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Abstract

The Calcium Sensing Receptor (CaSR) is very important in controlling the levels of calcium in
the body by interacting with different types of G-protein. This receptor is highly conserved
among other G-protein coupled receptors (GPCRs) and has been linked to disorders affecting
the balance of calcium in the body, such as hypercalcemia and hypocalcemia. Although there
has been progress in understanding the structure and function of CaSR, there is still a lack of
knowledge about which specific residues are important for their function and how it differs from
other receptors in the same class. In this study, we used phylogeny-based methods to identify
functionally-equivalent orthologs of CaSR, predict the importance of each residue, and calculate
specificity-determining position (SDP) scores to uncover the evolutionary basis of its function.
Our results showed that the CaSR subfamily is highly conserved, with higher SDP scores than
its closest receptor subfamilies. Residues with high SDP scores are likely to be critical in
receptor activation and pathogenicity. We applied gradient-boosting trees with evolutionary
metrics as inputs to predict the functional consequences of each substitution, and discriminate
between gain and loss-of-function mutations those causing hypo- and hypercalcemia,
respectively. Our study provides insight into the evolutionary fine-tuning of CaSR, which can

help understand its role in calcium balance and related disorders.

Introduction

Calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor (GPCR) that
maintains extracellular Ca2+ homeostasis by sensing calcium ions in the blood and regulating
parathyroid hormone release and urinary calcium[1, 2] . The CaSR is activated by Ca2+ and L-
amino acids such as L-Phe and L-Trp as well as polyamines and polypeptides[3-5]. Ligands
bind to the extracellular Venus flytrap (VFT) domain of the receptor-like the other class C

GPCRs such as metabotropic glutamate receptors [6].
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Class C GPCRs are obligatory dimers, forming either homo or heterodimers [6]. CaSR forms a
homodimer where each subunit is composed of an extracellular domain (ECD), comprising a
bilobed (LB1, LB2) VFT and a cysteine-rich domain (CRD) connected to a heptahelical

transmembrane (7TM) domain[3, 5].

Crystal structures of the ECD [4, 7] and cryo-electron microscopy structures of the full-length
CaSR[3, 5, 8-10] reveal the structural basis for activation mechanisms and ligand binding sites.
L-amino acid binding site at the interdomain cleft of LB1-LB2[3-5, 11-13] and multiple Ca2+
amino acid binding sites on the VFT domain are shown in the literature[3-5]. While Ca2+ is the
composite agonist to the CaSR, L-amino acids promote the receptor activation along with the
Ca2+, but they are not able to activate the receptor alone[14]. Even though Ca2+ alone
activates the receptor in functional assays[14], whether it activates the CaSR in the absence of

L-amino acid is still controversial[3, 5].

Variants in CaSR may cause malfunctions that result in Ca2+ homeostasis diseases in humans.
More than 400 germline loss/gain-of-function mutations cause hypercalcaemic disorders,
neonatal severe hyperparathyroidism (NSHPT) and the milder familial hypocalciuric
hypercalcemia type-1 (FHH1) and autosomal dominant hypocalcemia type-1 (ADH1)
respectively[2]. Many more CaSR variants are anticipated to be identified as more population-
level genetic data become available[2]. Understanding the role of each residue in receptor
structure and activation mechanisms could provide additional information about the likelihood of
variant pathogenicity and CaSR signaling. The role of each residue in a receptor can be
revealed by comparison of receptors in a family and between different families; however, the
structure and complete activation mechanisms of many families in class C GPCRs are still
unknown, especially G-protein coupled receptor family C group 6 member A (GPRC6A) and

type 1 taste receptors (TAS1Rs; members 1,2 and 3) that are the closest subfamilies to CaSR.

While all subfamily receptors of class C GPCRs share common domains and structural features,
details of responding to different ligands and activating signaling pathways are diverse between
even closely related receptors[6]. Gene duplication is the main mechanism that generates new
protein functions across GPCRs. Protein families are evolved by speciation events following a
gene duplication[15, 16]; thus sequence comparisons of members within a subfamily and
between subfamilies can show the evolutionarily conserved domains as well as diverged protein
sites that distinguish one subfamily from others. One challenge with this analysis is that
excessive gene duplication events complicate the identification of functionally identical orthologs

in a subfamily. Moreover, the conservation patterns in paralogs and distant homologs may help
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inferring the specific roles of a single residue in protein function. Because the evolutionary
pressure on the paralogs and close orthologues are not the same, allowed substitutions on
paralogs may not be acceptable in close orthologues. Thus, using functionally identical

orthologs in sequence comparisons is crucial to infer the role of each residue in a protein family.

Here, we show the importance of each residue in CaSR by comparing it with the closely related
subfamilies, GPRC6A and TAS1Rs. We identified all orthologues sequences in each subfamily
by phylogenetic tree analysis. To obtain orthologues without requiring computationally
expensive phylogenetic tree step, subfamily-specific profile HMMs are generated from the true
orthologues in subfamilies that we determined by the phylogenetic tree analysis. We calculated
a specificity score for each residue in a subfamily by calculating scores based on a modified
version of PHACT[17] scores which considers independent evolutionary events on the
phylogenetic tree while scoring the acceptability of an amino acid substitution. We predicted the
functional consequence of each substitution in CaSR by using the gradient boosting trees

machine learning approach.

Results

Evolutionary History of Class C GPCRs

To reveal the evolutionary constraints on protein families, we developed to develop a strategy to
precisely define a protein subfamily. Precise subfamily definition can be precisely accomplished
by revealing the evolutionary history of the superfamily. Evolutionary history of gene families
can only be established by reconstructing high-quality phylogenetic trees, which can be used to
pinpoint gene duplication events. Discrimination between gene duplication and speciation nodes
enabled us to define of the paralogous and orthologous protein sequences. We further analyzed
the phylogenetic trees to classify the orthologous sequences that are likely equivalent in
function. We used functionally-equivalent orthologs in comparative analyses between
subfamilies, which eventually yielded subfamily-specific signatures that can be used to define
that particular subfamily and its function. Finally, the association between the signature and
function would enable a better understanding of specific molecular mechanisms and the effects
of variants, particularly for the protein subfamily of interest. Here, we aim to reveal the
signatures of the CaSR subfamily, that is implied in the specific function of calcium-sensing and

downstream signaling.

We have retrieved the complete proteomes of 478 species from the NCBI database. To identify
proteins that belong to class C GPCR family, we performed searched profile HMM of the seven

transmembrane domain profile (Pfam: 7tm_3) (Fig 1) against the proteomes. While this search
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99 allowed us to retrieve the entire class C GPCRs hitting the hmm profile, it does not yield
100  subfamily (22 human GPCRs) annotations. We performed scan profile HMM of the PfamA
101  profile against to Class C GPCR to select canonical isoforms. We used seven-transmembrane
102 domain only to assign subfamilies and trimmed the N-terminus region of this domain for further
103  homology steps. To generate a general HMM profile for each subfamily, we first applied a Blast
104  search using each human class-C as a query. For each subject, we blasted them against the

105 human proteome. We retrieved the bidirectional best hits (Core subfamily assignment).

