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Abstract 9 

The Calcium Sensing Receptor (CaSR) is very important in controlling the levels of calcium in 10 

the body by interacting with different types of G-protein. This receptor is highly conserved 11 

among other G-protein coupled receptors (GPCRs) and has been linked to disorders affecting 12 

the balance of calcium in the body, such as hypercalcemia and hypocalcemia. Although there 13 

has been progress in understanding the structure and function of CaSR, there is still a lack of 14 

knowledge about which specific residues are important for their function and how it differs from 15 

other receptors in the same class. In this study, we used phylogeny-based methods to identify 16 

functionally-equivalent orthologs of CaSR, predict the importance of each residue, and calculate 17 

specificity-determining position (SDP) scores to uncover the evolutionary basis of its function. 18 

Our results showed that the CaSR subfamily is highly conserved, with higher SDP scores than 19 

its closest receptor subfamilies. Residues with high SDP scores are likely to be critical in 20 

receptor activation and pathogenicity. We applied gradient-boosting trees with evolutionary 21 

metrics as inputs to predict the functional consequences of each substitution, and discriminate 22 

between gain and loss-of-function mutations those causing hypo- and hypercalcemia, 23 

respectively. Our study provides insight into the evolutionary fine-tuning of CaSR, which can 24 

help understand its role in calcium balance and related disorders. 25 

Introduction  26 

Calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor (GPCR) that 27 

maintains extracellular Ca2+ homeostasis by sensing calcium ions in the blood and regulating 28 

parathyroid hormone release and urinary calcium[1, 2] . The CaSR is activated by Ca2+ and L-29 

amino acids such as L-Phe and L-Trp as well as polyamines and polypeptides[3-5]. Ligands 30 

bind to the extracellular Venus flytrap (VFT) domain of the receptor-like the other class C 31 

GPCRs such as metabotropic glutamate receptors [6]. 32 
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Class C GPCRs are obligatory dimers, forming either homo or heterodimers [6]. CaSR forms a 33 

homodimer where each subunit is composed of an extracellular domain (ECD), comprising a 34 

bilobed (LB1, LB2) VFT and a cysteine-rich domain (CRD) connected to a heptahelical 35 

transmembrane (7TM) domain[3, 5]. 36 

Crystal structures of the ECD [4, 7] and cryo-electron microscopy structures of the full-length 37 

CaSR[3, 5, 8-10] reveal the structural basis for activation mechanisms and ligand binding sites. 38 

L-amino acid binding site at the interdomain cleft of LB1-LB2[3-5, 11-13] and multiple Ca2+ 39 

amino acid binding sites on the VFT domain are shown in the literature[3-5]. While Ca2+ is the 40 

composite agonist to the CaSR, L-amino acids promote the receptor activation along with the 41 

Ca2+, but they are not able to activate the receptor alone[14]. Even though Ca2+ alone 42 

activates the receptor in functional assays[14], whether it activates the CaSR in the absence of 43 

L-amino acid is still controversial[3, 5]. 44 

Variants in CaSR may cause malfunctions that result in Ca2+ homeostasis diseases in humans. 45 

More than 400 germline loss/gain-of-function mutations cause hypercalcaemic disorders, 46 

neonatal severe hyperparathyroidism (NSHPT) and the milder familial hypocalciuric 47 

hypercalcemia type-1 (FHH1) and autosomal dominant hypocalcemia type-1 (ADH1) 48 

respectively[2]. Many more CaSR variants are  anticipated to be identified as more population-49 

level genetic data become available[2]. Understanding the role of each residue in receptor 50 

structure and activation mechanisms could provide additional information about the likelihood of 51 

variant pathogenicity and CaSR signaling. The role of each residue in a receptor can be 52 

revealed by comparison of receptors in a family and between different families; however, the 53 

structure and complete activation mechanisms of many families in class C GPCRs are still 54 

unknown, especially G-protein coupled receptor family C group 6 member A (GPRC6A) and 55 

type 1 taste receptors (TAS1Rs; members 1,2 and 3) that are the closest subfamilies to CaSR. 56 

While all subfamily receptors of class C GPCRs share common domains and structural features, 57 

details of responding to different ligands and activating signaling pathways are diverse between 58 

even closely related receptors[6]. Gene duplication is the main mechanism that generates new 59 

protein functions across GPCRs. Protein families are evolved by speciation events following a 60 

gene duplication[15, 16]; thus sequence comparisons of members within a subfamily and 61 

between subfamilies can show the evolutionarily conserved domains as well as diverged protein 62 

sites that distinguish one subfamily from others. One challenge with this analysis is that 63 

excessive gene duplication events complicate the identification of functionally identical orthologs 64 

in a subfamily. Moreover, the conservation patterns in paralogs and distant homologs may help 65 
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inferring the specific roles of a single residue in protein function. Because the evolutionary 66 

pressure on the paralogs and close orthologues are not the same, allowed substitutions on 67 

paralogs may not be acceptable in close orthologues. Thus, using functionally identical 68 

orthologs in sequence comparisons is crucial to infer the role of each residue in a protein family. 69 

Here, we show the importance of each residue in CaSR by comparing it with the closely related 70 

subfamilies, GPRC6A and TAS1Rs. We identified all orthologues sequences in each subfamily 71 

by phylogenetic tree analysis. To obtain orthologues without requiring computationally 72 

expensive phylogenetic tree step, subfamily-specific profile HMMs are generated from the true 73 

orthologues in subfamilies that we determined by the phylogenetic tree analysis. We calculated 74 

a specificity score for each residue in a subfamily by calculating scores based on a modified 75 

version of PHACT[17] scores which considers independent evolutionary events on the 76 

phylogenetic tree while scoring the acceptability of an amino acid substitution. We predicted the 77 

functional consequence of each substitution in CaSR by using the gradient boosting trees 78 

machine learning approach. 79 

Results  80 

Evolutionary History of Class C GPCRs  81 

To reveal the evolutionary constraints on protein families, we developed to develop a strategy to 82 

precisely define a protein subfamily. Precise subfamily definition can be precisely accomplished 83 

by revealing the evolutionary history of the superfamily. Evolutionary history of gene families 84 

can only be established by reconstructing high-quality phylogenetic trees, which can be used to 85 

pinpoint gene duplication events. Discrimination between gene duplication and speciation nodes 86 

enabled us to define of the paralogous and orthologous protein sequences. We further analyzed 87 

the phylogenetic trees to classify the orthologous sequences that are likely equivalent in 88 

function. We used functionally-equivalent orthologs in comparative analyses between 89 

subfamilies, which eventually yielded subfamily-specific signatures that can be used to define 90 

that particular subfamily and its function. Finally, the association between the signature and 91 

function would enable a better understanding of specific molecular mechanisms and the effects 92 

of variants, particularly for the protein subfamily of interest. Here, we aim to reveal the 93 

signatures of the CaSR subfamily, that is implied in the specific function of calcium-sensing and 94 

downstream signaling. 95 

We have retrieved the complete proteomes of 478 species from the NCBI database. To identify 96 

proteins that belong to class C GPCR family, we performed searched profile HMM of the seven 97 

transmembrane domain profile (Pfam: 7tm_3) (Fig 1) against the proteomes. While this search 98 
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allowed us to retrieve the entire class C GPCRs hitting the hmm profile, it does not yield 99 

subfamily (22 human GPCRs) annotations. We performed scan profile HMM of the PfamA 100 

profile against to Class C GPCR to select canonical isoforms. We used seven-transmembrane 101 

domain only to assign subfamilies and trimmed the N-terminus region of this domain for further 102 

homology steps. To generate a general HMM profile for each subfamily, we first applied a Blast 103 

search using each human class-C as a query. For each subject, we blasted them against the 104 

human proteome. We retrieved the bidirectional best hits (Core subfamily assignment). 105 

