

1 Characterization of the Complete Chloroplast Genome Sequences and 2 Phylogenetic Relationships of Four Oil-Seed *Camellia* spp. and related taxa

3 Huihua Luo[†] 1, Boyong Liao[†] 1, Yongjuan Li 1, Runsheng Huang 1, Kunchang Zhang 1,
4 Longyuan Wang 1, Jing Tan 1, Yuzhou Lv 2, Can Lai 1*, Yongquan Li 1*

5 ¹ College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering,
6 Guangzhou, Guangdong 510220, China; zk_lhh2022@126.com (H.L.); liaoby05@126.com (B.L.);
7 liyongjuan@zhku.edu.cn (Y.J.L.); runsheng_huang@foxmail.com (R.H.); 1007849940@qq.com (K.Z.);
8 wanglongyuan@zhku.edu.cn (L.W.); 670108097@qq.com (J.T.); laican@zhku.edu.cn (C.L.);
9 yongquanli@zhku.edu.cn (Y.Q.L.)

10 ² State-owned Xiaokeng Forest Farm in Qujiang District of Shaoguan City, Shaoguan, Guangdong 512100, China;
11 2972913466@qq.com (Y.Z.L.)

12 * Correspondence: laican@zhku.edu.cn (C.L.); yongquanli@zhku.edu.cn (Y.Q.L.)

13 [†] These authors contributed equally to this work.

14 **Keywords:** *Camellia*; Oil-seed; Chloroplast genome structure; Phylogenetic relationship; hybridization and
15 chromosome polyploid.

16 **Abstract**

17 Some species in the Sect. *Oleifera* of the genus *Camellia* L. known as oil-seed camellia because of their high oil
18 content and economic value. Additional studies aimed at clarifying the phylogenetic relationships and chloroplast
19 genomes of *Camellia* species are needed to hybridization, as well as improve the breeding, selection and interspecific
20 hybridization of *Camellia* species. The complete chloroplast genomes (cpDNA) of the four oil-seed camellia species
21 *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* were resequenced to clarify their interspecific
22 relationships. These cpDNA had typical tetrad structures, and they were highly conserved in various structural
23 features. The total lengths of the cpDNA ranged from 156,965 to 157,018 bp, and 134 genes were annotated,
24 including 88 protein-coding genes, 37 transfer RNA genes, and 8 messenger RNA genes. The average GC content of
25 these genomes was 37.3%. The codons with the highest and lowest codon usage bias were UUA (which codes for
26 leucine) and AGC (which codes for serine), respectively. The number of simple sequences repeats of the four
27 *Camellia* species ranged from 38 to 40. Mononucleotide repeats were the most common repeat type, followed by
28 tetranucleotide, trinucleotide, and hexanucleotide repeats. Our phylogenetic analysis of cpDNA, coupled with the
29 results of previous ploidy analyses and artificial interspecific hybridization, revealed that *C. semiserrata* was most
30 closely related to *C. azalea*, *C. suaveolens* was most closely related to *C. gauchowensis*, *C. osmantha* was most
31 closely related to *C. vietnamensis*, and *C. meiocarpa* was most closely related to *C. oleifera*. The phylogenetic
32 relationships between oil-seed camellia species with high oil content and economic value were characterized. Our
33 analysis of the cpDNA provided new insights that will aid the use of artificial distant hybridization in camellia
34 breeding programs.

35 **Introduction**

36 Oil-seed camellia plants have become economically important woody oil plants in China in recent years. Some
37 plants in the genus *Camellia* L. (family Theaceae) are generally referred to as oil-seed camellia because of their high
38 oil content and economic value (FRPS, 1998; State owned forest farm and forest seedling work station of the State
39 Forestry Administration, 2016). Oil-seed camellia plants are unique woody oil plants and the fourth largest in the
40 world in terms of production after *Olea europaea* L., *Elaeis guineensis* Jacq., and *Cocos nucifera* L.. Camellia oil is
41

42 highly nutritious, and its unsaturated fatty acid content is up to 90% higher than that of other common edible oils on
43 the market. Oil from camellia seeds has been shown to be effective in preventing cardiovascular and cerebrovascular
44 diseases. Camellia oil is also considered a healthy edible vegetable oil by the Food and Agriculture Organization. It
45 has various uses in industry, such as the production of cosmetic products and medicine. In addition, the potential
46 applications of these residues from the oil pressing process are manifold, and additional studies will likely broaden
47 the uses of these residues (Li et al., 2011).

48 Oil-seed camellia plants have been cultivated for approximately 2, 300 years (Wang et al., 2020). China
49 contributes approximately 95% of the world's production of *Camellia* plants and 90% of the world's production of
50 *Camellia* seeds. The largest oil-tea cultivating areas in China are in the following provinces of Hunan, Jiangxi,
51 Guangxi, Zhejiang, Fujian, and Guangdong. Oil-seed camellia is also grown in 1, 537 counties (cities) in 14 other
52 provinces in China. The main oil-seed camellia tree species cultivated in China are *C. oleifera*, *C. meiocarpa*, *C.*
53 *gauchowensis*, and *C. semiserrata*. Edible oil is the main product of *Camellia* cultivation.

54 Although various classifications of the genus *Camellia* have been proposed, these classifications have mostly
55 been based on morphological characters and molecular information from DNA sequences and chloroplast sequences
56 (Chang, 1981). Given that hybridization and polyploidization are frequent in this group, traditionally used
57 morphological indexes are likely affected by various environmental factors such as topography, soil, and climate.
58 Trees reconstructed based on a few genes and chloroplasts often show inconsistent or reticulate evolution. This poses
59 a major challenge to taxonomic and phylogenetic analyses of the genus *Camellia* L. and has greatly limited progress
60 in our understanding of the classification of *Camellia* L. (Min et al., 1996; Hong, 1981). The phylogenetic
61 relationships among *Camellia* members remain unclear. Other non-morphological sources of data are needed to
62 clarify their evolutionary relationships, such as, whole genome information, chromosome variation and the utility of
63 artificial interspecific hybridization (Zhang et al., 2022; Yu et al., 2022; Ye et al., 2021; Zhong et al., 2020; Chang
64 et al., 2016; Zhou et al., 2001).

65 The chloroplast is an important site for energy conversion and photosynthesis in green plants. Chloroplast
66 genomes (cpDNA) are one of the three major genetic systems in plants. They have been widely used in evolutionary
67 studies because of their low nucleotide substitution rates, uniparental inheritance, conserved structure, and low
68 molecular weight (Tang et al., 2022; Tian et al., 2021; Zhu et al., 2022). The cpDNA of these species have been
69 resequenced several times to clarify their relationships, such as the newly described oil-seed species of *C. osmantha*
70 (Ma et al., 2012; Liu et al., 2021). Here, we used next-generation high-throughput sequencing to assemble, annotate,
71 and characterize the cpDNA of four *Camellia* species. We generated more chloroplast genomic resources for oil-seed
72 *Camellia* to characterize the structure of cpDNA and clarify the relationships among these four oil-seed camellia
73 species within the genus *Camellia* L. Our findings provide new insights into chromosome variation and the utility of
74 artificial interspecific hybridization for camellia breeding. The results of our study will also aid future studies aimed
75 at genetically improving the oil production of several oil-seed camellia species.

76 Materials And Methods

77 Experimental Materials and Sequencing

78 Seeds of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* were collected from Zhaoqin, Meizhou,
79 Lechang, and Nanning in southern China in 2013 (**Table 1**). The seedlings of four camellia species were planted in
80 Xiaokeng state-owned forest farm (24°15' N, 113°35' E) in Qujiang District, Shaoguan City, Guangdong Province,
81 China in 2015. Young leaves of four species without signs of pests and disease were collected in bags filled with
82 dried silica gel prior to transport to the laboratory in 2020. All four species were identified by the Sun Yat-sen
83 University Herbarium. The remaining silica gel-dried young leaves and vouchers were deposited in the Zhongkai
84 University of Agriculture and Engineering Herbarium for subsequent studies.

85 A modified CTAB method was used to extract total DNA (Rogers & Bendich, 1989). The Illumina NovaSeq
86 platform was used to construct, quality, and paired-end sequence (2×150bp) the DNA libraries using the Illumina
87 NovaSeq platform. Information on the sequencing data generated by Guangzhou Nuosai Biotechnology Co., Ltd. and
88 used for further assembly and annotation is shown in Table 1. The paired-end read sequences of the four species

89 were submitted to the National Center for Biotechnology Information (NCBI) database (BioProject ID:
90 PRJNA931566).

91 **Table 1.** Sample sequencing data information.

Species	Voucher NO.	Seed sample collection sites	Seed collection year	Raw base (BP)	Raw Q30(%)
<i>C. semiserrata</i> Chi.	ZKU2020032	Guangning District, Zhaoqin City, Guangdong Province, China	2013	11,788,927,200	90.56; 87.11
<i>C. meiocarpa</i> Hu.	ZKU2020035	Xingning District, Meizhou City, Guangdong Province, China	2013	9,157,311,900	91.22; 86.76
<i>C. suaveolens</i> Ye.	ZKU2020051	Lechang City, Guangdong Province, China	2013	8,529,454,200	91.67; 88.99
<i>C. osmantha</i> Ye.	ZKU2020159	Guangxi Forestry Research Institute, Nanning, China	2013	10,930,712,700	91.53; 87.79

92 **Assembly and Annotation of cpDNA**

93 The cpDNA were extracted and assembled from the original data using GetOrganelle V1.7.5.3 software (Jin et
94 al., 2020). After the cpDNA were assembled, the chloroplast genome loop with a typical tetrad structure was
95 concatenated and visualized using Bandage software (Wick et al., 2015). The chloroplast genome of *C.*
96 *vietnamensis* (NC_060778.1) was used as the reference genome, and the sequenced genomes were annotated using
97 PGA software (Qu et al., 2019). Geneious 9.0.2 software was used to visualize the annotated sequences (Kearse et
98 al., 2012), and manual adjustments were made to improve the sequences. The annotation results were submitted to
99 the National Center for Biotechnology Information (NCBI) under the accession numbers ON367462, ON418964,
100 ON418963, and ON418965. The online software OGDRAW (Greiner et al., 2019) was used to map the cpDNA.

101 **Sequence Alignment Analysis of cpDNA**

102 The four cpDNA were assembled and uploaded to NCBI. The cpDNA of *C. vietnamensis*, *C. crapnelliana*, *C.*
103 *oleifera*, *C. chekiangoleosa*, *C. gauchowensis*, and *C. kissii* were downloaded to conduct analyses. The GenBank
104 accession numbers were NC060778, KF753632, KY406750, NC037472, NC053541, and NC053915, respectively
105 (**Supplementary table S1**). ShufflemVISTA software (<https://genome.lbl.gov/vista/mvista/submit.shtml>) was used
106 to align the cpDNA of the different species using the alignment subprogram Shuffle-LAGAN with global pair-wise
107 alignment of the finished sequences (Chris et al., 2000). The online software IRscope
108 (<https://irscope.shinyapps.io/irapp/>) (Amiryousefi et al., 2018) was used to make comparisons of the annotated
109 cpDNA of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* with the downloaded sequences in the
110 inverted repeat (IR) regions of the cpDNA, including regions of contractions and expansions. The molecular markers
111 of the cpDNA for the above 10 *Camellia* species were developed using DnaSP6 software (Rozas et al., 2017).