106
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108 Figure 1: Summary of the Methodological Framework. 478 complete proteomes were retrieved from NCBI

109 database. Each sequence was searched by HMMsearch against Pfam 7tm_3 domain profile to retrieve all class C
110 GPCRs. Domain architectures of class C GPCRs were determined by HMMscan against PFAM.A profile to identify
111 canonical isoforms. Species-specific BLAST databases from TM domains of the canonical isoforms were built. Bi-
112 directional mutual best hits were detected by blasting each canonical sequence against the species databases (Core
113 subfamily assignment). Core subfamily sequences were aligned and ML trees were built to make subfamily profile
114 HMMs. By HMMsearch against subfamily profile HMMs other sequences in the subfamilies were found (Subfamily
115 extension). Sequences in each subfamily were aligned and ML trees were built. Based on the ML trees paralogs were
116 filtered and functionally identical groups were identified (FIG).

117  For proteins that did not have bidirectional mutual best hits, we assigned them to a subfamily

118 based on their homology search against the HMM profiles generated in the previous step
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119  (Subfamily Extension). We produced maximum likelihood (ML) trees of extended subfamilies

120 and filtered paralogous sequences to obtain functionally identical groups (FIGS).

121  The CaSR subfamily produced over five thousand hits, which included vomeronasal and

122 olfactory receptors that have never been shown to sense calcium. Previous research has shown
123  that CaSR is classified in the pheromone/olfactory cluster of class C GPCRs[18] (18). In species
124  that had multiple proteins assigned to the CaSR subfamily, we constructed a maximum

125 likelihood tree using these hits and other human class C GPCR protein sequences. These trees
126 revealed that a significant number of duplication events occurred in the species after the clade
127 diverged from CaSR. As a result, we defined this diverged clade as a new subfamily named

128 CaSR-likes. The sequences in this subfamily is unlikely to maintain calcium homeostasis, and

129 therefore should not be annotated as calcium-sensing receptors.

130 We selected representative sequences from different species for each subfamily of 22 different
131  receptor subfamilies and 264 CaSR-like sequences and built a ML tree (Fig 1A). Also, we built
132  the ML trees of all proteins from CaSR, GPRCG6A, taste receptors and merged these trees to the
133  representative tree of class C GPCRs (Fig 2 A). The resulting phylogeny shows that are five
134  major clades: CaSR-related, GABA, mGIuR, Orphans, and retinoic acid induced (RAIG).

135  Orphan receptors, GPR158 and GPR179, formed a clade that was diverged from other

136  receptors consistent with previous trees[19] and with 0.95 transfer bootstrap (TB) value. y-

137  aminobutyric acidB receptors (GABBR1 and GABBR?2) formed another clade diverged from
138 GPR156 with 0.97 TB. y-aminobutyric acidg receptors evolved earliest that have a common
139  ancestor with the highest taxonomic rank (33213-Bilateria) compared to other subfamilies.
140 CaSR group (CaSR, CaSR-likes, GPRC6A and taste receptors) was diverged from

141  metabotropic glutamate receptors (GRM1-8) and RAIG receptors (GPRC5A, GPRC5B,

142  GPRC5C, GPRC5D) with 1 and 0.98 TB values respectively. Within the CaSR group clade
143  CaSRs and CaSR-likes were diverged from GPRC6A and taste receptors with 1 TB. Except
144  TAS1R1 and TAS1R2, all CaSR group subfamilies have a common ancestor from taxonomy
145  clade 7776-Gnathostomata. TAS1R1 and TAS1R2 were more specific than other CaSR group
146  subfamilies that were evolved from 117571-Euteleostomi. Comparison analysis of branch

147 lengths[20] among common species between CaSR, GPRC6A and taste receptors shows that

148 CaSR subfamily is significantly more conserved than its closest subfamilies (Fig 2 B)

149  The higher diversity of CaSR-likes relative to CaSRs is reflected in the ML tree (Fig 2A). Branch
150 lengths of CaSR-likes are longer in contrast to shorter branch lengths in CaSR. Longer branch

151 lengths show that more variation, and thus divergence occurred in the CaSR-like clade.
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152 Moreover, extensive gene duplication events occurred in this clade. For instance, rodents such
153  as Dipodomys ordii (taxid:10020),0ctodon degus(taxid:10160) and snakes such as

154  Notechis scutatus(taxid: 8663) have more than a hundred receptors that match to CaSR profile.
155 However, these matches include type 2 vomeronasal receptors (V2R) and type 2 vomeronasal

156 receptor likes. Among mammals, V2R genes exhibit significant variation. While dogs, cows, and
157  primates except prosimians do not have functional V2Rs, rodents, reptiles and fish have

158 multiple intact V2Rs[21].Since these receptors do not have functional orthologs in mammals,

159  separating them from functionally-equivalent CaSRs is crucial.

160

161
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Figure 2: Evolution of Class C GPCRs. (A) The maximum likelihood phylogenetic tree of Class C GPCRs,
spanning representative species from each subfamily is shown. Subfamilies are represented as circular layers around
the ML tree. All twenty-two Class C GPCR subfamilies are shown in the inner circle. In addition to these subfamilies,
vomeronasal and other orphan receptors are represented as CaSR-like receptors. All proteins in CaSR, GPRC6A
and TAS1Rs are merged to this representative species tree. (B) Branch lengths from leaf to the root of the common
species that exist in all CaSR, GPRC6A and TAS1Rs are taken from the subfamily trees. Welch's t-Test by using

ggstatsplot package results are shown on the graph.
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Subfamily-specific Profile HMMs to Obtain Orthologs

In the class C GPCR family, gene duplication events give rise to new specificity, and each
duplicated gene with a new function is evolved by further speciation events and produce a set of
orthologous sequences[15, 16]. Each subfamily of class C shares relatively conserved
membrane-spanning region as well as a degree of variability underling functional differences. At
the molecular level, residues that are responsible for certain functional characteristics such as
ligand and coupling selectivity are called specificity-determining residues[15]. Conservation
analysis from multiple sequence alignments can be used to find residues that are conserved in
all subfamilies through evolution as well as specificity-determining residues that are only
conserved in a subfamily and differ in other subfamilies. However, the success of this method
depends on the sequences that are used to build alignments. Hence, it is vital to use

functionally identical orthologs in the analysis.

The seven-transmembrane domains of class C GPCRs are used to build a class-specific
general profile for this family (Pfam:7tm_3). However, this domain cannot be used to

differentiate subfamilies further.

