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Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The
binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even
with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method
for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558M natural antibody sequences followed by
graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative
methods (including AlphaFold) in significantly less time (under one minute). Accurate structure prediction on this timescale makes possible
avenues of investigation that were previously infeasible. As a demonstration of IgFold’s capabilities, we predicted structures for 105K paired
antibody sequences, expanding the observed antibody structural space by over 40 fold.
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Introduction

Antibodies play a critical role in the immune response against foreign pathogens. Through genetic recombination and
hyper-mutation, the adaptive immune system is capable of generating a vast number of potential antibodies. Immune
repertoire sequencing provides a glimpse into an individual’s antibody population (1). Analysis of these repertoires
can further our understanding of the adaptive immune response (2) and even suggest potential therapeutics (3).
However, sequence data alone provides only a partial view into the immune repertoire. The interactions that facilitate
antigen binding are determined by the structure of a set of six loops that make up a complementarity determining
region (CDR). Accurate modeling of these CDR loops provides insights into these binding mechanisms and promises
to enable rational design of specific antibodies (4). Five of the CDR, loops tend to adopt canonical folds that can
be predicted effectively by sequence similarity (5). However, the third CDR loop of the heavy chain (CDR H3) has
proven a challenge to model due to its increased diversity, both in sequence and length (6, 7). Further, the position of
the H3 loop at the interface between the heavy and light chains makes its conformation dependent on the inter-chain
orientation (8, 9). Given its central role in binding, advances in prediction of H3 loop structures are critical for
understanding antibody-antigen interactions and enabling rational design of antibodies.

Deep learning methods have brought about a revolution in protein structure prediction (10, 11). With the
development of AlphaFold, accurate protein structure prediction has largely become accessible to all (12). Beyond
monomeric proteins, AlphaFold-Multimer has demonstrated an impressive ability to model protein complexes (13).
However, performance on antibody structures remains to be extensively validated. Meanwhile, antibody-specific deep
learning methods such as DeepAb (14) and ABlooper (15) have significantly improved CDR loop modeling accuracy,
including for the challenging CDR H3 loop (7, 16). DeepAb predicts a set of inter-residue geometric constraints that
are fed to Rosetta to produce a complete Fy structure (14). ABlooper predicts CDR loop structures in an end-to-end
fashion, with minimal post-prediction refinement required, while also providing an estimate of loop quality (15).
While effective, certain design decisions limit the utility of both models. DeepAb predictions are relatively slow (ten
minutes per sequence), cannot effectively incorporate template data, and offer little insight into expected quality.
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Fig. 1. Diagram of method for end-to-end prediction of antibody structures. Antibody sequences are converted into contextual embeddings using AntiBERTYy, a pre-trained
language model. From these representations, IgFold uses a series of transformer layers to directly predict atomic coordinates for the protein backbone atoms. For each
residue, IgFold also provides an estimation of prediction quality. Refinement of predictions and addition of side chains is performed by Rosetta.

ABlooper predictions, while faster and more informative, rely on less accurate homology models for the framework
structure and cannot incorporate CDR loop templates or predict nanobody structures.

Concurrent with advances in structure prediction, self-supervised learning on massive sets of unlabeled protein
sequences has shown remarkable utility across protein modeling tasks (17, 18). Embeddings from transformer encoder
models trained for masked language modeling have been used for variant prediction (19), evolutionary analysis (20, 21),
and as features for protein structure prediction (22, 23). Auto-regressive transformer models have been used to
generate functional proteins entirely from sequence learning (24). The wealth of immune repertoire data provided by
sequencing experiments has enabled development of antibody-specific language models. Models trained for masked
language modeling have been shown to learn meaningful representations of immune repertoire sequences (21, 25, 26),
and even repurposed to humanize antibodies (27). Generative models trained on sequence infilling have been shown
to generate high-quality antibody libraries (28, 29).