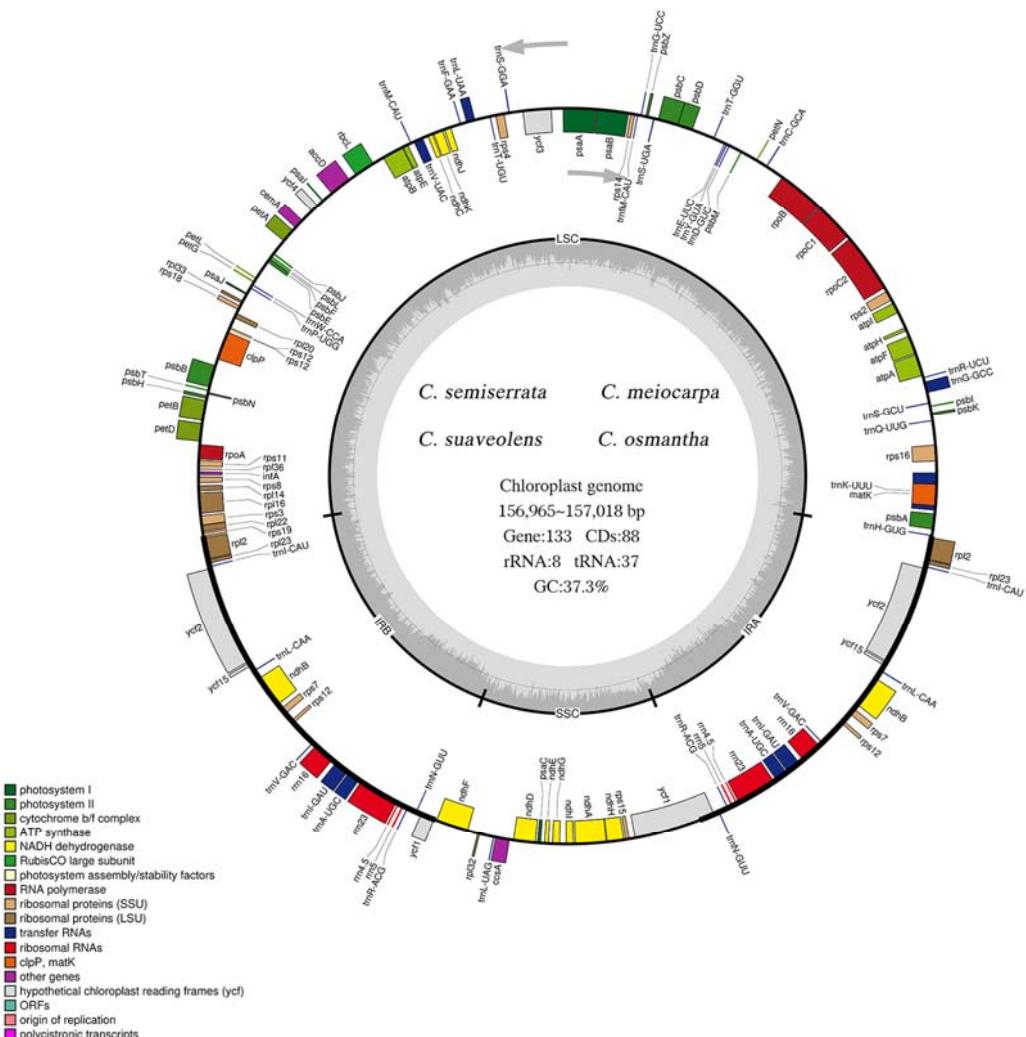
112 **Repeat Sequence Analysis and Codon Bias Analysis**

113 The online software MISA (<https://webblast.ipk-gatersleben.de/misa/>) (Beier et al., 2017) was used to localize
114 repetitive elements in the cpDNA of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, *C. osmantha*, and *C. vietnamensis*.
115 To detect simple sequence repeats (SSRs), the minimum number of repetitions for mononucleotide, dinucleotide,
116 trinucleotide, tetranucleotide, and hexanucleotide repeats was set to 12, 6, 4, 3, 3, and 3, respectively. The online
117 software REPuter (Kurtz et al., 2001) was used to identify interspersed nuclear elements. Four types of repeat
118 sequences were detected, including forward repeat (F), reverse repeat, palindromic repeat (P), and complementary
119 repeat sequences. The minimum repeat size was set at 30 bp, and the minimum repeat distance was set at 3,

120 respectively. Statistical analyses were conducted using Microsoft Excel 2019, and figures were made using Origin
121 2022.

122 The protein-coding genes (CDS) of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* were extracted
123 using Geneious 9.0.2. To reduce the errors caused by short sequences, duplicate sequences and sequences less than
124 300 bp in length were removed from these coding sequences. Next, coding sequences that start with an ATG and end
125 with a TAA, TGA, and TAG were selected. Finally, CodonW 1.4.2 software was used to conduct relative
126 synonymous codon usage (RSCU) analysis on each of the CDS of each species to characterize patterns of codon bias
127 (Sharp and Li, 1987).

128 Phylogenetic Analysis


129 The cpDNA of 29 *Camellia* species and two outgroup species (*Schima superba* and *Tutcheria pingpiensis*) were
130 downloaded from the NCBI database to construct phylogenetic trees with the resequenced cpDNA of *C. semiserrata*,
131 *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* (**Supplementary Table S1**). Geneious 9.0.2 software was used to
132 select sequences of regions from the large single-copy (LSC), IR, small single-copy (SSC), and 68 CDS. A
133 multiple sequence alignment of the whole genome and the selected sequences was conducted using MAFFT v7.308
134 software (Kazutaka et al., 2017). A phylogenetic tree was constructed for each sequence. Phylogenetic trees were
135 constructed using MrBayes ver. 3.2.7a(<http://nbisweden.github.io/MrBayes/index.html>) and RAxML software with
136 1, 000 bootstrap replicates (Ronquist et al., 2012; Stamatakis, 2014). FigTree 1.4.4 (<http://tree.bio.ed.ac.uk/software/figtree/>) was used to build the Bayesian and maximum likelihood (ML) tree, and the iTOL online tool
137 (<https://itol.embl.de/>) was used to visualize the phylogenetic relationships (Letunic and Bork, 2021).

139 Results

140 Basic Characteristics of the cpDNA of Four Species

141 The cpDNA of the four *Camellia* species exhibited a typical tetrad structure (**Figure 1 and Table 2**), with a
142 total length ranging from 156, 965 to 157, 018 bp, consisting of an LSC region (ranging from 866, 647 to 86, 656
143 bp), an SSC (ranging from 18, 282 to 18, 408 bp), and a pair of IR regions (ranging from 25, 954 to 26, 042 bp). The
144 lengths of the four cpDNA only varied by 53 bp. The cpDNA of *C. semiserrata* was the longest, and that of *C.*
145 *meiocarpa* was the shortest. The LSC region was the least variable region in the cpDNA of the four *Camellia* species
146 (only varying by 9 bp), whereas the SSC region was the most variable region among the four *Camellia* species
147 (varying by 126 bp). The average GC content of the four chloroplast genomes was 37.3%. The GC content of the
148 LSC region was 35.3%, and that of the SSC region ranged from 30.5 to 30.6%. The GC content of the IR region
149 (43.0%) was higher than that of the LSC and SSC regions. A total of 134 genes were identified in the four cpDNA,
150 including 88 CDS, 37 transfer RNA (tRNA) genes, and 8 messenger RNA (mRNA) genes. The pseudogene *ycf1* was
151 located in the boundary region between the IRB and SSC regions, and other incomplete copy of *ycf1* was also
152 located at the boundary between the SSC and IRA regions. The cpDNA of the four *Camellia* species are highly
153 conserved given that they all possess the basic structural features of cpDNA.

154

Figure 1. Gene map of the cpDNA of four *Camellia* species. The genes inside the circle are transcribed clockwise, and the genes outside is transcribed counterclockwise. Genes with different functions are color-coded. The darker gray in the center circle indicates the GC content, and the lighter gray indicates the AT content.

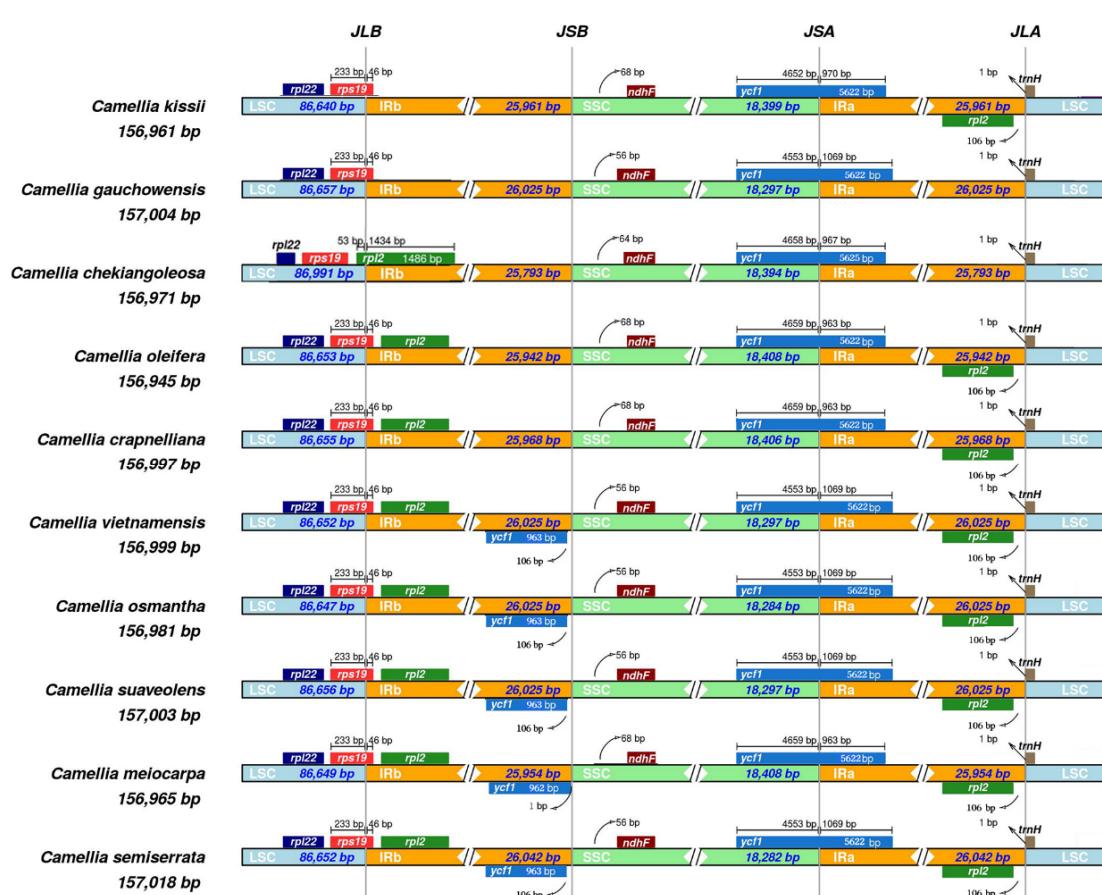
Table 2. Analysis of the cpDNA characteristics of four *Camellia* species.

