the number of connections. The expec-

ted number of connections between pairs of cell types is calculated 

from this simulation and the proximity enrichment is defined as the 

ratio of the observed over the expected frequency of connections. 

The network construction and enrichment analysis were performed 

using Giotto9s createSpatialNetwork and cellProximityEnrichment 

commands, respectively. Those beads with maximum level 2 weight 

less than 30% were removed. We further excluded spurious beads that 

were outside of the visual boundary of the tissue (only for the pucks 

of which the names start with 8Puck_2101139) by manually specifying 

straight lines that follow the tissue boundary. For cortical pucks (Sup-

plementary Table 2), M-PC, C-PC and IMCD labels were relabelled as PC; 

M-TAL and C-TAL as TAL; and EC-DVR was merged into EC-AEA. Other 

medullary and cycling subtypes were removed. For medullary pucks, 

M-PC and C-PC were relabelled as PC; M-TAL and C-TAL as TAL; all DTL 

subtypes as DTL; and EC-AEA was merged into EC-DVR. Other cortical 

and cycling subtypes were removed.

To generate the proximity plots in Extended Data Fig. 4, the enrich-

ment values for each cell type pair were averaged across all pucks from 

the same region and plots were generated using the R package ggGally 

(v.2.1.2). For the cortex and medulla, respectively, only the connections 

with mean enrichment values higher than 0.7 and 0.8 were plotted.

10x Visium spatial transcriptomics

Preparation, imaging and sequencing. Human kidney tissue was 

prepared and imaged according to the Visium Spatial Gene Expression 

(10x Genomics) manufacturer9s protocol (CG000240, Visium Tissue 

https://morris-lab.github.io/CellOracle.documentation
https://morris-lab.github.io/CellOracle.documentation
https://doi.org/10.17504/protocols.io.bvv6n69e
https://doi.org/10.17504/protocols.io.bvv6n69e
https://github.com/MacoskoLab/slideseq-tools/releases/tag/0.1
https://github.com/MacoskoLab/slideseq-tools/releases/tag/0.1
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Preparation Guide) and as previously described102. Nephrectomy (n)=)6), 

AKI (n)=)6) and CKD (n)=)11) samples were sectioned at 10)µm thickness 

from OCT-compound-embedded blocks. These 23 samples represent 22 

participants because 2 samples (1 cortex and 1 medulla) were obtained 

from the same participant with CKD. A Keyence BZ-X810 microscope 

equipped with a Nikon ×10 CFI Plan Fluor objective was used to acquire 

H&E-stained bright-field mosaics, which were subsequently stitched. 

mRNA was isolated from stained tissue sections after permeabiliza-

tion for 12)min. Released mRNA was bound to oligonucleotides in the 

fiducial capture areas. mRNA was then reverse-transcribed and under-

went second strand synthesis, denaturation, cDNA amplification and 

SPRIselect cDNA cleanup (Visium CG000239 protocol) as part of library 

preparation. Sequencing was performed on the Illumina NovaSeq 6000 

system103.

Gene expression analysis. Space Ranger (v.1.0 or higher) with the  

reference genome GRCh38 was used to perform expression analysis, 

mapping, counting and clustering. Summary statistics and quality- 

control metrics are included in Extended Data Fig. 5 and Supplementary 

Table 2. Normalization was performed using SCTransform104. Final data 

processing was performed in Seurat (v.3.2.3). Expression feature plots 

depict the intensity of transcript expression in each spot. In each Visium 

sample, the outermost layer of spots was eliminated from comparative 

analyses if the edge was manually cut by a razor.

Deconvolution. Using Seurat (v.3.2.0), a transfer score system was 

used to assess and map the proportion of signatures arising from each 

55)µm spot. The transfer score reflects a probability between each spot9s 

signature and its association with a given snCv3 subclass (level 2). The 

highest probability transfer scores have the highest proportion mapped 

within each spatial transcriptomics spot pie graph. For cell type feature 

plots (Figs. 2g and 3f and Extended Data Fig. 7i), subclass level 2 cell type 

transfer scores were mapped to convey the proportion of signature 

underlying each spot. For cell state feature plots (Fig. 3b), instead of 

mapping subclass level 2 cell types, the aEpi cell state annotated in 

snCv3 was mapped across all spots in the samples. We summed the 

proportion of signatures arising from all cell types corresponding to 

each of the 6 cell states in all spots of all samples (Fig. 3a). The propor-

tions of cell state were compared across nephrectomy, AKI and CKD 

samples using Fisher9s exact tests.

Colocalization of epithelial, immune and stromal cells. In all spots 

across all samples, we categorized spots into healthy, adaptive or 

degenerative epithelial cell states on the basis of the highest propor-

tion of epithelial cell state signature as calculated in Fig. 3a. For stro-

mal or immune cell type colocalization, we first selected spots with 

non-zero transfer scores of each cell type in all 23 samples. The presence 

of stromal or immune cell signature was considered colocalized with an 

epithelial cell if its stromal or immune transfer score exceeded its mean 

transfer score across all selected spots. An odds ratio was calculated 

for colocalization between the healthy, adaptive and degenerative 

epithelial cell state with stromal or immune cell signature.

Cell state marker expression. To compare marker gene expression 

associated with the healthy, adaptive and degenerative cell states 

(Fig. 3d), we first categorized a subset of spots from AKI and CKD sam-

ples into 1 of 5 predominant cell types: POD, PT, TAL, CD or FIB. For 

the PT, TAL and fibroblasts, a spot was selected if the highest propor-

tion of its signature (level 1 mapping) corresponded to one of these 

cell types. For the CD subset, a spot was selected if the sum of level 1 

mapping proportions for the PC and IC contributed most to its signa-

ture. POD spots were defined by the presence of a minimum of 20% 

signature arising from the level 1 POD label. Once the subsets of PT, 

TAL, fibroblast, CD and POD spots were selected, each spot was fur-

ther divided into healthy, adaptive or degenerative cell state groups 

based on the highest proportion of cell state signature as calculated 

in Fig. 3a. For PODs, the presence of EC-GC signature was considered 

to be a degenerative equivalent given that a loss of POD markers was 

associated with an observed gain in EC-GC signatures within DKD  

samples.

Niche analysis. To examine the diversity of cell types colocalizing with 

TAL epithelial cells, we selected spots with more than 20% TAL signa-

ture and in which the highest proportion of signature arose from level 

1 TAL mapping. Using Seurat clustering methodology, selected spots 

were reclustered after Seurat label transfer scores were substituted in 

lieu of gene expression. Spots with similar proportions of signature 

arising from TAL cell types and states, stromal cells and immune cells 

were clustered into 13 niches. Niches were mapped over the 23 kidney 

samples and the marker gene expression in each niche was determined. 

To depict the relative proportion of each cell type, the transfer score 

average was first computed in each niche. Next, a z score for each cell 

type was calculated across the niches.

Histological validation. To determine whether the 74 snCv3 subclasses 

(level 2) were appropriately mapped to histological structures, the 

proportion of signature in each spot was compared to a histologically 

validated set of six unsupervised clusters defined by Space Ranger102 

(Extended Data Fig. 5a). These six unsupervised clusters (glomerulus, 

PT, loop of Henle, distal convoluted tubule, connecting tubule and col-

lecting duct, and the interstitium) had an overall alignment of 97.6% 

with the underlying histopathologic structures in the H&E image. In 

each sample, regions of cortex and medulla were defined by histological 

evaluation, including the presence of glomeruli. Of the 23 samples, 18 

samples were composed of only cortex, 4 samples were a combination 

of cortex and medulla and 1 sample was completely medulla.

Label-free and multifluorescence large-scale 3D imaging

Kidney biopsy cores frozen in OCT from patients with AKI or CKD 

enrolled in KPMP were used for label-free imaging followed by 

multiplexed-fluorescence large-scale 3D imaging as outlined in the pro-

tocol (https://doi.org/10.17504/protocols.io.9avh2e6) and described in 

a recent publication27. Frozen biopsies were sectioned to a thickness of 

50)µm using a cryostat and then immediately fixed in 4% fresh paraform-

aldehyde (PFA) for 24)h and subsequently stored at 4)°C in 0.25% PFA.

The first step in imaging consists of label-free imaging with mul-

tiphoton microscopy to collect autofluorescence and second harmonic 

images of the unlabelled tissue mounted in non-hardening mounting 

medium. Imaging was conducted using a Leica SP8 confocal scan-head 

mounted to an upright DM6000 microscope. For large-scale imaging 

of tissues at the sub-micrometer resolution, the Leica Tile Scan func-

tion was used to collect a mosaic of smaller image volumes using a 

high-power, high-numerical aperture objective. Leica LASX software 

(v.3.5) was then used to stitch these component volumes into a single 

image volume of the entire sample. The scanner zoom and focus motor 

control were set to provide voxel dimensions of 0.5)×)0.5)µm laterally 

and 1)µm axially.