 106 

 107 

Figure 1: Summary of the Methodological Framework. 478 complete proteomes were retrieved from NCBI 108 

database. Each sequence was searched by HMMsearch against Pfam 7tm_3 domain profile to retrieve all class C 109 

GPCRs. Domain architectures of class C GPCRs were determined by HMMscan against PFAM.A profile to identify 110 

canonical isoforms. Species-specific BLAST databases from TM domains of the canonical isoforms were built. Bi-111 

directional mutual best hits were detected by blasting each canonical sequence against the species databases (Core 112 

subfamily assignment). Core subfamily sequences were aligned and ML trees were built to make subfamily profile 113 

HMMs. By HMMsearch against subfamily profile HMMs other sequences in the subfamilies were found (Subfamily 114 

extension). Sequences in each subfamily were aligned and ML trees were built. Based on the ML trees paralogs were 115 

filtered and functionally identical groups were identified (FIG). 116 

For proteins that did not have bidirectional mutual best hits, we assigned them to a subfamily 117 

based on their homology search against the HMM profiles generated in the previous step 118 
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(Subfamily Extension). We produced maximum likelihood (ML) trees of extended subfamilies 119 

and filtered paralogous sequences to obtain functionally identical groups (FIGs). 120 

The CaSR subfamily produced over five thousand hits, which included vomeronasal and 121 

olfactory receptors that have never been shown to sense calcium. Previous research has shown 122 

that CaSR is classified in the pheromone/olfactory cluster of class C GPCRs[18] (18). In species 123 

that had multiple proteins assigned to the CaSR subfamily, we constructed a maximum 124 

likelihood tree using these hits and other human class C GPCR protein sequences. These trees 125 

revealed that a significant number of duplication events occurred in the species after the clade 126 

diverged from CaSR. As a result, we defined this diverged clade as a new subfamily named 127 

CaSR-likes. The sequences in this subfamily is unlikely to maintain calcium homeostasis, and 128 

therefore should not be annotated as calcium-sensing receptors. 129 

We selected representative sequences from different species for each subfamily of 22 different 130 

receptor subfamilies and 264 CaSR-like sequences and built a ML tree (Fig 1A). Also, we built 131 

the ML trees of all proteins from CaSR, GPRC6A, taste receptors and merged these trees to the 132 

representative tree of class C GPCRs (Fig 2 A). The resulting phylogeny shows that are five 133 

major clades: CaSR-related, GABA, mGluR, Orphans, and retinoic acid induced (RAIG). 134 

Orphan receptors, GPR158 and GPR179, formed a clade that was diverged from other 135 

receptors consistent with previous trees[19] and with 0.95 transfer bootstrap (TB) value. γ-136 

aminobutyric acidB receptors (GABBR1 and GABBR2) formed another clade diverged from 137 

GPR156 with 0.97 TB. γ-aminobutyric acidB receptors evolved earliest that have a common 138 

ancestor with the highest taxonomic rank (33213−Bilateria) compared to other subfamilies. 139 

CaSR group (CaSR, CaSR-likes, GPRC6A and taste receptors) was diverged from 140 

metabotropic glutamate receptors (GRM1-8) and RAIG receptors (GPRC5A, GPRC5B, 141 

GPRC5C, GPRC5D) with 1 and 0.98 TB values respectively. Within the CaSR group clade 142 

CaSRs and CaSR-likes were diverged from GPRC6A and taste receptors with 1 TB. Except 143 

TAS1R1 and TAS1R2, all CaSR group subfamilies have a common ancestor from taxonomy 144 

clade 7776-Gnathostomata. TAS1R1 and TAS1R2 were more specific than other CaSR group 145 

subfamilies that were evolved from 117571-Euteleostomi. Comparison analysis of branch 146 

lengths[20] among common species between CaSR, GPRC6A and taste receptors shows that 147 

CaSR subfamily is significantly more conserved than its closest subfamilies (Fig 2 B) 148 

The higher diversity of CaSR-likes relative to CaSRs is reflected in the ML tree (Fig 2A). Branch 149 

lengths of CaSR-likes are longer in contrast to shorter branch lengths in CaSR. Longer branch 150 

lengths show that more variation, and thus divergence occurred in the CaSR-like clade. 151 
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Moreover, extensive gene duplication events occurred in this clade. For instance, rodents such 152 

as Dipodomys ordii (taxid:10020),Octodon degus(taxid:10160) and snakes such as 153 

Notechis scutatus(taxid: 8663) have more than a hundred receptors that match to CaSR profile. 154 

However, these matches include type 2 vomeronasal receptors (V2R) and type 2 vomeronasal 155 

receptor likes. Among mammals, V2R genes exhibit significant variation. While dogs, cows, and 156 

primates except prosimians do not have functional V2Rs, rodents, reptiles and fish have 157 

multiple intact V2Rs[21].Since these receptors do not have functional orthologs in mammals, 158 

separating them from functionally-equivalent CaSRs is crucial. 159 

 160 

 161 
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 162 

Figure 2:  Evolution of Class C GPCRs. (A) The maximum likelihood phylogenetic tree of Class C GPCRs, 163 

spanning representative species from each subfamily is shown. Subfamilies are represented as circular layers around 164 

the ML tree. All twenty-two Class C GPCR subfamilies are shown in the inner circle. In addition to these subfamilies, 165 

vomeronasal and other orphan receptors are represented as CaSR-like receptors. All proteins in CaSR, GPRC6A 166 

and TAS1Rs are merged to this representative species tree. (B) Branch lengths from leaf to the root of the common 167 

species that exist in all CaSR, GPRC6A and TAS1Rs are taken from the subfamily trees. Welch's t-Test by using 168 

ggstatsplot package results are shown on the graph. 169 
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Subfamily-specific Profile HMMs to Obtain Orthologs  170 

In the class C GPCR family, gene duplication events give rise to new specificity, and each 171 

duplicated gene with a new function is evolved by further speciation events and produce a set of 172 

orthologous sequences[15, 16]. Each subfamily of class C shares relatively conserved 173 

membrane-spanning region as well as a degree of variability underling functional differences. At 174 

the molecular level, residues that are responsible for certain functional characteristics such as 175 

ligand and coupling selectivity are called specificity-determining residues[15]. Conservation 176 

analysis from multiple sequence alignments can be used to find residues that are conserved in 177 

all subfamilies through evolution as well as specificity-determining residues that are only 178 

conserved in a subfamily and differ in other subfamilies. However, the success of this method 179 

depends on the sequences that are used to build alignments. Hence, it is vital to use 180 

functionally identical orthologs in the analysis. 181 

The seven-transmembrane domains of class C GPCRs are used to build a class-specific 182 

general profile for this family (Pfam:7tm_3). However, this domain cannot be used to 183 

differentiate subfamilies further. 184 

Moreover, excessive gene duplication events as seen in the CaSR-like clade requires precise 185 

phylogenetic analysis to differentiate CaSR and CaSR-like sequences. Also, subfamily specific 186 

profile HMMs are shown to be promising methods to detect protein sequences belong to a 187 

protein subfamily, as well as separation of homologs and non-homologs [22, 23].Therefore, we 188 

built subfamily-specific profile HMMs that match with all orthologs of a subfamily while excluding 189 

closely related like sequences (Fig 3). 190 
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191 