Moreover, excessive gene duplication events as seen in the CaSR-like clade requires precise
phylogenetic analysis to differentiate CaSR and CaSR-like sequences. Also, subfamily specific
profile HMMs are shown to be promising methods to detect protein sequences belong to a
protein subfamily, as well as separation of homologs and non-homologs [22, 23].Therefore, we
built subfamily-specific profile HMMs that match with all orthologs of a subfamily while excluding

closely related like sequences (Fig 3).
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Figure 3: Subfamily Specific HMM Models. Subfamily specific HMM model method. Based on the phylogenetic tree
the target, the closest and the rest groups are determined. Representative amino acids in each group are selected,

and their scores are calculated. Weights to scale the emission probability are calculated.

We define the target family, its closest family (phylogenetic neighboring clade), and the rest
based on the phylogenetic tree. We weighted the identity score of each amino acid to calculate
the emission probabilities. The highest weight is given to the residues which are only conserved
in the target subfamily; hence they differentiate one subfamily from the others. Minimum weight
is given to the residues which are conserved both in the target subfamily and its closest clade.
We tested our subfamily-specific profile HMMs’ performance on an independent sequences
retrieved UNIPROT dataset[24] and not seen during the training process. We assigned
seqguences to their corresponding subfamilies by following the same steps as NCBI dataset[25]
used to build these models. We selected new taxons that were not in the NBCI dataset as test
sequences. Our subfamily-specific profile HMMs correctly hit all members of a subfamily while

they do not hit any protein from another subfamily (Table 1).

Table 1: Subfamily Specific Profile HMM’s Performance

Subfamily HMM | Test Cases Hits Missed
CaSR 81 81 -
GPRCG6A 62 62 -
TAS1R1 75 75 -
TAS1R2 21 21 -
TAS1R3 74 74 -

hmmsearch

SeQrarget

Sedciosest

SedRest
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208  Specificity Determining Residues

209 CaSR is distinguished from other subfamilies of class C GPCRs by its oversensitivity to many
210 substitutions that are caused either gain or loss of function mutations, because it maintains

211  systemic calcium homeostasis and highly sensitive to a very slight change in extracellular Ca2+
212 concentrations[26]. Since CaSR is the most conserved and ancestral subfamily among the

213 CaSR-likes, GPRC6A and TAS1Rs, it is reasonable to expect in some positions can be under
214  the relaxation of existing purifying selection in any CaSR-likes, GPCR6A or TAS1Rs, but not in
215 CaSR. On the other hand, at some positions the same amino acid remains functionally

216  important in both subfamilies, and at others a position remains important in each subfamily but a

217  different amino acid is favored in each duplicate.

218 To identify and order residues that differentiate a subfamily from its closest relatives, we

219 employed multiple sequence alignment- and phylogenetic tree-based approaches. Specificity-
220 determining residues that are conserved in a subfamily, but differ from its sister clade can be
221  predicted by directly comparing ancestral family sequences and calculating their divergence
222 scores (26). However, using multiple sequence alignments only does not discriminate between
223 the number of substitution event. For example, a single substitution event in the common

224  ancestor of bony fish clade of CaSR subfamily can be inherited to multiple descendants’

225  sequences. Assessing this single event as independent events result in overcounting of these
226  changes as if they are independent. Hence, the position is considered (i) to tolerate that

227  particular amino acid and (ii) functionally less important. In contrast, a single evolutionary event
228  might have been compensated by other substitutions in the same evolutionary node. Such a

229  substitution might not be tolerated in the other clades of the subfamily.

230  Another consideration to identify and order specificity-determining residues is treating

231  substitution events on the phylogenetic tree unequally. When an amino acid in CaSR remains
232  the same but can differ in the nearby subfamily, CaSR-likes, it indicates that the amino acid has
233 aunique purpose for CaSR. The SDP score of such an amino acid must be high. If an amino
234  acid is conserved in both CaSR and remote subfamilies like taste receptors but likely to be

235  substituted in CaSR-likes, it suggests that the amino acid plays a common functional role in
236 both CaSR and other subfamilies. For such an amino acid, the SDP score must be low, since it

237  is not a specific position for CaSR.

238  For CaSR group(CaSR, GPRC6A and TAS1Rs), we identified and order residues by specificity
239  which differentiate a subfamily from others by using an adaption of functionally divergent
240  residues method[27] along with an adaption of PHACT method[17]. We calculated probability of

10
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each amino acid at each node of the CaSR-group phylogenetic tree by ancestral sequence
reconstruction (Fig 4 A). Starting from the root of the tree, we identified each substitution event
and at which subfamily node that event happened. Counting the number of independent
substitution events in a subfamily clade and comparing the probability of the same substitution
in other subfamily clades, we ordered the specificity-determining residues. We assumed that if
an amino acid is allowed to change on sister subfamily nodes and poorly conserved in sister
subfamily nodes while it is highly conserved on the target subfamily node, it is a specific residue
to the target subfamily only. If a substitution event is observed on a clade close to the target
node, we consider that event to increase specificity of a residue because it diverges the target
group from its closest, sister clade. The details and the algorithm are given in materials and
methods (Algorithm 3).

11
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257 GPRCG6A, TAS1R1, TAS1R2 and TAS1R3 are colored based on SDP scores. Residues with high SDP score (above

258  5.0) are shown as spheres.

259  We calculated specificity scores for each CaSR, GPRCG6A and TAS1Rs. Specificity score

260 distributions show that CaSR subfamily have more specific residues compared to other

261  subfamilies (Fig 4 B). On the VFT domain, specific residues are clustered different regions. We
262  found a cluster of specific residues on the interdomain cleft between LB1-LB2 that is the L-

263  amino acid binding site in other class C GPCRs[3]. It suggests that this region is the primary
264  Ca2+ binding site in CaSR consistent with[14]. We found two different clusters of specific

265  residues on the ECD. First cluster was on the LB1 domain and on the LB1-LB1 dimer interface.
266 LB1 domain plays a role in anchoring ligands and initiating domain twisting by conformational
267 changes at the interface between LB1 regions[3, 5]. The second cluster was found at the

268  cytosolic side of the LB2 and at the interface between LB2-CRD where Ca2+ ions are bind[3-5].
269 Interaction between LB2 subunits are required for CaSR activation that propagates to large-
270  scale transitions of the 7TMDs[3, 5]. Specific residues on the LB1 domain, LB1-LB1 dimer

271 interface and LB2-CRD interface indicate that they provide the structural conformational

272  changes upon ligand binding to the interdomain cleft. Mutations located on these regions are
273  associated with loss and gain of function mutations (Fig 6)[2]. Other specific residues are found
274  onthe CR, ECL2 and TM domains. On the ECL2 acidic residues D758 and E759 are specific to
275 CaSR. The intersubunit electrostatic repulsion between the ECL2 regions could facilitate the
276  activation of CaSRJ[3, 5]. In the agonist+PAM bound state the ECL2 is moved by the interaction
277 among E759, W590, and K601. Deletion of D758 and E759, and single mutations of K601E and
278  WH590E disrupts the CaSR activity, however A758-759 mutant was expressed at the cell surface
279  with the comparable levels to that of WT, while W590E and K601E mutants were expressed on
280 the cell surface lower than the WT level[3]. We found that residues W590 and K601 are not

281  specific to CaSR. The TM domains of two protomers of CaSR come into close proximity upon

282  receptor activation[5].