Labelling of tissue for fluorescence microscopy was preceded by 

washing in phosphate-buffered saline (PBS) and blocking with PBS 

with 0.1% Triton X-100 (MP Biomedical) and 10% normal donkey serum 

( Jackson Immuno Research). Antibodies for indirect immunofluores-

cence were applied first for 8316)h at room temperature, followed by 

washing cycles of PBS with 0.1% Triton X-100. An incubation cycle with 

secondary antibodies occurred next, followed by washing and finally 

application of directly labelled antibodies. Antibodies targeting mark-

ers for tubular cells and structures (aquaporin-1, uromodulin, F-actin) 

and immune cells (myeloperoxidase, CD68, CD3, siglec 8) were used, 

in addition to nuclei labelling using DAPI (Supplementary Table 35). 

After the final washing cycles, the tissue was mounted in Prolong Glass 

(Thermo Fisher Scientific).

https://doi.org/10.17504/protocols.io.9avh2e6


Confocal microscopy was conducted using a Leica ×20/0.75)NA 

multi-immersion objective (adjusted for oil immersion), with excita-

tion sequentially provided by a solid-state laser launch with laser lines 

at 405)nm, 488)nm, 552)nm and 635)nm. Images in 16 channels (emission 

spectra collected by PMT detectors adjusted for the following ranges: 

4103430)nm, 4303450)nm, 4503470)nm, 4703490)nm, 5003509)nm, 

5103519)nm, 5203530)nm, 5303540)nm, 5703590)nm, 5903610)nm, 

6103630)nm, 6313651)nm, 6433664)nm, 6643685)nm, 6853706)nm 

and 7063726)nm) were collected for each focal plane of each panel 

of the 3D mosaic. The resulting 16-channel image was then spectrally 

deconvolved (by linear unmixing using the Leica LASX linear unmixing 

software) to discriminate the eight fluorescent probes in the sample. 

Validation of the linear unmixing was described previously27.

Confocal immunofluorescence microscopy

Human kidney tissue samples from the cortex or medulla were fixed in 

4% PFA, cryopreserved in 30% sucrose and frozen in OCT cryomolds, 

and were cut into 5)µm sections. The sections were post-fixed with 4% 

PFA for 15)min at room temperature, blocked in blocking buffer (1% BSA, 

0.2% skimmed milk, 0.3% Triton X-100 in 1× PBS) for 30)min at room tem-

perature and then immunofluorescence microscopy was performed, 

first by overnight incubation at 4)°C with primary antibodies, fol-

lowed by labelling with secondary antibodies. The primary antibodies 

included NRXN-1³, TUJ1, collagen I and III, synapsin-1, NPSH-1, SLC14A2, 

UMOD, CD31, CD34, CD11b, PROM1, KIM1, VCAM1, AQP1, AQP2, CD45 

and S100 (Supplementary Table 36). After washing, labelling with the 

secondary antibodies was performed using Alexa-488-conjugated goat 

anti-mouse IgG, Cy3-conjugated goat anti-rabbit IgG or Cy5-conjugated 

donkey anti-goat IgG at room temperature for 1)h. After washing, the 

sections were counterstained with DAPI for nuclear staining. Images 

were acquired with a Nikon 80i C1 confocal microscope.

In situ hybridization

Human kidney tissues were sectioned with 3)µm from formalin-fixed, 

paraffin-embedded (FFPE) blocks. In situ detections of PROM1, CST3 

and EGF mRNA transcripts were performed with the use of RNAscope 

Probes Hs-PROM1 (311261, Advanced Cell Diagnostics), Hs-CST3 

(528181, Advanced Cell Diagnostics), and Hs-EGF (605771, Advanced 

Cell Diagnostics) and RNAscope kit (322330, Advanced Cell Diagnos-

tics) according to the manufacturer9s protocol. RNAscope Positive 

Control Probe Hs-UBC (310041, Advanced Cell Diagnostics) was used 

as a positive control. A horseradish-peroxidase-based signal amplifica-

tion system (322310, RNAscope 2.0 HD Detection Kit-Brown, Advanced 

Cell Diagnostics) was used to hybridize with target probes followed by 

DAB staining. The sections were then counterstained with haematoxy-

lin (3535-16, RICCA Chemical Company). Positive staining was deter-

mined by brown dots. After rehydrating, the sections were immersed 

in periodic acid solution (0.5%, P7875, Sigma-Aldrich) for 5)min, rinsed 

in three changes of distilled water, incubated with Schiff9s reagent 

(3952016, Sigma-Aldrich) for 15)min and then rinsed in running tap water 

for 5)min. Nuclei were counterstained with haematoxylin 2 (220-102, 

Thermo Fisher Scientific) for 2)min. The sections were then rinsed in 

water, dehydrated in alcohol, cleared in xylene and finally mounted 

with Cytoseal XYL (8312-4, Thermo Fisher Scientific).

Tissue cytometry and in situ cell classification

Tissue cytometry and analysis were conducted using the Volumetric 

Tissue Exploration and Analysis (VTEA) software (v.1.0a-r9). VTEA is 

a 3D image processing workspace that was developed as a plug-in for 

ImageJ105. The version of VTEA, which includes the supervised and 

unsupervised labelling of cells and combining spatial and features 

based gating strategies, used here is available at GitHub (https://github.

com/icbm-iupui/volumetric-tissue-exploration-analysis) and through 

the FIJI updater. In this analytical pipeline, each individual nucleus was 

segmented using intensity thresholding and connected component 

segmentation built into VTEA and ImageJ. Each surveyed nucleus 

became a surrogate for a cell, to which the location and marker staining 

around or within the nucleus could be registered. This captured infor-

mation could be used to classify cells on the basis of marker intensity 

or spatial features using scatterplot displays that enable various gating 

strategies and statistical analysis, including export as .csv files of all 

segmented cells and the associated features106. Cells classified on the 

basis of marker intensity are summarized in Supplementary Table 37. 

Gated cells were mapped back directly into the image volumes, which 

enabled immediate validation of the gates. Moreover, direct gating 

on the image could be performed, which could trace all of the cells 

within the chosen region-of-interest back to the data display on the 

scatter plot. Thus, cell classification could also be performed based 

on direct annotation of regions-of-interest (ROIs) within the image 

volumes. Annotated ROIs were determined by the pixel-wise agree-

ment between 3 of 4 experts who performed annotation on each biopsy 

specimen separately.

Using tissue cytometry, 14 cell classes were defined based on the 

following features: (1) PT cells: AQP1+ cells in cortex ± brush border 

staining. (2) C-TAL cells: UMOD+ cells in cortex. (3) Glomerular cells 

(which encompass PODs, glomerular endothelium and mesangial cells) 

annotated ROIs based on morphology and F-actin staining. (4) Cortical 

large and medium vessel cells: annotated ROIs based on morphology 

and F-actin staining. (5) Cortical distal nephron cells (distal tubules 

(CD), connecting tubules (CNT) and collecting ducts (C-CD) or cortical 

distal nephrons): AQP12UMOD2 and annotated ROIs based on unique 

morphology in cortex. (6) M-TAL cells: UMOD+ cells in the medulla. 

(7) DTL: AQP1+ cells in the medulla. (8) Medullary collecting ducts: 

AQP12UMOD2 and annotated ROIs based on unique morphology in the  

medulla. (9) Vascular bundles in the medulla: annotated ROIs based 

onunique morphology in the medulla and F-actin staining. (10) Neu-

trophils: MPO+ cells. (11) Activated macrophages: MPO2CD68+ cells.  

(12) T cells: CD3+ cells. (13) Cells in altered regions: annotated ROIs 

based on loss of (unrecognizable) tubular morphology, expanded inter-

stitium, increased fibrosis (by second harmonic generation imaging)  

and cell infiltrates. (14) Not determined: unable to be classified on the 

basis of the above criteria.

Using such an approach,1,540,563 cells were labelled from all the 

biopsies used in this analysis.

3D neighbourhood building and representation

3D neighbourhoods were calculated for every cell in each biopsy 

using VTEA and a radius of 25)µm (50 voxels in x and y and 25 voxels 

in z). We reasoned the largest measurable neighbourhood/niche in 

our 3D approach is limited by the 50)µm thickness of the sections 

imaged (z dimension). Thus, per Nyquist sampling, the radius used 

was about 25)µm, which is consistent with previous approaches1073109. 

For each 3D neighbourhood, VTEA was used to calculate the features: 

fraction-of-total and sum of each labelled cell per neighbourhood. A 

list of neighbourhoods, positions in 3D and their features was exported 

by biopsy sample as .csv files.

Neighbourhood visualization and statistical analysis

CSV files of neighbourhoods by biopsy sample were generated in VTEA 

and imported into R (v.4.0.4), parsed for the sum of each labelled cell 

and monotypic neighbourhoods removed. These features were scaled 

by Z-standardization and used for Louvain community detection  

(R packages FNN (v.1.1.3) and igraph (v.1.2.6)) and t-SNE manifold 

projection (R package Rtsne (v.0.15)). To understand the interactions  

within neighbourhoods, pairwise interactions by neighbourhood  

were tallied and plotted on a chord plot (R package: circlize (v.0.4.12)) 

and Pearson9s correlation coefficients were calculated and plotted  

(R packages Hmisc (v.4.5.0) and corrplot (v.0.84)). Subclasses of neigh-

bourhoods, those with at least one cell with a specific label were selected  

and plotted as network plots (R package igraph (v.1.2.6)) with edges in 

https://github.com/icbm-iupui/volumetric-tissue-exploration-analysis
https://github.com/icbm-iupui/volumetric-tissue-exploration-analysis
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CD3 and Altered neighbourhoods scaled at 40% of all other subclasses 

to facilitate visualization. All scripts are provided as an annotated  

RStudio notebook file (.rmd).

