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Abstract

We introduce a massively parallel novel sequencing
platform that combines an open flow cell design on a
circular wafer with a large surface area and mostly natural
nucleotides that allow optical end-point detection without
reversible terminators. This platform enables sequencing
billions of reads with longer read length (~300bp) and fast
runs times (<20hrs) with high base accuracy (Q30 > 85%),
at a low cost of $1/Gb. We establish system performance
by whole-genome sequencing of the Genome-In-A-Bottle
reference samples HGOO1-7, demonstrating high accuracy
for SNPs (99.6%) and Indels in homopolymers up to length
10 (96.4%) across the vast majority (>98%) of the defined
high-confidence regions of these samples. We demonstrate
scalability of the whole-genome sequencing workflow by
sequencing an additional 224 selected samples from the
1000 Genomes project achieving high concordance with
reference data.

Introduction

Continuous advances in DNA sequencing over the last two
decades have enabled cutting edge life sciences research by
providing access to increasing amounts of genomic,
transcriptomic, and epigenetic data across all fields of
biology. Methods for massively parallel sequencing of
clonally-amplified short DNA fragments, also known as
second-generation  sequencing, have reduced the
sequencing cost of a whole human genome by over 6 orders
of magnitude, from $3B estimated for the Human Genome
Project! to under $1000 per genome? enabling a rapidly
growing set of clinical applications ranging from carrier
screening and prenatal testing to tumor profiling and early
cancer detection®. However, sequencing cost reduction
has stalled in recent years around the $6-10/Gb price
point’. As a result, sequencing costs remain a critical

bottleneck and limited funds often force tradeoffs between
the breadth, depth, and frequency of genomic sequencing
in the design of research and clinical assays. Resuming the
push for sequencing cost reduction will drive the
development of new genomic applications and the
adoption of genomic diagnostics into the standard of care.

Here we introduce a new massively parallel sequencing-
by-synthesis (SBS) approach which combines some of the
most desirable traits of current short-read methodologies
within a system providing significant scalability and
dramatically lower cost. The first implementation of this
approach produces approximately 10 billion reads per run,
with a turnaround time of under 20hrs per run for 300bp
reads, and with base quality similar to existing platforms
(Q30 >85%), at a price of $1/Gb. We establish benchmark
sequencing and germline variant calling performance on
the standard Genome in a Bottle (GIAB)’ reference
samples and demonstrate a scalable workflow by
generating whole genome sequencing (WGS) data of over
200 previously characterized genomes.

Sequencing Platform

To enable cost-effective high-scale DNA sequencing that
is both superior to current methods and amenable to
continuous improvement, we have designed a sequencing
architecture  that efficiently utilizes economical
consumables and contains multiple degrees of freedom
having significant headroom for additional scalability. Our
system design features three main innovative components:
a) open fluidics and optics system, b) mostly natural
sequencing chemistry, and c) neural network-enabled
base-calling. Combined, these innovations enable scalable,
high-throughput DNA sequencing and significantly reduce
the consumable cost of sequencing down to $1/Gb in the
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first implementation, with potential for even lower costs in
the not distant future.