Species	<i>C. semiserrata</i> *	<i>C. meiocarpa</i> *	<i>C. suaveolens</i> *	<i>C. osmantha</i> *	<i>C. vietnamensis</i>
Total cp genome size (bp)	157, 018	156, 965	157, 003	156, 981	156, 999
LSC region (bp)	86, 652	86, 649	86, 656	86, 647	86, 652
IR region (bp)	26, 042	25, 954	26, 025	26, 025	26, 025
SSC region (bp)	18, 282	18, 408	18, 297	18, 284	18, 297
GC content /%	37.3	37.3	37.3	37.3	37.3
GC content in LSC region (%)	35.3	35.3	35.3	35.3	35.3
GC content in IR region (%)	43.0	43.0	43.0	43.0	43.0
GC content in SSC region (%)	30.6	30.5	30.6	30.5	30.5

gene	134	134	134	134	134
CDS	88	88	88	88	87
rRNA	8	8	8	8	8
tRNA	37	37	37	37	37

160 Note: “**” indicates the species resequenced in this study.

161 Excluding the one pseudogene, 98 out of 133 genes were unique, including 75 CDS and 23 tRNA genes. The
 162 other 35 genes were located in the IR regions, including 13 CDS (*ycf1*, *rps7* *2, *ndhB**2, *ycf15* *2, *ycf2* *2, *rpl23* *2,
 163 and *rpl2* *2), 8 ribosomal RNA (rRNA) genes, and 14 tRNA genes. A total of 45 genes were involved in
 164 photosynthesis, 75 genes were involved in self-replication, 6 genes encoded other proteins, and 7 genes had unknown
 165 functions. Sixteen genes had one intron, and two genes had two introns (**Table 3**).

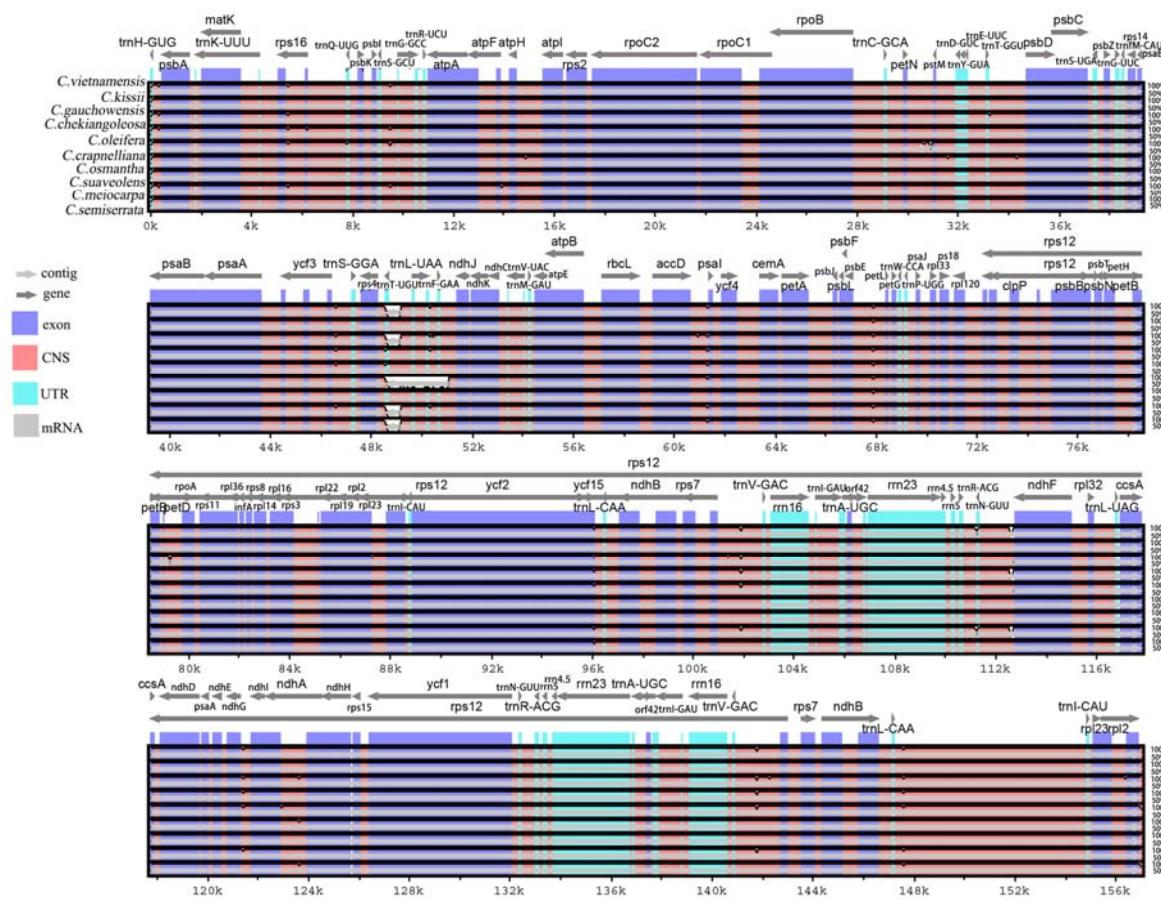

166 **Table 3.** List of genes found in the cpDNA of four *Camellia* species.

gene category	gene group	gene name
Photosynthesis	photosystem I	<i>psaA</i> , <i>epsaB</i> , <i>psaC</i> , <i>psaI</i> , <i>psaJ</i>
	photosystem II	<i>psbA</i> , <i>psbB</i> , <i>psbC</i> , <i>psbD</i> , <i>psbE</i> , <i>psbF</i> , <i>psbH</i> , <i>psbI</i> , <i>psbJ</i> , <i>psbK</i> , <i>psbL</i> , <i>psbM</i> , <i>psbN</i> , <i>psbT</i> , <i>psbZ</i>
	NADH dehydrogenase	<i>ndhA</i> *, <i>ndhB</i> *(2), <i>ndhC</i> , <i>ndhD</i> , <i>ndhE</i> , <i>ndhF</i> , <i>ndhG</i> , <i>ndhH</i> , <i>ndhI</i> , <i>ndhJ</i> , <i>ndhK</i>
	cytochrome b/f complex	<i>petA</i> , <i>petB</i> *, <i>petD</i> *, <i>petG</i> , <i>petL</i> , <i>petN</i>
	ATP synthase	<i>atpA</i> , <i>atpB</i> , <i>atpE</i> , <i>atpF</i> *, <i>atpH</i> , <i>atpI</i>
	rubisco	<i>rbcL</i>
Self-replication	large ribosomal subunit	<i>rpl14</i> , <i>rpl16</i> *, <i>rpl2</i> *(2), <i>rpl20</i> , <i>rpl22</i> , <i>rpl23</i> (2), <i>rpl32</i> , <i>rpl33</i> , <i>rpl36</i>
	small ribosomal subunit	<i>rps11</i> , <i>rps12</i> *(2), <i>rps14</i> , <i>rps15</i> , <i>rps16</i> *, <i>rps18</i> , <i>rps19</i> , <i>rps2</i> , <i>rps3</i> , <i>rps4</i> , <i>rps7</i> (2), <i>rps8</i>
	RNA polymerase	<i>rpoA</i> , <i>rpoB</i> , <i>rpoC1</i> *, <i>rpoC2</i>
	ribosomal RNA	<i>rrn16</i> (2), <i>rrn23</i> (2), <i>rrn4.5</i> (2), <i>rrn5</i> (2) <i>rna-UGC</i> *(2), <i>trnC-GCA</i> , <i>trnD-GUC</i> , <i>trnE-UUC</i> , <i>trnF-GAA</i> , <i>trnfM-CAU</i> , <i>trnG-GCC</i> *, <i>trnG-UCC</i> , <i>trnH-GUG</i> , <i>trnI-CAU</i> (2), <i>trnL-GAU</i> *(2), <i>trnK-UUU</i> *, <i>trnL-CAA</i> (2), <i>trnL-UAA</i> *, <i>trnLUAG</i> , <i>trnM-CAU</i> (2), <i>trnN-GUU</i> (2), <i>trnP-UGG</i> , <i>trnQ-UUG</i> , <i>trnR-ACG</i> (2), <i>trnR-UCU</i> , <i>trnS-GCU</i> , <i>trnS-GGA</i> , <i>trnS-UGA</i> , <i>trnT-GGU</i> , <i>trnT-UGU</i> , <i>trnV-GAC</i> (2), <i>trnV-UAC</i> *, <i>trnW-CCA</i> , <i>trnY-GUA</i>
	transfer RNA	
Other genes	maturase	<i>matK</i>
	protease	<i>clpP</i> **
	carbon metabolism	<i>cemA</i>
	fatty acid synthesis	<i>accD</i>
	cytochrome C synthesis	<i>ccsA</i>
Unknown functional genes	Translation initiation factor	<i>infA</i>
	hypothetical chloroplast open reading frames	<i>ycf1</i> (2), <i>ycf2</i> (2), <i>ycf3</i> ***, <i>ycf4</i> , <i>ycf15</i> (2)

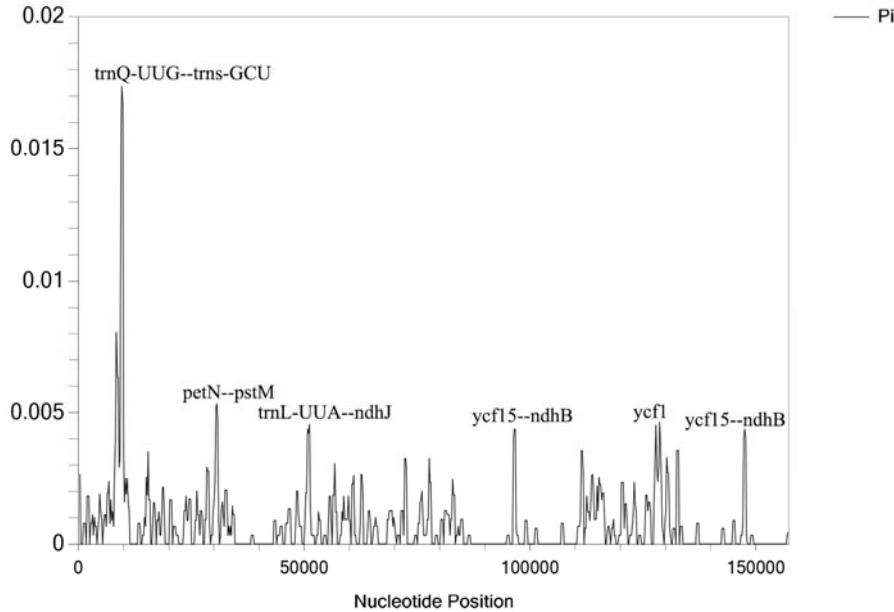
167 Note: “**” and “***” indicate that the gene contains one or two introns, respectively; data in parentheses indicate copy number.