Plots and figures

UMAP, feature, dot and violin plots for snCv3, scCv3, SNARE2 and 

Visium data were generated using Seurat. Correlation plots were 

generated using the corrplot package. Genome coverage plots were 

performed using Signac. Plots for 3D cytometry and neighbourhood 

analysis were generated in R with circlize, ggplot2 and igraph.

Reporting summary

Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability

Processed data, interactive and visualization tools: the snCv3, scCv3, 

SNARE2, Slide-seq and Visium processed data files are all available 

for download at the GEO (Superseries GSE183279). snCv3 healthy 

reference data are available for reference-based single-cell mapping 

using the Azimuth tool (https://azimuth.hubmapconsortium.org/). 

All snCv3 and scCv3 processed data can be accessed and viewed at 

cellxgene (https://cellxgene.cziscience.com/collections/bcb61471-

2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD 

nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging 

can all be visualized and examined using the KPMP Data Atlas Explorer 

(https://atlas.kpmp.org/explorer/). For 3D imaging, the cytometry data, 

cell classifications, gates and neighbourhood analysis data are available 

at Zenodo (https://doi.org/10.5281/zenodo.7120941). Raw sequencing 

and imaging data: raw sequencing data are under controlled access 

(human data) as they are potentially identifiable and can be accessed 

from the respective sources indicated below (summarized in Supple-

mentary Tables 1 and 2). Raw and processed sequencing and imaging 

data (snCv3, scCv3, 3D imaging and Visium) generated as part of the 

KPMP have been deposited (https://atlas.kpmp.org/repository/) and 

compiled (https://doi.org/10.48698/3z31-8924) online. 3D imaging 

raw data are freely available to download; however, KPMP raw sequenc-

ing data (snCv3, scCv3, Visium) have restricted access. These can be 

requested from KPMP by contacting A.L.D. (info@kpmp.org) and are 

available by signing a data use agreement (DUA) promising to abide 

by KPMP security standards and to not re-identify participants, share 

data outside those named on the DUA Exhibit A or sell the data. Data 

access is granted to anyone signing the KPMP DUA as is. KPMP will 

respond to initial data requests within 12336)h and provide data up to 

one month after the DUA has been signed. Manuscripts resulting from 

KPMP controlled access data are requested to go through the KPMP 

publications and presentations (P&P) committee to ensure that KPMP is 

acknowledged appropriately and authorship follows ICJME standards. 

The KPMP P&P committee reviews and approves manuscripts every 

2)weeks and, to date, no manuscript has been rejected. Any analysis 

resulting from KPMP data may be published or shared provided that 

it does not re-identify KPMP participants. Slide-seq raw sequencing 

data generated as part of KPMP pilot nephrectomy tissue are available 

for download from the GEO (Superseries GSE183279). Raw sequencing 

data (snCv3, SNARE2, Slide-seq) generated as part of the Human Bio-

molecular Atlas Project (HuBMAP) have been deposited (https://portal.

hubmapconsortium.org/) and compiled (https://doi.org/10.35079/

hbm776.rgsw.867) online. The HuBMAP raw sequencing data have 

restricted access and are available for download from the database 

of Genotypes and Phenotypes (dbGaP: phs002249) by requesting for 

authorized access following instructions on the dbGaP website. The 

process to request access to this dbGaP study is available online (https://

dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?adddataset=phs002249&page=

login). In brief, to download the human sequencing data for this study 

after obtaining authorization from the NIH DAC, one would go through 

the SRA (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA671343). 

snCv3 data not deposited to KPMP or HuBMAP are available from the 

GEO (GSE183279) or, for Covid AKI raw sequencing files, on request 

from Washington University Kidney Translational Research Center 

(KTRC) to S.J. (sanjayjain@wustl.edu) due to patient confidentiality. 

Response to requests or questions will be addressed within a week. 

Code access and data use agreement forms can be accessed online 

(https://research.wustl.edu/core-facilities/ktrc/). Once the executed 

form is received and approved, data will be distributed within a month. 

There is no authorship restriction on the use of COVID data. Additional 

published/public datasets: the following publicly available RNA-seq 

datasets were used in this study: mouse kidney single cell (GEO: 

GSE129798); mouse kidney injury single nucleus (GEO: GSE139107); 

human fibroblast and myofibroblast single cell (Zenodo: https://doi.

org/10.5281/zenodo.4059315); mouse distal nephron single cell and 

bulk distal segment (GEO: GSE150338); human kidney mature immune 

single cell (https://kidney-atlas.cells.ucsc.edu); and human kidney 

single nucleus (GEO: GSE151302; https://human-kidney-atac.cells.ucsc.

edu). GWAS summary statistics were from the CKDGen Consortium 

(all eGFR; https://ckdgen.imbi.uni-freiburg.de/files/Wuttke2019), EBI 

GWAS Catalog (hypertension; https://www.ebi.ac.uk/gwas/efotraits/

EFO_0000537) and the CausalDB database (release 1.1 2019-09-29; 

http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical 

data were obtained from NEPTUNE. Owing to patient confidentiality, 

these data have restricted access and are available only on request to 

NEPTUNE-STUDY@umich.edu. ERCB data were obtained from the GEO 

(GSE104954). Raw sequencing data (scCv3) on living donor biopsies as 

part of the Chan Zuckerberg Initiative (CZI) and HCA are available from 

the GEO (GSE169285). Additional Visium spatial transcriptomic data 

not in the KPMP repository are available from the GEO (GSE171406). 

Figures: schemata of the human nephron and renal corpuscle were 

developed by the KPMP and HuBMAP (https://doi.org/10.48698/DEM4-

0Q93). Source data are provided with this paper.

Code availability

Code to reproduce figures are available to download from GitHub 

(https://github.com/KPMP/Cell-State-Atlas-2022). No additional  

custom computational code was generated in this study.
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Extended Data Fig. 1 | snCv3 cell types and quality metrics. a. Number of 

samples processed across technologies assessed both individually and in 

combination. b. UMAP plots for snCv3 clusters. c. UMAP plots as in (b) showing 

the corresponding tissue regions, sex, patient identities and conditions. d. Bar 

and violin plots for snCv3 patients shown in (c). Barplots showing the total 

number of post-QC nuclei used in the snCv3 clustering analysis, and the 

proportions that were associated with level 1 subclasses, regions sampled or 

the health or disease conditions. Violin plots show the percentage of transcripts 

associated with the mitochondria (Mt) or endoplasmic reticulum (ER), as well 

as mean genes and mean transcripts detected per patient sample. e. Receiver 

operating characteristic (ROC) curve showing snCv3 clustering quality as 

assessed by the descrimination between subclasses (level 1) or clusters (b) 

using the Single Cell Clustering Assessment Framework (SCCAF). f. Bar and 

violin plots as in (d) for snCv3 clusters shown in (b), including proportion of 

nuclei contributed by each patient.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | snCv3 marker genes and comparison with reference 

data. a. Dot plot showing averaged marker gene expression values (log scale) 

and proportion expressed for snCv3 clusters. b. Cell type labels predicted from 

Lake et. al. 201912 mapped on the snCv3 UMAP embedding. Inset shows the 

corresponding prediction score values. c. UMAP of Lake et. al. 201912 data 

mapped to snCv3 embeddings showing subclass level 3 predicted labels. Inset 

shows the corresponding prediction score values. d. UMAP of Muto et al. 202115 

data mapped to snCv3 embeddings showing subclass level 3 predicted labels. 

Inset shows the corresponding prediction score values. e. Heatmap showing 

correlation of averaged scaled gene expression values for snCv3 epithelial 

(reference state) clusters and mouse bulk segmental RNA-seq data from Chen 

et al., 202161. f. Heatmap showing correlation of averaged scaled gene expression 

values for snCv3 distal tubule clusters (reference states) and mouse scRNA-seq 

data from Chen et al., 202161. g. Heatmap showing correlation of averaged 

scaled gene expression values for snCv3 clusters (reference and altered/

adaptive states) and mouse snRNA-seq clusters from Kirita et al., 20204.  

h. Heatmap showing correlation of averaged scaled gene expression values 

(reference states) for snCv3 clusters and mouse scRNA-seq clusters from 

Ransick et al., 201959. i. Heatmap showing correlation of averaged scaled gene 

expression values for snCv3 stromal clusters (reference and altered/adaptive 

states) against human scRNA-seq clusters from Kuppe et al., 202025. j. Heatmap 

showing correlation of averaged scaled gene expression values for snCv3 

immune cell clusters and mouse immune cell types from Immgen.org.  

k. Heatmap showing correlation of averaged scaled gene expression values for 

snCv3 immune cell clusters and human immune cell types from Monaco et al. 

