

1 **Multigenerational inheritance of parasitic stress memory in *Drosophila***
2 ***melanogaster***

3

4

5 Shagufta Khan^{1†}, Ravina Saini^{1,3†}, Runa Hamid^{1,2}, and Rakesh K Mishra^{1,2,3*}

6 ¹CSIR – Centre for Cellular and Molecular Biology, Hyderabad, India

7 ²Tata Institute for Genetics and Society, Bengaluru, Karnataka, India

8 ³ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

9

10 [†]These authors contributed equally

11 ^{*}Corresponding author

12

13 **Corresponding author information:**

14 Email: mishra@ccmb.res.in

15 Telephone: +914027192658

16 Fax: +914027160591

17

18

19

20

21

22

23

24

25

26

27 **SUMMARY**

28

29 Organisms sense harmful environmental conditions and employ strategies to safeguard
30 themselves. Moreover, they can communicate this experience to the next generation or beyond
31 via non-DNA sequence-based mechanisms, referred to as intergenerational or
32 transgenerational epigenetic inheritance, respectively. Using a specialist larval parasitoid,
33 *Leptopilina boulardi*, and its host, *Drosophila melanogaster*, we show that the parental
34 experience of parasitic stress results in an increased survivability of the immediate offspring of
35 the host. Furthermore, we observe that the increased survivability in response to the parasitic
36 stress is transmitted transgenerationally where the grandparents have been exposed to the
37 parasitoid but not the parents. The increased survivability is primarily inherited through male
38 parents, and at least one of the forms of the memory is better immune priming at larval stage.
39 Our study suggests that the stress exposure during the pre-adult stage of the host has lifetime
40 benefits for its progeny to deal with the future parasitic attack.

41

42 **KEYWORDS**

43 *Drosophila melanogaster*, *Leptopilina boulardi*, host-parasitoid, parasitic stress,
44 multigenerational epigenetic inheritance, transgenerational epigenetic inheritance, immune
45 priming

46

47

48

49

50

52 **INTRODUCTION**

53

54 When faced with detrimental environmental conditions, organisms use strategies to ensure their
55 offsprings' survival. Since such encounters frequently happen over short evolutionary
56 timescales, the sole role of naturally selected changes in the DNA sequence in providing
57 adaptive plasticity to cope with the challenging environment is difficult to envisage. In such
58 scenarios, however, non-DNA sequence-based multigenerational epigenetic inheritance (MEI)
59 mechanisms, both intergenerational and transgenerational, prove beneficial as they offer a
60 faster and, more importantly, reversible way of imparting adaptive plasticity^{1–3}.

61

62 Examples of MEI in response to detrimental abiotic factors are plenty but biotic factors, which
63 are equally prevalent, are only recently brought to light⁴. They include non-mutualistic
64 interactions between species, such as parasitism. In parasitism, one organism, referred to as the
65 parasite or pathogen, causes harm to the other organism, the host, by either living on or inside
66 it⁵. As a result of such interactions, adaptive multigenerational epigenetic effects encompassing
67 both behavioral and physiological defences have been reported in a wide range of taxa, such
68 as bees^{6,7}, pipefish^{8–10}, ragworm¹¹, honeycomb moths¹², *Drosophila*^{13–15}, beetles^{16–20}, brine
69 shrimps²¹, *C. elegans*^{22,23}, and mice²⁴.

70

71 *Drosophila* genus is host to a plethora of parasites in the natural environment, such as viruses,
72 bacteria, fungi, and even insects called parasitoids²⁵. Female parasitoid wasps of the
73 *Leptopilina* genus infect the larval stages of *Drosophila*. They oviposit their eggs into the larval
74 hemocoel along with immuno-suppressive factors, such as venom proteins or virus-like
75 particles^{26–28}. In case of a successful infection, the developing wasp consumes the host entirely,
76 develops in the host system, and eventually emerges as an adult from the host pupal case.

77 Occasionally, the *Drosophila* larva mounts a successful immune response, kills the developing
78 wasp, and survives to adulthood. Such flies are referred to as escapee flies^{28,29}.

79

80 Likewise, *Drosophila* species exhibit numerous other physiological and behavioural defences
81 to safeguard themselves against infection by adult wasps, both at pre-adult and adult stages.
82 For instance, when *Drosophila* adults sense the presence of wasps, they either prefer laying
83 eggs in ethanol- or alkaloid-containing food to medicate their offspring against wasp infection
84 at larval stage^{13,15,30-33} or suspend oviposition³⁴. Furthermore, oviposition suspension behavior
85 is communicated to naïve individuals in an intra- or inter-specific manner to confer protection
86 against infection³⁴⁻³⁶. They also increase the production of recombinant over non-recombinant
87 offspring³⁷, which may impart fitness to the progenies³⁸. Additionally, the host can prime the
88 immune system of their offspring upon cohabitation with adult wasps¹⁴. At pre-adult stages,
89 however, the larvae exhibit rolling behavior to avoid attack by the wasps^{39,40}.

90

91 One positive outcome arising from the interaction between hosts and their parasitoids is the
92 phenomenon known as immune priming or immune memory. This phenomenon entails an
93 improved immune response upon re-encountering a pathogen or parasitoid^{41,42}. In the context
94 of *Drosophila*'s association with its parasitoid, *Leptopilina boulardi*, immune priming denotes
95 the *Drosophila* host's capacity to mount a more robust and effective immune response when
96 facing the same or a similar parasitoid following an initial exposure. It follows a three-step
97 progression: initial exposure, the formation of immune memory, and the reinforcement of the
98 response during subsequent encounters^{14,43}. In the context of invertebrates, there exists
99 empirical evidence substantiating their ability to transmit this specific form of memory to
100 future generations. This transfer involves the inheritance of traits from both male and female
101 lineages, encompassing occurrences within a single generation (intergenerational) as well as

102 extending across multiple generations (transgenerational)^{4,42}. This memory could involve the
103 activation of specific immune-related genes, the production of antimicrobial peptides, or other
104 mechanisms that assist the host in recognizing and responding more effectively to *Leptopilina*
105 *boulardi* in future encounters^{44–46}.

106

107 In the present study, we have employed the non-mutualistic association between a specialist
108 parasitoid wasp, *Leptopilina boulardi*, and its host, *Drosophila melanogaster* (or fruit flies), to
109 investigate if repeated infection by the parasitoid wasp for multiple successive generations
110 results in immune priming of the host's offspring. Interestingly, we observe that the offspring
111 from experienced parents show better survival chances for the wasp attack compared to the
112 progenies of naïve parents. Next, we investigated the potential for both parents to
113 independently pass down acquired immune memory to their offspring and observed that the
114 inheritance of enhanced survivability is more pronounced through the paternal lineage;
115 however, the maternal lineage can transmit the memory for only one generation. Moreover, we
116 show that the memory of enhanced survivability is inherited transgenerationally via the male
117 germ line. Lastly, we explored the potential transmission of transgenerational resistance
118 through an immunological response and found that the larvae born to experienced parents
119 displayed heightened lamellocyte levels when exposed to simulated parasitoid challenges
120 compared to naïve progenies. Overall, our observations indicate a positive correlation between
121 enhanced resistance and an augmented immune response in progeny that exhibited both inter-
122 and trans-generational patterns of inheritance.

123

124 MATERIALS AND METHODS

125

126 ***Fly strain and culture***

127 The wild-type strain of *Drosophila melanogaster*, or fruit fly, named *Canton-S* (*CS*), was used
128 in the current study. Flies were cultured in bottles at a constant average density of 100-150 flies
129 on a standard medium containing corn flour, sugar, yeast, malt, agar, and preservatives. Flies
130 were maintained throughout at 25°C with a 12-hour light-dark cycle.