283  The orientation of the TM5-TM6 dimer in the CaSR distinguishes it from other Class C receptors
284  such as mGIuR and GABAg receptors, which results in its inactive conformation[9]. The

285 interaction between TM4-5 of each subunit in the inactive state is essential[14], while the

286 interaction between TM6-TM®6 is crucial for the active state[3, 8, 14]. The structural findings and
287  the presence of CaSR specific residues on each TM domain suggest that CaSR is specialized
288 in both dimerization and ligand binding. Specific residues on TM domain guarantees the correct
289  orientation for activation upon ligand binding and inactive conformation otherwise. Interactions

290 between the domains and ligand-receptor are quite sensitive that slight changes cause
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291 malfunctions in the receptor. On the other hand, GPRCG6A and taste receptors are more prone to
292  acceptable substitutions and they are not very specialized to respond a single ion. GPRC6A and
293  taste receptors are activated by a broad spectrum of ligands[28, 29]. Even though the ligand of
294  GPRCG6A is controversial in the literature, multiple ligands such as osteocalcin (Ocn),

295  testosterone, basic amino acids and cations such as L-Arg, L-Lys, L-Orn, calcium, magnesium,
296  and zinc are suggested to bind GPRC6A[29]. Taste receptors bind to different ligands including

297  sugar, L- and D-amino acids, sweet proteins, and artificial sweeteners[30].

298 On the TM region we also find CaSR specific cholesterol recognition/interaction amino acid
299  consensus (CRAC) motif (L783,F789,5820) that is defined by the consensus (L/V)X1-5YX1-
300 5(R/K) and is often present at junctions between membrane- and cytosol-exposed domains and
301 shown in GRM2 receptor[31]. Phylogenetic analysis shows that TAS1R3 evolved earliest (7776
302 Gnathostomata) among TAS1Rs, TAS1R1land TAS1R2 subfamilies have common ancestor
303 117571 Euteleostomi. TAS1R3 forms heterodimers with TAS1R1 and TAS1R2[28, 30, 32].

304 Interactions between the cytosolic terminus of the extracellular CRD is needed for T1R3

305 dimerization. TAS1R1 and TAS1R2 recognize a broad spectrum of L-amino acids that bind to
306 the intercleft between LB1-LB2 and induce the positional shift of the CRD regions, however
307 T1R3 loses the corresponding function[32]. Our analysis showed that TAS1R1 have specific
308 residues on LB1, LB2 and extracellular loop regions. Also, TAS1R2 has specific residues on
309 LB1,LB2 and CR domains. On the other hand, in TAS1R3, we found specific residues only on
310 the LB1 and one on the CR domain. Since LB1-LB2 domains create a cavity for ligand binding,
311  specific residues on LB1-LB2 domains of TAS1R1 and TAS1R2 may contribute to domain

312 transformation upon ligand binding. However, the number and distribution of specific amino

313  acids suggest that taste receptors are not under selective pressure as CaSR.

314  Gradient Boosting Trees Machine Learning Approach to Predict the Mutation Types in
315 CaSR Because CaSR is a highly conserved subfamily, any substitution on the receptor disrupts
316 the function of the receptor and causes either gain or loss of function mutations (Fig 3C).

317 However, predicting the functional consequence of a substitution is challenging. Evolutionary
318 conservation of a residue among subfamilies might reflect the common structural constraints,
319  butit does not distinguish between loss and gain of function mutations (i.e., LoF and GoF,

320 respectively). In addition, at some positions substitution to different amino acids causes either
321 loss or gain of function mutations[21]. We hypothesized that “activating” mutations are more
322  likely to be tolerated in the neighboring clades such as GPRC6A and TAS1Rs and not in CaSR
323  whereas, in general, loss-of-function (inactivating) mutations are not tolerated in the larger clade

324  of these receptor subfamilies. To test this hypothesis whether we can discriminate between GoF
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325 and LoF mutations in CaSR, we applied a tree boosting machine learning algorithm,
326 XGBoost[33] that linked multiple features such as conservation scores, physico-chemical

327  properties of amino acids and domain information.

328 We used sequence-based features, identity scores from multiple sequence alignments, physico-
329 chemical properties of amino acids, and domain information as input features to train our model
330 (Fig 5 A). Since we calculated our feature values from the multiple sequence alignments, we
331 divided our dataset into training, validation and test datasets before we created feature matrices
332  to prevent information leakage. We performed 50 replications with different random splitting of

333  datasets to obtain a more robust model performance.
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335 Figure 5: Gradient Boosting Trees Machine Learning Approach to Predict the Mutation Types in CaSR.

336 (A)Model architecture. We used MSA of CaSR,CaSR-likes, GPRC6A and TAS1Rs to generate features as well as
337 amino acid physico-chemical features and domain information. We performed 50 replications. (B) The performance
338 and feature importance of XGBoost algorithm. AUROC and AUPR values of 50 replications are shown. Average AUC
339 levels of 50 replications are 0.83 and 0.78 for the train and test respectively. Average AUPR levels of 50 replications
340 are 0.93 and 0.9 for the train and test respectively. Contributions of Shapley values for type of pathogenicity

341 classification to the model output for XGBoost. aa0:the amino acid found in the human CaSR,aal:substituted amino
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acid, AF: average flexibility, TMT: TM tendency, ZP: Zimmerman polarity, B:BLOSUM62,AWR:atomic weight

ratio, TM:transmembrane domain

Table 2: Model's predictions for the new CASR gain and loss of function mutations from the literature. The correct

predictions are indicated by a star symbol (*) next to them.