201962. l. UMAP of Stewart et al., 201914 immune single-cell RNA-seq data 

mapped to snCv3 embeddings showing subclass level 3 predicted labels (top) 

and the prior published cell type annotations (bottom). Inset shows the 

corresponding prediction score values.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | scCv3 integration and quality metrics. a. UMAP  

plot showing integrated snCv3, scCv3 and SNARE2 (RNA) subclass level 3 

annotations. scCv3 and SNARE2 (RNA) datasets were projected onto the snCv3 

embeddings. b. UMAP plots as in (a) show mapping of the corresponding sex, 

patient identities and conditions for scCv3 and SNARE2 datasets. c. Joint 

embedding of SNARE2 RNA and AC modalities. d. Barplots showing the total 

number of post-QC nuclei and subclass level 1 cell types detected per scCv3 or 

SNARE2 patient. Violin plots show the percentage of transcripts associated 

with the mitochondria (Mt) or endoplasmic reticulum (ER), as well as mean 

genes, mean transcripts, mean accessible peaks or mean TSS enrichment 

scores detected per patient. e. Barplots showing the total number of post-QC 

nuclei/cells per subclass (level 3) combined across platforms (snCv3, scCv3, 

SNARE2). Patient entropy as well as tissue type, region, condition, sex and 

assay proportions are shown. Heatmap of correlation values for each scCv3  

and SNARE2 subclass against the corresponding snCv3 subclass is shown (top 

panel). Grey values indicate absence of a comparison where subclasses were 

not covered by one or more of the technologies.



Extended Data Fig. 4 | Slide-seq predicted cell types. a. UMI counts per  

bead for classified beads. Normalized RCTD weights for the beads classified at 

subclass level 2 (Methods). Region of the tissue associated with beads for each 

subclass. Frequency of cell types predicted across pucks. b. Dot plot showing 

expression of cell type markers identified by snCv3 in the classified Slide-seq 

beads. c. Representative pucks showing subclass level 2 classifications. Cell 

types are grouped into 3 categories and plotted separately for clarity. Scale bar 

is 300)µm. d-e. Cell proximity networks for Slide-seq cell types associated with 

cortical or medullary regions. For panels a, b, d and e all pucks (6 individuals) 

were combined. f. Left panel: Slide-seq puck area indicated in (c) and predicted 

cell types for the AEAs and surrounding cell types. Right panel: mapped 

expression values for corresponding marker genes (scaled). AEA mapping over 

Visium histology is depicted in Extended Data Fig. 5j, colocalized with REN 

expression. Scale bar is 100)µm.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | 10X Visium predicted cell types. a. Analysis of subclass 

(level 2) predictions on 10x Visium spots (23 samples, 22 individuals). The top 

panel presents the distribution of transfer scores for the subclass (level 2) with 

the highest score in each spot. The UMI count panel presents the UMI counts 

associated with these spots. The cell type proportion panel depicts the 

proportion of transcriptomic signatures for each subclass, corresponding to 

its transfer score relative to all non-zero transfer scores in that spot. The 

relative proportion of cell type subclass signatures arising from the cortex or 

medulla in the 23 samples is shown. The bottom panel reveals the alignment 

between the predicted cell type subclass and unsupervised clusters that were 

histologically validated (Methods). b. Dot plot showing gene expression of 

select cell markers by predicted subclass (level 2) for all 23 Visium samples.  

c. The proportion of transcriptomic signatures in the 23 samples revealed a 

similar distribution of cell types across healthy reference nephrectomies, 

chronic kidney disease (CKD), and acute kidney injury (AKI) samples. d. Cortical 

(left, I) and medullary (right, U) portions of specimen 21-0063 reveal POD 

signatures confined to the cortex, while M-TAL signatures were found in the 

medulla. White arrows denote the connection point between the cortex and 

medulla portions of the sample. e. A histologic image of the cortex (bounded  

in d) reveals level 1 cell type mapping of POD, EC-GC, and VSM/P cells to a 

glomerulus. PT and TAL signatures were seen mapped over distinct regions of 

tubules. f. Expression of NPHS2 (for glomeruli), ALDOB (for PT), and SLC12A1 

(for TAL) in the cortex. g. A histologic image of the medulla (bounded in d) 

reveals level 1 cell type mapping of a high proportion of TAL cells within the 

medulla. h. Feature plots showing SLC12A1 but not NPHS2 or ALDOB expression 

in the medulla. i. Proportion of cortex and medulla cell types for sample  

21-0063 (9555 total spots over two sections of the same individual). j. A cortical 

image in a healthy reference sample (19-M61) showing EC-AEA entering the 

glomerular corpuscle near the MD. Two glomeruli contain signatures arising 

predominantly from POD and EC-GC. Two TAL niches are outlined. TAL niche 1 

is enriched in healthy cortical TAL signature and TAL niche 8 near the afferent 

arteriole is enriched for Macula Densa (MD) signature. NPHS2 expression is 

found within the glomeruli and renin (REN) expression is highest in the EC-AEA. 

A full level 2 cell type deconvolution is provided in the final panel (right). Scale 

bars are 300)µm in length.
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Extended Data Fig. 6 | Altered states in a mouse model of AKI. a. UMAP 

showing mouse AKI (IRI) data4 with cell types predicted from snCv3. Mouse 

datasets were projected onto the snCv3 UMAP embeddings (Fig. 2b). 

Histograms of prediction scores for subclasses (level 1 and 3) are shown.  

b. UMAP plots as in (a) showing the original cell type annotations4 and injury 

groups (time points following IRI) for mouse data. c. Barplot showing the 

proportion of altered states for each mouse injury group. d. Barplot showing 

proportion of each injury group for a subset of predicted subclasses. Arrows 

indicate altered states or immune cells (MAC-M2) that persisted at 6 weeks 

following injury. e. UMAP as in (a) showing the distribution of reference and 

altered states over the different injury groups.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Altered state expression signatures. a-b. Gene Set 

Enrichment Analyses (GSEA) for genes upregulated or downregulated in 

adaptive PT (a) and TAL (b) states compared to reference states. c. Dot plot 

showing averaged marker gene expression values (log scale) and proportion 

expressed for snCv3 clusters. d. Dot plot showing averaged marker gene 

expression values (log scale) and proportion expressed for integrated snCv3/

scCv3 reference, degenerative and adaptive stromal clusters. e. Violin plots 

showing aSTR and ECM (matrisome) scores for snCv3 clusters. f. Visium feature 

plots of normalized counts for select markers mapped to regions shown in 

Fig. 3e. Scale bar is 100)µm. g. Visium feature plot of normalized counts for a 

select marker mapped to region shown in (h). Scale bar is 100)µm. h. Histology 

and predicted cell types for a medullary region of acute tubular necrosis (cellular 

cast formation within tubular lumens, loss of brush border, loss of nuclei, and 

epithelial simplification). Pie charts are proportions of predicted transfer 

scores. Area corresponds to the upper bounded region in Fig. 3b. Scale bar is 

100)µm. i. Predicted transfer scores for area shown in (h). Scale bar is 100)µm.



Extended Data Fig. 8 | 3D imaging identifies injury neighbourhoods.  

a. Maximum intensity projections of immunofluorescence and second 

harmonic images for 13 example biopsies, scale bars 500)µm. b. Overview of 

neighbourhood classes as given in Fig. 4b for reference. c. Distribution of 

neighbourhoods by specimen in neighbourhood clusters plotted in tSNE space 

from Fig. 4. d. Feature plots of the number of cells per neighbourhood for 

cortical TAL (C-TAL), altered morphology and proximal tubule (PT). C-TALs and 

PTs are found in neighbourhoods with altered morphology, cyan and orange vs. 

red and magenta arrowheads. e-h. Neighbourhoods with at least one cell for 

the labels indicated were subsetted and neighbourhood graphs generated to 

indicate the pairwise interaction between cell labels. At right: maximum 

Z-projections of 3D confocal fluorescence images with white arrow indicating 

MPO+ cells (e and f) or CD68+ cells (g), orange arrows indicating CD3+ cells and 

asterisks highlighting fibrosis (white) or areas of altered morphology/injury 

(yellow). Scale bar)=)100)µm. h and i, pairwise subset analysis of CD3+, PT and 

TAL (orange, magenta and cyan arrows respectively). CD3+ cells cluster in 

regions of fibrosis (orange arrowhead and white asterisks). UMOD positive 

casts associate with regions of injury and CD3+ cells (orange asterisk), the 

tubular epithelium is intact with brush borders (white #), has evidence of 

epithelial simplification (orange #) or less AQP1 marker and epithelial 

simplification (red #). Scale bar)=)100)µm.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | PT and TAL repair trajectories. a. Trajectory of PT  

cells for snCv3 and scCv3 datasets. Bottom UMAPs are coloured by cell density 

for each condition (AKI/CKD), including the cell density difference between 

AKI and CKD. b. UMAP of PT subclasses (PT-S1-S3, aPT) with projected RNA 

velocities, derived from a dynamical model of PT repair modules, visualized as 

streamlines (Methods). c. Heatmap of smoothed gene expression profiles 

along the inferred pseudo-time for PT cells. Colour blocks on the left show 

different repair states or modules identified based on the gene expression 

profiles. d. Right panel: dot plot of SNARE2 average accessibilities (chromVAR) 

and proportion accessible for TFBSs showing differential activity in aPT 

modules. Left panel: dot plot of averaged gene expression values (log scale) 

and proportion expressed for integrated snCv3/scCv3 modules. e. 3D confocal 

imaging of a reference kidney tissue section stained for PROM-1 (red), Phopho-

c-Jun (p-c-JUN, yellow), F-actin (with FITC phalloidin, green) and DNA with DAPI 

(cyan) (scale bar 100)µm). Regions of PROM-1 within a glomerulus (G) and a 

proximal tubule (PT) are indicated and enlarged in the right panels (rendered 

3D volumes, scale bar 10)µm). This area shows the association of PROM-1 

expression with p-c-Jun+ cells in the tubules. 3D rendering was performed 

using the Voxx software from the Indiana Center for Biological Microscopy 

(voxx.sitehost.iu.edu/). f. Top panels: TAL UMAPs as in Fig. 5a (snCv3) showing 

condition densities as in (a). Bottom panels: changes of smoothed gene 

expression (snCv3) for representative genes as a function of inferred pseudotime 

coloured by disease conditions. g. TAL UMAP as in Fig. 5a (snCv3) with projected 

RNA velocities, derived from a dynamical model for TAL repair modules, 

visualized as streamlines (Methods). h. Heatmap showing expression value 

dynamics (snCv3) along latent time inferred from RNA velocities for the top 

300 likelihood-ranked genes. Top colour bar indicates aTAL repair modules.  