In this work, we present IgFold: a fast, accurate model for end-to-end prediction of antibody structures from
sequence. IgFold leverages embeddings from AntiBERTY (21), a language model pre-trained on 558M natural antibody
sequences, to directly predict the atomic coordinates that define the antibody structure. Predictions from IgFold
match the accuracy of the recent AlphaFold models (10, 13) while being much faster (under one minute). IgFold also
provides flexibility beyond the capabilities of alternative antibody-specific models, including robust incorporation of
template structures and support for nanobody modeling.

Results

End-to-end prediction of antibody structure. Our method for antibody structure prediction, IgFold, utilizes learned
representations from the pre-trained AntiBERTY language model to directly predict 3D atomic coordinates (Figure 1).
Structures from IgFold are accompanied by a per-residue accuracy estimate, which provides insights into the quality
of the prediction.

Embeddings from pre-trained model encode structural features. The limited number of experimentally determined anti-
body structures (thousands (30)) presents a difficultly in training an effective antibody structure predictor. In the
absence of structural data, self-supervised language models provide a powerful framework for extracting patterns
from the significantly greater number (billions (31)) of natural antibody sequences identified by immune repertoire
sequencing studies. For this work, we used AntiBERTYy (21), a transformer language model pre-trained on 558M
natural antibody sequences, to generate embeddings for structure prediction. Similar to the role played by alignments
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of evolutionarily related sequences for general protein structure prediction (32), embeddings from AntiBERTY act as
a contextual representation that places individual sequences within the broader antibody space.

Prior work has demonstrated that protein language models can learn structural features from sequence pre-training
alone (17, 33). To investigate whether sequence embeddings from AntiBERTY contained nascent structural features,
we generated embeddings for the set of 3,467 paired antibody sequences with experimentally determined structures in
the PDB. For each sequence, we extracted the portions of the embedding corresponding to the six CDR loops and
averaged to obtain fixed-sized CDR loop representations (one per loop). We then collected the embeddings for each
CDR loop across all sequences and visualized using two-dimensional t-SNE (Figure S1). To determine whether the
CDR loop representations encoded structural features, we labeled each point according to its canonical structural
cluster. For CDR H3, which lacks canonical clusters, we instead labeled by loop length. For the five CDR loops that
adopt canonical folds we observed clear organization within the embedded space. For the CDR H3 loop, we found
that the embedding space did not separate into natural clusters, but was rather organized roughly in accordance with
loop length. These results suggest that AntiBERTy has learned to encode CDR loop structural features through
sequence pre-training alone.

Coordinate prediction from sequence embeddings. To predict 3D atomic coordinates from sequence embeddings, we
adopt a graphical representation of antibody structure, with each residue as a node and information passing between
all pairs of residues (Figure 1). The nodes are initialized using the final hidden layer embeddings from AntiBERTY.
To initialize the edges, we collect the full set of inter-residue attention matrices from each layer of AntiBERTYy. These
attention matrices are a useful source of edge information as they encode the residue-residue information pathways
learned by the pre-trained model. For paired antibodies, we concatenate the sequence embeddings from each chain
and initialize inter-chain edges to zero. We do not explicitly provide a chain break delimiter, as the pre-trained
language model already includes a positional embedding for each sequence. The structure prediction model begins
with a series of four graph transformer (34) layers interleaved with edge updates via the triangle multiplicative layer
proposed for AlphaFold (10).

Following the initial graph transformer layers, we incorporate structural template information into the nascent
representation using invariant point attention (IPA) (10). In contrast to the application of IPA for the AlphaFold
structure module, we fix the template coordinates and use IPA as a form of structure-aware self-attention. This
enables the model to incorporate the local structural environment into the sequence representation directly from the
3D coordinates, rather than switching to an inter-residue representation (e.g., distance or contact matrices). We use
three IPA layers to incorporate template information. Rather than search for structural templates for training, we
generate template-like structures by corruption of the true label structures. Specifically, for 50% of training examples,
we randomly select one to six consecutive segments of twenty residues and move the atomic coordinates to the origin.
The remaining residues are provided to the model as a template. The deleted segments of residues are hidden from the
IPA attention, so that the model only incorporates structural information from residues with meaningful coordinates.