Figure 3: Subfamily Specific HMM Models. Subfamily specific HMM model method. Based on the phylogenetic tree 192 

the target, the closest and the rest groups are determined. Representative amino acids in each group are selected, 193 

and their scores are calculated. Weights to scale the emission probability are calculated. 194 

We define the target family, its closest family (phylogenetic neighboring clade), and the rest 195 

based on the phylogenetic tree. We weighted the identity score of each amino acid to calculate 196 

the emission probabilities. The highest weight is given to the residues which are only conserved 197 

in the target subfamily; hence they differentiate one subfamily from the others. Minimum weight 198 

is given to the residues which are conserved both in the target subfamily and its closest clade. 199 

We tested our subfamily-specific profile HMMs’ performance on an independent sequences 200 

retrieved UNIPROT dataset[24] and not seen during the training process. We assigned 201 

sequences to their corresponding subfamilies by following the same steps as NCBI dataset[25] 202 

used to build these models. We selected new taxons that were not in the NBCI dataset as test 203 

sequences. Our subfamily-specific profile HMMs correctly hit all members of a subfamily while 204 

they do not hit any protein from another subfamily (Table 1).  205 

 206 

Table 1: Subfamily Specific Profile HMM’s Performance 207 

Subfamily HMM Test Cases Hits Missed 

CaSR 81 81 - 

GPRC6A 62 62 - 

TAS1R1 75 75 - 

TAS1R2 21 21 - 

TAS1R3 74 74 - 
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Specificity Determining Residues  208 

CaSR is distinguished from other subfamilies of class C GPCRs by its oversensitivity to many 209 

substitutions that are caused either gain or loss of function mutations, because it maintains 210 

systemic calcium homeostasis and highly sensitive to a very slight change in extracellular Ca2+ 211 

concentrations[26]. Since CaSR is the most conserved and ancestral subfamily among the 212 

CaSR-likes, GPRC6A and TAS1Rs, it is reasonable to expect in some positions can be under 213 

the relaxation of existing purifying selection in any CaSR-likes, GPCR6A or TAS1Rs, but not in 214 

CaSR. On the other hand, at some positions the same amino acid remains functionally 215 

important in both subfamilies, and at others a position remains important in each subfamily but a 216 

different amino acid is favored in each duplicate.  217 

To identify and order residues that differentiate a subfamily from its closest relatives, we 218 

employed multiple sequence alignment- and phylogenetic tree-based approaches. Specificity-219 

determining residues that are conserved in a subfamily, but differ from its sister clade can be 220 

predicted by directly comparing ancestral family sequences and calculating their divergence 221 

scores (26). However, using multiple sequence alignments only does not discriminate between 222 

the number of substitution event. For example, a single substitution event in the common 223 

ancestor of bony fish clade of CaSR subfamily can be inherited to multiple descendants’ 224 

sequences. Assessing this single event as independent events result in overcounting of these 225 

changes as if they are independent. Hence, the position is considered (i) to tolerate that 226 

particular amino acid and (ii) functionally less important. In contrast, a single evolutionary event 227 

might have been compensated by other substitutions in the same evolutionary node. Such a 228 

substitution might not be tolerated in the other clades of the subfamily. 229 

Another consideration to identify and order specificity-determining residues is treating 230 

substitution events on the phylogenetic tree unequally. When an amino acid in CaSR remains 231 

the same but can differ in the nearby subfamily, CaSR-likes, it indicates that the amino acid has 232 

a unique purpose for CaSR. The SDP score of such an amino acid must be high. If an amino 233 

acid is conserved in both CaSR and remote subfamilies like taste receptors but likely to be 234 

substituted in CaSR-likes, it suggests that the amino acid plays a common functional role in 235 

both CaSR and other subfamilies. For such an amino acid, the SDP score must be low, since it 236 

is not a specific position for CaSR.  237 

For CaSR group(CaSR, GPRC6A and TAS1Rs), we identified and order residues by specificity 238 

which differentiate a subfamily from others by using an adaption of functionally divergent 239 

residues method[27] along with an adaption of PHACT method[17]. We calculated probability of 240 
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each amino acid at each node of the CaSR-group phylogenetic tree by ancestral sequence 241 

reconstruction (Fig 4 A). Starting from the root of the tree, we identified each substitution event 242 

and at which subfamily node that event happened. Counting the number of independent 243 

substitution events in a subfamily clade and comparing the probability of the same substitution 244 

in other subfamily clades, we ordered the specificity-determining residues. We assumed that if 245 

an amino acid is allowed to change on sister subfamily nodes and poorly conserved in sister 246 

subfamily nodes while it is highly conserved on the target subfamily node, it is a specific residue 247 

to the target subfamily only. If a substitution event is observed on a clade close to the target 248 

node, we consider that event to increase specificity of a residue because it diverges the target 249 

group from its closest, sister clade. The details and the algorithm are given in materials and 250 

methods (Algorithm 3). 251 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2023. ; https://doi.org/10.1101/2023.06.11.544489doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544489
http://creativecommons.org/licenses/by-nc/4.0/


 12

 252 

 253 

Figure 4:Specificity Determining Position Scores. (A) Calculation of SDP scores uses the phylogenetic tree, 254 

probability distribution of amino acids at each ancestral node. (B) SDP score distributions of each subfamily are 255 

shown. (C)Cryo-EM structure of human CaSR bound with Ca2+and L-Trp (PDB:7DTV) and homology models of 256 
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GPRC6A, TAS1R1, TAS1R2 and TAS1R3 are colored based on SDP scores. Residues with high SDP score (above 257 

5.0) are shown as spheres. 258 

We calculated specificity scores for each CaSR, GPRC6A and TAS1Rs. Specificity score 259 

distributions show that CaSR subfamily have more specific residues compared to other 260 

subfamilies (Fig 4 B). On the VFT domain, specific residues are clustered different regions. We 261 

found a cluster of specific residues on the interdomain cleft between LB1-LB2 that is the L-262 

amino acid binding site in other class C GPCRs[3]. It suggests that this region is the primary 263 

Ca2+ binding site in CaSR consistent with[14]. We found two different clusters of specific 264 

residues on the ECD. First cluster was on the LB1 domain and on the LB1-LB1 dimer interface. 265 

LB1 domain plays a role in anchoring ligands and initiating domain twisting by conformational 266 

changes at the interface between LB1 regions[3, 5]. The second cluster was found at the 267 

cytosolic side of the LB2 and at the interface between LB2-CRD where Ca2+ ions are bind[3-5]. 268 