Mutation Cause Prediction

p.1857S[34] hypocalcemia | gain-of-function*

p.Y825F [35] | hypocalcemia | gain-of-function*

p.P393R [36] | hypercalcemia | loss-of-function*

p.C60G[37] hypercalcemia | loss-of-function*

p.D99N[38] hypercalcemia | loss-of-function*

p.T186N[39] | hypocalcemia | loss-of-function

p.A840V[24] | hypocalcemia | gain-of-function*

p.S448P[40] | hypercalcemia | loss-of-function*

p.L696V[41] | hypocalcemia | gain-of-function*

p.D433Y[42] | hypercalcemia | loss-of-function*

p.S147L[43] | hypercalcemia | loss-of-function*

p.D398N[44] | hypercalcemia | loss-of-function*

p.K805R[45] | hypercalcemia | gain-of-function

p.C60Y[46] hypercalcemia | loss-of-function*

p.S820N[47] | hypocalcemia | loss-of-function

p.L606P[48] | hypercalcemia | loss-of-function*

p.H41R[49] hypercalcemia | gain-of-function

p.A110D[50] | hypercalcemia | gain-of-function

p.1139T[51] hypocalcemia | gain-of-function*

p.Q164R[52] | hypercalcemia | loss-of-function*

p.T699N[53] | hypercalcemia | gain-of-function

p.R701G[53] | hypercalcemia | loss-of-function*

p.T808P[53] | hypercalcemia | loss-of-function*
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346

347 The ROC and PR curves are used to understand the performance of a binary classifier that
348  assigns each element of data into two groups. ROC curve is a graphical plot that shows the
349 false positive rate versus the true positive rate for different threshold values between 0.0 and 1.
350 APRcurveis a plot of the precision and the recall for different threshold values and it is useful
351 for imbalance datasets. We used the areas under the ROC and PR curves (i.e., AUC and

352  AUPR, respectively) to compare the performances of the model on the train and test datasets
353  for 50 replications. Higher AUC and AUPR values are associated with better performance. AUC
354 and AUPR over all replications were shown in (Fig 5 B). Our average AUC values for training
355 and test among 50 replications are 0.83 and 0.78 (Fig 5 B). Our average main AUPR values for
356 training and test among 50 replications are 0.93 and 0.9 respectively (Fig 5 B). After we

357  reported our algorithm performance, we trained our algorithm with the whole dataset. We tested
358  our algorithm with new test cases from literature (Table 2). Additionally, we categorized amino
359 acids that are observed in the CaSR MSA as neutrals. To date, no pathogenic substitution has
360 been reported in the literature for these amino acids that we identified as neutral. We visualized
361  all predictions in the form of a heatmap for every other amino acids at each position until the
362 disordered region (position 892) of the human CaSR (Fig 6 A). We mapped known CaSR loss
363  and gain of function mutations on the cryo-EM structure of human CaSR bound with Ca** and L-
364 Trp (PDB:7DTV (3)) (Fig 6 B). There is a tendency that loss-of-function mutations are on the
365 outer-core regions, while gain-of-function mutations are on the inner-core regions. In the

366 heatmap we observed a similar prediction pattern that gain-of-function predictions are mostly in
367 theinner-core regions. SHAP (SHapley Additive exPlanations) values provide a way to decode
368 theinner workings of a machine learning model like XGBoost. These values calculate the

369 average contribution of each feature to the overall prediction, taking into account any

370 interactions between the features. Based on the SHAP values, the conservation scores of

371 human CaSR amino acids in other subfamilies play a significant role in the model's prediction,
372  as shown in Figure 5B. If the amino acid is also conserved in GPRC6A and taste receptors (in
373 fact conservation score in TAS1R3 has the highest contribution), the model predicts a

374  substitution of that amino acid as loss-of-function. Another important feature is the domain of the
375 amino acid. Our findings indicate that if the amino acid is located in the TM domain, a

376  substitution would result in a gain-of-function mutation.lIt is known that the majority of gain of
377  function mutations are located in the TM domain, as shown in Figure 6B. The presence of

378 certain amino acids on the TM domain of CaSR suggests that they play a crucial role in its

379 activation mechanism. Even though substituting those amino acids might be acceptable in
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380 GPRCG6A and taste receptors, they might lead to the lock of TM domains and result in the

381 overactivation of CaSR.
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383 Figure 6: All Possible Amino Acid Substitution Predictions. (A)Visualizing the precision of our XGBoost model.
384 The heatmap displays the XGBoost model's predictions for each of the 20 amino acids at every position except
385  disordered regions (892-1078) within the human CaSR. (B) Mutations on human CaSR structure. Loss and gain of
386 function associates mutations are shown on the cryo-EM structure of human CaSR bound with Ca2+ and L-Trp
387 (PDB:7DTV) as blue and red spheres respectively.

388 Discussion

389 In this study, we showed the evolution of CaSR by developing a methodology in precisely
390 defining functionally equivalent orthologous sequences across species and therefore

391  subfamilies. We built a high-quality phylogenetic tree of CaSR with its closest subfamilies,
392 GPRCG6A and TAS1Rs. Statistical analysis of branch length distances from this phylogenetic
393 tree showed that CaSR is evolutionarily more conserved compared to GPRC6A and TAS1Rs.
394  While GPRCB6A and taste receptors can bind to a diverse range of ligands and able to tolerate

395  substitutions at most of the positions, CaSR requires a delicate balance for proper functioning.

396  High evolutionarily conservation and specificity of CaSR in contrast to closest subfamilies are
397 reflected in specificity determining position (SDP) score analysis. CaSR has specific residues

398 clustered on different regions of the receptor. They are located on Ca2+ and L-Trp binding sites
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399 on the VFT, as well as on the dimerization sites between two sub-units of the homodimer.

400 Specific residues on the dimer interfaces indicate that dimerization maintained by interactions
401  Dbetween different subunits is required for ligand binding and correct activation of the CaSR.
402 Ca2+ ions binding and interactions between LB2-CR domains and conformational changes in
403 LB1 domain were suggested that they are required to activate CaSR[3-5]. Mutational analysis at
404  some positions on LB1 domain have been shown to reduce the effect of Ca2+-stimulated

405 intracellular Ca** mobilization in cells[3, 5]. In contrast, substitutions caused negative charge
406 neutralization on the ECL2 result in prompting the activation of CaSR[5]. Our results suggest
407  that residues with low SDP scores on any domain are required for common activation

408 mechanism since they are conserved across functionally different receptor subfamilies.

409  However, residues with high SDP scores cause malfunctions in the CaSR. Any substitution in a
410 residue with high SDP score might either cause over or less activation. Deep mutational

411  scanning approaches or new methods that simultaneously profile variant libraries[54] are

412  needed to provide further evidence to functionally assay all possible missense mutants.