131

132 ***Wasp strain and culture***

133 The Lb17 strain of the parasitoid wasp, *Leptopilina boulardi*, used in the study was kindly
134 provided by Shubha Govind (Biology Department, The City College of the City University of
135 New York). Wasps were cultured on the *CS* strain of *D. melanogaster*, as previously
136 described⁴⁷. Briefly, 2-4 day old flies were allowed to lay embryos for 48 hours at 25°C in
137 standard medium vials. Subsequently, flies were removed, and 6 to 8 young pre-mated female
138 and male wasps were added to the vials to infect the 0-48 hour hosts after egg lay (AEL)
139 (second instar fly larvae). Flies that survived the wasp infection (escapee flies) were removed
140 from the vials immediately upon emergence, and vials were kept for further development of
141 wasps. After 20-22 days, freshly eclosed wasps were taken and used for parasitic stress
142 experiments.

143

144 ***Multigenerational parasitic stress***

145 *F*₀ *CS* flies were mated to collect 0-24 hour *F*₁ embryos in the food vials. At 24-48 hours AEL,
146 the larvae were exposed to parasitic stress by infecting with 6-8 Lb17 wasps for 24 hours at
147 25°C. After infection, the wasps were removed, and the infected larvae were allowed to grow
148 until escapee flies and wasps emerged. The *F*₁ escapee flies were collected and mated to obtain
149 the 0-24 hour *F*₂ embryos. *F*₂ progenies were infected at the second instar larval stage to get *F*₃
150 escapee flies and wasps. An identical method of embryo collection and parasitic stress was

151 performed for ten generations based on the scheme presented in Figures 1A and 1B, giving rise
152 to the experienced treatment group.

153

154 In parallel, unstressed sibling F₁ embryos (0-24 hours) were taken and allowed to grow into
155 adult flies to obtain the F₂ generation. However, some batches of 0-24 hour F₁ embryos were
156 collected and infected at the second instar larval stage, as described for the experienced
157 treatment group, to determine the percent survival rate of naïve hosts in response to the parasitic
158 stress. An identical method of embryo collection to obtain the subsequent unstressed generation
159 and exposure of some batches to parasitic stress was performed for ten generations based on
160 the scheme presented in Figure S1A, giving rise to the naïve treatment group.

161

162 The number of pupae and escapee flies was counted for both naïve and experienced treatment
163 groups in every generation. The number of escapee flies was divided by the number of pupae
164 in the corresponding vial to determine the percent survival rate of the host. The survival of
165 experienced hosts relative to naïve hosts was used to determine the statistical significance and
166 generate bar graphs using GraphPad Prism 7. The number of replicates and details of the
167 statistical test used are indicated in the figure legends.

168

169 ***Parental contribution***

170 For parental contribution, we exposed second-instar *Drosophila* larvae to parasitoids and
171 carefully separated the resulting virgin females and males that managed to escape. These male
172 and female escapees were referred to as “E₁” because of their first exposure. Subsequently, we
173 mated the E₁ males and females with naïve female virgins and males, respectively. Embryos
174 were collected for 24 hours from mated E₁ male (paternal lineage) and E₁ female (maternal
175 lineage) escapees to check the parent-specific contribution. Progenies from both the E₁ lineages

176 were subjected to wasp infection at 24-48 hours. Wasps (10 males and 10 females) were
177 allowed to infect for 24 hours. After infection, larvae were allowed to grow until they emerged
178 as escapees (E_2) or adult wasps (see schematics in Figures 2B and S2A). The number of
179 escapees with melanized wasp eggs, referred to as melanotic capsules hereafter, was recorded
180 to calculate the survival rate. The melanotic capsule containing male and female escapee flies
181 were used further for setting up crosses to the assess paternal and maternal contribution of the
182 parasitic stress memory to the next generation. This experimental approach was carried out for
183 five consecutive generations (from E_1 to E_5), enabling us to assess and compare their relative
184 success when compared to a control group of naïve individuals (Figure S1B) and an
185 experienced group of individuals of bilineal origin (Figure 2A). The experiment was performed
186 in six biological replicates, and a 10:10 male-to-female ratio was maintained throughout.

187

188 ***Transgenerational parasitic stress***

189 For the transgenerational regime, once-exposed males and females (E_1) were collected
190 separately and crossed with naïve virgin females and males, respectively. The F_2 progeny is
191 referred to as E_1N_1 for simplicity. The E_1N_1 males (paternal lineage) and E_1N_1 females
192 (maternal lineage) were then collected and mated with naïve virgin females and males,
193 respectively (see schematics in Figures 2C and S2B). The F_3 embryos were collected for 24
194 hours, and 48 hours AEL were infected by wasps (10 females and 10 males) for 24 hours.
195 Melanotic capsule containing progenies were collected and counted for survival success. This
196 experimental approach was carried out for four generations to assess the transgenerational
197 effect. The control group in all experiments was exposed to wasps only once (Figure S1B). The
198 experiment was performed in six biological replicates, and a 10:10 male-to-female ratio was
199 maintained throughout.

200

201 ***Immune Induction and immunostaining***

202 Immune induction was done as described previously¹⁴. In brief, the second instar larvae from
203 naïve parents and exposed parents were poked by a sterile needle at their posterior region in
204 1X PBS and were then transferred to fresh food vials. After 24 hours, larvae were scooped out
205 of the food vials, washed twice with 1X PBS to remove food remnants, and washed once with
206 70% ethanol for surface sterilization. The larvae were then transferred to ice-cold 1X PBS until
207 dissection. Haemolymph from a single larva per well was collected and allowed to settle at the
208 bottom of a 4 mm well slide. Cells were then fixed with 4% formaldehyde for 20 minutes,
209 followed by three washes with 1X PBS-T (0.5% Triton-X) for 5 minutes each. After blocking
210 in 1% BSA, cells were stained using the primary antibody anti-myospheroid (DSHB
211 #CF.6G11, 1:500 dilution), a lamellocyte marker, since lamellocytes appear after an immune
212 challenge. After washing three times with 1X PBS-T (0.3% Triton-X), cells were incubated
213 with Alexa Fluor® 647 AffiniPure goat anti-mouse IgG secondary antibody (115-605-003,
214 1:1000 dilution). Finally, the cells were washed three times with 1X PBS-T (0.3% Triton-X)
215 and stained with DAPI for nuclei. Scanning of each well was done using the Zeiss LSM 880
216 confocal microscope using the 40X oil immersion lens. For the quantification of lamellocytes,
217 the entire well was scanned, and images were processed by ImageJ Version 1.53c (Fiji). DAPI
218 for total cells and anti-myospheroid for lamellocytes were used to count the cell number in
219 ImageJ.

220

221 **RESULTS**

222

223 ***Effect of multigenerational parasitic stress on host survival***

224 To assess the effect of multigenerational parasitic stress on host survival, we designed
225 experiments where fly larvae were repeatedly exposed to wasp for ten generations, resulting in

226 an experienced treatment group with a history of infection (E₁ to E₁₀) (Figure 1B). On the other
227 hand, larvae were newly exposed to wasp infection in every generation for ten generations,
228 giving rise to the naïve treatment group (N₁ to N₁₀) (Figure S1A). We considered all the flies
229 that emerged after infection, with and without the melanotic capsule, to calculate the survival
230 rate of the host. The escapees without the melanotic capsule were taken into consideration for
231 two reasons. First, the fly larvae can escape wasp infection not only by encapsulating the wasp
232 egg (physiological defenses) but also by employing a rolling strategy (behavioral defenses)^{39,40}.
233 Second, since it has been shown that in *D. melanogaster* the melanization rates are low⁴⁸, which
234 can be attributed to the low haemocyte load of *D. melanogaster* as compared to other
235 *Drosophila* species⁴⁹, the absence of a melanotic capsule doesn't necessarily indicate a lack of
236 infection. However, only melanotic capsule containing escapee flies were taken as parents to
237 obtain the subsequent generations to ascertain infection.