Interaction between LB2 subunits are required for CaSR activation that propagates to large-269 

scale transitions of the 7TMDs[3, 5]. Specific residues on the LB1 domain, LB1-LB1 dimer 270 

interface and LB2-CRD interface indicate that they provide the structural conformational 271 

changes upon ligand binding to the interdomain cleft. Mutations located on these regions are 272 

associated with loss and gain of function mutations (Fig 6)[2]. Other specific residues are found 273 

on the CR, ECL2 and TM domains. On the ECL2 acidic residues D758 and E759 are specific to 274 

CaSR. The intersubunit electrostatic repulsion between the ECL2 regions could facilitate the 275 

activation of CaSR[3, 5]. In the agonist+PAM bound state the ECL2 is moved by the interaction 276 

among E759, W590, and K601. Deletion of D758 and E759, and single mutations of K601E and 277 

W590E disrupts the CaSR activity, however ∆758–759 mutant was expressed at the cell surface 278 

with the comparable levels to that of WT, while W590E and K601E mutants were expressed on 279 

the cell surface lower than the WT level[3]. We found that residues W590 and K601 are not 280 

specific to CaSR. The TM domains of two protomers of CaSR come into close proximity upon 281 

receptor activation[5]. 282 

The orientation of the TM5-TM6 dimer in the CaSR distinguishes it from other Class C receptors 283 

such as mGluR and GABAB receptors, which results in its inactive conformation[9]. The 284 

interaction between TM4-5 of each subunit in the inactive state is essential[14], while the 285 

interaction between TM6-TM6 is crucial for the active state[3, 8, 14]. The structural findings and 286 

the presence of CaSR specific residues on each TM domain suggest that CaSR is specialized 287 

in both dimerization and ligand binding. Specific residues on TM domain guarantees the correct 288 

orientation for activation upon ligand binding and inactive conformation otherwise. Interactions 289 

between the domains and ligand-receptor are quite sensitive that slight changes cause 290 
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malfunctions in the receptor. On the other hand, GPRC6A and taste receptors are more prone to 291 

acceptable substitutions and they are not very specialized to respond a single ion. GPRC6A and 292 

taste receptors are activated by a broad spectrum of ligands[28, 29]. Even though the ligand of 293 

GPRC6A is controversial in the literature, multiple ligands such as osteocalcin (Ocn), 294 

testosterone, basic amino acids and cations such as L-Arg, L-Lys, L-Orn, calcium, magnesium, 295 

and zinc are suggested to bind GPRC6A[29]. Taste receptors bind to different ligands including 296 

sugar, L- and D-amino acids, sweet proteins, and artificial sweeteners[30]. 297 

On the TM region we also find CaSR specific cholesterol recognition/interaction amino acid 298 

consensus (CRAC) motif (L783,F789,S820) that is defined by the consensus (L/V)X1–5YX1–299 

5(R/K) and is often present at junctions between membrane- and cytosol-exposed domains and 300 

shown in GRM2 receptor[31]. Phylogenetic analysis shows that TAS1R3 evolved earliest (7776 301 

Gnathostomata) among TAS1Rs, TAS1R1and TAS1R2 subfamilies have common ancestor 302 

117571 Euteleostomi. TAS1R3 forms heterodimers with TAS1R1 and TAS1R2[28, 30, 32]. 303 

Interactions between the cytosolic terminus of the extracellular CRD is needed for T1R3 304 

dimerization. TAS1R1 and TAS1R2 recognize a broad spectrum of L-amino acids that bind to 305 

the intercleft between LB1-LB2 and induce the positional shift of the CRD regions, however 306 

T1R3 loses the corresponding function[32]. Our analysis showed that TAS1R1 have specific 307 

residues on LB1, LB2 and extracellular loop regions. Also, TAS1R2 has specific residues on 308 

LB1,LB2 and CR domains. On the other hand, in TAS1R3, we found specific residues only on 309 

the LB1 and one on the CR domain. Since LB1-LB2 domains create a cavity for ligand binding, 310 

specific residues on LB1-LB2 domains of TAS1R1 and TAS1R2 may contribute to domain 311 

transformation upon ligand binding. However, the number and distribution of specific amino 312 

acids suggest that taste receptors are not under selective pressure as CaSR. 313 

Gradient Boosting Trees Machine Learning Approach to Predict the Mutation Types in 314 

CaSR Because CaSR is a highly conserved subfamily, any substitution on the receptor disrupts 315 

the function of the receptor and causes either gain or loss of function mutations (Fig 3C). 316 

However, predicting the functional consequence of a substitution is challenging. Evolutionary 317 

conservation of a residue among subfamilies might reflect the common structural constraints, 318 

but it does not distinguish between loss and gain of function mutations (i.e., LoF and GoF, 319 

respectively). In addition, at some positions substitution to different amino acids causes either 320 

loss or gain of function mutations[21]. We hypothesized that “activating” mutations are more 321 

likely to be tolerated in the neighboring clades such as GPRC6A and TAS1Rs and not in CaSR 322 

whereas, in general, loss-of-function (inactivating) mutations are not tolerated in the larger clade 323 

of these receptor subfamilies. To test this hypothesis whether we can discriminate between GoF 324 
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and LoF mutations in CaSR, we applied a tree boosting machine learning algorithm, 325 

XGBoost[33] that linked multiple features such as conservation scores, physico-chemical 326 

properties of amino acids and domain information. 327 

We used sequence-based features, identity scores from multiple sequence alignments, physico-328 

chemical properties of amino acids, and domain information as input features to train our model 329 

(Fig 5 A). Since we calculated our feature values from the multiple sequence alignments, we 330 

divided our dataset into training, validation and test datasets before we created feature matrices 331 

to prevent information leakage. We performed 50 replications with different random splitting of 332 

datasets to obtain a more robust model performance. 333 

 334 

Figure 5: Gradient Boosting Trees Machine Learning Approach to Predict the Mutation Types in CaSR. 335 

(A)Model architecture. We used MSA of CaSR,CaSR-likes, GPRC6A and TAS1Rs to generate features as well as 336 

amino acid physico-chemical features and domain information. We performed 50 replications. (B) The performance 337 

and feature importance of XGBoost algorithm. AUROC and AUPR values of 50 replications are shown. Average AUC 338 

levels of 50 replications are 0.83 and 0.78 for the train and test respectively. Average AUPR levels of 50 replications 339 

are 0.93 and 0.9 for the train and test respectively. Contributions of Shapley values for type of pathogenicity 340 

classification to the model output for XGBoost. aa0:the amino acid found in the human CaSR,aa1:substituted amino 341 
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acid, AF: average flexibility, TMT: TM tendency, ZP: Zimmerman polarity, B:BLOSUM62,AWR:atomic weight 342 

ratio,TM:transmembrane domain 343 

Table 2: Model’s predictions for the new CASR gain and loss of function mutations from the literature. The correct 344 

predictions are indicated by a star symbol (*) next to them. 345 

Mutation Cause Prediction 

p.I857S[34] hypocalcemia gain-of-function* 

p.Y825F [35] hypocalcemia gain-of-function* 

p.P393R [36] hypercalcemia loss-of-function* 

p.C60G[37] hypercalcemia loss-of-function* 

p.D99N[38] hypercalcemia loss-of-function* 

p.T186N[39] hypocalcemia loss-of-function 

p.A840V[24] hypocalcemia gain-of-function* 

p.S448P[40] hypercalcemia loss-of-function* 

p.L696V[41] hypocalcemia gain-of-function* 

p.D433Y[42] hypercalcemia loss-of-function* 

p.S147L[43] hypercalcemia loss-of-function* 

p.D398N[44] hypercalcemia loss-of-function* 

p.K805R[45] hypercalcemia gain-of-function 

p.C60Y[46] hypercalcemia loss-of-function* 

p.S820N[47] hypocalcemia loss-of-function 

p.L606P[48] hypercalcemia loss-of-function* 

p.H41R[49] hypercalcemia gain-of-function 

p.A110D[50] hypercalcemia gain-of-function 

p.I139T[51] hypocalcemia gain-of-function* 

p.Q164R[52] hypercalcemia loss-of-function* 

p.T699N[53] hypercalcemia gain-of-function 

p.R701G[53] hypercalcemia loss-of-function* 

p.T808P[53] hypercalcemia loss-of-function* 
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 346 