i. Scatter plots (u, unspliced; s, spliced; t, latent time) for putative driver genes 

(snCv3) identified by high likelihoods in the dynamical model. j. Gene regulatory 

networks associated with TAL repair modules (Methods, see Supplementary 

Table 23). Eigenvector centrality scores were plotted for select factors with 

high influence on different states. k. UMAP embedding (snCv3) showing 

pseudotime gradient and the derived vector field associated with TAL repair.  

l-m. UMAP embedding showing simulated vector fields following TFAP2B (l) or 

NR3C1 (m) perturbation. Barplots show inner product calculations (perturbation  

scores) comparing directionality and size of TAL repair flow vectors and the 

simulated perturbation vectors. Negative perturbation scores indicate a block 

in differentiation.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Adaptive epithelia localized to areas of injury.  

a. Immunofluorescent (IF) staining of VCAM1, AQP1, KIM1 (HAVCR1) in the  

aPT (performed on replicate sections from 3 individuals). Scale bars represent 

20)µm. b. IF staining of UMOD, PROM1 and KIM1 in the TAL (performed on 

replicate sections from 3 individuals). Scale bars represent 20)µm. c-e. RNA 

in situ hybridization (ISH) for PROM1, CST3 or EGF (performed on adjacent 

sections from 6 individuals). c. ISH for PROM1 and CST3 in adjacent sections. 

PROM1 is localized to an area showing interstitial fibrosis and tubular atrophy. 

Scale bar is 100)µm. d. RNA ISH for PROM1 (left panel) and EGF (right panel) in 

adjacent corticomedullary sections. PROM1 positive epithelial cells seen in 

injured tubules (epithelial simplification, loss of nuclei) that are EGF negative 

(blue asterisks, upper inset image) and EGF positive healthy TAL (red asterisks, 

lower inset image). Scale bar is 100)µm. e. ISH for PROM1 and EGF (healthy TAL) 

showing PROM1 localization to PT (blue asterisks, left inset) and TAL (red 

asterisks, right inset) showing histological evidence of injury (epithelial thinning, 

nuclei loss, brush border loss in PT). Adjacent section (lower panel) shows EGF 

positivity in healthy TAL cells. Scale bar is 50)µm.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | TAL adaptive or maladaptive repair niches.  

a. Slide-seq fibrotic/inflammatory niches from Fig. 5d showing full predicted 

subclass level 3 cell type distributions. Scale bar is 100)µm. b. Visium TAL niches 

were identified by clustering TAL dominant spots according to Seurat label 

transfer scores. The UMAP denotes 13 TAL niches which were distributed across 

the 23 samples (patient inset) and across disease state conditions (condition 

inset). c. Visium niche cluster compositions. Signature proportions of TAL cell 

types, injury cell states, stromal cells, and immune cells. Niche 5 contained 

significant stromal, niche 7 contained lymphoid, and niche 11 contained myeloid 

cell signatures. Some niches (e.g. 9) had significant contributions from 

neighbouring non-TAL epithelial cells (<Proportion Other= bar plot). The 

colocalization score (Methods) for cell types within each niche is based on 

Seurat label transfer scores and provided as a dot plot. d. A subset of TAL niches 

(1, 3, 5, 7) were overlaid upon a histologic image of the cortex in sample M19-F52_3, 

with each niche often represented by multiple contiguous spots. Scale bar is 

300)µm in length. e. Representative region (patient 28-12265) showing niche 5 

(STR) localized in proximity to interstitial fibrosis, and niche 3 (aTAL) localized 

adjacent to myeloid cell infiltration. Scale bar is 300)µm. f. Circle plot of ligand-

receptor cell cell communications between TAL repair modules or states and 

immune cell subclasses. Dot size indicates relative proportion of the subclasses 

and TAL module, edge width represents strength of the communication.  

g. Dotplots showing expression level and percent expressed for select ligands 

or receptors within the mouse AKI data. Data were grouped into injury groups 

less than or equal to 2 days (including control cells) and groups greater than  

2 days post-injury. The asterix highlights an IGF1 expression difference found 

between early and late injury groups of the aFIB population. h. Gene regulatory 

networks associated with STR cell types (see Supplementary Table 27). 

Eigenvector centrality scores were plotted for select factors with high influence 

on different subclasses. Ontologies for target genes downstream of select 

transcription factors are shown.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Association of cell state scores with clinical 

phenotypes. a. Embedding plots: grouping of patient-level expression profiles 

for the aTAL, aStr, Degen, and aPT genesets used for clinical outcome association 

(Supplementary Table 27) for snCv3 (Top) and scCv3 (Bottom). Barplots: the 

distribution of eGFR among the identified groups. b. Unadjusted Kaplan Meier 

curves by aStr (P)=)0.001) and common aPT and aTAL (P)=)0.03) state scores for 

composite of ESRD or 40% drop in eGFR from time of biopsy in Neptune adult 

patient cohort (see Supplementary Table 30). A score generated using 100 

randomly selected genes failed to show any correlation (P)=)0.52) with disease 

survival. c. Heatmap of causal variants (z-scores) that were enriched in SNARE2 

cell-type specific accessible chromatin. Dots represent Z-scores > 2 (or P value 

< 0.05). Dotplots show averaged ESRRB binding site accessibility or gene 

expression (log values) and percent accessible or expressed. d. ESRRB 

subnetwork of TF connections to target genes generated using SNARE2 RNA 

and AC data, demonstrating a central role for ESRRB in regulating TAL marker 

genes. Inset shows the ESRRB motif. Boxes represent ESRRB target genes 

showing causal variant enrichment (c) within linked regulatory regions (AC 

peaks). e. Heatmap showing enrichment scores (scaled -log10(p values)) for  

the RNA expression (snCv3/scCv3) of gene sets associated with eQTL linked to 

kidney function or disease88,89 or associated with progression of acute to 

chronic injury90. f. Dot plots of averaged gene expression values (snCv3/scCv3) 

or TF binding site accessibilities (SNARE) and proportion expressed/accessible. 

Violin plots show gene expression scores for gene sets associated with aging 

(Tabula Muris Consortium48 and Takemon et al.69) or SASP (Ruscetti et al.70 or 

Basisty et al.71). g. Violin plots showing expression scores for gene sets shown in 

(f) for all non-immune subclasses. h. Bottom: Number of differentially expressed 

genes between AKI and CKD cases for each major cell type in snCv3 and scCv3 

datasets. Top: enrichment of functional gene ontology terms for each major 

cell type. Colour indicates -log adjusted p-value (derived from GSEA and 

calculated based on permutation).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement 

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly xX! 
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section. x!

 

A description of all covariates tested 

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons 

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) x
 xX 
x 

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable. x 

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings 
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated 

Our web collection on statistics for biologists contains articles on many of the points above. 

Software and code 

Policy information about availability of computer code 

Data collection 10x Chromium v3 and Illumina Novaseq 6000 instrument control software (v1.6.0 and 1.7.0); Leica LASX software (v. 3.5); 3D label free 

autofluorescence and fluorescence imaging data were captured using a Leica SP8 confocal scan-head mounted to an upright DM6000 

microscope. For large-scale imaging of tissues at submicron resolution, the Leica Tile Scan function was used to collect a mosaic of smaller 

image volumes using a high-power, high-numerical aperture objective. Leica LASX software (v. 3.5) was then used to stitch these component 

volumes into a single image volume of the entire sample. The scanner zoom and focus motor control were set to provide voxel dimensions of 

0.5 x 0.5 um laterally and 1 um axially. 2D Immunofluorescence images and data were captured using Nikon EZ-C1 (3.91) confocal system and 

images produced using NIS-elements software (BR3.2 64 bit). 