168 **Contractions and Expansions of the IR Boundary**

IR boundary analysis of 10 *Camellia* species, including the four *Camellia* species in this study (**Figure 2**), revealed that the structure and sequences of the IR boundary regions of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, *C. osmantha*, and *C. vietnamensis* were similar. The genes of *rpl22*, *rps19*, *rpl2*, *ycf1*, *ndhF*, and *trnH* were mainly located near the IR/LSC and IR/SSC boundaries of the cpDNA for these 10 *Camellia* species. The *rps19* gene crossed the LSC/IRB boundary in nine of these species. The IR region of *C. chekiangoleosa* has undergone a contraction. Consequently, the *rpl2* gene has expanded to the LSC region and crosses the LSC/IRB boundary. The *rpl2* gene in *C. kissii* and *C. gauchowensis* was not present in the LSC/IRB boundary. In *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, *C. osmantha*, and *C. vietnamensis*, *ycf1* is a pseudogene in the SSC/IRA boundary, and there is also an incomplete copy of *ycf1* in the SSC/IRB boundary region. The *ycf1* gene in *C. meiocarpa* is located 1 bp away from the SSC/IRA boundary. And the *ycf1* gene in the other four species is located 106 bp away from the SSC/IRA boundary. The locations of *ndhF* and *ycf1* in the SSC/IRB and SSC/IRA boundary regions vary in *C. kissii*, *C. oleifera*, *C. crapnelliana*, and *C. chekiangoleosa*. This is mainly associated with the contraction and expansion of the IR and SSC regions. The locations of *rpl2* and *trnH* in the LSC/IRA boundary region are consistent in other plants, with the exception of *C. gauchowensis* and *C. crapnelliana*, which did not possess the *rpl2* gene.


184 **Figure 2. Comparison of IR/SC boundary regions of 10 *Camellia* species.** LSC, Large single-copy; SSC, Small single-copy;
 185 IRA and IRB, inverted repeats. JLB, junction between LSC and IRB; JSB, junction between SSC and IRB; JSA, junction between
 186 SSC and IRA; JLA junction between LSC and IRA.

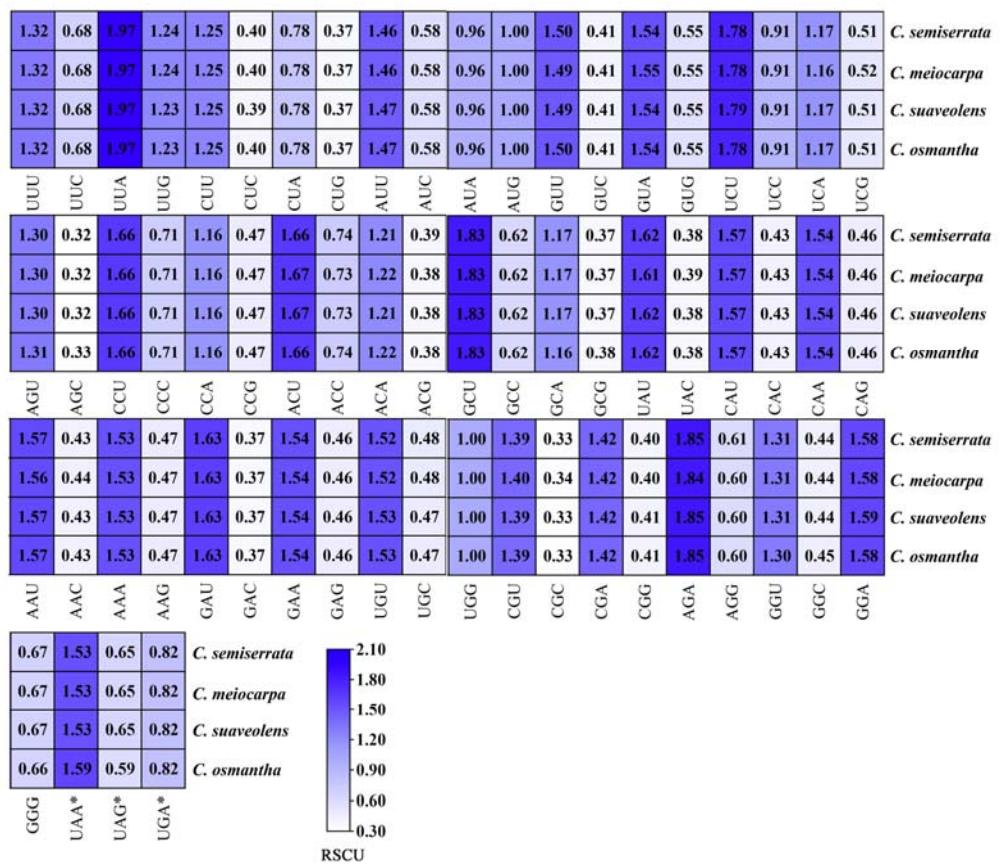
187 Molecular Marker Detection


188 The cpDNA of 10 *Camellia* species, including the four focal *Camellia* species in this study, were compared
 189 with mVISTA software using *C. vietnamensis* as a reference (**Figure 3**). The results showed that sequence similarity
 190 in the coding region was high. However, sequence similarity of the non-coding region was low. The LSC region was

191 the most variable region across the cpDNA, followed by the SSC, IRB, and IRA regions. Thus, variation in the IR
192 region is low, which suggests that it is evolutionarily conserved. The most conserved genes were rRNA genes, as no
193 significant variation was observed in rRNA genes among cpDNA.

194 Molecular markers were developed for these 10 *Camellia* species (Figure 4). Five highly variable gene spacers
195 or genes were identified, including *trnQ-UUG*—*trnG-GCC*, *petN-pstM*, and *trnL-UAA*—*ndhJ* in the LSC region,
196 *ycf15*—*ndhB* in the IR region, and *ycf1* in the SSC region. In the *trnQ-UUG*—*trnG-GCC* region from the LSC
197 region, the pi value was highest from 9, 296 to 9, 905 bp (0.01737). This region has a total of 21 mutated sites and,
198 GC content of 30.7%. It was thus the most highly mutated region in the entire cpDNA. In the *ycf15*—*ndhB* region of
199 the IR region, pi was highest in the 96,233–96,837-bp, 96,438–97,037-bp, and 147,251–147,850-bp regions, all of
200 which were approximately 0.00437. There were total of six mutated sites, and the GC content was 42.8% in this
201 region. In the *ycf1* gene in the SSC region, pi was highest in the 128,406–129,005-bp region (0.00463) with nine
202 mutated sites, and a GC content of 23.7%. These regions with high variability can be used as DNA barcodes for
203 species identification.

204
205 **Figure 3. Comparison of the cpDNA of 10 *Camellia* species.** The X-axis indicates aligned base sequences, and the Y-axis
206 indicates percent pairwise identity within 50–100%. Grey arrows represent genes and their directions. Blue boxes indicate exon
207 regions, light blue boxes indicate regions encoding RNA genes, and red boxes indicate non-coding sequences.



208

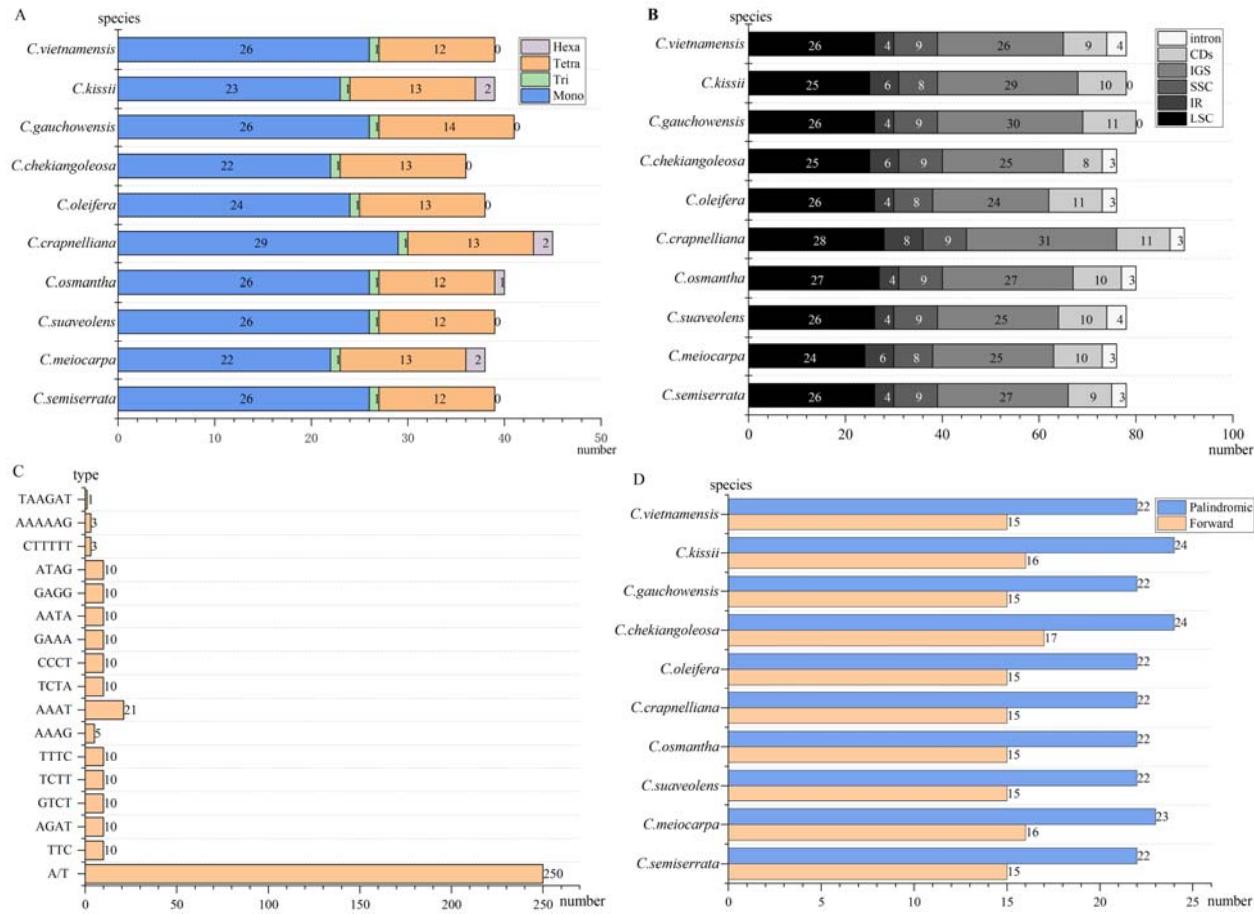
209 **Figure 4. Chloroplast genome sliding window analysis of 10 *Camellia* species.** Window length: 2000 bp; step size: 200 bp. X-
210 axis: the position of the midpoint of a window. Y-axis: nucleotide diversity of each window.