The ROC and PR curves are used to understand the performance of a binary classifier that 347 

assigns each element of data into two groups. ROC curve is a graphical plot that shows the 348 

false positive rate versus the true positive rate for different threshold values between 0.0 and 1. 349 

A PR curve is a plot of the precision and the recall for different threshold values and it is useful 350 

for imbalance datasets. We used the areas under the ROC and PR curves (i.e., AUC and 351 

AUPR, respectively) to compare the performances of the model on the train and test datasets 352 

for 50 replications. Higher AUC and AUPR values are associated with better performance. AUC 353 

and AUPR over all replications were shown in (Fig 5 B). Our average AUC values for training 354 

and test among 50 replications are 0.83 and 0.78 (Fig 5 B). Our average main AUPR values for 355 

training and test among 50 replications are 0.93 and 0.9 respectively (Fig 5 B). After we 356 

reported our algorithm performance, we trained our algorithm with the whole dataset. We tested 357 

our algorithm with new test cases from literature (Table 2). Additionally, we categorized amino 358 

acids that are observed in the CaSR MSA as neutrals. To date, no pathogenic substitution has 359 

been reported in the literature for these amino acids that we identified as neutral. We visualized 360 

all predictions in the form of a heatmap for every other amino acids at each position until the 361 

disordered region (position 892) of the human CaSR (Fig 6 A). We mapped known CaSR loss 362 

and gain of function mutations on the cryo-EM structure of human CaSR bound with Ca2+ and L-363 

Trp (PDB:7DTV (3)) (Fig 6 B). There is a tendency that loss-of-function mutations are on the 364 

outer-core regions, while gain-of-function mutations are on the inner-core regions. In the 365 

heatmap we observed a similar prediction pattern that gain-of-function predictions are mostly in 366 

the inner-core regions. SHAP (SHapley Additive exPlanations) values provide a way to decode 367 

the inner workings of a machine learning model like XGBoost. These values calculate the 368 

average contribution of each feature to the overall prediction, taking into account any 369 

interactions between the features. Based on the SHAP values, the conservation scores of 370 

human CaSR amino acids in other subfamilies play a significant role in the model's prediction, 371 

as shown in Figure 5B. If the amino acid is also conserved in GPRC6A and taste receptors (in 372 

fact conservation score in TAS1R3 has the highest contribution), the model predicts a 373 

substitution of that amino acid as loss-of-function. Another important feature is the domain of the 374 

amino acid. Our findings indicate that if the amino acid is located in the TM domain, a 375 

substitution would result in a gain-of-function mutation.It is known that the majority of gain of 376 

function mutations are located in the TM domain, as shown in Figure 6B. The presence of 377 

certain amino acids on the TM domain of CaSR suggests that they play a crucial role in its 378 

activation mechanism. Even though substituting those amino acids might be acceptable in 379 
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GPRC6A and taste receptors, they might lead to the lock of TM domains and result in the 380 

overactivation of CaSR. 381 

 382 

Figure 6: All Possible Amino Acid Substitution Predictions. (A)Visualizing the precision of our XGBoost model. 383 

The heatmap displays the XGBoost model's predictions for each of the 20 amino acids at every position except 384 

disordered regions (892-1078) within the human CaSR. (B) Mutations on human CaSR structure. Loss and gain of 385 

function associates mutations are shown on the cryo-EM structure of human CaSR bound with Ca2+ and L-Trp 386 

(PDB:7DTV) as blue and red spheres respectively. 387 

Discussion  388 

In this study, we showed the evolution of CaSR by developing a methodology in precisely 389 

defining functionally equivalent orthologous sequences across species and therefore 390 

subfamilies. We built a high-quality phylogenetic tree of CaSR with its closest subfamilies, 391 

GPRC6A and TAS1Rs. Statistical analysis of branch length distances from this phylogenetic 392 

tree showed that CaSR is evolutionarily more conserved compared to GPRC6A and TAS1Rs. 393 

While GPRC6A and taste receptors can bind to a diverse range of ligands and able to tolerate 394 

substitutions at most of the positions, CaSR requires a delicate balance for proper functioning.  395 

High evolutionarily conservation and specificity of CaSR in contrast to closest subfamilies are 396 

reflected in specificity determining position (SDP) score analysis. CaSR has specific residues 397 

clustered on different regions of the receptor. They are located on Ca2+ and L-Trp binding sites 398 
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on the VFT, as well as on the dimerization sites between two sub-units of the homodimer. 399 

Specific residues on the dimer interfaces indicate that dimerization maintained by interactions 400 

between different subunits is required for ligand binding and correct activation of the CaSR. 401 

Ca2+ ions binding and interactions between LB2-CR domains and conformational changes in 402 

LB1 domain were suggested that they are required to activate CaSR[3-5]. Mutational analysis at 403 

some positions on LB1 domain have been shown to reduce the effect of Ca2+-stimulated 404 

intracellular Ca2+ mobilization in cells[3, 5]. In contrast, substitutions caused negative charge 405 

neutralization on the ECL2 result in prompting the activation of CaSR[5]. Our results suggest 406 

that residues with low SDP scores on any domain are required for common activation 407 

mechanism since they are conserved across functionally different receptor subfamilies. 408 

However, residues with high SDP scores cause malfunctions in the CaSR. Any substitution in a 409 

residue with high SDP score might either cause over or less activation. Deep mutational 410 

scanning approaches or new methods that simultaneously profile variant libraries[54] are 411 

needed to provide further evidence to functionally assay all possible missense mutants.  412 

To predict the functional consequence of a mutation in human CaSR, we used Extreme 413 

Gradient Boosting (XGBoost) method. XGBoost is able to perform well on small datasets by 414 

incorporating variety of regularization methods to control the model complexity, which helps to 415 

prevent overfitting. We have a small and unbalanced dataset in that the number of gain-of-416 

function mutations was very low, therefore it is prone to overfit. To prevent overfitting while 417 

achieving high predictive performance, we used a simple method along with regularization 418 

parameters. Moreover, we tried to keep the ratio between the number of loss-of-function and the 419 

number of gain-of-function mutations for training and test sets as close as possible. To get a 420 

robust performance, we repeated the train-validation-test splitting procedure fifty times. To 421 

increase the predictive performance, we could use a more complex methods such as deep 422 

learning, however they require larger datasets. Studies that used deep learning or ensemble 423 

methods for similar assessment are different in terms of prediction in which they predict the type 424 

of a mutation as only pathogenic or neutral [55-58]. Even though there are number of mutations 425 

of human CaSR in the Clinvar, the functional consequences of most of them are not known.  426 