Data analysis Code to reproduce figures are available to download from github.com/KPMP/Cell-State-Atlas-2022. 

snCv3 and scCv3 sample demultiplexing, barcode processing, and gene expression quantifications were performed with the 10X Cell Ranger 

v3 pipeline using the GRCh38 (hg38) or GRCh37 (hg19, indicated in Comments column of Supplementary Table 1)) reference genome. For 

single nucleus data, introns were also included in the expression estimates. SNARE2 data processing pipeline (snarePIP v1.0.1) is available at 

github.com/huqiwen0313/snarePip. For SNARE2 RNA processing, this involved removal of AC contaminating reads using cutadapt (version 

3.1), dropEst (version 0.8.6) to extract cell barcodes and STAR (version 2.5.2b) to align tagged reads to the genome (GRCh38). For SNARE2 AC 

data, this involved snaptools (version v1.2.3) and minimap (version 2-2.20) for alignment to the genome (GRCh38). snCv3 doublets were 

identified using DoubletDetection software (version 2.4.0). SNARE2 doublets were identified by both DoubletDetection (version 3.0) and 

Scrublet (github.com/swolock/scrublet, version 0.2.2). Ambient RNA in scCv3 was corrected using SoupX (version 1.5.0). snCv3/scCv3/SNARE 

analyses involved the following R packages: Seurat (version 4.0.0), Pagoda2 (version 1.0.2), corrplot (version 0.84), Signac (version 1.1.1), 

MACS (version 3.0.0a6), chromVAR (version 1.12.0), CisTopic (version 0.3.0), Cicero (version 1.8.1), swne (version 0.6.20), ggdendro (version 

0.1.20), circlize (version 0.4.12), g-chromVAR (version 0.3.2), Slingshot (version 2.0.0), WGCNA package (version 1.70-3), Cacao (version 0.2.0), 

SCCAF (version 0.0.10), sclB (version 1.0.3), DoRothEA (version 1.7.2), viper (version 3.15), CellAlign (https://github.com/shenorrLab/cellAlign), 

velocyto (version 0.6), CellChat (version 1.0.0). The following python packages were also used: NSForest (version 2.0), velocyto (version 

0.17.17), scVelo (version 0.2.4), Celloracle (version 0.9.1), CausalDB database (github.com/mulinlab/CAUSALdb-finemapping-pip). Additional 
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code for analysis of chromatin data is provided at github.com/yanwu2014/chromfunks. 

Slide-seq2 demultiplexing, genome alignment and spatial matching was performed using Slide-seq tools github.com/MacoskoLab/slideseq- 

tools/releases/tag/0.1. Slide-seq analysis was performed using: Giotto (version 1.0.3), RCTD (version 1.2.0), ggGally (version 2.1.2) and Seurat 

(version 4.0.0). 10X visium expression analysis, mapping, counting, and clustering was performed using Space Ranger (version 1.0.0) and final 

data processing was done in Seurat (version 3.2.0 and 3.2.3). Tissue cytometry and analysis were conducted using the Volumetric Tissue 

Exploration and Analysis (VTEA) software (version 1.0a-r9, www.github.com/icbm-iupui/volumetric-tissue-exploration-analysis) and RStudio 

(version 1.4) with R (version 4.0.2), corrplot (version 0.84), igraph (version 1.2.6), FNN (version 1.1.3), circlize (version 0.4.12), Hmisc 

(version 4.5.0), corrplot (version 0.84) and Rtsne (version 0.15). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. 
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Policy information about availability of data 

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

Processed data, interactive and visualization tools: The snCv3, scCv3, SNARE2, Slide-seq and Visium processed data files are all available for download from GEO 

(Superseries GSE183279). snCv3 healthy reference data is available for reference-based single cell mapping by the Azimuth tool: https:// 

azimuth.hubmapconsortium.org/. All snCv3 and scCv3 processed data can be accessed and viewed at cellxgene (https://cellxgene.cziscience.com/collections/ 

bcb61471-2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging can all be 

visualized and interrogated using the KPMP Data Atlas Explorer: https://atlas.kpmp.org/explorer/. For 3D imaging, the cytometry, cell classifications, gates and 

neighborhood analysis data are located at: https://doi.org/10.5281/zenodo.7120941. 

Raw sequencing and imaging data: Raw sequencing data are under controlled access (human data) as they are potentially identifiable and can be accessed from the 

respective sources indicated below (summarized in Supplementary Table 1). Raw and processed sequencing and imaging data (snCv3, scCv3, 3D imaging, Slide-seq, 

Visium) generated as part of the Kidney Precision Medicine Project (KPMP) has been deposited at https://atlas.kpmp.org/repository/ and compiled at https:// 

doi.org/10.48698/3z31-8924. Raw sequencing data can be requested and are available by signing a data use agreement with KPMP. Raw sequencing data (snCv3, 

SNARE2, Slide-seq) generated as part of the Human Biomolecular Atlas Project (HuBMAP) has been deposited at https://portal.hubmapconsortium.org/ and 

compiled at https://doi.org/10.35079/hbm776.rgsw.867. The HUBMAP raw data are available for download from the database of Genotypes and Phenotypes 

(dbGaP, phs002249). snCv3 data not deposited to KPMP or HUBMAP are available from GEO (GSE183279) or, for Covid AKI raw sequencing files, upon request from 

WU KTRC (sanjayjain@wustl.edu) due to patient confidentiality. 

Additional published/public data sets: The following publicly available RNA-seq data sets were used in this study: mouse kidney single-cell (GEO, GSE129798); mouse 

kidney injury single-nucleus (GEO, GSE139107); human fibroblast and myofibroblast single-cell (Zenodo, 10.5281/zenodo.4059315); mouse distal nephron single- 

cell and bulk distal segment (GEO, GSE150338); human kidney mature immune single-cell (https://kidney-atlas.cells.ucsc.edu); and human kidney single-nucleus 

(GEO, GSE151302; https://human-kidney-atac.cells.ucsc.edu). GWAS summary statistics were from the CKDGen Consortium (all eGFR, https://ckdgen.imbi.uni- 

freiburg.de/files/Wuttke2019), EB! GWAS Catalog (hypertension, https://www.ebi.ac.uk/gwas/efotraits/EFO_0000537), and the CausalDB database (Release 1.1 

2019-09-29, http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical data were obtained from the Nephrotic Syndrome Study Network and are 

available upon request to NEPTUNE-STUDY @umich.edu due to patient confidentiality. ERCB data was obtained from GEO (GSE104954). Raw sequencing data 

(scCv3) on living donor biopsies as part of the Chan Zuckerberg Initiative (CZI) and Human Cell Atlas (HCA) are available from GEO (GSE169285). Additional visium 

spatial transcriptomic data not in the KPMP repository are available from GEO (GSE171406). 

Figures: Source data are provided with this paper. Additional figures can be accessed at Zenodo https://doi.org/10.5281/zenodo.6987337. Schemata of the human 

nephron and renal corpuscle were developed by the Kidney Precision Medicine Project and HuBMAP (https://doi.org/10.48698/DEM4-0Q93). 
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Life sciences study design 
  

All studies must disclose on these points even when the disclosure is negative. 

Sample size Sample sizes were not predetermined by statistical methods due to nature of this study. The strength lies in the number of individuals 

analyzed, technologies represented for orthogonal validation and cells analyzed (more than any existing study for the kidney). For snCv3 (n = 

36), scCv3 (n = 45), SNARE2 (n = 7), 3D imaging (n = 15), 10X Visium (n = 22) and Slide-seq (n = 6) single nuclei, single cells or tissue sections 

were obtained from living or deceased donor tissues ("'n" here refers to individuals, the number of independent samples is explained in detail 

in the "Replication" section below). These were obtained from healthy reference, AKI or CKD individuals. To ensure robust cell state profiles, 

reference tissues were obtained from multiple sources, and biopsies were collected from AKI and CKD patients under rigorous quality 

assurance and control procedures. This ensured that cell type clusters were not driven by technical artifacts and that our analyses showed 

rigor and reproducibility. 
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Data exclusions 

Replication 

Randomization 

Blinding 

Behaviou 

Low quality cells or nuclei were excluded from analyses based on established quality filtering metrics: 

snCv3: 

CellRanger Empty barcode filter 

Doublets identified using DoubletDetection software 

< 400 or > 7500 genes detected per cell 

Gene/UMI ratio filter (Pagoda2) 

scCv3: 

> 50% mitochondrial reads 

< 500 or > 5000 genes detected per cell 

SNARE2 - RNA: 

DropEst cell score < 0.9 

Doublets identified using DoubletDetection and Scrublet software 

< 200 or > 7500 genes detected per cell 

Gene/UMI ratio filter (Pagoda2) 

SNARE2 - AC: 

Cell barcodes not passing RNA QC filters 

< 0.15 tss enrichment 

< 1000 read fragments or 500 UMI per cell 

< 0.15 of read fragments overlapping promoter regions 

samples showing < 500 dual omic cells after quality filtering 

Gene/UMI ratio filter (Pagoda2) 

Visium 10x: 

In each Visium sample, spots were eliminated if they did not overly tissue. In addition, the outermost layer of spots was eliminated from 

comparative analyses if the edge was manually cut by a razor. 

RNA-Seq: snCv3 data was generated from 44 independent samples or experiments to cover 36 individuals, scCv3 was generated from 49 

samples covering 45 individuals, and SNARE2 was generated from 17 samples covering 7 individuals. snCv3 clustering analysis was performed 

at multiple k values and cluster assignments were performed using a defined process (see Methods). Reproducibility of assigned cell type 

annotations was evident from consistent aligned populations found across technologies (scCv3, SNARE, Slide-seq, Visium) and high correlation 

values with reference (published) data sets. 