238

239 We observed that infecting the progenies of F₁ escapee flies (E₁) at the larval stage i.e., E₂,
240 resulted in a significant increase in survival after infection (Figure 1B) when compared to the
241 survival after infection of progenies of F₁ naïve flies (N₁) at the larval stage (Figure S1A). A
242 similar increase in survival was also observed when the progenies of F₂, F₄, F₅, and F₉ escapee
243 flies (E₂, E₄, E₅, and E₉) were infected as compared to N₂, N₄, N₅ and N₉, respectively, except
244 for the progenies of F₃ (E₃) generation. Overall, we see a cyclical increase and decrease in the
245 total number of successful escapees. These results indicate that the progenies of the parents
246 exposed to the parasitic stress acquire better survival capability for the subsequent attacks.

247

248 ***Male parents effectively pass the parasitic stress memory to their progeny***

249 We investigated whether both parents equally contribute survival advantage to the progeny by
250 allowing either the male or female escapee flies to give rise to the subsequent generation and

251 thereby contribute to the parasitic stress memory. Exposed male flies (E_1) were mated with
252 naïve female flies to examine the paternal inheritance of parasitic stress memory (Figure 2B).
253 On the other hand, the exposed female flies (E_1) were mated with naïve male flies to examine
254 maternal inheritance of the parasitic stress memory (Figure S2A). The experiment was carried
255 out for five generations. As a control, naïve parents (Figure S1B) and experienced parents of
256 bilineal origin (Figure 2A) were taken. Interestingly, male parents were able to inherit the
257 survival advantage to their progeny in every generation when the parasitic stress was given
258 repeatedly, whereas the female parents could not inherit the memory beyond one generation
259 (Figures 2B and S2A). While progenies from the experienced mother showed better survival
260 in only one generation compared to the once-exposed control, the survival advantage was more
261 than twofold in the progenies of experienced fathers in the subsequent generations upon
262 repeated exposure.

263

264 We further examined if increased survival is a result of increase in egg lay, such as when a
265 stressed adult female fly tends to lay more eggs once the stress is removed. We checked the
266 fecundity of progenies from stressed parents and found no significant difference in the
267 fecundity of the progenies from stressed parents compared to the naïve flies (Figure S3). These
268 results indicate differences in the perception of and response to the parasitic stress of male and
269 female flies.

270

271 ***Parasitic stress memory is transgenerational***

272 We further explored whether the parasitic stress memory is transgenerationally inherited. We
273 set two groups of experiments where in one group, E_1 males were mated with naïve virgin
274 females to obtain the paternal lineage, and in the other group, E_1 virgin females were mated
275 with naïve males to obtain the maternal lineage. Progenies from both lineages were collected

276 without any wasp exposure to get unexposed male or female (E_1N_1) progenies. E_1N_1 males
277 from paternal lineage and E_1N_1 females from maternal lineage were then mated with naïve
278 females and males, respectively, and their progenies were exposed to wasps at the second instar
279 larval stage. These larvae, named $E_1N_1E_1$ (grandchildren of once-exposed males or females),
280 were allowed to grow in standard conditions. Unlike female grandparents, male grandparents
281 successfully inherited the parasitic stress memory, which is manifested as the survival
282 advantage, to their grandchildren as compared to the control (once exposed) (Figures 2C, S1B,
283 and S2B). Moreover, we observed that the parasitic stress memory was inherited beyond two
284 generations ($E_1N_2E_1$). These results suggest transgenerational inheritance of the parasitic stress
285 memory to subsequent generations via the male germline.

286

287 ***Adaptive memory is passed on as cellular immunity***

288 *Drosophila* exhibits a cellular immune response upon wasp attack. It possesses three types of
289 haemocytes engaged in the immune response: plasmatocytes, which constitute 95% of the total
290 haemocytes and eliminate pathogens and injured cells; crystal cells (5%); and lamellocytes,
291 which are rarely observed in healthy larvae. Lamellocytes emerge following plasmatocyte
292 differentiation in response to any foreign immune challenge and are deployed to encapsulate
293 the pathogen, depriving it of oxygen and nutrients^{41,44,50,51}. Therefore, we speculated that the
294 survival advantage observed in the progenies of stressed parents is due to an enhanced cellular
295 immune response. In order to test that, we induced the progeny of exposed parents using a
296 sterile needle to mimic the wasp attack and measured the total number of haemocytes and
297 lamellocytes 24 hours post-induction. Progenies of exposed males showed an elevated number
298 of lamellocytes compared to the control (induced larvae from unexposed parents) in all four
299 generations (Figure 3). One-time wasp exposure results in an almost four fold (18% of the total
300 hemocytes) increase in the lamellocyte percentage compared to the naïve-induced larvae (4%).

301 Similarly, the larvae obtained from parents stressed for two and three generations showed a
302 significant increment in the lamellocyte percentage. While the progeny of the exposed females
303 show a slight increase in the lamellocyte number compared to the control, it is not equivalent
304 to the progeny obtained from exposed male parents (Figure S4). These results indicate that the
305 survival advantage observed after multiple generations of parasitic stress is correlated with the
306 enhanced cellular immune response of the hosts.

307

308 **DISCUSSION**

309

310 Organisms are constantly engaged in the evolutionary arms race. Success in multi-organism
311 interactions, such as host-parasite interactions, depends on how strong or prepared the defense
312 system of the host is and how sneaky the parasite is to escape the host defense arsenals. Innate
313 immunity in insects is one major deterrent for parasites and pathogens during the embryonic
314 and larval development stages. If the progeny is alerted by the parental message in the form of
315 epigenetic memory, it may be a crucial factor to the host's advantage. Immune priming is
316 defined as a phenomenon wherein the parental experience of infection results in resistance to
317 infection in the offspring⁴. In this study, we demonstrate that in response to continuous parasitic
318 stress by wasps, the fruit flies produce progenies that can withstand the stress better, perhaps
319 by developing a better defensive system, either physiological or behavioural.

320

321 It has been shown previously that cohabiting fruit flies with adult female wasps results in
322 intergenerational immune priming of fly offspring; that is, the immediate offspring or larvae
323 of cohabitated flies show increased survival after wasp infection¹⁴. The study also showed an
324 increased survival rate correlated with enhanced production of lamellocytes, a type of immune
325 cell in flies. Consistent with this, we also see immune priming of the offspring of escapee flies

326 that survived the wasp attack, although our study represents a case of immune priming due to
327 a direct infection and not cohabitation. However, further investigation would be needed to
328 decipher if the immune priming of the offspring observed in this study after parental infection
329 is transmitted via the epigenetic route of inheritance.

330

331 We further asked if both parents contribute to parasitic stress memory. Our results show that
332 only the male parent can transmit the memory to subsequent generations, inter- and
333 transgenerationally. Female parents do not show successful transmission of the survival
334 advantage upon repeated exposure to the wasp. This indicates that the cumulative memory of
335 wasp exposure is either detrimental to female germline development, as previously shown³⁴,
336 or that the memory is not maintained during female germline development. Our study shows
337 that after two subsequent exposures in the maternally inherited lineage, the third generation
338 does not maintain the memory. This indicates that the female parents do not choose memory
339 maintenance when the exposure is continuous. Perhaps they can protect their progeny through
340 behavioural strategies. Female flies exhibit behavioural defenses, such as egg lay avoidance in
341 the presence of female wasps, alcoholic food preference for egg lay, and change in mating
342 behaviour^{30-32,52}. While male parents have less chance to provide direct defense to their
343 progeny, the only way to convey their experience is via the germline. It is also plausible that
344 the two parents might have evolved unique techniques to articulate the memory of their
345 negative experience with a parasitic attack.