Finally, we use another set of IPA layers to predict the final 3D antibody structure. Here, we employ a strategy
similar to the AlphaFold structure module (10) and train a series of three IPA layers to translate and rotate each
residue from an initialized position at the origin to the final predicted position. We depart slightly from the AlphaFold
implementation and learn separate weights for each IPA layer, as well as allow gradient propagation through the
rotations. To train the model for structure prediction, we minimize the mean-squared error between the predicted
coordinates and the experimental structure after Kabsch alignment. In practice, we observe that the first IPA layer is
sufficient to learn the global arrangement of residues (albeit in a compact form), while the second and third layers
function to produce the properly scaled structure with correct bond lengths and angles (Figure S2).

Per-residue error prediction. Simulatneously with structure prediction training, we additionally train the model to
estimate the error in its own predictions. For error estimation, we use two IPA layers that operate similarly to the
template incorporation layers (i.e., without coordinate updates). The error estimation layers take as input the final
predicted structure, as well as a separate set of node and edge features derived from the initial AntiBERTYy features.
We stop gradient propagation through the error estimation layers into the predicted structure to prevent the model
from optimizing for accurately estimated, but highly erroneous structures. For each residue, the error estimation
layers are trained to predict the deviation of the C, atom from the experimental structure after a Kabsch alignment
of the beta barrel residues. We use a different alignment for error estimation than structure prediction to more closely
mirror the conventional antibody modeling evaluation metrics. The model is trained to minimize the L1 norm of the
predicted C, deviation minus the true deviation.

Structure dataset augmentation with AlphaFold. We sought to train the model on as many immunoglobulin structures
as possible. From the Structural Antibody Databae (SAbDab) (30), we obtained 4,275 structures consisting of
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paired antibodies and single-chain nanobodies. Given the remarkable success of AlphaFold for modeling both protein
monomers and complexes, we additionally explored the use of data augmentation to produce structures for training.
To produce a diverse set of structures for data augmentation, we clustered (35) the paired and unpaired partitions
of the Observed Antibody Space (31) at 40% and 70% sequence identity, respectively. This clustering resulted in
16,141 paired sequences and 26,971 unpaired sequences. We predicted structures for both sets of sequences using the
original AlphaFold model. For the paired sequences, we modified the model inputs to enable complex modeling by
inserting a gap in the positional embeddings (i.e., AlphaFold-Gap (12, 13)). For the unpaired sequences, we discarded
the predicted structures with average pLDDT (AlphaFold error estimate) less than 85, leaving 22,132 structures.
These low-confidence structures typically correponded to sequences with missing residues at the N-terminus. During
training, we sample randomly from the three datasets with examples weighted inversely to the size of their respective
datasets, such that roughly one third of total training examples come from each dataset.

Antibody structure prediction benchmark. To evaluate the performance of IgFold against recent methods for antibody
structure prediction, we assembled a non-redundant set of antibody structures deposited after compiling our training
dataset. We chose to compare performance on a temporally separated benchmark to ensure that none of the methods
evaluated had access to any of the structures during training. In total, our benchmark contains 67 paired antibodies
and 21 nanobodies.

Predicted structures are high quality before refinement. As an end-to-end model, IgFold directly predicts structural
coordinates as its output. However, these immediate structure predictions are not guaranteed to satisfy realistic
molecular geometries. In addition to incorporating missing atomic details (e.g., side chains), refinement with
Rosetta (36) corrects any such abnormalities. To better understand the impact of this refinement step, we compared
the directly predicted structures for each target in the benhmark to their refined counterparts. In general, we
observed very little change in the structures (Figure S3), with an average RMSD less than 0.5 A before and after
refinement. The exception to this trend is abnormally long CDR loops, particularly CDR H3. We compared the
pre- and post-refinement structures for benchmark targets with three of the longest CDR H3 loops to those with
shorter loops and found that the longer loops frequently contained unrealistic bond lengths and backbone torsion
angles (Figure S4). Similar issues have been observed in recent previous work (15), indicating that directly predicting
atomically correct long CDR loops remains a challenge.