Open fluidics and optics system

The cost of sequencing is dominated by two consumables:
the flow-cell and the sequencing reagents. Typical next
generation sequencing (NGS) platforms utilize highly
engineered flow-cells that both control reagent delivery
and simultaneously function as part of the optical detection
path. Selection of the fluidic channel dimensions within the
flow-cell are a performance compromise between
efficiency of reagent flow speed (deep channels) and
reagent usage (shallow channels). Each surface of the flow-
cell that is in the optical path must meet micron-scale
mechanical tolerances consistent with high resolution
microscopy. Furthermore, since a flow-cell is fed by
common input lines, all of the fluidic channels shared
between different reagents must be completely flushed
between SBS steps to prevent carryover contamination,
which is detrimental to data quality. In contrast, our system
circumvents these design constraints by utilizing a circular
200mm silicon wafer as an “open flow-cell” with no
consumable parts in the optical path. This wafer is
patterned at micron scale generating a dense array of
electrostatic landing pads to bind clonally amplified
sequencing beads, which are separately produced by an
automated emulsion PCR process (Fig. la). A spin-
dispense system delivers reagents to the wafer by
dispensing reagents from dedicated nozzles near the center
of the rotating wafer and distributing the reagents rapidly
and uniformly across the wafer by centrifugal force (Fig.
1b). This system has no shared fluidics between reagents
that must be purged between cycles to avoid
contamination. Because reagents are delivered inertially, a
very uniform and thin layer (about 10 microns) is created
on the surface, routinely achieving high active reagent
utilization. Optical measurement of the entire surface is
performed during rotation of the wafer in a continuous
process, analogous to reading a compact disc (Fig. 1b).

The advantages of the open system are thus several-fold:
First, the 200mm wafer is a standard low-cost substrate in
the semiconductor industry. Second, the large substrate
surface allows deposition of over 10 billion beads at the
initial density, with significant headroom to increase
density in the future. Third, the spin-dispense system
lowers dead-volume and allows efficient reagent delivery,
reducing reagent costs. Fourth, the system allows rapid
reagent delivery and optical scanning, shortening overall
sequencing cycle time. Finally, the “air-gap” between
reagent-specific fluidics components leaves minimal
opportunity for cross-contamination.

Mostly natural sequencing chemistry

The vast majority of sequencing data currently produced
for research and clinical use is generated by massively
parallel sequencing platforms employing SBS. The most
widely used SBS implementation utilizes fluorescently
labeled, reversible-terminated nucleotides that are
incorporated within a sequencing cycle including all four
bases across amplified DNA colonies fixed to a flow-cell.
Following completion of this reaction, the entire flowcell
is imaged®. The main advantages of this approach are high
throughput and measurement accuracy, both of which
result from the decoupling between the chemistry and
optical imaging steps. Another common implementation of
SBS introduces one natural (non-terminating) nucleotide
base in each cycle and measures the number of
incorporated bases in real time using different methods
such as pyrosequencing® or changes in pH!°. The main
advantage of the latter approach is that the synthesized
DNA is completely unmodified and can therefore be
extended with high speed and processivity, even to read
lengths of 1kb'!, while using relatively less costly reagents.
However, this approach suffers from higher error rates due
to the intrinsic noise of transiently measuring single
particles, e.g., protons or photons, emitted during each
individual incorporation event.