346

347 Increased lamellocyte numbers show that the host-parasitoid interaction induces
348 transgenerational immune priming, which helps the progeny be ready for the upcoming wasp
349 attacks. However, in our experiment, the fourth generation shows a decrease in both survival
350 and lamellocyte numbers (Figures 2B and 3B). Although it remains elusive without further

351 experiments, we speculate that the cellular defense has its own cost, and the cumulative
352 memory of three generations makes the host weak, leading to increased lethality. Nevertheless,
353 the memory of their experience can be inherited via epigenetic changes in the germline, which
354 calls for further exploration.

355

356 In conclusion, we show that parasitic stress memory is transgenerationally inherited through
357 the male germline in *D. melanogaster*. This draws attention towards future studies on the
358 possibility of multigenerational inheritance of past experiences of biotic stress via germline-
359 mediated epigenetic mechanisms. How such a memory is transmitted through the sperm
360 remains to be explored. While such studies will show how the parental history of wasp infection
361 at the pre-adult life stage of flies imparts a survival advantage to the subsequent generation
362 without any social communication, what also remains to be explored is how widespread such
363 epigenetic inheritance mechanisms are across the animals and how many kinds of stress are
364 covered by them. Finally, it would be of interest to know if different mechanisms exist for
365 different stresses or if these are broad-natured defense mechanisms for a variety of anticipatory
366 harms.

367

368 **ACKNOWLEDGMENTS**

369

370 We thank Indira Paddibhatla for introducing the *Drosophila–Leptopilina* system to our lab. We
371 thank Sharath Chandra Thota and Gottivedu Jyothirmai for helping in experiments. We thank
372 N.R. Chakravarthi, C. Subbalakshmi and B. Suman for technical assistance in imaging facility.
373 We thank the staff of the *Drosophila* Laboratory at the Centre for Cellular and Molecular
374 Biology for providing technical assistance. S.K. thanks the Department of Science and

375 Technology (DST) for the INSPIRE fellowship. R.S thanks Council of Scientific and Industrial
376 Research (CSIR) for fellowship. R.K.M. laboratory is supported by CSIR and SERB-DST.

377

378 **AUTHOR CONTRIBUTIONS**

379

380 S.K., R.S., and R.H. executed the study and analysed the data. S.K. did the multigenerational
381 parasitic stress experiment in both parents, R.S. and R.H., did paternal and maternal
382 intergenerational parasitic stress experiment, R.S. did maternal and paternal transgenerational
383 parasitic stress, immune induction and imaging. S.K., R.S., R.H. and R.K.M. wrote and edited
384 the manuscript. R.K.M. conceived the project and supervised the study. All authors read and
385 approved the final manuscript.

386

387 **CONFLICT OF INTEREST**

388

389 The authors declare no competing interests.

390

391 **FUNDING INFORMATION**

392

393 This work was supported by Council for Scientific and Industrial Research (CSIR)-India, and
394 SERB-DST (Govt. of India).

395 REFERENCES

396

397 1. Jablonka, E., and Raz, G. (2009). Transgenerational Epigenetic Inheritance: Prevalence,
398 Mechanisms, and Implications for the Study of Heredity and Evolution. *Q Rev Biol* *84*,
399 131–176. 10.1086/598822.

400 2. Jablonka, E. (2013). Epigenetic inheritance and plasticity: The responsive germline.
401 *Prog Biophys Mol Biol* *111*, 99–107. 10.1016/j.pbiomolbio.2012.08.014.

402 3. Lind, M.I., and Spagopoulou, F. (2018). Evolutionary consequences of epigenetic
403 inheritance. *Heredity (Edinb)* *121*, 205–209. 10.1038/s41437-018-0113-y.

404 4. Roth, O., Beemelmanns, A., Barribeau, S.M., and Sadd, B.M. (2018). Recent advances
405 in vertebrate and invertebrate transgenerational immunity in the light of ecology and
406 evolution. *Heredity (Edinb)* *121*, 225–238. 10.1038/s41437-018-0101-2.

407 5. Sorci, G., and Garnier, S. (2008). Parasitism. In *Encyclopedia of Ecology* (Elsevier), pp.
408 2645–2650. 10.1016/B978-008045405-4.00814-4.

409 6. Hernández López, J., Schuehly, W., Crailsheim, K., and Riessberger-Gallé, U. (2014).
410 Trans-generational immune priming in honeybees. *Proceedings of the Royal Society B:
411 Biological Sciences* *281*, 20140454. 10.1098/rspb.2014.0454.

412 7. Barribeau, S.M., Schmid-Hempel, P., and Sadd, B.M. (2016). Royal Decree: Gene
413 Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a
414 Primary Immune Response. *PLoS One* *11*, e0159635. 10.1371/journal.pone.0159635.

415 8. Beemelmanns, A., and Roth, O. (2017). Grandparental immune priming in the pipefish
416 *Syngnathus typhle*. *BMC Evol Biol* *17*, 44. 10.1186/s12862-017-0885-3.

417 9. Beemelmanns, A., and Roth, O. (2016). Biparental immune priming in the pipefish
418 *Syngnathus typhle*. *Zoology* *119*, 262–272. 10.1016/j.zool.2016.06.002.

419 10. Beemelmanns, A., and Roth, O. (2016). Bacteria-type-specific biparental immune
420 priming in the pipefish *Syngnathus typhle*. *Ecol Evol* *6*, 6735–6757. 10.1002/ece3.2391.

421 11. Bernier, C., Boidin-Wichlacz, C., Tasiemski, A., Hautekèete, N., Massol, F., and
422 Cuvillier-Hot, V. (2019). Transgenerational Immune Priming in the Field: Maternal
423 Environmental Experience Leads to Differential Immune Transfer to Oocytes in the
424 Marine Annelid *Hediste diversicolor*. *Genes (Basel)* *10*, 989. 10.3390/genes10120989.

425 12. Bierne, H., and Nielsen-LeRoux, C. (2017). Is there a transgenerational inheritance of
426 host resistance against pathogens? Lessons from the *Galleria mellonella* - *Bacillus*

427 *thuringiensis* interaction model. Virulence 8, 1471–1474.
428 10.1080/21505594.2017.1356538.

429 13. Poyet, M., Eslin, P., Chabrerie, O., Prud'homme, S.M., Desouhant, E., and Gibert, P.
430 (2017). The invasive pest *Drosophila suzukii* uses trans-generational medication to resist
431 parasitoid attack. *Sci Rep* 7, 43696. 10.1038/srep43696.

432 14. Bozler, J., Kacsoh, B.Z., and Bosco, G. (2020). Maternal Priming of Offspring Immune
433 System in *Drosophila*. G3 Genes|Genomes|Genetics 10, 165–175.
434 10.1534/g3.119.400852.

435 15. Bozler, J., Kacsoh, B.Z., and Bosco, G. (2019). Transgenerational inheritance of ethanol
436 preference is caused by maternal NPF repression. *Elife* 8. 10.7554/eLife.45391.

437 16. Eggert, H., Kurtz, J., and Diddens-de Buhr, M.F. (2014). Different effects of paternal
438 trans-generational immune priming on survival and immunity in step and genetic
439 offspring. *Proceedings of the Royal Society B: Biological Sciences* 281, 20142089.
440 10.1098/rspb.2014.2089.

441 17. Dubuffet, A., Zanchi, C., Boutet, G., Moreau, J., Teixeira, M., and Moret, Y. (2015).
442 Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive
443 Bacteria in the Mealworm Beetle. PLoS Pathog 11, e1005178.
444 10.1371/journal.ppat.1005178.

445 18. Knorr, E., Schmidtberg, H., Arslan, D., Bingsohn, L., and Vilcinskas, A. (2015).
446 Translocation of bacteria from the gut to the eggs triggers maternal transgenerational
447 immune priming in *Tribolium castaneum*. Biol Lett 11, 20150885.
448 10.1098/rsbl.2015.0885.