413  To predict the functional consequence of a mutation in human CaSR, we used Extreme

414  Gradient Boosting (XGBoost) method. XGBoost is able to perform well on small datasets by
415 incorporating variety of regularization methods to control the model complexity, which helps to
416  prevent overfitting. We have a small and unbalanced dataset in that the number of gain-of-

417 function mutations was very low, therefore it is prone to overfit. To prevent overfitting while

418 achieving high predictive performance, we used a simple method along with regularization

419 parameters. Moreover, we tried to keep the ratio between the number of loss-of-function and the
420 number of gain-of-function mutations for training and test sets as close as possible. To get a
421  robust performance, we repeated the train-validation-test splitting procedure fifty times. To

422  increase the predictive performance, we could use a more complex methods such as deep

423  learning, however they require larger datasets. Studies that used deep learning or ensemble
424  methods for similar assessment are different in terms of prediction in which they predict the type
425  of a mutation as only pathogenic or neutral [55-58]. Even though there are number of mutations

426  of human CaSR in the Clinvar, the functional consequences of most of them are not known.

427 Given the constraints of the small dataset and limited additional data, we carefully selected and
428  processed the features for our model’s training. Features that are used to train a machine

429  learning model heavily determine the performance of the model. The more features we use, the
430 more information the model has to learn from, which can lead to improved predictive

431  performance. However, having too many features can also lead to overfitting. Moreover, the

432  quality of the features is more important than the quantity. One important evolutionary process
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433  that can affect the functional consequence of a substitution is co-evolution. From the multiple
434  sequence alignment of CaSR proteins, we manually selected six

435  positions,p.180,p.212,p.228,p.241,p.557 and p.883, that are in our dataset and co-evolved. We
436 masked the co-evolved amino acids from the MSA and performed train-validation-test splitting
437  procedure fifty times again. Our average AUC values for training and test among 50 replications
438 were 0.83 and 0.77 respectively, and average AUPR values were 0.93 and 0.89. Despite not
439  experiencing an improvement in performance, we found that the amino acid changes p.1212T,
440 p.F180C, and p.1212S were now predicted to cause loss of function, contrary to their previous
441  prediction of causing gain of function. We cannot accurately assess the impact of co-evolution
442  on performance because there is a lack of effective tools for identifying co-evolved positions and
443  our dataset contains only a limited number of co-evolved positions, but we anticipate that it is an

444  important feature to differentiate gain and loss of function.

445  We built subfamily-specific profile HMMs to get all functionally-equivalent orthologs while

446  excluding other proteins. To generate these HMM models, we manually decided target, closest
447  and rest groups based on the phylogenetic tree of CaSR group. Based on the nature of a

448  phylogenetic tree, selection of these groups is changed, so that this process can be further
449 automated. We did not anticipate our specific models to match any receptor from other classes
450 of GPCRs, since they are evolutionarily more distant to CaSR group. We expect that our

451  subfamily specific profile HMMs can be used to obtain orthologs in different protein families for
452  the upcoming genomes. They can be particularly useful for studying protein families with many
453  duplications and orphan protein families, where it can be difficult to identify true members.

454  These models are particularly important to avoid computationally expensive and expertise-

455  required phylogenetic tree reconstruction and analysis.

456 Materials and methods

457  Class C Proteins and Their Domain Architectures

458 478 complete eukaryotic proteomes were downloaded from NCBI genomes website(https : //f
459  tp.ncbi.nim.nih.gov/genomes/archive/old ref seq/) in 2018. hmmsearch of HMMER

460  software[59](http://hmmer.org/) was run for each proteome against Pfam 7TM3 profile[60].

461  Sequences with significant 7TM3 hit based on hmmsearch results (above the default threshold)
462  were compiled from proteomes. hmmscan of HMMER software[59]( http://hmmer.org/) was run
463  for these sequences against Pfam-A 32.0 database[60]. Based on the results of hmmscan, the
464 longest isoform was taken and saved in a separate file named by taxonomic id, however

465  canonical sequences were obtained for human (based on given canonical proteins in UniProt
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466  website[61]). Because plants do not have GPCRs, plants were eliminated from the analysis. For

467  single isoform sequences of each proteome a BLAST database was built[62].
468  Subfamily Definition and Subfamily Specific Models

469  Each protein sequence of each taxon was queried through BLASTP against each prepared

470 BLAST database[62]. reciprocal mutual best hits of each human class C GPCR were collected
471 in afile named gene id. reciprocal mutual best hits of each class C GPCR and remaining human
472  class C GPCRs were collected and 7TM domains of these sequences were taken based on
473  hmmscan results (Longest sequence which hit the 7TM3). Sequences were aligned using

474  MAFFT v7.221 E-INS-I algorithm with default parameters[63]. Maximum likelihood based

475  phylogenetic tree (ML tree) of each subfamily of class C GPCR was built using RAXML version
476  8.2.12 with automatic protein substitution model selection (PROTGAMMAAUTO) and 100 rapid
477  bootstrapping parameters[64]. Most common lowest taxonomic level was added to the

478 phylogenetic tree with ETE toolkit[65]. Based on the phylogenetic tree, sequences belong to the
479  corresponding subfamily were taken and an profile HMM was built. Subfamily Assignment The
480 process begins by scanning each sequence with a 7TM3 domain against profile Hidden Markov
481 Models (profile HMMs). After the sequence is scanned, the subfamily is determined based on
482  three conditions: (1)The maximum score value of the hmmscan must belong to the given

483  subfamily. (2) E-value is a measure of the significance of a match in a database search and the
484  lower the E-value, the more significant the match is. The E-value of the sequence must be the
485 lowest. (3)The sequence must belong to the most common highest taxonomic level of the given
486  subfamily. Taxonomic level refers to the classification of an organism within a biological

487  classification system. If a sequence meets these three conditions, it is assigned to the

488  corresponding subfamily. After this, the full length sequences of each subfamily were then

489  aligned using the MAFFT v7.221 algorithm[63] and trimmed using the gappy-out method of the
490  trimAl tool[66].

491  Paralog Filter

492  There were a number of duplications in CaSR subfamily. For example, Dipodomys ordii has 116
493  CaSR sequences. To reduce the number of segeunces,human CaSR and other human class C

494  GPCR proteins sequences compiled with CaSR segeunces of each taxon, and and aligned with
495  MAFFT v7.221 auto algortihm[63], and the gappy-out method of the trimAl tool was used to trim

496  the multiple sequence alignments (MSA)[66]. ML tree was built using RAXML-NG v0.9.0 with ML
497  tree search and bootstrapping (Felsenstein Bootstrap and Transfer Bootstrap) parameters[67].