Mostly  natural  sequencing-by-synthesis  (mnSBS)
combines the strengths of these two SBS approaches by
utilizing in each sequencing cycle a single base from a
mostly natural nucleotide (MNN) mix, which comprises a
minority (<20%) of fluorescently labeled, non-terminated
nucleotides and a majority of unlabeled, non-terminated
(natural) nucleotides (Fig. 1c). The resulting synthesized
DNA is mostly unmodified, yet incorporated bases can still
be efficiently measured at the reaction endpoint via high
throughput optical scanning with a high signal-to-noise
ratio, based on hundreds of photons produced by each
fluorescent label. At each sequencing cycle clonal beads
are exposed to the MNN mix and polymerase extension is
performed to incorporate 0, 1, or several bases of a single
nucleotide base type (dA, dC, dG or dT) into each growing
strand, depending on the length of the respective
homopolymer in the corresponding template (Fig. 1d).
Following the chemistry step, the entire active surface of
the substrate is scanned to measure the fluorescence level
of each clonal bead. Then, all fluorescent labels are cleaved
and washed, with a typical sequencing cycle length of
about 2 minutes. The net benefit of mnSBS is that, in a
single sequencing cycle, the total amount of labeled
nucleotide incorporated on a clonal bead is linearly
proportional to the length of the respective homopolymer
in the template, while each individual synthesized DNA
strand remains mostly unlabeled — even at longer template
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homopolymer lengths. mnSBS thereby avoids quenching
of fluorescent signals from adjacent labels and instead
produces signals proportional to the lengths of
homopolymers (Fig. 1e). mnSBS also eliminates most
scarring effects of reversible-terminating chemistries,
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allowing for faster run times and longer read lengths, which
we have already demonstrated to surpass 400bp (Fig. 1f).
Finally, mnSBS retains a single polymerase on each
template strand throughout a sequencing run, significantly
enhancing process and cost efficiencies.
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Figure 1: Sequencing Platform. a) Wafer surface patterned at micron resolution to allow binding and sequencing of billions of
clonally amplified sequencing beads; b) Open fluidics systems allows (i) dispensing of reagents from dedicated nozzles near the
center of the rotating wafer to distribute reagents by centrifugal force and (ii) optical measurement of the entire wafer surface in
one continuous step; ¢) chemistry cycle includes addition of one type of mostly-natural nucleotide mix at a time (dA, dC, dG or
dT) followed by imaging and cleavage of the sparse labels; d) In each chemistry cycle, the number of imaged labels is linearly
proportional to respective homopolymer length on the template, with minimal number of adjacent fluorophores; e) median signal
over 3 different cycles for homopolymer length in the range 0-12, dashed line represent low count of high C/G homopolymers; f)
example of prototype run with modal read length >400bp; g) Homopolymer calling accuracy as a function of homopolymer length.
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Neural network-enabled base-calling

Scanning of the entire surface of the wafer generates non-
overlapping tile images which are processed using on-
board GPUs to extract bead locations and corresponding
raw signal vector per clonally amplified sequencing bead
over multiple sequencing cycles. Raw signals are
proportional to the homopolymer length up to
approximately 12 bases. However, raw signals can vary
due to multiple factors including dephasing of DNA
synthesis in each bead over the sequencing run, spatial
differences across the wafer, differing label incorporation
rates due to local sequence context, and random sampling
noise. To accommodate for systematic variance, we take
advantage of recent significant advances in machine
learning as well as the large amount of data involved in
each run to employ a deep convolutional neural network
(CNN) to convert raw signals into sequence reads. The
CNN is trained offline on a large, diverse dataset
combining data from multiple runs, and it is then
recalibrated on a smaller sample of genomic reads from the
current run. The run-specific calibration process optimizes
for the local variable characteristics of each run, which
results in a high level of system robustness and more
accurate base calls. The CNN outputs the most likely
homopolymer sequence length (i.e., 0-12) for each cycle as
well as an estimate of certainty for each base call, which is
used to generate base quality scores calibrated for the
specific run. Typically, homopolymer calling accuracy is
at 99.5% for homopolymer lengths of 1-2 and decreases to
90% at homopolymer lengths of 8 (Fig. 1g). Base
substitution error for this type of chemistry is expected to
be very low since substitution errors could only be
generated as a combination of two or more adjacent
homopolymer errors. Following base-calling, data is
demultiplexed using inline sample barcodes, and outputted
as a standard compressed CRAM file containing the
sample information, read sequence, and base quality data,
enabling analysis via standard sequence analysis software.

Sequencing Performance

Genome in a Bottle reference samples

To establish sequencing performance, we sequenced the
seven standard GIAB reference samples HG001-HG007 2.
PCR-free shotgun libraries were generated from the DNA
by ligation of DNA adapters including a sample index
sequence. Clonally amplified sequencing beads were
generated via a fully automated high-scale emulsion PCR
system and loaded onto the sequencing wafer. For a full
sequencing run, we executed 444 flow cycles to allow
reading of the inline sample barcode followed by a single-

ended read of length ~300bp, over a total run time of under
20 hours.