449 19. Dhinaut, J., Chogne, M., and Moret, Y. (2018). Trans-generational immune priming in
450 the mealworm beetle protects eggs through pathogen-dependent mechanisms imposing
451 no immediate fitness cost for the offspring. *Dev Comp Immunol* 79, 105–112.
452 10.1016/j.dci.2017.10.017.

453 20. Schulz, N.K.E., Sell, M.P., Ferro, K., Kleinhölting, N., and Kurtz, J. (2019).
454 Transgenerational Developmental Effects of Immune Priming in the Red Flour Beetle
455 *Tribolium castaneum*. *Front Physiol* 10. 10.3389/fphys.2019.00098.

456 21. Roy, S., Kumar, V., Bossier, P., Norouzitallab, P., and Vanrompay, D. (2019).
457 Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance
458 Against *Vibrio* Infections and Thermal Stress in a Brine Shrimp (*Artemia franciscana*)
459 Model. *Front Immunol* 10. 10.3389/fimmu.2019.02745.

460 22. Rechavi, O., Minevich, G., and Hobert, O. (2011). Transgenerational Inheritance of an
461 Acquired Small RNA-Based Antiviral Response in *C. elegans*. *Cell* *147*, 1248–1256.
462 10.1016/j.cell.2011.10.042.

463 23. Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 Argonaute and TGF-
464 β Mediate Transgenerational Learned Pathogenic Avoidance. *Cell* *177*, 1827-1841.e12.
465 10.1016/j.cell.2019.05.024.

466 24. Tyebji, S., Hannan, A.J., and Tonkin, C.J. (2020). Pathogenic Infection in Male Mice
467 Changes Sperm Small RNA Profiles and Transgenerationally Alters Offspring
468 Behavior. *Cell Rep* *31*, 107573. 10.1016/j.celrep.2020.107573.

469 25. Keebaugh, E.S., and Schlenke, T.A. (2014). Insights from natural host–parasite
470 interactions: The *Drosophila* model. *Dev Comp Immunol* *42*, 111–123.
471 10.1016/j.dci.2013.06.001.

472 26. Gueguen, G., Rajwani, R., Paddibhatla, I., Morales, J., and Govind, S. (2011). VLPs of
473 Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the
474 heterotoma clade. *Virus Res* *160*, 159–165. 10.1016/j.virusres.2011.06.005.

475 27. Dupas, S., Brehelin, M., Frey, F., and Carton, Y. (1996). Immune suppressive virus-like
476 particles in a *Drosophila* parasitoid: significance of their intraspecific morphological
477 variations. *Parasitology* *113* (Pt 3), 207–212. 10.1017/S0031182000081981.

478 28. Fleury, F., Gibert, P., Ris, N., and Allemand, R. (2009). Chapter 1 Ecology and Life
479 History Evolution of Frugivorous *Drosophila* Parasitoids. In *Advances in parasitology*,
480 pp. 3–44. 10.1016/S0065-308X(09)70001-6.

481 29. Schlenke, T.A., Morales, J., Govind, S., and Clark, A.G. (2007). Contrasting infection
482 strategies in generalist and specialist wasp parasitoids of *Drosophila melanogaster*.
483 *PLoS Pathog* *3*, 1486–1501. 10.1371/journal.ppat.0030158.

484 30. Milan, N.F., Kacsoh, B.Z., and Schlenke, T.A. (2012). Alcohol Consumption as Self-
485 Medication against Blood-Borne Parasites in the Fruit Fly. *Current Biology* *22*, 488–
486 493. 10.1016/j.cub.2012.01.045.

487 31. Kacsoh, B.Z., Lynch, Z.R., Mortimer, N.T., and Schlenke, T.A. (2013). Fruit Flies
488 Medicate Offspring After Seeing Parasites. *Science* (1979) *339*, 947–950.
489 10.1126/science.1229625.

490 32. Kacsoh, B.Z., Bozler, J., Hodge, S., Ramaswami, M., and Bosco, G. (2015). A Novel
491 Paradigm for Nonassociative Long-Term Memory in *Drosophila*: Predator-Induced
492 Changes in Oviposition Behavior. *Genetics* *199*, 1143–1157.
493 10.1534/genetics.114.172221.

494 33. Lynch, Z.R., Schlenke, T.A., Morran, L.T., and de Roode, J.C. (2017). Ethanol confers
495 differential protection against generalist and specialist parasitoids of *Drosophila*
496 *melanogaster*. *PLoS One* 12, e0180182. 10.1371/journal.pone.0180182.

497 34. Kacsoh, B.Z., Bozler, J., Ramaswami, M., and Bosco, G. (2015). Social communication
498 of predator-induced changes in *Drosophila* behavior and germ line physiology. *Elife* 4.
499 10.7554/elife.07423.

500 35. Kacsoh, B.Z., Bozler, J., Hodge, S., and Bosco, G. (2019). Neural circuitry of social
501 learning in *Drosophila* requires multiple inputs to facilitate inter-species
502 communication. *Commun Biol* 2, 309. 10.1038/s42003-019-0557-5.

503 36. Kacsoh, B.Z., Bozler, J., and Bosco, G. (2018). *Drosophila* species learn dialects through
504 communal living. *PLoS Genet* 14, e1007430. 10.1371/journal.pgen.1007430.

505 37. Singh, N.D., Criscoe, D.R., Skolfield, S., Kohl, K.P., Keebaugh, E.S., and Schlenke,
506 T.A. (2015). Fruit flies diversify their offspring in response to parasite infection. *Science*
507 (1979) 349, 747–750. 10.1126/science.aab1768.

508 38. Hadany, L., and Beker, T. (2003). On the Evolutionary Advantage of Fitness-Associated
509 Recombination. *Genetics* 165, 2167–2179. 10.1093/genetics/165.4.2167.

510 39. Hwang, R.Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., and Tracey,
511 W.D. (2007). Nociceptive Neurons Protect *Drosophila* Larvae from Parasitoid Wasps.
512 *Current Biology* 17, 2105–2116. 10.1016/j.cub.2007.11.029.

513 40. Robertson, J.L., Tsubouchi, A., and Tracey, W.D. (2013). Larval Defense against Attack
514 from Parasitoid Wasps Requires Nociceptive Neurons. *PLoS One* 8, e78704.
515 10.1371/journal.pone.0078704.

516 41. Vlisidou, I., and Wood, W. (2015). *Drosophila* blood cells and their role in immune
517 responses. *FEBS J* 282, 1368–1382. 10.1111/febs.13235.

518 42. Tetreau, G., Dhinaut, J., Gourbal, B., and Moret, Y. (2019). Trans-generational Immune
519 Priming in Invertebrates: Current Knowledge and Future Prospects. *Front Immunol* 10.
520 10.3389/fimmu.2019.01938.

521 43. Pham, L.N., Dionne, M.S., Shirasu-Hiza, M., and Schneider, D.S. (2007). A specific
522 primed immune response in *Drosophila* is dependent on phagocytes. *PLoS Pathog* 3,
523 e26. 10.1371/journal.ppat.0030026.

524 44. Stofanko, M., Kwon, S.Y., and Badenhorst, P. (2010). Lineage tracing of lamellocytes
525 demonstrates *Drosophila* macrophage plasticity. *PLoS One* 5, e14051.
526 10.1371/journal.pone.0014051.

527 45. Anderl, I., Vesala, L., Ihlainen, T.O., Vanha-Aho, L.-M., Andó, I., Rämet, M., and
528 Hultmark, D. (2016). Transdifferentiation and Proliferation in Two Distinct Hemocyte
529 Lineages in *Drosophila melanogaster* Larvae after Wasp Infection. *PLoS Pathog* *12*,
530 e1005746. 10.1371/journal.ppat.1005746.

531 46. Wan, B., Poirié, M., and Gatti, J.L. (2020). Parasitoid wasp venom vesicles (venosomes)
532 enter *Drosophila melanogaster* lamellocytes through a flotillin/lipid raft-dependent
533 endocytic pathway. *Virulence* *11*, 1512–1521. 10.1080/21505594.2020.1838116.