211 **Codon Bias Analysis**

212 A total of 88 protein-coding genes (CDS) were identified in the cpDNA of *C. semiserrata*, *C. meiocarpa*, *C.*
213 *suaveolens*, and *C. osmantha* using Geneious 9.0.2 software. The lengths of the CDS were greater than 300 bp, and
214 the start codon of these CDS was ATG. The stop codons were TAA, TGA, and TAG. Totally of 51 sequences with
215 each kind of stop codon were obtained. There were total of 20,747, 20,743, 20,743, and 20,780 codons in the 51
216 CDS from *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha*, and the GC content of their CDS was
217 37.47%, 37.46%, 37.45%, and 37.45%, respectively (Supplementary Table S2). RSCU analysis of these codons
218 revealed (Figure 5 and Supplementary Table S2) high conservation in the codon usage of the four *Camellia* plants.
219 The highest coding rate was observed for the codon UUA, which codes for leucine, and UUA comprised 698, 697,
220 698, and 699 codons in *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha*, respectively. The RSCU
221 value of UUA was 1.97. The lowest coding rate in *C. semiserrata*, *C. meiocarpa*, and *C. suaveolens* was observed
222 for AGC (84), which codes for serine (Ser), and its RSCU value was 0.32. The coding rate of AGC and CGC (85 and
223 69, respectively), which codes for arginine (Arg), was lowest in *C. osmantha*. The RSCU value for CGC was 0.33.
224 The RSCU value was greater than one for 29 codons across the four *Camellia* species, with the exception of stop
225 codons. 12 of these codons ended in A, 16 ended in U, and one ended in G. Two codons, AUG and UGG, had RSCU
226 values close to 1, indicating the absence of codon usage bias for these two codons. The RSCU value was less than 1
227 for 30 codons, with the exception of stop codons. Number of 16 of these codons ended in C, 12 ended in G, and 2
228 ended in A. These findings indicate that there is a bias for codons ending with A or U in the cpDNA of *C.*
229 *semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha*.
230

231

232 **Figure 5. RSCU analysis of the cpDNA of four *Camellia* species.** Darker colors indicate, greater RSCU and skew. "*" indicates
233 the termination codon.

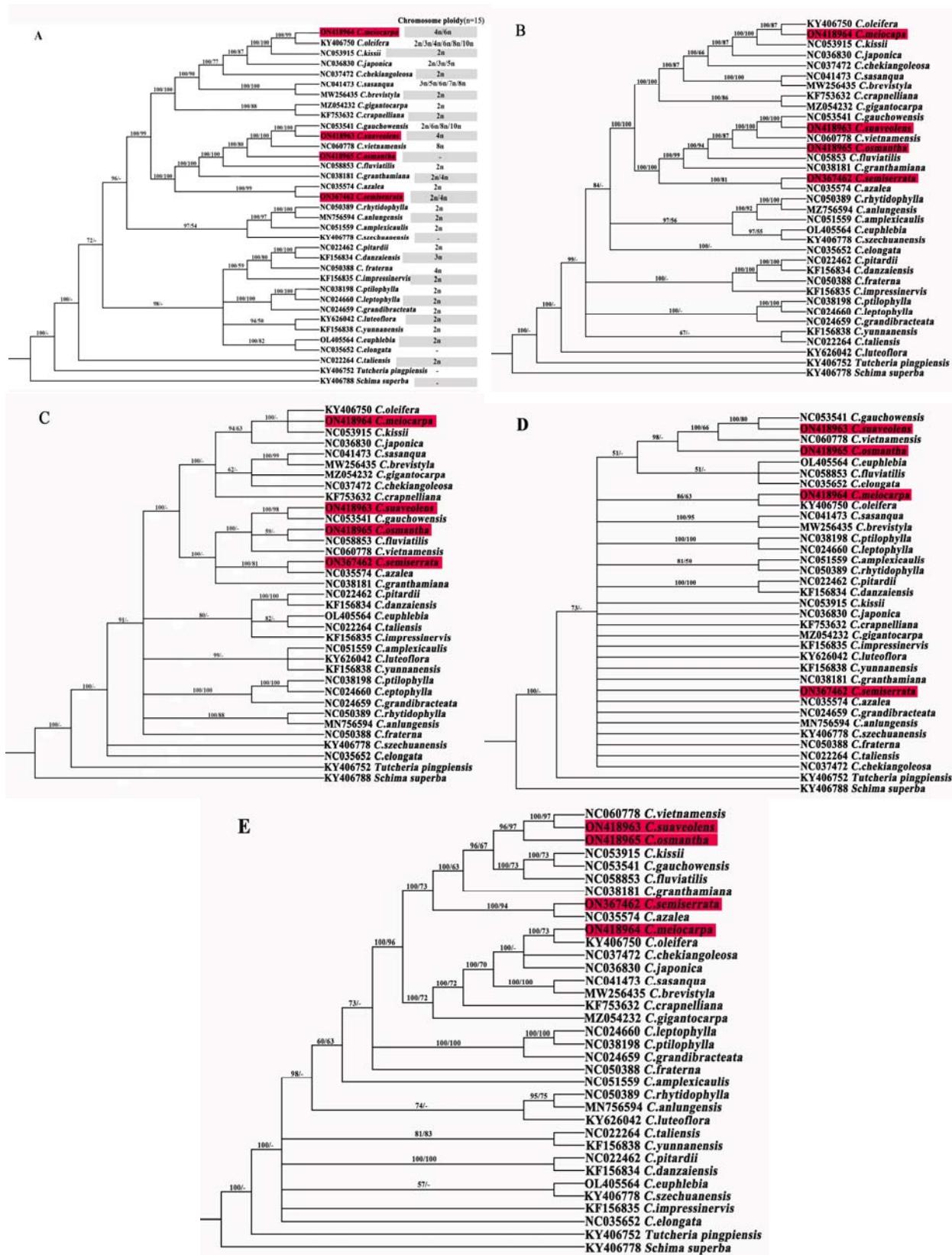

234 SSR and Repeat Sequence Analysis

235 SSR analysis of the cpDNA of four *Camellia* plants and six other plant species was conducted. Dinucleotide
236 and pentanucleotide repeats were not detected in the 10 *Camellia* species (**Figure 6A**). The number of SSRs ranged
237 from 36 to 45, and the greatest number of SSRs was observed in *C. crapnelliana*. The lowest number of SSRs was
238 observed in *C. chekiangoleosa*. Mononucleotide repeats were the most common, followed by tetranucleotide,
239 trinucleotide, and hexanucleotide repeats. The numbers of SSRs in the four *Camellia* species ranged from 38 (in *C.*
240 *meiocarpa*) to 40 (in *C. osmantha*). Hexanucleotide repeats were not detected in *C. semiserrata* and *C. suaveolens*.
241 The number of mononucleotide and trinucleotide repeats in *C. meiocarpa* was 22 and one, lower than *C. osmantha*,
242 *C. semiserrata* and *C. suaveolens*. The number of SSRs was lowest in *C. meiocarpa* among the four species.
243

244 SSRs in the four *Camellia* species were most abundant in the LSC region and least abundant in the IR region
245 (**Figure 6B** and **Figure 6C**). There were two main types of mononucleotide repeats (A/T), and these were only
246 distributed in the LSC and SSC regions. The number of mononucleotide repeats was greater in the LSC region than
247 in the SSC region. Only one type of trinucleotide repeat (TTC) was observed, and it was only present in the LSC.
248 There were 12 types of tetronucleotide repeats across all partitions (AGAT/GTCT/TCTT/TTTC/AAAT/AAAG/TCTA/CCCT/GAAA/ AATA/GAGG/ATAG). The most common
249 tetronucleotide repeat was the AAAT type, and the least common was AAAG. Tetranucleotide repeats were most
250 common in the LSC region, followed by the SSC and IR regions. AAAG was only observed in *C. meiocarpa*. Three
251 hexanucleotide repeats were observed with CTTTTT/AAAAAG/TAAGAT) distributing in the IR region only. These
252 hexanucleotide repeats were most abundant in the gene spacer region and least abundant in introns.

253 The results of the repeat sequence analysis are shown in **Figure 6D**. The number of repeat sequences in the
 254 cpDNA of these 10 *Camellia* species ranged from 37 to 41, and the lengths of these sequences ranged from 30 to 64
 255 excluding the IR region. The palindromic (P) sequences identified were always more abundant than the forward (F)
 256 sequences. A total of 37 repeats were detected in *C. semiserrata*, *C. suaveolens*, and *C. osmantha*, including 15
 257 positive repeats and 22 P sequences. There were 39 repeat sequences, 16 F sequences, and 23 P sequences in *C.
 258 meiocarpa*.
 259

260


261

262 **Figure 6. SSRs and INE analysis of the cpDNA of 10 *Camellia* species.** X-axis: the number of SSRs or INE; Y-axis: species or
 263 SSR type. (A) Number of SSRs; (B) distribution of SSRs; (C) type of SSRs; and (D) type and number of INEs.

264

Phylogenetic Analysis

265 The aligned sequences of the complete cpDNA (**Figure 7A**), LSC region (**Figure 7B**), SSC region (**Figure 7C**),
 266 IR regions (**Figure 7D**), and shared CDS (**Figure 7E**) of the 35 species were used to construct phylogenetic trees via
 267 the Bayesian and ML methods, respectively. Most of the relationships in the phylogenies built based on the complete
 268 cpDNA and LSC region had moderate to high support, and the general topology of the trees based on the LSC region
 269 and the complete cpDNA was similar (**Figure 7**). In this phylogenetic tree, *C. semiserrata*, *C. osmantha*, and *C.
 270 suaveolens* were nested within their own small clades that were clustered into a large clade with *C. meiocarpa*. The
 271 phylogenetic trees generated from the first four datasets showed that *C. semiserrata* was most closely related to *C.
 272 alzalea*, while *C. suaveolens* was most closely related to *C. gauchowensis*. *C. osmantha* was most closely related to
 273 *C. vietnamensis* and was similar to *C. suaveolens* and *C. gauchowensis*. Species of *C. meiocarpa* was most closely
 274 related to *C. oleifera*. Phylogenetic trees of *Camellia* species based on the IR regions, the SSC region, and the shared
 275 CDS were not highly supported. Thus, the IR regions, the SSC region, and CDS are more conserved and less variable.

Figure 7. Bayesian phylogenetic tree based on 35 species of complete cpDNA, LSC, SCC, IR and CDS. (A) Bayesian phylogenetic tree based on the complete cpDNA; (B) Bayesian phylogenetic tree based on the LSC region; (C) Bayesian

281 phylogenetic tree based on SSC regions; (D) Bayesian phylogenetic tree based on the IR regions; and (E) the Bayesian
282 phylogenetic tree based on the CDS. The numbers on the branches are Bayesian and ML bootstrap values.