498 Based on the ML tree, proteins that were diverged from the common ancestor of the human
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499 CaSR clade were classified as CaSR-likes. Proteins that were clustered with the human CaSR
500 were accepted as CaSRs. After we assigned all proteins to their subfamilies, we built final ML
501 trees for CaSR,GPRC6A, and TAS1Rs. We added human CaSR sequence was added to

502 GPRC6A and TAS1Rs subfamilies, and human GPRC6A sequence was added to CaSR

503 subfamily as an outgroup. We aligned each subfamily sequences with MAFFT v7.221 einsi
504  algortihm[63] and built the ML trees by using RAXML-NG v0.9.0 with FTT model parameter[67].
505 We labeled the duplications at each node on the ML trees. Based on the duplications, we

506 manually checked the trees and removed a clade that was a subset of its sister clade by using
507 ETE toolkit[65]. We took each branch and node length from leaf to root of the tree by using
508 common species in all CaSR, GPRC6A and taste receptor trees to calculate subfamily

509 conservation by using Welch's t-Test by using ggstatsplot package[20].
510 Subfamily Specific Profile HMMs

511  [63].After we took all receptors from CaSR, CaSR-like, GPRC6A, and taste receptors, we

512  aligned them by using MAFFT v7.221 auto algortihm[63]. For each subfamily we removed the
513  positions from the multiple sequence alignment (MSA) that correspond to a gap in the human
514  receptor. Then, we divided the MSA into subfamily alignments. We generated a HMM from the
515 gap removed alignment of each subfamily, and we added weight to the emission probabilities of
516 the HMMs. To calculate emission probability weights, based on the maximum likelihood

517 phylogenetic tree (ML tree) we defined the target, the closest and the rest groups. We took the
518 closest node as the closest group and other nodes as the rest. According to that we have five

519 different scenarios:

520 e CaSR is the target group, CaSR-likes are the closest group, and GPRCG6A and taste
521 receptors, (TAS1Rs) are the rest.

522 e GPRCO6A is the target group, TAS1Rs are the closest group, CaSR and CaSR-likes are
523 the rest.

524 e TASIRL1 is the target group, TAS1R2 is the closest group and TAS1R3 is the rest.

525 e TASI1R2 is the target group, TAS1R1 is the closest group and TAS1R3 is the rest.

526 o TASI1R3 is the target group, TAS1R1 and TAS1R2 are the closest group and GPRC6A
527 is the rest.

ALGORITHM 1: REPRESENTATIVE AMINO ACID AND INITIAL SCORE FOR POSITION “K”

Input: Representative amino acid of target subfamily, R;; the frequency of R; in the

target, Sy; the most frequent amino acid of subfamily i, (i=1,...,N) and its frequency, a;,
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F;, respectively; the number of subfamilies in close and rest groups, n. and n,,
respectively; conservation threshold for target and close/rest groups, thr; and thr,; the

threshold for Blosum scores, thry;;.
STEP 1: Choose representative amino acid and related frequency for each group

1 forje{cr}

2 ifn; =1

3 R; = a; where k is the subfamily in group |

4 S; = F

5 else

6 if Ry E{aj,j=1,...,n}-}

7 R; = Rr

8 Sj = Fi where k is the subfamily with the most frequent amino acid is Ry
9 else

10 R; = a; where k is group with highest frequency

11 5 = %jp‘s

STEP 2: Assign position type and initial score to position “k”
Category 1
12 if R, = R, and they are gap

13 if Ry IS gap

14 type, =11
15 scorey, = —
2 ie(T,cry Si
16 else
17 type, =1
18 scorey = X, ieqr.cr} Si
Category 2

19 elseif Ry is gap
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20 if R, isgap or R, is gap

21 type, =11

22 scorey, = m

23 else

24 type, =1

25 scorey = X, ieqr.cr} Si
Category 3

26 elseifRy # R, # R,

27 if Ry, R, and R, are not gaps

28 if S¢ = thr; and S, S, = thr,

29 type, =1

30 score, = X ieqrcr}Si

31 else if Blosum(R;,R;) < thry,;; and Blosum(R;, R,) < thry
32 type, =1

33 score, = X ieqr,ery Si

34 else

35 type, =1V

36 scorey = X ier,cr}Si

37 else if R, is gap

38 if Sy >thr,and S, = thr,
39 typex =1

40 scorey = X ieqr,cr}Si

41 else if Blosum(Rr, R,) < thry
42 type, =1

43 scorey, =, i€(T,cr} S

44 else

45 typex =1V
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46 scorey, = Y ieqrcr}Si

47 else if R, is gap

48 if S¢ = thry and S, = thr,

49 type, =1

50 scorey, = Y iererySi

51 else if Blosum(R;,R;) < thry

52 type, =1

53 score, = Y ieqr,cr} Si

54 else

55 type, = IV

56 scoreg = X ieqr,cr}Si
Category 4

57 elseif Ry =R,

58 type, =11
1
> SCoT€ = 2 ie(T,cr) Si
Category 5

60 elseif Ry # R.and Ry =R,

61 if R. is gap

62 type, =111

63 scorey, = Y ieqr,ery Si

64 else

65 if Blosum(Ry, R.) < thr,; and S, = thr,
66 type, =111

67 scorey, = Y ieqrer} Si

68 else

69 type, =11
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1
70 score, = ———
Y ieTcrySi

Category 6

71 elseif Ry # R.and R, =R,

72 if Sp =thr; and S,, S, = thr,
73 type, =1

74 scorey, = X ier.erySi

75 else if Blosum(Ry, R,) < thrye
76 type, =1

77 scorey, = Y ieqr,cr}Si

78 else

79 type, =11

80 scorey, = -

ALGORITHM 2: COMPUTE WEIGHT FOR ALL POSITIONS

Input: Types for each position k (k=1,...,K), typey; initial score for each position k of
type t, scoref; number of type i positions, n; where n, + n, + n; + n, = K; a predefined

constant value as max weight of Type Il positions, c,.
Weight of Type | positions
1 f0r1h7=:1:n1

1
scorepl

weight, =
ghiy, minj=; _n,(scorel)

Weight of Type IV positions
3 f()r}92 = 1:712

2
scorepz

weight,, = mean(weightpl)p o
1

max|—y,_.n, (scorelz) 1,..n4}
Weight of Type Ill positions
5 f()r}93 - 1:713

6 if target is CaSR
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7 min(weightpz)

_ P2 €{1,...n5}
¢ = .
8 else
9 ¢; = min(weight
1 ( g pz)l’z €{1,..n2}
4 : score},
weight, = — ( =y
1=1,..n3 scorel)

Weight of Type Il positions
7 fOf p4 = 1:714

4
SCOT€p4

weight, = c
ghiy, max|y,.,n, (score}) 2

528

529  Subfamily Specific Position Scores

530 From the alignment we used to make subfamily specific profile HMMs, we randomly selected
531 264 CaSR like sequences (same number of sequences as CaSRs) and took all CaSR (264
532  proteins), GPRC6A (242 proteins) and TAS1Rs (TAS1R1 has 210, TAS1R2 has 173 and

533 TAS1RS3 has 273 proteins). We built an ML tree by using IQ-TREE multicore version 2.0.6[68]
534  with automatic model selection[69] (-m MFP) and ultrafast bootstrap[70] (-bb 1000) parameters.
535 For CaSR, GPRC6A, and TAS1Rs, we removed the positions from the multiple sequence

536 alignment that correspond to a gap in the human receptor respectively. By using gap removed
537 alignments and the ML tree, we did ancestral sequence reconstructions for each subfamily with
538 IQ-TREE multicore version 2.0.6 with -m JTT+R10 model parameter[68]. We showed specific
539 residues that have a SDP score higher than 5, on the structures. We used cyro-EM structure of
540 CaSR (PDB:7DTV) and Swiss models[71] for GPRC6A and taste receptors since they do not
541 have experimental structures. To visualize structures and residues we used UCSF Chimera
542  tool[72].