534 47. Small, C., Paddibhatla, I., Rajwani, R., and Govind, S. (2012). An introduction to
535 parasitic wasps of *Drosophila* and the antiparasite immune response. *J Vis Exp* *7*, e3347.
536 10.3791/3347.

537 48. Lefèvre, T., de Roode, J.C., Kacsoh, B.Z., and Schlenke, T.A. (2012). Defence strategies
538 against a parasitoid wasp in *Drosophila*: fight or flight? *Biol Lett* *8*, 230–233.
539 10.1098/rsbl.2011.0725.

540 49. Eslin, P., and Prévost, G. (1998). Hemocyte load and immune resistance to *Asobara*
541 *tabida* are correlated in species of the *Drosophila melanogaster* subgroup. *J Insect*
542 *Physiol* *44*, 807–816. 10.1016/S0022-1910(98)00013-4.

543 50. Lee, M.J., Kalamarz, M.E., Paddibhatla, I., Small, C., Rajwani, R., and Govind, S.
544 (2009). Chapter 5 Virulence Factors and Strategies of Leptopilina spp.: Selective
545 Responses in *Drosophila* Hosts. In *Advances in Parasitology* (Elsevier Ltd.), pp. 123–
546 145. 10.1016/S0065-308X(09)70005-3.

547 51. Rizki, T.M., and Rizki, R.M. (1992). Lamellocyte differentiation in *Drosophila* larvae
548 parasitized by Leptopilina. *Dev Comp Immunol* *16*, 103–110. 10.1016/0145-
549 305X(92)90011-Z.

550 52. Kacsoh, B.Z., and Schlenke, T.A. (2012). High Hemocyte Load Is Associated with
551 Increased Resistance against Parasitoids in *Drosophila suzukii*, a Relative of *D. melanogaster*. *PLoS One* *7*, e34721. 10.1371/journal.pone.0034721.

553

554

555 **FIGURE LEGENDS**

556

557 **Figure 1. Multigenerational parasitic stress**

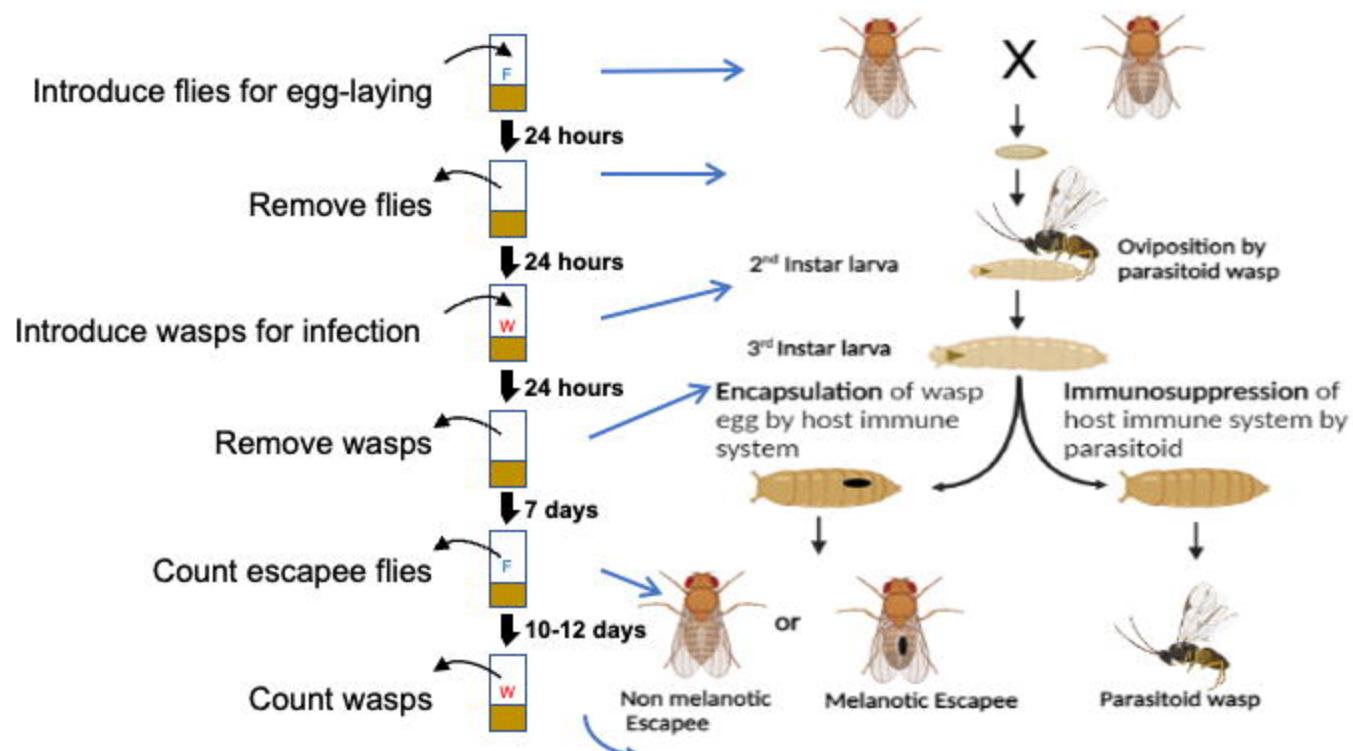
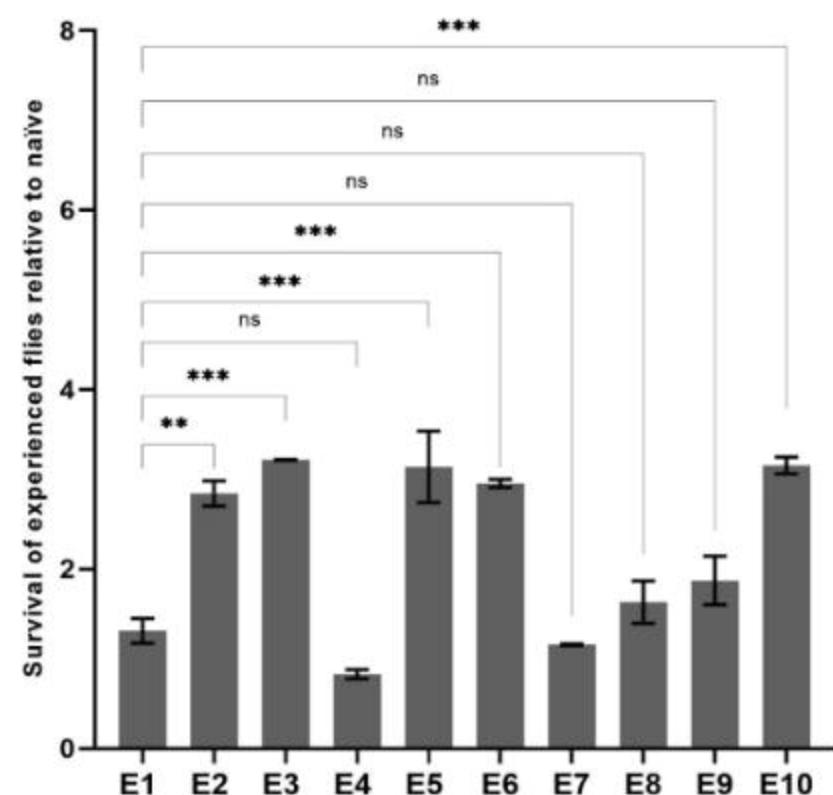
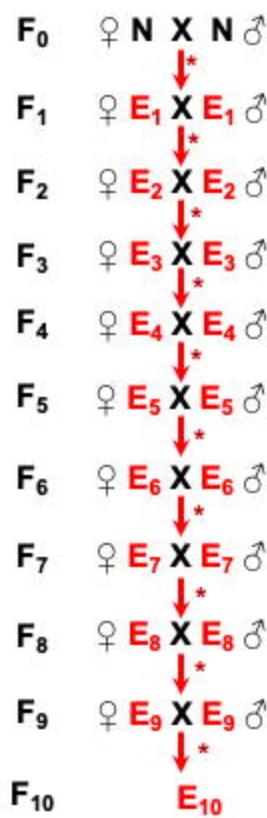
558 (A) The parasitoid wasp (*Leptopilina boulardi*) lays eggs in the second instar larva of
559 *Drosophila melanogaster*, along with immune-suppressive factors. The first reaction of the
560 host to the wasp egg is to activate cellular immunity and encapsulate it with special immune
561 cells called lamellocytes. Successful hosts emerge as adults (10 days AEL) either with a black
562 melanotic capsule or without a melanotic capsule. If the host fails to encapsulate the parasitoid
563 egg and the parasitoid successfully suppresses the host's immune system, the parasitoid
564 emerges after 18-20 days of infection. Adult flies that emerge from this host-parasitoid
565 interaction are called experienced escapees (E). W, wasps; F, flies. (B) The mating scheme for
566 multigenerational parasitic stress is shown on the left side of the graph. First-time exposed
567 male and female escapees (E_1) are mated, and their progeny are collected to expose them to
568 obtain second-generation escapees (E_2). The same scheme is used for up to 10 generations. The
569 text and arrow with an asterisk in red indicate wasp treatment. N, naïve; E, experienced
570 escapee. The survival rate at every generation is calculated and normalized with the survival
571 rate of naïve hosts (right; also see Figure S1 for the naïve treatment regime). The experiment
572 was conducted in two replicates for all generations. A cyclical pattern of a drop in survival rate
573 is observed after every two consecutive wasp treatments. After the sixth generation, three
574 consecutive generations show a significant decline in survival. Error bars represent the standard
575 error of the mean. A one-way ANOVA with the Brown-Forsythe test was conducted.
576 **p=0.001, ***p=0.0002.