283 Discussion

284 The structure, size, gene content, and genotypes of the cpDNA for most land plants are highly conserved. The
285 lengths of the cpDNA of 100 species in the family Theaceae in the NCBI database range from 150 to 160 kb, and all
286 of them have a typical tetrad structure. The degree of sequence conservation is positively correlated with the GC
287 content (Zheng et al., 2022). The cpDNA of *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C. osmantha* are
288 highly conserved in their structure, size, gene content, and gene type. The resequenced complete cpDNA of these
289 four *Camellia* species provide new genomic resources for *Camellia* in the NCBI database (Dong et al., 2021; Tong et
290 al., 2022; Chen et al., 2022). The IR region is considered the most conserved region in the cpDNA, and contractions
291 and expansions of the IR boundary play important roles in determining the size and evolutionary trajectory of
292 cpDNA (Wang et al., 2018). In most higher plants, the evolutionary rate of the cpDNA is relatively low, while the
293 sequences and structure are highly conserved. However, the contractions and expansions of IR boundary are
294 commonly observed (Zheng et al., 2022). Contractions and expansions of the IR regions in the four focal *Camellia*
295 species in this study were similar to those observed in *C. weiningensis* (Li et al., 2020), *C. tienii* (Ding et al., 2022),
296 and *C. japonica* (Li et al., 2019). These findings indicate that patterns of IR contractions and expansions vary among
297 *Camellia* species, and this results in changes in the relative lengths of tetrads and full-length cpDNA.

298 Analysis of nucleotide repeats and molecular makers in cpDNA can be used to distinguish between populations
299 or species, and provide insights into patterns of genetic diversity and systematic relationships (Tang et al., 2022;
300 Guisinger et al., 2010). Highly variable loci in chloroplasts can provide substantial DNA barcoding information that
301 can be used to identify plants. Analysis of the *trnl-trnF*, *rpl16*, and *psbA-tmH* sequences of Sect. Chrysanthia in
302 *Camellia* species has shown that *rpl16* and *psbA-tmH* sequences can be used to accurately identify *C. pubipetala*
303 (Chen et al., 2021). The *trnH-psbA* sequence can be used to distinguish plants in different *Camellia* species, but its
304 effectiveness for interspecific classification is weak (Wen et al., 2017). In our study, five highly variable regions
305 were detected (*trnQ-UUG*—*trnG-GCC*, *petN-pstM*, *trnL-UAA*—*ndhJ*, *ycf15*—*ndhB*, and *ycf1*), and these regions
306 could be used in future taxonomic studies of oil-seed *Camellia* species. SSR markers have been widely used to
307 analyze the phylogenetic relationships and genetic diversity of *Camellia* species (Dong et al., 2022; Tao et al., 2019;
308 Wang, 2019; Zhang et al., 2018). Variation was observed in the number of SSRs in the four *Camellia* species and
309 ranged from 36 to 45. The dinucleotide repeats and pentanucleotide repeats were not detected in these four *Camellia*
310 species. No hexanucleotide repeats were detected in *C. semiserrata* and *C. suaveolens*. The numbers of different
311 types of SSRs among the *Camellia* species in this study differ from those of other *Camellia* species in previous
312 studies (Yin et al., 2018). The results of our study showed that SSRs were most common in non-coding regions,
313 followed by regions of coding, LSC, SSC, and IR. The most common mononucleotide repeats were A and T, and
314 no pentanucleotide repeats were observed, which consistent with the results of previous studies (Ding et al., 2022;
315 Yin et al., 2018; Yang et al., 2013). The SSRs of the cpDNA in four *Camellia* species comprised 37 to 39 repeats
316 with lengths ranging from 30 and 64 bp, which is consistent with the results of a previous study of *C. tienii* (Ding et
317 al., 2022). In this study, we did not identify genes or molecular makers in cpDNA that mediated increases in the oil
318 deposited in the seeds as has been identified in other species, such as the long-chain acyl-coA synthetase gene in the
319 FA and TAG synthesis pathways in the leaves of *Suaeda salsa* (Gao et al., 2018).

320 Codon bias affects mRNA stability, mRNA transcription, and the accuracy of protein translation and protein
321 folding and thus plays a key role in regulating gene expression (Ren et al., 2019). Information on the codon usage of
322 the cpDNA in *Camellia* species, especially comparisons among species, can provide insights into differentially
323 expressed genes, optimize codon usage, and aid the selection of varieties with desirable characters (Teng et al., 2021;
324 Lai et al., 2022; Zhou et al., 2022). The codons of the cpDNA in the four *Camellia* species mainly ended in A/U.
325 This is consistent with the observed codon bias in *C. nitidissima*, *C. oleifera*, and *C. osmantha* in previous studies
326 (Wang et al., 2018; Geng et al., 2022; Hao et al., 2022).

327 Frequent interspecific hybridization and polyploidy have hindered efforts to resolve the phylogeny and
328 taxonomy of the genus *Camellia*. Comparative analysis of whole cpDNA can provide more reliable insights into

329 phylogenetic relationships among *Camellia* members (Li et al., 2019; Jiang, 2017). Phylogenetic trees built based on
330 the IR dataset, SSC dataset, and CDS were not highly supported, indicating that data from these regions of the
331 cpDNA should not be used in phylogenetic studies of *Camellia* species. The topologies of phylogenetic trees based
332 on the complete cpDNA dataset and the LSC dataset were highly supported (**Figure 7A**). The phylogenetic trees
333 obtained in this study revealed that (1) *C. semiserrata* was most closely related to *C. azalea*; (2) *C. suaveolens* was
334 most closely related to *C. gauchowensis*; and (3) *C. osmantha* was most closely related to *C. vietnamensis*, which
335 was similar to *C. suaveolens* and *C. gauchowensis*.

336 *C. semiserrata* is more similar to *C. japonica* and *C. chekiangoleosa* based on cytological and morphological
337 characters (Ni, 2007), yet this finding is inconsistent with the results of our study. However, a study of interspecific
338 hybridization of *C. azalea* and *C. semiserrata* has revealed high hybridization affinity among these species (Zhong et
339 al., 2020), and all three of these species are diploid (Jia, 2015). *C. gauchowensis* was considered a synonym of *C. vietnamensis* in Flora of China. However, *C. suaveolens* was more closely related to *C. gauchowensis* than to *C. vietnamensis* according to phylogenetic trees based on cpDNA in this study (**Figure 7A**). The cross-compatibility
340 between *C. gauchowensis* and *C. suaveolens* via reverse hybridization is low because of their different ploidy. *C. vietnamensis* and *C. gauchowensis* show high cross-compatibility in reciprocal crosses with the same chromosome
341 ploidy (Zhang et al., 2022). The results of ploidy and hybridization analysis revealed that *C. gauchowensis* is more
342 closely related to *C. vietnamensis* than to *C. suaveolens*. *C. suaveolens* has recently been shown to be more similar to
343 *C. furfuracea*, *C. osmantha*, and *C. flaviatilis* based on morphological data and inter-simple sequence repeat markers
344 (Jia, 2015; Wang et al., 2004; Liang et al., 2017). This finding is also not consistent with the results of this study. *C. suaveolens* and *C. gauchowensis* are both decaploid (Zhang et al., 2022). *C. osmantha* shows high affinity with *C. gauchowensis* when hybrids are used as the male parent (Ma et al., 2012). In our study, *C. osmantha* was more
345 closely related to *C. vietnamensis* than to *C. gauchowensis* and *C. suaveolens*. We also found that *C. meiocarpa* and
346 *C. oleifera* were closely related. These findings are consistent with the current classification of these taxa (Jiang,
347 2017; Ni, 2007). *C. meiocarpa* and *C. oleifera* have been documented to hybridize. *C. meiocarpa* and *C. oleifera*
348 were shown to be genetically closely related via unweighted pair group method with arithmetic mean clustering, and
349 clear gene introgression associated with hybridization between these two species has been observed (Jia, 2015;
350 Zhang et al., 2022; Huang, 2013). According to chromosome ploidy analyses, *C. meiocarpa* is hexaploid (Zhang et
351 al., 2022), and *C. oleifera* ranged in diploid, tetraploid, hexaploid, or octaploid (Huang, 2013; Ye et al., 2020).
352 Polyploidy is the result of interspecific hybridization (Liu and Huang, 2009). The gene exchange associated with
353 interspecific hybridization between *C. meiocarpa* and *C. oleifera* might explain their high genetic similarity (Huang,
354 2013) and provides support for the taxonomic classification of *C. meiocarpa* and *C. oleifera* proposed by Zhang
355 (1981). Most researchers follow the classification proposed by Hu Xianmu, in which *C. meiocarpa* is considered an
356 independent *Camellia* species (Huang, 2013; Hu, 1957).

357 Sect. *Oleifera*, Sect. *Camellia*, Sect. *Paracamellia*, and Sect. *Furfuracea* did not form obvious clades in our
358 trees, and many of the branches within these groups were not highly supported. The taxonomic classification of
359 *Camellia* according to cpDNA data differs greatly from that based on morphological data (Lin et al., 2008; Shen et
360 al., 2008; Zhang et al., 2016; Ye, 1988). This indicates that there are limitations associated with phylogenetic studies
361 of *Camellia* based on cpDNA data. First, frequent hybridization and polyploidy of *Camellia* hinder its classification.
362 Second, the cpDNA is uniparentally inherited, and it is evolutionarily conserved. Sequence differences between
363 species are small, and the number of informative loci in the genome is not sufficiently high to permit the resolution
364 of phylogenetic relationships among closely related taxa (Liu et al., 2015).

365 The cpDNA in this study, along with the results of hybridization and chromosome ploidy analyses, provided
366 new insights into the evolutionary relationships among *Camellia* species, and this phylogeny is more robust than
367 those constructed based on single genes. The general topology of the cpDNA tree is consistent with the classification
368 of *Camellia* based on phenotypic data in this study (Wu et al., 2022). The publication of more nuclear genome
369 sequences and the use of more information from natural hybridization and chromosome structure variation will likely
370 provide further insights into the phylogenetic relationships among *Camellia* species.

371 **Conclusions**

377 In this research, the cpDNA of four *Camellia* species, *C. semiserrata*, *C. meiocarpa*, *C. suaveolens*, and *C.*
378 *osmantha*, were resequenced, assembled and annotated. We then analyzed the structure of the cpDNA of these four
379 *Camellia* species, as well as contractions and expansions of the IR boundary, nucleotide polymorphism, repeat
380 sequences and SSRs, codon bias, and clarified the phylogenetic relationships within *Camellia* based on hybridization
381 and chromosome information. Our data will aid future studies of the identification, phylogenetic relationships,
382 breeding, and sustainable development of germplasm resources of *Camellia* plants.

383 **Supplementary Material**

384 Supplementary Table S1: Phylogenetic analysis of 35 species;
385 Supplementary Table S2: RSCU analysis of amino acids in the cpDNA of four *Camellia* species;
386 Supplementary_data_S1: The aligned sequences of the 35 cpDNA;
387 Supplementary_data_S2: The aligned sequences of the 35 CDS;
388 Supplementary_data_S3: The aligned sequences of the 35 IRB region;
389 Supplementary_data_S4: The aligned sequences of the 35 LSC region;
390 Supplementary_data_S5: The aligned sequences of the 35 SSC region.

391 **Data Availability Statement**

392 The read sequences of *C. semiserrata*, *C. suaveolens*, *C. meiocarpa* and *C. osmantha* in this study were submitted to
393 the NCBI database under the BioProject ID PRJNA931566 (<https://www.ncbi.nlm.nih.gov/sra/PRJNA931566>) and
394 BioSample accessions numbers SAMN33062126, SAMN33062127, SAMN33062128, and SAMN33062129. The
395 GenBank accession numbers were as follows: ON367462, ON418963, ON418964, and ON418965.
396 The name of the plant species *C. osmantha* is referred to as ‘*Camellia* sp. XJ-2021’ in the NCBI database under the
397 GenBank accession number ON418963. The sequence information for *C. osmantha* was published by Ye CX, Ma JL
398 & Ye H. in Nanning, Guangxi, China, in 2012 (Ma et al., 2012). The information for ON418963 was uploaded to the
399 NCBI database.