As expected for non-terminating SBS, sequence reads had
a distribution of read lengths, with an average of 282bp and
mode of 310bp (Fig. 2a). The average amount of sequence
generated per sample (after de-duplication) was
approximately 60X mean coverage per sample and was
down-sampled to 40X for analysis. >99.9% of reads were
mappable to Human Genome reference build 38
(GRCh38)!3 using bwa-mem'*. The human genome
coverage demonstrated good uniformity across the genome
with an average F90=1.43 and F95=1.75 (ratio of coverage
between the median and the 10% or 5™ percentile lowest
coverage, respectively) (Fig. 2b). Coverage depth of
genomic regions with 20-70% GC content (covering >98%
of the human genome) is within a ratio of 0.8-1.2 of the
median depth, with lower coverage only at extreme %GC
(Fig. 2¢). On average, 94.9% and 86.8% of bases had base
quality scores of BQ>20 or BQ>30, respectively, with high
quality maintained throughout the length of the run (Fig.
2d). Measured raw base error rates were <0.1% for high-
quality substitution errors (corrected for common SNPs
and alignment errors) and 0.3% for total indel errors, with
base qualities well-correlated with the observed indel error
rate (Fig. 2e, see Methods).

To call germline short variants from WGS data, we
modified the GATK HaplotypeCaller algorithm!® to
account for the unique quality scores that are generated for
this data type, by scoring candidate haplotypes using the
homopolymer length probabilities represented in the base
quality scores. Following variant candidate generation, we
scored the variants based on likelihood and filtered them
by strand bias and additional variant properties (see
Methods).

We assessed the quality of the variant calls by comparing
them to reference GIAB truth sets using the respective
high-confidence regions” and excluding homopolymer
regions of length>10 which are not currently measured by
this system (0.4% of the total HCR) (GIAB-HCR). Since
low-complexity genomic regions tend to amplify
inefficiently, we isolated the sequencing accuracy by
further excluding selected low-complexity, tandem-repeats
and low mappability regions from the GIAB-HCR while
still maintaining 98.2% of the original HCR (UG-HCR, see
Methods). The overall concordance of SNP variant calls
over the UG-HCR was F1=99.6% (recall=99.7%,
precision=99.6%) and of Indel variant calls it was
F1=96.4% (recall=96.1%, precision=96.7%). Variant
calling accuracy in the GIAB-HCR was F1=99.0% for
SNPs and F1=90.6% for Indels, suggesting that a
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Figure 2: Sequencing Performance for sample HG00S. a) Read length distribution; b) Coverage depth distribution across human
genome, compared with uniform random sample at same average depth (dashed line); c) Normalized coverage across range of
%GC in human genome (HG). Lower x-axis denotes percentile of HG, upper x-axis — the actual %GC value; d) base quality as a
function of base position along the read; e) Comparison of predicted and observed homopolymer length classification errors by
base quality — see Methods section for details. Larger datapoint contains >85% of the data.

significant fraction of the variant calling errors in this
region is indeed related to low-complexity DNA and can
likely be improved by optimizing the clonal amplification
protocol.

Sequencing of 1000 Genomes samples

To demonstrate the scalability of the WGS workflow for
large scale studies, we sequenced an additional 224
selected samples from the 1000 Genomes project'®. We
generated an average of 56X mean coverage per sample
(after de-duplication) with mean read length of 279bp
(mode 302bp) and 86% of bases with BQ>30. All
performance metrics were highly consistent across the full
set of samples (Table 1).

For a cohort-level analysis we generated a joint callset
from the full set of samples and further scored it based on
the combined properties of the cohort!” (see Methods). We
tested concordance of the variant calls from these samples

versus a reference callset'® over the intersection of the
GIAB HCRs. The average concordance over the entire
dataset was F1=99.2% for SNP variant calls and F1=95.0%
for Indels in the UG-HCR. Overall Ti/Tv ratio in the
genome was measured at 2.09 and 2.94 in the exome.