Given the constraints of the small dataset and limited additional data, we carefully selected and 427 

processed the features for our model’s training. Features that are used to train a machine 428 

learning model heavily determine the performance of the model. The more features we use, the 429 

more information the model has to learn from, which can lead to improved predictive 430 

performance. However, having too many features can also lead to overfitting. Moreover, the 431 

quality of the features is more important than the quantity. One important evolutionary process 432 
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that can affect the functional consequence of a substitution is co-evolution. From the multiple 433 

sequence alignment of CaSR proteins, we manually selected six 434 

positions,p.180,p.212,p.228,p.241,p.557 and p.883, that are in our dataset and co-evolved. We 435 

masked the co-evolved amino acids from the MSA and performed train-validation-test splitting 436 

procedure fifty times again. Our average AUC values for training and test among 50 replications 437 

were 0.83 and 0.77 respectively, and average AUPR values were 0.93 and 0.89. Despite not 438 

experiencing an improvement in performance, we found that the amino acid changes p.I212T, 439 

p.F180C, and p.I212S were now predicted to cause loss of function, contrary to their previous 440 

prediction of causing gain of function. We cannot accurately assess the impact of co-evolution 441 

on performance because there is a lack of effective tools for identifying co-evolved positions and 442 

our dataset contains only a limited number of co-evolved positions, but we anticipate that it is an 443 

important feature to differentiate gain and loss of function.  444 

We built subfamily-specific profile HMMs to get all functionally-equivalent orthologs while 445 

excluding other proteins. To generate these HMM models, we manually decided target, closest 446 

and rest groups based on the phylogenetic tree of CaSR group. Based on the nature of a 447 

phylogenetic tree, selection of these groups is changed, so that this process can be further 448 

automated. We did not anticipate our specific models to match any receptor from other classes 449 

of GPCRs, since they are evolutionarily more distant to CaSR group. We expect that our 450 

subfamily specific profile HMMs can be used to obtain orthologs in different protein families for 451 

the upcoming genomes. They can be particularly useful for studying protein families with many 452 

duplications and orphan protein families, where it can be difficult to identify true members. 453 

These models are particularly important to avoid computationally expensive and expertise-454 

required phylogenetic tree reconstruction and analysis.  455 

Materials and methods  456 

Class C Proteins and Their Domain Architectures  457 

478 complete eukaryotic proteomes were downloaded from NCBI genomes website(https : //f 458 

tp.ncbi.nlm.nih.gov/genomes/archive/old ref seq/) in 2018. hmmsearch of HMMER 459 

software[59](http://hmmer.org/) was run for each proteome against Pfam 7TM3 profile[60]. 460 

Sequences with significant 7TM3 hit based on hmmsearch results (above the default threshold) 461 

were compiled from proteomes. hmmscan of HMMER software[59]( http://hmmer.org/) was run 462 

for these sequences against Pfam-A 32.0 database[60]. Based on the results of hmmscan, the 463 

longest isoform was taken and saved in a separate file named by taxonomic id, however 464 

canonical sequences were obtained for human (based on given canonical proteins in UniProt 465 
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website[61]). Because plants do not have GPCRs, plants were eliminated from the analysis. For 466 

single isoform sequences of each proteome a BLAST database was built[62].  467 

Subfamily Definition and Subfamily Specific Models  468 

Each protein sequence of each taxon was queried through BLASTP against each prepared 469 

BLAST database[62]. reciprocal mutual best hits of each human class C GPCR were collected 470 

in a file named gene id. reciprocal mutual best hits of each class C GPCR and remaining human 471 

class C GPCRs were collected and 7TM domains of these sequences were taken based on 472 

hmmscan results (Longest sequence which hit the 7TM3). Sequences were aligned using 473 

MAFFT v7.221 E-INS-I algorithm with default parameters[63]. Maximum likelihood based 474 

phylogenetic tree (ML tree) of each subfamily of class C GPCR was built using RAxML version 475 

8.2.12 with automatic protein substitution model selection (PROTGAMMAAUTO) and 100 rapid 476 

bootstrapping parameters[64]. Most common lowest taxonomic level was added to the 477 

phylogenetic tree with ETE toolkit[65]. Based on the phylogenetic tree, sequences belong to the 478 

corresponding subfamily were taken and an profile HMM was built. Subfamily Assignment The 479 

process begins by scanning each sequence with a 7TM3 domain against profile Hidden Markov 480 

Models (profile HMMs). After the sequence is scanned, the subfamily is determined based on 481 

three conditions: (1)The maximum score value of the hmmscan must belong to the given 482 

subfamily. (2) E-value is a measure of the significance of a match in a database search and the 483 

lower the E-value, the more significant the match is. The E-value of the sequence must be the 484 

lowest. (3)The sequence must belong to the most common highest taxonomic level of the given 485 

subfamily. Taxonomic level refers to the classification of an organism within a biological 486 

classification system. If a sequence meets these three conditions, it is assigned to the 487 

corresponding subfamily. After this, the full length sequences of each subfamily were then 488 

aligned using the MAFFT v7.221 algorithm[63] and trimmed using the gappy-out method of the 489 

trimAl tool[66]. 490 

Paralog Filter  491 

There were a number of duplications in CaSR subfamily. For example, Dipodomys ordii has 116 492 

CaSR sequences. To reduce the number of seqeunces,human CaSR and other human class C 493 

GPCR proteins sequences compiled with CaSR seqeunces of each taxon, and and aligned with 494 

MAFFT v7.221 auto algortihm[63], and the gappy-out method of the trimAl tool was used to trim 495 

the multiple sequence alignments (MSA)[66]. ML tree was built using RAxML-NG v0.9.0 with ML 496 

tree search and bootstrapping (Felsenstein Bootstrap and Transfer Bootstrap) parameters[67]. 497 

Based on the ML tree, proteins that were diverged from the common ancestor of the human 498 
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CaSR clade were classified as CaSR-likes. Proteins that were clustered with the human CaSR 499 

were accepted as CaSRs. After we assigned all proteins to their subfamilies, we built final ML 500 

trees for CaSR,GPRC6A, and TAS1Rs. We added human CaSR sequence was added to 501 

GPRC6A and TAS1Rs subfamilies, and human GPRC6A sequence was added to CaSR 502 

subfamily as an outgroup. We aligned each subfamily sequences with MAFFT v7.221 einsi 503 

algortihm[63] and built the ML trees by using RAxML-NG v0.9.0 with FTT model parameter[67]. 504 

We labeled the duplications at each node on the ML trees. Based on the duplications, we 505 

manually checked the trees and removed a clade that was a subset of its sister clade by using 506 