Imaging: For 3D imaging and immunofluorescence staining experiments, each staining was repeated on at least 2 separate individuals or 

separate regions. For ISH, each stain was performed on 6 separate individuals. For Visium spatial transcriptomics, 23 samples from 22 

individuals were included in the analysis. These included at least 6 samples from each of the reference, CKD, and AKI categories. For Slide-seq 

we generated 31 cortical and 36 medullary pucks from 6 individuals. For immunofluorescence validation studies, commercially available 

antibodies were used; the immunostaining included tissue from patients not contributing to omics data. Similarly, orthogonal validation of 

omics annotations and spatial localization in Visium studies also included more than four samples each from reference and disease biopsies 

that were not used to generate single cell gene expression data. This heterogeneity in sampling demonstrated the reproducibility and rigor of 

the atlas. All attempts at replication were successful for these imaging experiments. 

Further, several technologies were performed on samples from the same individual and in some cases the same tissue block was used to 

generate multimodal data. 

Randomization was not used as it was not relevant for this study design as healthy and disease samples were obtained as available. 

Generation of data and processed files were agnostic to the disease conditions. Batch effects were corrected by scaling expression of each 

gene to the dataset-wide average and shown to have minimal effect from cell type or cluster contribution plots. 

All human specimens used in this study were de-identified, however select attributes (condition, age, sex) were available to all investigators. A 

majority of the analyses were not performed blind as these sample attributes were needed for accurate annotation of cell types or states and 

for the design of downstream analyses to create maps. 
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Research sample 

Sampling strategy 

Data collection 

cribe the stuay typ nciuding whether data a quanutaui 
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or audio equipment) whether anyone was present ides the participant(s) and the researcher, and     

  

    Data collection 
  1s blind to experimental condition and/or the study hypothesis during data collection. | y ny] ( 

    

     
     

= 
(oY) 

; ¢ 8 3 j ; f (ear 
Timing 2 > start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample (S 

cohort. (@) 

12) 
. <A ; . oy ie) Data exclusions if no data were excluded from the analyses, state so OR if data were excluded, provide the exact nurnber of exclusions and the = 

ck 7 . . » - =) 
rationale behind them, indicating whether exclusion criteria were pre-established. Q 

e) 
Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no arr 

participants dropped out/declined participation. ay 

xe) 
. " £ 7 1 . ni I je) 

Randomization if participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if = 

allocation was not random, describe how covariates were controlled. 
ie 

Ww 

= 

3) 

logical luti ironm | sci dy desi 3 i) Ecological, evolutionary & environmental sciences study design E 
  

All studies must disclose on these points even when the disclosure is negative. 

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design struclure (e.g. factorial, nested, 

hierarchicol), nature and number of experimental units and replicates. 

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

imple is meant to represent when applicable. For studies involving existing da 

  

    

    

any manipulations. State what population the els, 

describe the data and its source 

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. 

Data collection Describe the dato collection procedure, including who recorded the dato and how 

Timing and spatial scale = /ndicate the start and stop dotes of data collection, neting the frequency and periodicity of sampling and providing a rationale for g p g the | y E y pling ( | 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which   
the data are taken 

    

  

5, state so OR if data were ided, describe the exclusions and the rationale behind them, 

ablished. 

Data exclusions If no data were excluded from the analys 

indicating whether exclusion criteria were pre 

e 

  

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

epeat the experiment failed OR state that all attempts to repeat the experiment were successful. t | f I f } 

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. tf this is not relevant to your study, explain why. 

    8plain why 

  

scribe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR « Blinding De 
blinding was not relevant tu your study. 

Did the study involve field work? [_| Yes No 

Field work, collection and transport 
  

emperature, rainfall).     i ndition Describe the study conditions for field work, providing relevant purameters (e. S J g k 

le the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth). J ung | ! ¢ ! u g | 

  

Location   

   ponsible manner and in 

  

port your samples ina re 

  

ss habitats and to collect and impo   Access & import/export Describe the efforts you have made to ac 

compliance with local, national and international laws, noting any permits that were         obtained (give the name of the issuing authority,    

the date of issue, and any identifying information). 

caused by the study and how it was minimized.     any disturban Disturbance Descr 

Sy a 
; 

Reporting for specific materials, systems and methods 
  

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.  



Materials & experimental systems Methods 
  

n/a Involved in the study 

LIX Antibodies 

Eukaryotic cell lines 

Palaeontology and archaeology 

n/a | Involved in the study 

XL] chip-seq 

Xx EC] Flow cytometry 

Xi LE] MRI-based neuroimaging 

Animals and other organisms 

Human research participants 

Clinical data U
U
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[DX]}[_] Dual use research of concern 
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Antibodies 

Antibodies used The antibodies used and associated details are tabulated in Supplemental tables 35 and 36. 

For 3D cytometry studies 

Primary antibody or Fluorescent probe, Target, Vendor, Dilution, Secondary antibody, Vendor, Dilution 

Goat anti-aquaporin1(AQP1), Proximal tubules, Santa Cruz (sc-9878), 1:50, (please note, very minimal content about this 

discontinued antibody) 

Alexa568 donkey anti-goat, ThermoFisher(A-11057), 1:200 

Rabbit anti-myeloperoxidase(MPO), Neutrophils, Abcam (ab9535), 1:50 

DyLight 594 donkey anti-rabbit, ThermoFisher(SA5-10040), 1:200 

Mouse anti-CD68, Macrophages, Dako (M0876), 1:50, Alexa 633donkey anti-mouse, ThermoFisher(A16019)(Conjugated in-house 

with ThermoFisher (A20170), 1:200 

Mouse Alexa660 anti-SIGLEC8, Eosinophils, Biolegend (347102)(Conjugated in-house with ThermoFisher (A20171)), 1:50 

Sheep Alexa546 anti-Uromodulin(UMOD), Thick ascending limb, R&D Systems (AF5144), 1:200, conjugated in house with kit (https:// 

www.thermofisher.com/order/catalog/product/A20183) 

Mouse Alexa647 anti-CD3, T-cells, BD Pharmingen (557706), 1:50 

DAPI, Nuclei, ThermoFisher (D1306), 1:100 

Oregon Green Phalloidin, Filamentous actin (vasculature, brush border), ThermoFisher 07466, 1:200 

For 2D confocal immunofluorescence microscopy 

Primary Antibody, Against Raised in, Company Cat #, Primary antibody dilution, secondary Antibody, secondary Antibody dilution, 

Uromodulin human mouse Ray biotech 119-13298 1:100 Goat anti-mouse alexa-488 1:400 

CD133 (PROM1) human, mouse, rat Rabbit ThermoFisher PAS-38014 1:50 goat anti-ratbbit-cy3 1:400 

KIM1 human Rabbit ThermoFisher PAS-79345 1:250 goat anti-rabbit -cy3 1:400 

VCAM1 human, rat mouse ThermoFisher MA5-11447 1:50 Goat anti-mouse alexa-488 1:400 

AQP1 human Rabbit santa cruz sc-20810 1:100 goat anti-rabbit -cy3 1:400 

Validation Validation of antibodies and confidence in their staining is derived from several sets of data including vendors specifications, omitting 

primary antibody, well-established expected cell-type staining pattern for the indicated antibodies in the literature, referring to 

human protein atlas data where available and orthogonal validations in the multiomics data presented. 

3D IF antibodies: 

AQP1 - https://www.scbt.com/p/aqp1-antibody-I-19 

AF-568 - https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-lgG-H-L-Cross-Adsorbed-Secondary-Antibody- 

Polyclonal/A-11057 

MPO - https://www.abcam.com/myeloperoxidase-antibody-ab9535.html 

DyLight-594 - https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-Antibody- 

Polyclonal/SA5-10040 

CD68 - https://www.agilent.com/en/product/immunohistochemistry/antibodies-controls/primary-antibodies/cd68-%28concentrate 

%29-76550 

Conjugated in-house to AF-633 — kit # https://www.thermofisher.com/order/catalog/product/A20170 

SIGLEC8 (AF660) - https://www.biolegend.com/de-at/products/purified-anti-human-siglec-8-antibody-6383 

Conjugated in-house to AF-660 — kit # https://www.thermofisher.com/order/catalog/product/A20171 

UMOD - https://www.rndsystems.com/products/human-uromodulin-antibody_af5144 

Conjugated in-house to AF-546 — kit # https://www.thermofisher.com/order/catalog/product/A20183 (https:// 

www.ncbi.nlm.nih.gov/pmc/articles/PMC8363780/) 

CD3 - https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color- 

antibodies-ruo/alexa-fluor-647-mouse-anti-human-cd3.557706 

DAPI - https://www.thermofisher.com/order/catalog/product/D21490 

Phalloidin - https://www.thermofisher.com/order/catalog/product/O7466 

2D Antibodies: 

Uromodulin - https://www.raybiotech.com/mouse-anti-human-uromodulin/ 

CD133 (PROM1) - https://www.thermofisher.com/antibody/product/CD133-Antibody-Polyclonal/PA5-38014 

KIM1 - https://www.thermofisher.com/antibody/product/KIM-1-Antibody-Polyclonal/PAS-79345 

VCAM1 - https://www.thermofisher.com/antibody/product/VCAM-1-Antibody-clone-1-4C3-Monoclonal/MA5-11447 

AQP1 - https://www.citeab.com/antibodies/789773-sc-20810-aqp1-antibody-h-55 
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Eukaryotic cell lines 
  

Policy information about cell lines 

    

    

  

Cell line source(s) State the source of each cell line used. 