Discussion

Most innovation in genomics over the last 20 years is
related to the dramatic reductions in the cost of generating
large volumes of sequence data. Here, we introduced a
novel SBS sequencing architecture, incorporating mostly
natural sequencing chemistry and an open fluidics
platform, to enable high-throughput sequencing at
significantly improved cost efficiency over what is
currently available. Beyond the initial implementation, this
architecture allows significant headroom for continuous
improvements in read length, loading efficiency, bead
density, and other factors that will enable significant
decrease in cost per Gb over time.
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We have demonstrated the accuracy of this system by
generating whole-genome data for the seven GIAB
reference samples, showing that high sequencing accuracy
for SNPs (99.6%) and Indels in homopolymers up to length
10 (96.4%) can be obtained in the vast majority (>98%) of
the defined high-confidence regions of these samples. The
main accuracy gaps that remain are strongly correlated
with repetitive regions and extreme %GC regions that are
difficult to amplify efficiently and can likely be minimized
by additional optimization of the clonal amplification
protocol. Indels in homopolymer regions, which are
traditionally the Achilles heel of non-terminating
chemistries, can be called with good accuracy up to lengths
of 8-10 bases. Further improvements in features such as
polymerase fidelity, base calling, and variant calling
algorithms, are expected to continue driving overall
accuracy gains over time.

HGO001 HG002 HGO003 HG004
Mean coverage 40.05 39.58 39.67 38.56
% >20X 95.9% 95.7% 95.9% 96.6%
% Duplication 4.1% 6.6% 6.2% 7.3%
F90* 1.483 1.466 1.469 1.377
F95* 1.821 1.885 1.803 1.677
PF reads (M)** 469 435 436 433
% reads aligned 99.80% 99.96% 99.96%  99.97%
Mean read length 264.8 284.9 284.4 286.7
Median read length 291 302 302 303
Modal read length 309 311 311 311
% chimeras 2.3% 1.1% 1.2% 1.3%
Raw Indel error 0.27% 0.30% 0.29% 0.28%
HQ Mismatch error® 0.07% 0.08% 0.07% 0.07%
% BQ20 bases 95.5% 94.8% 95.0% 95.2%
% BQ30 bases 87.3% 86.4% 86.8% 87.6%
Ti/Tv ratio Exome 2.97 2.89 2.95 2.90
Ti/Tv ratio* 2.09 2.09 2.09 2.09
SNP recall* 99.7% 99.6% 99.6% 99.7%
SNP precision* 99.6% 99.6% 99.6% 99.6%
SNP F1* 99.7% 99.6% 99.6% 99.7%
Indel recall* 96.7% 96.4% 96.6% 95.4%
Indel precision* 97.0% 96.8% 97.1% 96.4%
Indel F1* 96.9% 96.6% 96.8% 95.9%

We further demonstrated the capacity and stability of our
system by sequencing 224 additional reference genome
samples. Comparison of the joint variant callset for these
samples with reference data demonstrates high similarity
in all relevant parameters, with SNP calls being highly
concordant (99.2%) with reference data, which is
important for allowing the use of new data in combination
with legacy datasets.

There are many data-intensive applications which depend
upon lower costs to be deployed at scale. For example,
studies involving single-cell analysis of millions of cells',
high-resolution genomic structure by Hi-C, deep
sequencing of cell-free DNA?, and whole-genome
methylation analysis?' have already been demonstrated.
Many additional high-throughput sequencing applications,
such as deep microbiome analysis, high-resolution spatial