400 **Acknowledgements**

401 We thank Xiaokeng Forest Farm (Shaoguan City, Guangdong Province, China) for providing plant materials. We
402 thank Guangzhou Nuosai Biotechnology Co., Ltd. for helping us complete chloroplast genome sequencing.

403 **Conflict of Interest**

404 The authors declare that the research was conducted in the absence of any commercial or financial relationships that
405 could be construed as a potential conflict of interest.

406 **Funding**

407 This research was funded by the Key-Area Research and Development Program of Guangdong Province, grant
408 number 2020B020215003, the Guangzhou Municipal Science and Technology Project, grant number 202201011754,
409 the Forestry Science and Technology Project of Guangdong Province, grant number 2023KJX006, and the
410 Department of Education of Guangdong Province, grant number 2021KQNCX032.

411 **References**

412 **State-owned forest farm and forest seedling work station of the State Forestry Administration. 2016.** Oil-tea
413 *Camellia* cultivars in China. Beijing: China Forestry Publishing House. pp1-10.

414 **Li J. X., Huang H. L., Zhao C. Y., He Y. M., Li B., Wu H.** 2011. Current situation and breeding direction of
415 *Camellia oleifera* cultivars in Guangdong Province. *Guangdong Agricultural Sciences*. 20: 34-35 (In Chinese). doi:
416 10.16768/j.issn.1004-874x.2011.20.072.

417 **Wang J. F., Tan X. J., Wu X. C., Li Q. P., Zhong Q. P., Yan C., Ge X. N.** 2020. China's oil tea industry
418 development status and countermeasures. *World forestry research*. 6: 80-85 doi: 10.13348/j.cnki.sjlyyj.2020.0103.y.

419 **Ma J. L., Ye H., Ye C. X.** 2012. *Camellia osmantha*—a new species of *Camellia* Sect. Paracamellia. *Journal of*
420 *Guangxi Botany*. 32(06): 753-755. doi: 10.3969/j.issn.1000-3142.2012.06.007.

421 **Liu Y., Xu Y., Jia X.** 2021. The complete chloroplast genome of *Camellia osmantha*, an edible oil *Camellia*.
422 *Mitochondrial DNA B Resour*. 6(11): 3169-3170. doi: 10.1080/23802359.2021.1987169.

423 **Chang H. T.** 1981. A Taxonomy of the Genus *Camellia*. Guangzhou: The editorial staff of the journal of Sun Yat-
424 sen University. 1-183.

425 **Min T. L., Zhang W. J.** 1996. Evolution and distribution of *Camellia*. *Plant Studies of Yunnan* 1. 1-13.

426 **Zhang Y. Z., Zhang K. C., Liao B. Y., Li Y. Q., Zhang M. Y., Li M. Q., Liang R. Y.** 2022. Genetic assessment of
427 Hybrid compatibility of *Camellia Oleifera* in Gaozhou based on mixed linear model I. *Study on economic forest*. 3:
428 1-13. doi: 10.14067/j.cnki.1003-8981.2022.03.001.

429 **Ye T. W., Yuan D. Y., Li Y. M., Xiao S. X., Gong S. F., Zhang J., Li S. F., Luo J.** 2021. Ploidy identification of
430 *Camellia hainanica*. *Scientia Silvae Sinicae*. 57(7): 61-69. doi: 10.11707 /j.1001-7488.20210707.

431 **Zhong N. Y., Yan D. F., Ke H., Liu X. K., Zhao H. J., Gao J. Y.** 2020. Study on interspecific cross-compatibility
432 between *Camellia azealea* and twenty-nine species of *Camellia*. *Journal of Anhui Agricultural Sciences*. 48(7): 140-
433 145,148. doi: 10.3969/j.issn.0517-6611.2022.07.039.

434 **Chang W. X., Yao X. H., Long W., Ye S. C., Shu Q. L.** 2016. Cross-compatibility of four kinds of *Camellia*
435 species. *Bulletin of Botanical Research*. 36(4): 527-534. doi: 10.7525/j.issn 1673-5102.2016.04.007.

436 **Zhou S., Zhu J. H., Xiao J. Z., Xiang G. H., Shi Y. F.** 2001. Experiment on distant hybridization breeding of
437 *Camellia oleifera*. *Non-wood Forest Research*. 19(1): 20-25. doi: 10.14067/j.cnki.1003-8981.2001.03.007.

438 **Yu Z. Y., Liu Y. J., Xu Y. F., Jia X. C.** 2022. Research progress on reproductive biology and hybrid breeding of
439 oil-camelia. *Chinese Journal of Tropical Agriculture*. 42(11): 44-49. doi: 10.12008/j.issn 1009-2196.2022.11.009.

440 **Tang C. Q., Qiu Z. X., Tan C., Qian Y. M., Chen X.** 2022. *Sorbus koehneana* (Rosaceae): Its complete
441 chloroplast genome and phylogenetic relationship with *S. unguiculata*. *Acta Horticulturae Sinica*. 3:641-654 (In
442 Chinese). doi: 10.16420/j.issn.0513-353x.2021-0040.

443 **Tian C. Y., Li Z. Y., Liu Q., Yu L. Q., Wu Z.** 2021. Comparison of chloroplast genome structure and phylogenetic
444 analysis of different Alfalfa species. *Journal of Chinese grassland*. 10: 1-8. doi: 10.16742/j.zGCDXB.20210115.

445 **Zhu B., Qian F., Wang X. S., Liu Y. L.** 2022. Phylogeny of Magnoliaceae based on chloroplast genome. *Journal of*
446 *Biology*. 3: 53-58. doi: 10.3969/j.issn.2095-1736.2022.03.053.

447 **Rogers, S. O., Bendich A. J.** 1989. Extraction of DNA from plant tissues. Berlin Germany: In Plant molecular
448 biology manual. Springer. pp73-83.

449 **Jin J. J., Yu W. B., Yang, J. B., Song Y., de Pamphilis C. W., Yi T. S., et al.** 2020. GetOrganelle: A fast and
450 versatile toolkit for accurate de novo assembly of organelle genomes. *Genome Biol*. 21(2): 241. doi:
451 10.1186/s13059-020-02154-5.

452 **Wick R. R., Schultz M. B., Zobel J., Holt K. E.** 2015. bandage: interactive visualization of de novo genome
453 assemblies. *Bioinformatics*. 31(20): 3350-2. doi: 10.1093/bioinformatics/btv383.

454 **Qu X. J., Moore M. J., Li D. Z., Yi T. S.** 2019. PGA: a software package for rapid, accurate, and flexible batch
455 annotation of plastomes. *Plant Methods*. 15: 50. doi: 10.1186/s13007-019-0435-7.

456 **Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S.,**
457 **Duran C., et al.** 2021. Geneious basic: an integrated and extendable desktop software platform for the organization
458 and analysis of sequence data. *Bioinformatics*. 28(12): 1647-1649. doi: 10.1093/bioinformatics/bts199.

459 **Greiner S., Lehwerk P., Bock R.** 2019. Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit
460 for the graphical visualization of organellar genomes. *Nucl Acid Res*. 47(W1): W59-W64. doi: 10.1101/545509.

461 **Chris M., Michael B., Schwartz J. R., Jody S., Alexander P., Edward R., Lior S. P., Inna D. 2000.** VISTA:
462 visualizing global DNA sequence alignments of arbitrary length. *Bioinformatics*. 16 (11): 1046–1047. doi:
463 10.1093/bioinformatics/16.11.1046.

464 **Amiryousefi A., Hyvönen J., Poczai P. 2018.** IRscope: an online program to visualize the junction sites of
465 chloroplast genomes. *Bioinformatics*. 34(17): 3030–3031. doi:10.1093/bioinformatics/bty220.

466 **Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., et al.**
467 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. *Molecular Biology and Evolution*. 34:
468 3299–3302. doi: 10.1093/molbev/msx248.

469 **Beier S., Thiel T., Münch T., Scholz U., Mascher M. 2017.** MISA-web: a web server for microsatellite prediction.
470 *Bioinformatics*. 33(16): 2583–2585. doi: 10.1093/bioinformatics/btx198.

471 **Kurtz S., Choudhuri J. V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R. 2001.** REPuter: the
472 manifold applications of repeat analysis on a genomic scale. *Nucleic Acids Research*. 29(22): 4633–4642. doi:
473 10.1093/nar/29.22.4633.

474 **Sharp P. M., Li W. H. 1987.** The codon adaptation index—a measure of directional synonymous codon usage bias,
475 and its potential applications. *Nucl Acid Res*. 15(3):1281-1295. doi: 10.1093/nar/15.3.1281.

476 **Kazutaka K., John R., Yamada K. D. 2017.** MAFFT online service: multiple sequence alignment, interactive
477 sequence choice and visualization. *Briefings in Bioinformatics*. 4: 1-7. doi: 10.1093/bib/bbx108.

478 **Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., et al. 2012.** MrBayes 3.2: Efficient bayesian
479 phylogenetic inference and model choice across a large model space. *Syst Biol*. 61: 539–542. doi:
480 10.1093/sysbio/sys029.

481 **Stamatakis A. 2014.** RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
482 *Bioinformatics*. 30: 1312–1313. doi: 10.1093/bioinformatics/btu033.

483 **Letunic I., Bork P. 2021.** Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and
484 annotation. *Nucleic Acids Research*. 49(W1): W293–W296. doi: 10.1093/nar/gkab301.

485 **Zheng Q., Tong Y. H., Kong Q. B., Feng S. L., Zhou L. J., Ding C. L., Chen T. 2022.** Chloroplast genome
486 characteristics and phylogenetic analysis of red Mountain Tea. *Journal of Sichuan Agricultural University*. 40(04):
487 574–582 (in Chinese). doi: 10.16036/j.issn.1000-2650.202202074.

488 **Dong L., Yin X., Huang B., Li T., Huang J. J., Wen Q. 2021.** The complete chloroplast genome of *Camellia*
489 *semiserrata* Chi. (Theaceae), an excellent woody edible oil and landscaping species in South China. *Mitochondrial*
490 *DNA Part B*. 6(10): 3013–3015. doi: 10.1080/23802359.2021.1976690.

491 **Tong Y. H., Zheng Q., Du X.M., Feng S. L., Zhou L., Ding C. B., Chen T. 2022.** Analysis of chloroplast genome
492 sequence of *Camellia polyodonta*. *Journal of Plant Resources and Environment*. 31(05): 27–36. doi:
493 10.3969/j.issn.1674-7895.2022.05.04.

494 **Chen J., Guo Y. J., Hu X. W., Zhou K. B. 2022.** Comparison of the chloroplast genome sequences of 13 oil-tea
495 camellia samples and identification of an undetermined Oil-Tea camellia species from Hainan province. *Frontiers in*
496 *Plant Science*. 12: 798–581. doi: 10.3389/fpls.2021.798581.