ETE toolkit[65]. We took each branch and node length from leaf to root of the tree by using 507 

common species in all CaSR, GPRC6A and taste receptor trees to calculate subfamily 508 

conservation by using Welch's t-Test by using ggstatsplot package[20]. 509 

Subfamily Specific Profile HMMs  510 

[63].After we took all receptors from CaSR, CaSR-like, GPRC6A, and taste receptors, we 511 

aligned them by using MAFFT v7.221 auto algortihm[63]. For each subfamily we removed the 512 

positions from the multiple sequence alignment (MSA) that correspond to a gap in the human 513 

receptor. Then, we divided the MSA into subfamily alignments. We generated a HMM from the 514 

gap removed alignment of each subfamily, and we added weight to the emission probabilities of 515 

the HMMs. To calculate emission probability weights, based on the maximum likelihood 516 

phylogenetic tree (ML tree) we defined the target, the closest and the rest groups. We took the 517 

closest node as the closest group and other nodes as the rest. According to that we have five 518 

different scenarios: 519 

• CaSR is the target group, CaSR-likes are the closest group, and GPRC6A and taste 520 

receptors, (TAS1Rs) are the rest. 521 

• GPRC6A is the target group, TAS1Rs are the closest group, CaSR and CaSR-likes are 522 

the rest. 523 

• TAS1R1 is the target group, TAS1R2 is the closest group and TAS1R3 is the rest. 524 

• TAS1R2 is the target group, TAS1R1 is the closest group and TAS1R3 is the rest. 525 

• TAS1R3 is the target group, TAS1R1 and TAS1R2 are the closest group and GPRC6A 526 

is the rest. 527 

ALGORITHM 1: REPRESENTATIVE AMINO ACID AND INITIAL SCORE FOR POSITION “K” 

 Input: Representative amino acid of target subfamily, ��; the frequency of �� in the 

target, ��; the most frequent amino acid of subfamily i, (i=1,...,N) and its frequency, ��, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2023. ; https://doi.org/10.1101/2023.06.11.544489doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544489
http://creativecommons.org/licenses/by-nc/4.0/


 23

��, respectively;  the number of subfamilies in close and rest groups, �� and ��, 

respectively; conservation threshold for target and close/rest groups, ���� and ����; the 

threshold for Blosum scores, �����	.  

 STEP 1: Choose representative amino acid and related frequency for each group 

1 for 	 
 ��, �� 
2      if �
 � 1 

3           �
 � �� where k is the subfamily in group j 

4           �
 � �� 

5      else  

6           if ��  
 ��
 , 	 � 1, . . . , �
� 
7               �
 �  ��  

8               �
 �  �� where k is the subfamily with the most frequent amino acid is �� 

9          else  

10               �
 � �� where k is group with highest frequency  

11 
             �
 � ∑ 
�

��
���

��
 

 STEP 2: Assign position type and initial score to position “k” 

 Category 1 

12 if �� � �� and they are gap 

13      if �� is gap 

14           ����� � �� 

15           ������ � �
∑ �� ��	
,�,
�

 

16      else 

17          ����� � � 

18          ������ � ∑ �� ����,�,��  

 Category 2 

19 else if �� is gap 
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20      if �� is gap or �� is gap 

21           ����� � �� 

22           ������ � �
∑ �� ��	
,�,
�

 

23      else 

24          ����� � � 

25          ������ � ∑ �� ����,�,��  

 Category 3 

26 else if ��  � �� � �� 

27      if �� , �� and �� are not gaps 

28           if �� � ���� and    �� , �� � ���� 

29               ����� � � 

30               ������ �  ∑ �� ����,�,��  

31           else if ������ �� , ��! " �����	 and ������ �� , ��! " �����	 

32               ����� � � 

33               ������ � ∑ �� ����,�,��  

34           else 

35                ����� � �# 

36                ������ � ∑ �� ����,�,��  

37      else if �� is gap 

38          if    �� � ���� and    �� � ���� 

39               ����� � � 

40              ������ � ∑ �� ����,�,��  

41         else if ������ �� , ��! " �����	 

42              ����� � � 

43             ������ � ∑ �� ����,�,��  

44        else 

45             ����� � �# 
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46            ������ � ∑ �� ����,�,��  

47      else if �� is gap 

48           if �� � ���� and    �� � ���� 

49               ����� � � 

50               ������ � ∑ �� ����,�,��  

51           else if ������ �� , ��! " �����	 

52                ����� � � 

53               ������ � ∑ �� ����,�,��  

54           else 

55                ����� � �V 

56                ������ � ∑ �� ����,�,��  

 Category 4 

57 else if �� � �� 

58           ����� � �� 

59           ������ � �
∑ �� ��	
,�,
�

 

 Category 5 

60 else if ��  � �� and �� � �� 

61       if �� is gap 

62               ����� � ��� 

63               ������ � ∑ �� ����,�,��  

64      else  

65           if ������ �� , ��! " �����	 and    �� � ���� 

66               ����� � ��� 

67               ������ � ∑ �� ����,�,��  

68           else 

69               ����� � �� 
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70               ������ � �
∑ �� ��	
,�,
�

 

 Category 6 

71 else if ��  � �� and �� � �� 

72       if  �� � ���� and �� , �� � ���� 

73            ����� � � 

74            ������ � ∑ �� ����,�,��  

75      else if ������ �� , ��! " �����	  

76            ����� � � 

77            ������ � ∑ �� ����,�,��  

78      else 

79           ����� � �� 

80           ������ � �
∑ �� ��	
,�,
�

 

ALGORITHM 2: COMPUTE WEIGHT FOR ALL POSITIONS 

 Input: Types for each position k (k=1,…,K), �����; initial score for each position k of 

type t, ������
� ; number of type i positions, �� where �� $ �� $ �� $ �� � %; a predefined 

constant value as max weight of Type II positions, ��. 

 Weight of Type I positions 

1 for �� � 1: �� 

2      '�()����
� 	������

�

������,…,���	�����
��

 

 Weight of Type IV positions 

3 for �� � 1: �� 

4      '�()����
� 	������

�

� !���,…,��"	�����
�#

����*'�()����
+

�� ���,…,���
 

 Weight of Type III positions 

5 for �� � 1: �� 

6      if target is CaSR 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2023. ; https://doi.org/10.1101/2023.06.11.544489doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.11.544489
http://creativecommons.org/licenses/by-nc/4.0/


 27

7 
         �� � ���"%��&'���#

�� �	�,…,���

�
 

8     else 

9          �� � min*'�()����
+

�� ���,…,���
 

4      '�()����
� 	������

�

� !���,…,��"	�����
�#

�� 

 Weight of Type II positions 

7 for �� � 1: �� 

8           '�()����
� 	������

�

� !���,…,��"	�����
�#

�� 

 528 

Subfamily Specific Position Scores  529 

From the alignment we used to make subfamily specific profile HMMs, we randomly selected 530 

264 CaSR like sequences (same number of sequences as CaSRs) and took all CaSR (264 531 

proteins), GPRC6A (242 proteins) and TAS1Rs (TAS1R1 has 210, TAS1R2 has 173 and 532 

TAS1R3 has 273 proteins). We built an ML tree by using IQ-TREE multicore version 2.0.6[68] 533 

with automatic model selection[69] (-m MFP) and ultrafast bootstrap[70] (-bb 1000) parameters. 534 