HGO005 HGO006 HGO007 GIAB 1000G 1000G
Mean Mean Std
39.16 39.53 38.32 39.27 55.65 8.14
96.8% 96.1% 96.7% 96.2% 97.8% 0.4%
7.6% 6.1% 8.2% 6.6% 10.7% 1.1%
1.398 1.464 1.368 1.432 1.347 0.029
1.632 1.797 1.666 1.754 1.628 0.054
430 443 433 440 665 103
99.96% 99.95% 99.97% 99.94% 99.91% 0.1%
288.6 280.3 286.4 282.3 279.5 3.5
304 301 302 300.7 295.2 2.0
311 310 311 310.6 302.3 0.6
1.4% 1.5% 1.3% 1.5% 1.0% 0.2%
0.29% 0.38% 0.28% 0.30% 0.52%  0.04%
0.07% 0.10% 0.07% 0.07% 0.14%  0.02%
95.0% 93.6% 95.2% 94.9% 94.3% 0.4%
87.1% 84.6% 87.7% 86.8% 86.5% 0.8%
2.98 2.93 2.97 2.94 3.06 0.03
2.09 2.09 2.09 2.09 2.10 0.004
99.7% 99.6% 99.7% 99.7% 99.2% 0.1%
99.6% 99.6% 99.6% 99.6% 99.1% 0.1%
99.7% 99.6% 99.7% 99.6% 99.2% 0.1%
96.0% 95.9% 96.0% 96.1% 95.0% 0.5%
97.0% 96.2% 96.7% 96.7% 94.9% 0.4%
96.5% 96.1% 96.3% 96.4% 95.0% 0.4%

Table 1: Performance metrics for Genome in a Bottle (GIAB) reference genomes HG001-7, and average performance metrics
for 224 additional 1000 Genomes (1000G) reference genomes.

* F90/95: Ratio of coverage between the median and the 10th or 5th percentile lowest coverage, respectively.

** PF: Pass-filter reads. All other metrics were calculated over these reads.

+ HQ Mismatch error rate was corrected for germline SNPs and alignment errors (see Methods section).

1 Variant calling metrics were measured on GIAB HCR excluding long homopolymers and repetitive regions (UG-HCR, see

Methods).
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profiling, and multi-modal analyses can also be
significantly expanded using this platform.

The increase in accessibility and affordability of DNA
sequencing over the last two decades has already
profoundly changed the way biological and clinical
research are carried out. It is exciting to imagine how this
new level of low-cost sequencing will enable continued
advances, and how the expanded availability of large-scale
genomic data will facilitate routine clinical sequencing and
implementation of precision medicine across all areas of
human health.

Methods

Sample preparation and Sequencing

The Broad Institute Genomics Platform created PCR-free Ultima
Genomics (UG) libraries in an automated 96-well format using
the Agilent Bravo automated liquid handling platform. Starting
from 250 ng of genomic DNA, samples were prepared using the
NEBNext® Ultra™ II FS DNA Library Prep Kit. Genomic DNA
was enzymatically fragmented for 10 minutes. After end-repair
and A-tailing, custom UG-specific adapters containing molecular
barcodes were ligated. This was followed by a double-sided
SPRI-based size selection cleanup to target fragments averaging
550-600bp. In-process quality control checks were carried out in
the form of an automated electrophoresis (Agilent Bioanalyzer)
to ensure proper fragment size, and quantitative-PCR (qPCR) to
measure the final library concentration. Using a Hamilton Starlet
automated liquid handler, samples were pooled volumetrically
according to qPCR results such that each sample received equal
representation in the final pool. Sample pools were then seeded
onto UG sequencing beads, pre-enriched, and amplified by
emulsion PCR, leveraging UG’s automated sequencing bead
preparation system (AMP1). The material generated by the UG
AMP1 system was subjected to QC before loading onto the
sequencer. Sequencing was performed on two UG100 sequencing
systems, using early access version of UG sequencing chemistry.
The flow-based sequencers were run for 444 flow-cycles (111
cycles across each of the four nucleotides [T, G, C, A]).

Base calling

Base calling was performed using a CNN that outputs the most
likely homopolymer sequence length (i.e., 0-12) for each cycle as
well as an estimate of certainty for each base call. The output of
the base-calling network per read is a matrix of size (# of flows,
13) where position (4, f) in the matrix describes the probability
that the true homopolymer length corresponding to the read’s
flow fis h. The read sequence in the output file is generated as the
most likely homopolymer length call in each flow, and the
probabilities of the alternate homopolymer lengths (errors) are
encoded in the quality string and the optional tp and tO tags. For
additional information, see CRAM format in Supplementary
Materials.