577

578

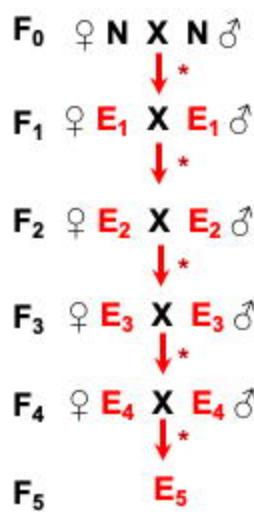
579

580 **Figure 2. Parental contribution to the parasitic stress memory**




581 (A) The F₁ male and female escapee flies (E₁) exposed to the parasitic stress at the second
582 instar larval stage were mated. Their progeny were exposed to the parasitic stress to get
583 treatment group E₂. A similar treatment was repeated every generation for five generations to
584 attain the bilineal inheritance of parasitic memory. The relative survival rate of escapees (E₁ to
585 E₅) compared to first-time exposed naïve flies (N₁ to N₅) in each generation is plotted in the
586 bar graph. See figure S1B for the treatment regime of naïve flies. The data is from three
587 biological replicates. (B) F₁ males (E₁) exposed to parasitic stress at the second instar larval
588 stage were mated with naïve virgin female flies. Their progeny were exposed to the parasitic
589 stress to get treatment group E₂. A similar treatment was repeated every generation for five
590 generations to attain paternal inheritance of parasitic memory. The data is from six biological
591 replicates. (C) F₁ males (E₁) exposed to parasitic stress at the second instar larval stage were
592 mated with naïve virgin female flies, and their embryos were divided into two groups. One
593 group was exposed to the parasitic stress to obtain a repeatedly exposed legacy (two-time
594 exposed generation, E₂), and the other group was allowed to grow without any parasitic stress
595 to obtain a one-generation skip legacy (E₁N₁). A two-generation skip, for instance, is referred
596 to as E₁N₂. This was repeated for four generations to attain paternal inheritance of parasitic
597 memory in a transgenerational manner. The data is from six biological replicates.

598 A schematic of the treatment regime is shown at the top of each bar graph. The red arrows with
599 an asterisk represent parasitic stress, while the black arrows represent the omission of parasitic
600 stress for the corresponding generation. E, experienced escapee; N, naïve. The number in the
601 subscript represents the generation of treatment. For all experiments, we conducted a one-way
602 ANOVA with Brown-Forsythe and Welch's multiple comparison test. Error bars represent the
603 standard error of the mean. *p=0.0105, **p=0.0088, ***p=0.0001.

604


605 **Figure 3. Cellular immune response to parasitic stress in progenies of male parents**

606 (A) The panels represent images of circulatory hemolymph in the third instar larvae of
607 experienced male parents. In the first panel, third-instar larvae from naïve parents were bled
608 out and stained with anti-myospheroid (red) as a lamellocyte marker and DAPI (blue) to stain
609 nuclei. The second panel displays hemocytes from third instar larvae that were mechanically
610 induced at the second instar larval stage to mimic a wasp attack. In the third panel, hemocytes
611 from third instar induced larvae of one-time experienced male parents (E_1N_1-P = larvae from
612 male parents exposed to wasps once) are shown. The myospheroid-positive cells in this panel
613 are either fully developed lamellocytes (big and elongated) or cells committed to developing
614 into lamellocytes. The presence of lamellocytes in the hemolymph indicates an elevated
615 cellular immune response. The fourth panel, E_2N_1-P , represents hemocytes from induced larvae
616 that come from two consecutive generations exposed to wasps through the male parent. The
617 fifth panel, E_3N_1-P , displays hemocytes from induced larvae that come from three consecutive
618 exposed generations, and the sixth panel, E_4N_1-P , shows hemocytes from induced larvae that
619 come from four consecutive exposed generations. (B) Quantification of Lamellocytes in Larval
620 Hemolymph across Generations from the Paternal Lineage. We quantified the number of
621 lamellocytes in larval hemolymph at all generations from the paternal lineage. A slight change
622 in induced naïve larvae is observed compared to naïve larvae. One generation of exposure
623 shows an almost four-fold increase compared to induced naïve larvae. Two generations (E_2-P)
624 and three generations exposed (E_3-P) progeny also show almost five- and three-fold increases
625 in myospheroid-positive cells, respectively. The experiment was conducted in three replicates,
626 and a one-way ANOVA with Brown-Forsythe and Welch's multiple comparison test was
627 performed. Error bars represent standard errors, with $*p=0.0105$, $**p=0.0088$, $***p=0.0001$.