Authentication Describe the authenticat for each cell line used OR declare that none of the cell lines used were authenticated 

Mycoplasma contamination Confirm that ¢ e the results o, > tesling for 

my sma contamination. 

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use. 
(See ICLAC register) 

Palaeontology and Archaeology 
  

          
venance information for specimens and describe permit Specimen provenance Provide p 

issuing authority, the date of issue, and any identifying information). Permits 

  

export, 

    Specimen deposition Indicate where 

»y were obtained (e.g. collectio je, sample pretreatment and measurement), where 

e ORs 

Dating methods      
     oration program and t e that no new dates are 

  

[| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information. 

ganization(s) that approved or provided guidance on the study protocol, OR state that na ethical approval or guidance Ethics oversight Identify th 
was required and explain why not 

4 F 

  

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Animals and other organisms 
  

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research 

     

      

   

   

  

   

  

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory 

Wild animals ide detail e where possible. Describe how animals were 

caught and trans «plain why and describe method; if released 

  

ay where and 

Field-collected samples = (or aboratory u 
photoperioc 

  

Ethics oversight Identify the organi 
vas required and 

  

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Human research participants 
  

Policy information about studies involving human research participants 

Population characteristics The population used here were adults in the age interval 20-80 and included both sexes and participants of different races. 

The associated clinical metadata includes age, sex, race, comorbidities, eGFR, certain medications and is detailed in 

supplemental table 3. The clinical conditions include AKI and CKD. 

Recruitment Participants were recruited from different sites and IRB approval was obtained for use of tissue and data for research ina 

deidentifiable manner. To obtain consent, the coordinators would approach the participant after consultations with the 

clinical team, go over the study with them, address any questions and concerns. Once consent was obtained, samples are 

procured and preserved in a timely manner using standardized protocols that have been published and available on 

KPMP.org. Recruitment of AKI and CKD patients were per established clinical criteria (https://www.kpmp.org/for-clinicians). 

The reference tissue samples were selected from patients with normal kidney function and/or age appropriate 

histopathology as they became available. Samples under waived consent are described in the ethics statement. The 

associated clinical and pathological data is provided in Supplemental Table3 for readers to interpret the study results. 

Ethics oversight We have complied with all ethical regulations related to this study. Human samples (Supplementary Table 1) collected as part 

of the Kidney Precision Medicine Project (KPMP) consortium (KPMP.org) were obtained with informed consent and approved 

under a protocol by the KPMP single IRB of the University of Washington Institutional Review Board (IRB#20190213). Samples 

as part of the Human Biomolecular Atlas Program (HUBMAP) consortium were collected by the Kidney Translational Research 

Center (KTRC) under a protocol approved by the Washington University Institutional Review Board (IRB #201102312). 
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Informed consent was obtained for the use of data and samples for all participants at Washington University, including living 

patients undergoing partial or total nephrectomy or from discarded deceased kidney donors. Cortical and papillary biopsy 

samples from patients with stone disease were obtained with informed consent from Indiana University and approved by the 

Indiana University Institutional Review Board (IRB #1010002261). For Visium Spatial Gene Expression, reference 

nephrectomies and kidney biopsy specimens were obtained from the KPMP under informed consent or the Biopsy Biobank 

Cohort of Indiana (BBCI)49 under waived consent as approved by the Indiana University Institutional Review Board (IRB # 

1906572234). Living donor biopsies as part of the Human Cell Atlas (HCA) were obtained with informed consent under the 

Human Kidney Transplant Transcriptomic Atlas (HKTTA) under IRB HUM00150968. Deidentified leftover frozen COVID-19 AKI 

kidney biopsies were obtained from the Johns Hopkins University pathology archive under waived consent approved by the 

Johns Hopkins Institutional Review Board (IRB 00090103). 

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Clinical data 
  

Policy information about clinical studies 

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions. 

Clinical trial registration NOT APPLICABLE 

R if not available, 

  

Study protocol Note where the full trial protocol can be accesse explain WAY. 

  

f data collection, noting the time periods of recruitment and dota collection. Data collection Describe the settings ¢ 

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measure 

Dual use research of concern 
  

Policy information about dual use research of concern 

Hazards 

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to: 

No | Yes 

XI}L_] Public health 

[_] National security 

[| Crops and/or livestock 

| Ecosystems 

x [| Any other significant area 

Experiments of concern 

Does the work involve any of these experiments of concern: 

Demonstrate how to render a vaccine ineffective 

Confer resistance to therapeutically useful antibiotics or antiviral agents 

Enhance the virulence of a pathogen or render a nonpathogen virulent 

Increase transmissibility of a pathogen 

Alter the host range of a pathogen 

Enable evasion of diagnostic/detection modalities 

Enable the weaponization of a biological agent or toxin 
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Any other potentially harmful combination of experiments and agents   
ChIP-seq 
  

Data deposition 

[| Confirm that both raw and final processed data have been deposited in a public database such as GEO. 

[| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks. 

Data access links For <initial submissio r "Re ? version= documents, provide revie 

May remain private before publication provide Glink to th id 
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submission     f all files available in the d¢ Files in database submission Provide al 

  

8ond "Revised version" documents only, to 

  

<Initial su Genome browser session Provide a link to an anonymized genor 

(e.g. UCSC) enable peer review. Write "no longe 
          

lal submission" documents 

Methodology 

Replicates Describe the experimental replicates, specifying number, type and replicate agreement 

    mapped reads, length of reads and 

  

e total number of reads, unique 

  

Sequencing depth 

  

provide supplier name, catalog number, clone name, and lot Antibodies 

  

number, 

{for read mapping and peak calling, including the ChIP, control and index files 

  

Peak calling parameters Specify the command line prograrn and parameters   

  

e the methods used to ensure data quality in full detail, including how many peaks are at FOR 5% and above 5-fold enrichment. 

  

Data quality 

he software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community Software 
ry, provide accession details 

  

Flow Cytometry 

Plots 

Confirm that: 

| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC). 

[| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 8group9 is an analysis of identical markers). 

| All plots are contour plots with outliers or pseudocolor plots. 

[| A numerical value for number of cells or percentage (with statistics) is provided. 

Methodology 

source of the cells and any tissue processing steps used, 

  

Sample preparation Describe the sample preparation, detailing the bialoc 

  

, specifying make and model number Instrument Identify the instrument used for data colle 

code that has been deposited into a vare used to collect and anal!     Software Describe the sof low cytometry data. For ¢ 

community repository, provide acce 
   

   

yst-sorl fractions, providing 

  

Cell population abundance Desc 

  

2cifying the preliminal     Gating strategy Describe the gating strateay used for all re 

population, indicating where boundaries be 

  

"negative" staining cell populations are defined 

  

[| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. 

Magnetic resonance imaging 

Experimental design 

  

or DIOCK design. Design type indicate task or resting state; event-relate 

  

Design specifications    
      Behavioral performance measures      expected (e.g. mean, 
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Acquisition 

  

Imaging type(s) Specify: functional, structural, diffusion 

Field strength specify in Tesla 

  

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix sf: 
slice thickness, orientation and TE/TR/flip angle 

  

   

Area of acquisition State whether a whole brain sce 

  

was used OR define the area of acquisition, describing how the region was determined. 

Diffusion MRI [| Used [_] Not used 

Preprocessing 

  

re version and revision number and on specific parameters (model/functions, brain extraction, Preprocessing software Provide detail on soft 

segmentation, smoothing kernel size, ete.). 
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Normalization ' if data 
transformation OR indicate that data were not normatized 

  

re normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

    and explain rationale for lack of normatizatior 

  

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized s 

original Talairach, MNI305, ICBM152) OR indicate that the data we     ere Not normalized. 

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

Is (heart re     physiological signe e, respiration) 

Volume censoring Define your software and/or method and criteria for volu censoring, and state the extent of such censoring. 

  

Statistical modeling & inference 

    (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and Model type and settings 
   second levels (e.g. fixed, random or mixed effects; drift or auto-correlation). 

Effect(s) tested tin terms of the task or stimulus conditions instead of psychological concepts and indicate whether     
torial designs were used   

Specify type of analysis: [ ]Whole brain [ | ROl-based [| Both 

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-w 
(See Eklund et al. 2016) 

> methods 

  

Correction Desc > of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation ar Monte Carlo) 

  

Models & analysis 

n/a | Involved in the study 

[| [| Functional and/or effective connectivity 

[| [| Graph analysis 

[ ] [| Multivariate modeling or predictive analysis 

      rson correla Functional and/or effective connectivity 

  

or dinar oh    

  

Graph analysis Re 

  

    

clion, model, training and evaluation 

  

Multivariate modeling and predictive analysis 

  
 