543  We calculated SDP scores by a method extended from[27] by considering the phylogenetic
544  trees and a phylogeny-based scoring approach, adjPHACT, based on the methodology of

545  PHACT algorithm. The details of how we compute SDP score for any position k can be found in
546  Algorithm 3. PHACT computes the tolerance for each amino acid for the query specie which is
547  human by using a tree traversal approach. By checking the probability differences, PHACT

548 detects the location of amino acid substitutions and compute weighted summation of positive
549  probability differences based on the distance between the node of change and human. On the

550 other hand, here we aim to determine the acceptability of each amino acid per subfamily. To
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551  achieve this, we modify PHACT by starting the tree traversal from the root node and eliminating
552  the node weighting approach. At the end, we have a probability distribution per position for each
553  subfamily which is computed by considering the independent events. Again, we determine the
554  representative amino acid for target subfamily by picking the most frequently observed amino
555 acid and its adjPHACT score. For the remaining subfamilies, we keep the adjPHACT score of
556 the representative amino acid of the target. Then, similar to [27] we check whether the same
557 amino acid is conserved across all subfamilies. On the other hand, our approach differentiates
558 from[27] in terms of considering multiple subfamilies and using adjPHACT scores which employ
559 phylogenetic trees and ancestral reconstruction probabilities. In our approach, we compute the
560 contribution of each subfamily to the SDP score by checking whether the representative amino
561 acid of target has a high adjPHACT score in that subfamily (line 1). In the final SDP score for
562  any position k is computed by considering the distance between target and other subfamilies
563 (which is computed by considering the distance between root nodes), the conservation level of
564 the target subfamily in terms of independent amino acid alterations and the individual score

565 coming from each subfamily (line 3).

ALGORITHM 3: SDP SCORE FOR POSITION “K”

Input: Amino acid with the highest adjPHACT score in the target group, aa; the
adjPHACT score of aa for target, PL,; adjPHACT score of aa for other subfamilies

i=1,...,n, P},; distance between target subfamily and subfamily i, d;.
1  Compute score for each subfamily i,
S; = exp(1) — exp(P},).
2 The overall weight,
w=1- maX(Paia).

3 The SDP score for position k,

n Pla
1
SDP =Pl + w é —S;
D;

i=1
566 Evolution of Class C GPCRs

567 We selected representative sequences from different taxonomic levels for each subfamily and
568 264 CaSR-like sequences. We aligned them with MAFFT v7.221 einsi algorithm[63]. We built
569 the ML tree by RAXML-NG-0.9.0 with the model JTT and transfer bootstrap expectation —bs-
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metric fbp, tbe parameters[67]. We merged the ML trees of CaSR, GPRCG6A and taste receptors
by checking clades by using ETE toolkit [65].

Machine Learning

Dataset and Feature Preparation

To predict the consequence of a substitution in human CaSR, we used a gradient boosting-
based machine learning algorithm, XGBoost[33]. We used XGBoost library for R[73] to train our
model. We selected total of 337 loss and gain-of-function mutations from the literature[2] to train
our model. Since we used conservation scores as features to train our model, we divided
subfamily alignments and mutations randomly as 80% training and the remaining 20% test data
before creating feature matrices to prevent information leakage. 25% of the training data was
randomly picked as the validation data five times for cross validation. For each dataset split we
used the sklearn train test split model with stratify option to keep loss-of-function to gain-of-
function ratio almost the same in the datasets[74]. We calculated the conservation score of the
reference amino acid and the substituted amino acid in human CaSR in each subfamily. The
reference and the substituted amino acids were represented BLOSUMG62 encoded matrices.
Amino acid physico-chemical feature values Zimmerman polarity[75], average flexibility[76],
Dayhoff[77], average buried area[78], Doolittle hydropathicity[79], atomic weight ratio[80],
molecular weight, and bulkiness[75] from ProtScale database[81]; and domain information of
the reference amino acid were used as other features. We normalized the physico-chemical
feature values prior to model training. We repeated the whole random dataset splitting and

feature preparation procedure 50 times to obtain more robust results.

Model Selection and Parameter Tuning

We picked the model parameters for each replication by applying a 5-fold cross-validation
technique on the training set. We tuned the model parameters step-by-step using the same
validation sets for each parameter to decrease the time complexity. We used the following order
of model parameters, so that the parameter that has the highest impact on model outcome was
tuned first: Eta and nrounds, gamma, maxdepth, subsample, colsample bytree, min child
weight, lambda, alpha. We selected the maxdepth as 2, the minimum maxdepth value to
prevent overfitting. We chose eta, gamma, colsample bytree, subsample, min child weight from
the sets 0.00001,0.00002,..., 0.001,0,0.1,0.2,...,0.5, 0.5,0.55,...,1, 0.5,0.55,...,1, 1,2,...,6
respectively. We selected regularization parameters lambda and alpha from the set 0, 1e-4, le-
3, le-2, le-1, 1, 10, 100. We set nrounds parameter as 200.
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602 Performance Metrics

603  We used the area under the receiver operating characteristic curve (AUROC) and the area

604  under the precision-recall curve (AUPR) to evaluate the performance of our prediction model.
605 AUROC and AUPR are performance measures that are widely used to evaluate the

606 performance of binary classification problems. The higher the AUROC and AUPR, the better the
607  model distinguishes classes. To understand how our model makes predictions, we used SHAP
608 (SHapley Additive exPlanations) values. SHAP values provide an estimate of the contribution of
609 each feature to the prediction made by the model[82]. We calculated SHAP values for our final

610 model trained by all samples by using R shapviz package[83].

611 Predictive Performance

612  After we evaluated the performance of our machine learning algorithm over 50 replications, we
613  used the whole dataset to train the model that we used to make predictions for every possible
614  mutation in human CaSR. We selected model parameters by using 5-fold cross-validation

615 technique on the whole dataset. To create a new test dataset, we took subfamily alignments of
616 the species from the new Uniprot dataset that did not exist in the training data. We eliminated
617 amino acids that are observed in the CaSR alignment as neutral. In each position we predicted
618 the gain or loss-of -function class for any substitution. We did a literature search to find new

619 clinical cases that cause either gain or loss of function mutations. We reported our predictions in
620 the table.
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