GIAB samples were base-called with base-calling pipeline
version APL4.6, quality filtered by read quality (rq<0.7) and

down-sampled to 40X. 1000 Genomes samples were base-called
with base-calling pipeline version APL4.2.

To calculate the predicted vs observed error rates (Fig. 2e), 1% of
the reads were randomly sampled and encoded base qualities
were converted back to flow space. Errors in homopolymer length
classification vs reference were tallied and compared to the
quality estimates.

Performance Metrics

Performance metrics listed in Table 1 were calculated using
GATK Picard® tools: AlignmentSummaryMetrics, RawWgs-
Metrics, and Quality YieldMetrics.

To most accurately estimate substitution error rate based on
available WGS 1% of the reads were randomly sampled and
filtered to chromosome 9. Only reads with high mapping quality
(>60) were selected, and positions corresponding to known
population variants in dbSNP were ignored (for GIAB samples,
the positions corresponding to the ground truth were ignored). We
also removed errors that are likely due to local misalignment of
indels (the more common error mode) by ignoring positions that
are close to the read ends (<=5bp) or with an adjacent mismatch.

Variant Calling

Variant calling was performed using a version of GATK
HaplotypeCaller'® algorithm that was updated to use the flow-
space error estimations from the base-calling network to calculate
the likelihood of having sequenced a given read from a candidate
haplotype, in place of the native PairHMM algorithm that
assumes mismatches as the predominant error mode. In addition,
variants in homopolymers of length 12 or above were ignored,
and an iterative candidate pruning scheme was implemented to
generate the most accurate variant calls. For additional
information, see GATK release details in Supplementary
Materials.

Variant call filtering was implemented using a random forest
classifier retrained per sample using an approximate labeling
scheme. 200,000 variants were selected and labeled as likely
positive, if they matched dbSNP, and likely false if they matched
a database of common artifacts generated over 200 unrelated
samples. The input features of the classifier were the parameters
of the variant from the GATK output (e.g. quality, strand bias,
local motif etc.). The trained classifier was applied to all variant
calls to produce the final filtered VCF.

For joint calling on the 231 sample dataset, individual variant
calls (GVCF) were integrated into GenomicsDB as part of the
GATK!"” with additional novel annotations included for filtering.
The single sample scores were averaged across sites and used as
an annotation along with the average number of assembled
haplotypes and filtered haplotypes within HaplotypeCaller, as
well as Read Position Rank Sum, Fisher Strand, Strand Odds
Ratio, and Qual by Depth in an Isolation Forest model that filtered
the sites at the Joint Callset level. Two filtering thresholds were
chosen (one for SNPs and one for Indels) by using one of the
GIAB samples that was included in the callset to determine a max
F1 score. This threshold was used to filter the entire callset.
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Variant Calling Performance Evaluation

Variant calling performance (recall, precision F1), was calculated
using vcfeval? to compare single sample variant callset (vcf) with
GIARB truth set (v4.2.1) for reference samples HG001-7 or WGS
reference callset'® for the remaining samples.

The evaluation region was defined as the corresponding GIAB
high-confidence region (HCR v4.2.1), with the following
exclusions [% of full HCR]:

GIAB-HCR (total 99.6% of full HCR):

e  Homopolymer regions of length 11 and higher + 4 flanking
bases [0.4%]

UG-HCR (total 98.2% of full HCR):

e  Homopolymer regions of length 11 and higher + 4 flanking
bases [0.4%]

e AT-rich regions: all 40 bp regions with 95% or higher AT
content [0.3%]

e  Short tandem repeats regions, with specific defined
thresholds [0.3%]

e  Low mappability and coverage: 50bp regions with mean
mappable coverage>15X in 90 independent samples [1.1%]

BED files containing specific exclusion areas are available as
supplementary material.
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