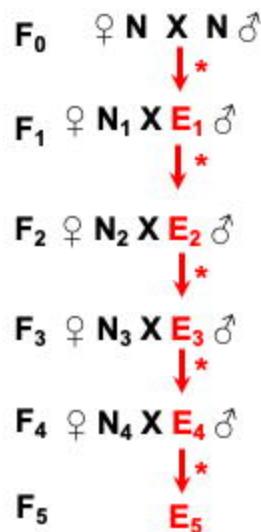
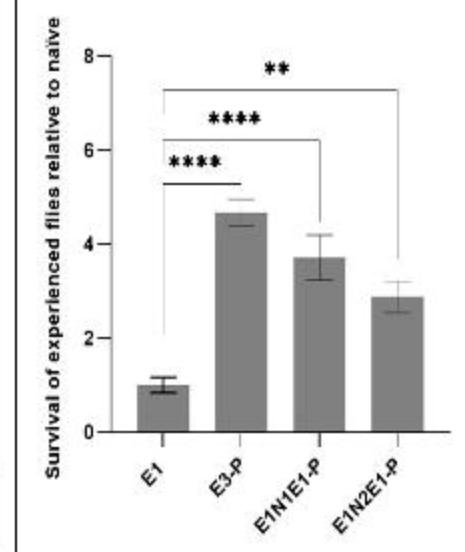
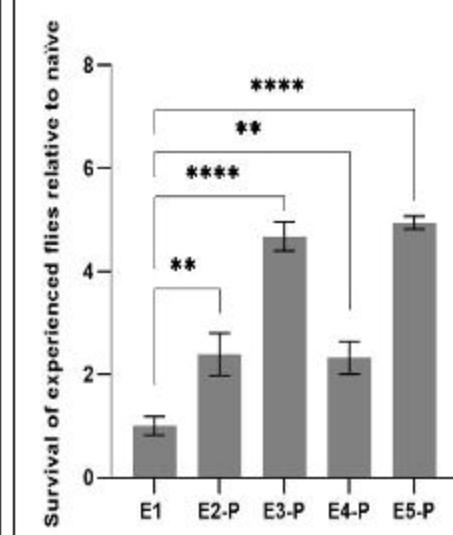
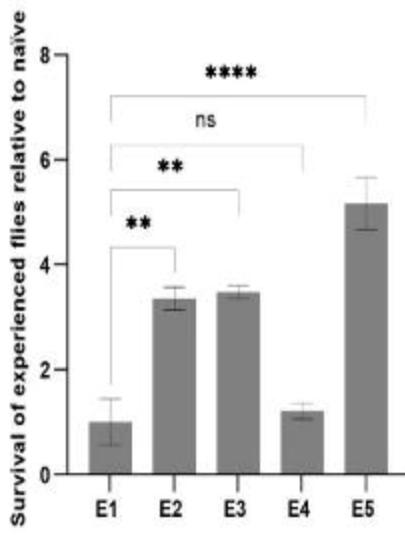
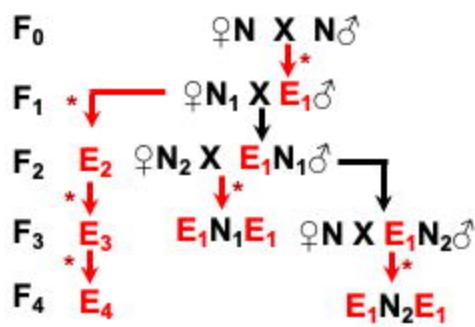
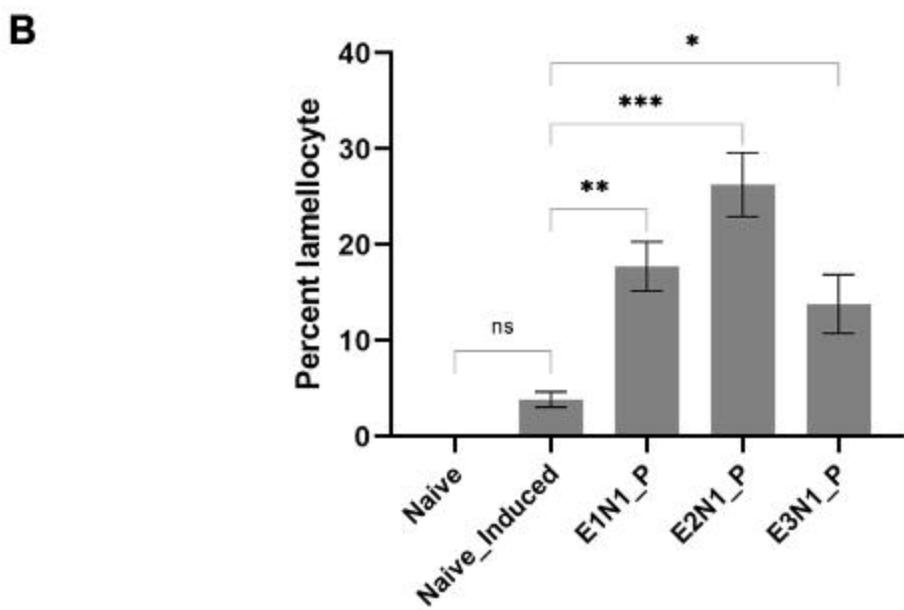
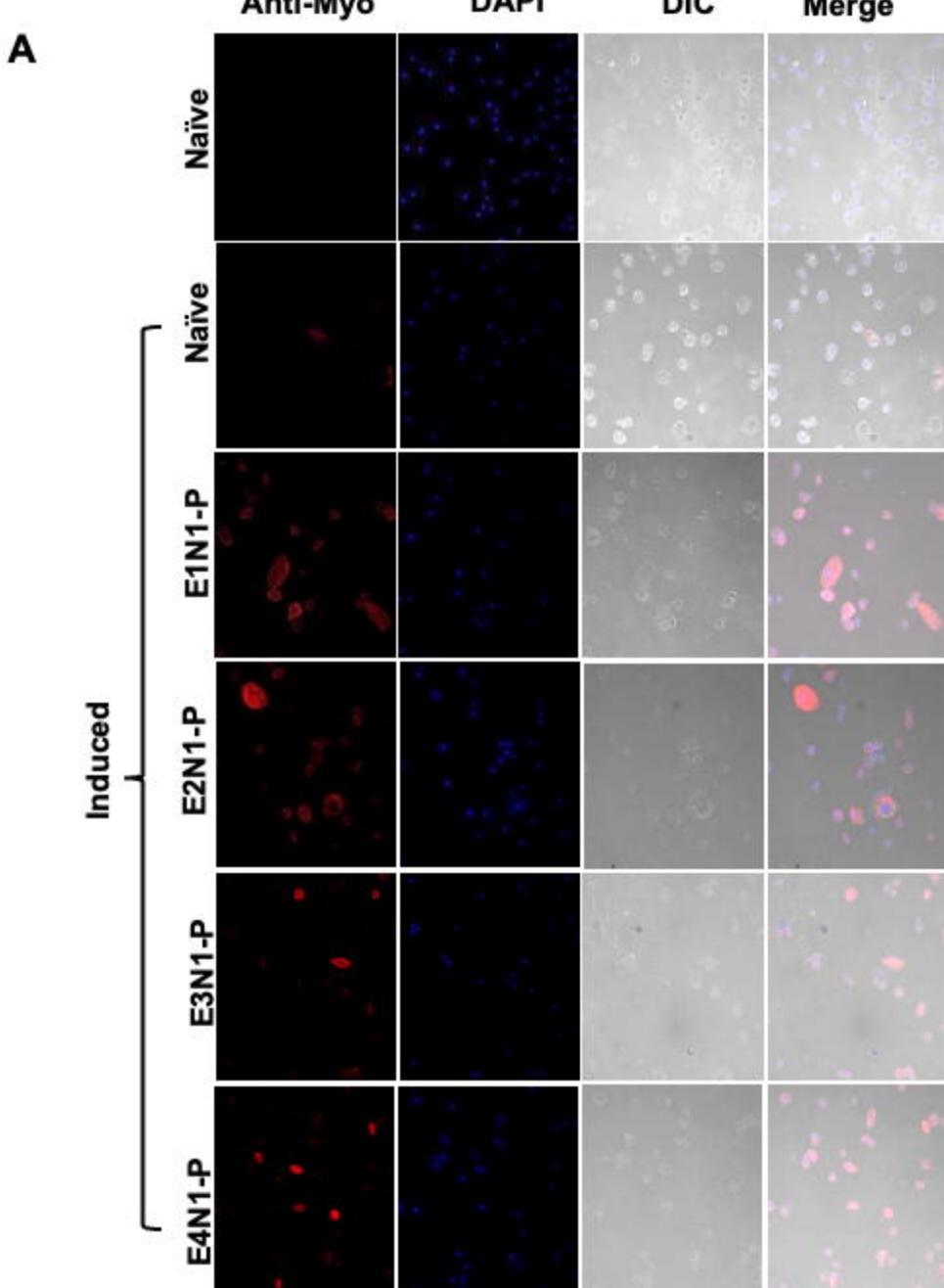

Figure 1**A****B**

Figure 2





A



B

C

Figure 3