497 **Wang W.C., Chen S.Y., Zhang X. Z. 2018.** Whole-genome comparison reveals divergent IR borders and mutation
498 hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae: Olyreae). *Molecules*. 23(7): 1537. doi:
499 10.3390/molecules23071537.

500 **Li Q., Guo Q.Q., Gao Z., Li H. E. 2020.** Chloroplast genome characterization of Safflower *Camellia oleifera* from
501 Weining, Guizhou. *Acta Horticulturae Sinica*. 47(04): 779–787. doi: 10.1007/s12192-020-01117-w.

502 **Ding X. Q., Bi Y.Y., Chen J.T., Xiang S., Lian F.S., Li W. F., Zou S. G. 2022.** Analysis of the chloroplast genome
503 of *Camellia tienii*. *Jiangsu Agricultural Sciences*. 4: 1–8. doi: 10.15889 / j.issn.1002 – 1302.2022.23.005.

504 **Li W., Zhang C., Guo X., Liu Q., Wang K. 2019.** Complete chloroplast genome of *Camellia japonica* genome
505 structures, comparative and phylogenetic analysis. *PLoS ONE*. 14(5): e0216645. doi: 10.1371/journal.pone.0216645.

506 **Guisinger M. M., Chumley T. W., Kuehl J. V., Boore J. L., Jansen R. K. 2010.** Implications of the plastid
507 genome sequence of *Typha* (Typhaceae, Poales) for understanding genome evolution in Poaceae. *Journal of*
508 *Molecular Evolution*. 70(2): 149–166. doi: 10.1007/s00239-009-9317-3.

509 **Chen Y., Guo B. L., Yao L. M., Pan W. G., Zeng J. J., Lu Z. L. 2021.** Identification of *Camellia aureus* species
510 based on DNA barcoding. *Seed.* 40(02): 139-142. doi: 10.1186/s10020-021-00402-3.

511 **Wen B. B., Deng L., Ye X., He W., Liu J. J., Su H. 2017.** Application of DNA barcoding in the identification of
512 related *Camellia* species. *Guangdong Agricultural Sciences.* 44(01): 55-65. doi: 10.16768/j.issn.1004-
513 874x.2017.01.009.

514 **Dond L., Tian Q. Q., Huang B., Xu L. A., Wen Q. 2022.** Association analysis of economic traits with SSR markers
515 in *Camellia chekiangoleosa*. *Molecular Plant Breeding.* 20(14): 4710-4722. doi: 10.13271/j.mpb.020.004710.

516 **Tao N. Q., Zhang B., Liu X. K., Zhou H. D., Zhong N. S., Yan D. F., Zhang W. J. 2019.** Identification of 21 new
517 *Camellia* varieties using SSR markers. *Acta Botanica Sinica.* 54(01): 37-45. doi: 10.11983/CBB18019.

518 **Wang S. 2019.** Based on tea plant transcriptome SSR marker development and part of the plants of the genus
519 *Camellia* genetic diversity analysis. Master's Thesis, Nanjing: Nanjing agricultural university. doi:
520 10.27244/d.cnki.gnjnu.2019.000006.

521 **Zhang M. H., Zhang H. Q., Cai X. L., Wang H., Ye Y., Wu Y. 2018.** SSR analysis of genetic relationship of
522 *Camellia* germplasm resources. *Economic Forest Research.* 36(04): 130-134. doi: 10.14067/j.cnki.1003-
523 8981.2018.04.020.

524 **Yin X., Wen Q., Wang J. W., Li T., Ye J. S., Xu L. A. 2018.** Characterization of microsatellites in complete
525 chloroplast genome of the genus *Camellia* and marker development. *Molecular Plant Breeding.* 16(20): 6761-6769.
526 doi: 10.13271/j.mpb.016.006761.

527 **Yang J. B., Yang S. X., Li H. T., Yang J., Li D. Z. 2013.** Comparative Chloroplast Genomes of *Camellia* Species.
528 PLoS ONE. 8(8): e73053. doi: 10.1371/journal.pone.0073053.

529 **Gao Y. Q., Yan B. W., Zhao Y., Wang F., Dong J. J., He L., Zhao C. J., Li Z. T., Xu J. Y. 2018.** Transcriptome
530 analysis of *Suaeda salsa* and expression profiles of genes related to oil synthesis. *Chinese Journal of Oil Crop
531 Sciences.* 40(6): 801-811. doi: 10.7505/j.issn.1007-9084. 2018.06. 009.

532 **Ren G. P., Dong Y. Y., Dang Y. K. 2019.** Codes in codons: codon bias and fine regulation of gene expression.
533 *Science China: Life Sciences.* 49(07): 839-847. doi: 10.1360/ssv-2019-0103.

534 **Teng T., Zhao Y. C., Zhao D. G. 2021.** Analysis of genetic codon preference of *Camellia sinensis* var.
535 *niaowangensis*. *Genomics and Applied Biology.* 40(02): 795-801. doi: 10.13417/j.gab.040.000795.

536 **Zhao Y. M., Yang G. Q., Xu Q. B., Yin X., Xu L., Ding B. 2022.** Codon usage bias of chloroplast genome in *Acer
537 henryi*. *Journal of Fujian Agriculture and Forestry university (natural science edition).* 51(06): 792-799. doi:
538 10.13323/j.cnki.j.fafu(nat.sci.).2022.06.011.

539 **Zhou C. Z., Zhu C., Li X. Z., Fu H. F., Lai Z. X., Guo Y. Q. 2020.** Research progress of codon usage bias analysis
540 in tea plant. *Molecular plant breeding.* 18(05): 1480-1488. doi: 10.13271/j.mpb. 018.001480.

541 **Wang P. L., Yang L. P., Wu H. Y., Nong Y. L., Wu S. C., Xiao Y. F., Liu H. L. 2018.** Analysis of codon bias in
542 chloroplast genome of *Camellia oleifera*. *Journal of Guangxi Botany.* 38(02): 135-144. doi:
543 10.11931/guihaihua.gxzw201708001.

544 **Geng X. S., Jia W., Chen J. I., He C. F., Zhu Y. L., Liu Q. 2022.** Analysis of codon bias in chloroplast genome of
545 *Camellia aureus*. *Molecular plant breeding.* 20(07): 2196-2203. doi: 10.13271/j.m pb. 020.002196.

546 **Hao B. Q., Xia Y. Y., Ye H., Gan S. M., Ma J. L. 2022.** Analysis of codon bias in chloroplast genome of *Camellia
547 osmantha*. *Journal of Central South University of Forestry and Technology.* 42(9): 178-186. doi:
548 10.14067/j.cnki.1673-923x.2022.09.019.

549 **Jiang Z. D. 2017.** Based on the chloroplast DNA of plants of the genus *Camellia* molecular systematics and
550 biogeography of preliminary study. Master's Thesis, Zhejiang: Zhejiang university of technology.

551 **Ni S. 2007.** Research on phylogenesis Sect. *Camellia* in the genus *Camellia*. Master's Thesis, Nanjing: Nanjing
552 forestry university.

553 **Zhong N. S, Yan D. F, Ke H., Liu X. K., Zhao H. J., Gao J. Y. 2020.** Hybridization affinity between *C. azalea* and
554 29 native species of *Camellia*. *Journal of Anhui Agricultural Sciences.* 48(7): 140-145,148. doi: 10.3969/j.issn.0517-
555 6611.2020.07.039.

556 **Jia W. Q. 2015.** The *Camellia* reproductive biology and ploidy breeding basic research. Master's Thesis, Beijing:
557 Chinese forestry science institute.

558 **Wang X. J., Shi X. G., Li J. X., Ye C. X. 2004.** A new species *Camellia suaveolens* of Sect. *Furfuracea* Chang
559 from Guangdong China. *Journal of Sun Yat-sen University* (Natural Science Edition) 3: 129-130.

560 **Liang G. X., Liu K., Ma J. L., Chen G. C., Ye H., Jiang Z. P. 2017.** Molecular classification and identification of
561 *Camellia fragrans*. *Economic Forest Research*. 35(01): 26-29, 58. doi:10.14067/j.cnki.1003-8981.2017.01.005.

562 **Huang Y. 2013.** Population genetic structure and interspecific introgressive hybridization between *Camellia*
563 *meiocarpa* and *C. oleifera*. *Chinese Journal of Applied Ecology*. 24(08): 2345-2352. doi: 10.14067/j.cnki.1003-
564 8981.2017.01.005.

565 **Ye T. W., Li Y. M., Zhang Y., Gong Q. Y., Yuan D. Y., Xiao S. X. 2020.** Optimization of chromosome section
566 technique and karyotype analysis of *Camellia oleifera*. *Journal of Nanjing Forestry University* (Natural Science
567 Edition). 44(05): 93-99. doi: 10.3969/j.issn.1000-2006.202003022.

568 **Liu Y. F., Huang H. W. 2009.** The dynamics of gene flow and related adaptive evolution in plant populations. *Acta
569 Botanica Sinica*. 44(03): 351-362 doi: 10.3969/j.issn.1674-3466.2009.03.013.

570 **Hu X. X. 1957.** Chinese theaceae I. *Science Bulletin*. 6: 170.

571 **Lin X. Y., Peng Q. F., Lu H. F., Du Y. Q., Tang B. Y. 2008.** Leaf anatomical of *Camellia* Sect. *Oleifera* and
572 Sect. *Paracamellia* (Theaceae) with reference to their taxonomic significance. *Journal of Plant Taxonomy*. 46(2):
573 183-193 doi: 10.3724/SP.J.1002.2008.07057.

574 **Shen J. B., Lu H. F., Peng Q. F., Zheng J. F., Tian Y. M. 2008.** FTIR spectra of *Camellia* sect. *Oleifera*, Sect.
575 *Paracamellia*, and Sect. *Camellia* (Theaceae) with reference to their taxonomic significance. *Journal of Plant
576 Taxonomy*. 46(02): 194-204. doi: 10.3724/SP.J.1002.2008.07125.

577 **Zhang H. Y., Zong X. H., Wang X., Bai X. J., Liang S., Deng H. P. 2016.** Population structure and living
578 community characteristics of endangered *Camellia Luteoflora* Li ex H.T. *Plant Science Journal*. 34(4): 539-546. doi:
579 10.11913/PSJ.2095-0837.2016.40539.

580 **Ye C. X. 1988.** Taxonomy of *Camellia* and their relationship. *Plant Research of Yunnan*. 10(1): 61-67.

581 **Liu M., Zhang C. F., Huang J. X., Ma H. 2015.** Reconstruction of phylogenetic relationships among Asteraceae
582 (Asteraceae) subfamilies using low copy nuclear genes. *Acta Botanica Sinica*. 50(05): 549-564. doi:
583 10.11983/CBB15164.

584 **Wu Q., Tong, W., Zhao H., Ge R., Li R., Huang J., Li F., Wang Y., Mallano A. I., Deng W., Wang W., Wan X.,
585 Zhang Z., Xia E. 2022.** Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite
586 evolution of 116 *Camellia* plants. *Plant J.* 111: 406-421. doi: 10.1111/tpj.15799.

587