For CaSR, GPRC6A, and TAS1Rs, we removed the positions from the multiple sequence 535 

alignment that correspond to a gap in the human receptor respectively. By using gap removed 536 

alignments and the ML tree, we did ancestral sequence reconstructions for each subfamily with 537 

IQ-TREE multicore version 2.0.6 with -m JTT+R10 model parameter[68]. We showed specific 538 

residues that have a SDP score higher than 5, on the structures. We used cyro-EM structure of 539 

CaSR (PDB:7DTV) and Swiss models[71] for GPRC6A and taste receptors since they do not 540 

have experimental structures. To visualize structures and residues we used UCSF Chimera 541 

tool[72].  542 

We calculated SDP scores by a method extended from[27] by considering the phylogenetic 543 

trees and a phylogeny-based scoring approach, adjPHACT, based on the methodology of 544 

PHACT algorithm. The details of how we compute SDP score for any position k can be found in 545 

Algorithm 3. PHACT computes the tolerance for each amino acid for the query specie which is 546 

human by using a tree traversal approach. By checking the probability differences, PHACT 547 

detects the location of amino acid substitutions and compute weighted summation of positive 548 

probability differences based on the distance between the node of change and human. On the 549 

other hand, here we aim to determine the acceptability of each amino acid per subfamily. To 550 
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achieve this, we modify PHACT by starting the tree traversal from the root node and eliminating 551 

the node weighting approach. At the end, we have a probability distribution per position for each 552 

subfamily which is computed by considering the independent events. Again, we determine the 553 

representative amino acid for target subfamily by picking the most frequently observed amino 554 

acid and its adjPHACT score. For the remaining subfamilies, we keep the adjPHACT score of 555 

the representative amino acid of the target. Then, similar to [27] we check whether the same 556 

amino acid is conserved across all subfamilies. On the other hand, our approach differentiates 557 

from[27] in terms of considering multiple subfamilies and using adjPHACT scores which employ 558 

phylogenetic trees and ancestral reconstruction probabilities. In our approach, we compute the 559 

contribution of each subfamily to the SDP score by checking whether the representative amino 560 

acid of target has a high adjPHACT score in that subfamily (line 1). In the final SDP score for 561 

any position k is computed by considering the distance between target and other subfamilies 562 

(which is computed by considering the distance between root nodes), the conservation level of 563 

the target subfamily in terms of independent amino acid alterations and the individual score 564 

coming from each subfamily (line 3). 565 

ALGORITHM 3: SDP SCORE FOR POSITION “K” 

 Input: Amino acid with the highest adjPHACT score in the target group, aa; the 

adjPHACT score of aa for target, /((
� ; adjPHACT score of aa for other subfamilies 

i=1,…,n, /((
� ; distance between target subfamily and subfamily i, 0�. 

1 Compute score for each subfamily i, 

 �� � exp 1! 4 exp*/((
� +. 

2 The overall weight,  

 5 � 1 4 max*/((
� +. 

3 The SDP score for position k, 

 

�7/ � /((
� $  5 89 17�

��

�

�)�

:
*��




 

Evolution of Class C GPCRs  566 

We selected representative sequences from different taxonomic levels for each subfamily and 567 

264 CaSR-like sequences. We aligned them with MAFFT v7.221 einsi algorithm[63]. We built 568 

the ML tree by RAxML-NG-0.9.0 with the model JTT and transfer bootstrap expectation –bs-569 
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metric fbp, tbe parameters[67]. We merged the ML trees of CaSR, GPRC6A and taste receptors 570 

by checking clades by using ETE toolkit [65]. 571 

Machine Learning  572 

Dataset and Feature Preparation  573 

To predict the consequence of a substitution in human CaSR, we used a gradient boosting-574 

based machine learning algorithm, XGBoost[33]. We used XGBoost library for R[73] to train our 575 

model. We selected total of 337 loss and gain-of-function mutations from the literature[2] to train 576 

our model. Since we used conservation scores as features to train our model, we divided 577 

subfamily alignments and mutations randomly as 80% training and the remaining 20% test data 578 

before creating feature matrices to prevent information leakage. 25% of the training data was 579 

randomly picked as the validation data five times for cross validation. For each dataset split we 580 

used the sklearn train test split model with stratify option to keep loss-of-function to gain-of-581 

function ratio almost the same in the datasets[74]. We calculated the conservation score of the 582 

reference amino acid and the substituted amino acid in human CaSR in each subfamily. The 583 

reference and the substituted amino acids were represented BLOSUM62 encoded matrices. 584 

Amino acid physico-chemical feature values Zimmerman polarity[75], average flexibility[76], 585 

Dayhoff[77], average buried area[78], Doolittle hydropathicity[79], atomic weight ratio[80], 586 

molecular weight, and bulkiness[75] from ProtScale database[81]; and domain information of 587 

the reference amino acid were used as other features. We normalized the physico-chemical 588 

feature values prior to model training. We repeated the whole random dataset splitting and 589 

feature preparation procedure 50 times to obtain more robust results. 590 

Model Selection and Parameter Tuning  591 

We picked the model parameters for each replication by applying a 5-fold cross-validation 592 

technique on the training set. We tuned the model parameters step-by-step using the same 593 

validation sets for each parameter to decrease the time complexity. We used the following order 594 

of model parameters, so that the parameter that has the highest impact on model outcome was 595 

tuned first: Eta and nrounds, gamma, maxdepth, subsample, colsample bytree, min child 596 

weight, lambda, alpha. We selected the maxdepth as 2, the minimum maxdepth value to 597 

prevent overfitting. We chose eta, gamma, colsample bytree, subsample, min child weight from 598 

the sets 0.00001,0.00002,..., 0.001,0,0.1,0.2,...,0.5, 0.5,0.55,...,1, 0.5,0.55,...,1, 1,2,...,6 599 

respectively. We selected regularization parameters lambda and alpha from the set 0, 1e-4, 1e-600 

3, 1e-2, 1e-1, 1, 10, 100. We set nrounds parameter as 200.  601 
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Performance Metrics  602 

We used the area under the receiver operating characteristic curve (AUROC) and the area 603 

under the precision-recall curve (AUPR) to evaluate the performance of our prediction model. 604 

AUROC and AUPR are performance measures that are widely used to evaluate the 605 

performance of binary classification problems. The higher the AUROC and AUPR, the better the 606 

model distinguishes classes. To understand how our model makes predictions, we used SHAP 607 

(SHapley Additive exPlanations) values. SHAP values provide an estimate of the contribution of 608 

each feature to the prediction made by the model[82]. We calculated SHAP values for our final 609 

model trained by all samples by using R shapviz package[83]. 610 

Predictive Performance  611 

After we evaluated the performance of our machine learning algorithm over 50 replications, we 612 

used the whole dataset to train the model that we used to make predictions for every possible 613 

mutation in human CaSR. We selected model parameters by using 5-fold cross-validation 614 

technique on the whole dataset. To create a new test dataset, we took subfamily alignments of 615 

the species from the new Uniprot dataset that did not exist in the training data. We eliminated 616 

amino acids that are observed in the CaSR alignment as neutral. In each position we predicted 617 

the gain or loss-of -function class for any substitution. We did a literature search to find new 618 

clinical cases that cause either gain or loss of function mutations. We reported our predictions in 619 

the table.  620 
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