Accurate antibody structures in fraction of time. We compared the performance of IgFold against a mixture of grafting
and deep learning methods for antibody structure prediction. Although previous work has demonstrated significant
improvements by deep learning over grafting-based methods, we continue to benchmark against grafting to track its
performance as increasingly many antibody structures become available. For each benchmark target, we predicted
structures using ABodyBuilder (37), DeepAb (14), ABlooper (15), and AlphaFold-Multimer (13). Of these methods,
ABodyBuilder utilizes a grafting-based algorithm for structure prediction and the remaining use some form of deep
learning. DeepAb and ABlooper are both trained specifically for paired antibody structure prediction, and have
previously reported comparable performance. AlphaFold-Multimer has demonstrated state-of-the-art performance for
protein complex prediction — however, performance on antibody structures specifically remains to be evaluated.

The performance of each method was assessed by measuring the backbone heavy-atom RMSD between the predicted
and experimentally determined structures for the framework residues and each CDR loop. All RMSD values are
measured after alignment of the framework residues. In general, we observed state-of-the-art performance for all of
the deep learning methods while grafting performance continued to lag behind (Figure 2A, Table 1). On average, all
methods predicted both the heavy and light chain framework structures with high accuracy (0.43-0.54 A and 0.38 -
0.45 A, respectively). Similarly, for the CDR1 and CDR2 loops, all deep learning methods produced sub-angstrom
predictions on average, with the grafting-based ABodyBuilder performing marginally worse. The largest improvement
in prediction accuracy by deep learning methods is observed for the CDR3 loops.

We also considered the predicted orientation between the heavy and light chains, which is an important determinant
of the overall binding surface (8, 9). Accuracy of the inter-chain orientation was evaluated by measuring the deviation
from native of the inter-chain packing angle, inter-domain distance, heavy-opening angle, and light-opening angle.
Each of these orienational coordinates are rescaled by dividing by their respective standard deviations (calculated
over the set of experimentally determined antibody structures) and summed to obtain an orientational coordinate
distance (OCD) (9). We found that in general deep learning methods produced Fy structures with OCD values below
four, indicating that the predicted structures are typically within one standard deviation of the native structures for
each of the components of OCD. The exception to this trend is ABlooper, which utilizes framework structures from
ABodyBuilder and thus achieves a similar OCD value to the grafting-based method.
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Given the comparable aggregate performance of the deep learning methods, we further investigated the similarity
between the structures predicted by each method. For each pair of methods, we measured the RMSD of framework and
CDR loop residues, as well as the OCD, between the predicted structures for each benchmark target (Figure S8). We
additionally plotted the distribution of structural similarities between IgFold and the alternative methods (Figure S9).
We found that the framework structures (and their relative orientations) predicted by IgFold resembled those of
DeepAb and AlphaFold-Multimer, but were less similar to those of ABodyBuilder and ABlooper. This is expected,
given that ABlooper frameworks are based on ABodyBuilder grafts, while the frameworks from the remaining methods
are entirely learned (and tend to be more accurate). Interestingly, we also observed that the CDR1 and CDR2 loops
from IgFold, DeepAb, and AlphaFold-Multimer were quite similar on average. It is unclear why CDR loop structures
from ABlooper, which was trained on a dataset similar to that of DeepAb and predicts CDR loops in an end-to-end
manner like IgFold, tend to be disimilar to those of DeepAb and IgFold. This may be due to framework inaccuracies
degrading the quality of CDR loop structures.

Although the performance of the deep learning methods for antibody structure prediction is largely comparable,
the speed of prediction is not. Grafting-based methods, such as ABodyBuilder, tend to be much faster than deep
learning methods (if a suitable template can be found). For the present benchmark, ABodyBuilder was able to
predict structures in seconds for 65 of 67 targets, only twice resorting to a time-consuming CDR H3 loop building
procedure. However, as reported above, this speed is obtained at the expense of accuracy. DeepAb and ABlooper,
which are more accurate and trained specifically for antibodies, require more time to predict full-atom structures (up
to one minute for ABlooper and ten minutes for DeepAb). AlphaFold-Multimer, trained for general protein structure
prediction from multiple sequence alignments, requires approximately one hour to predict full-atom structures. IgFold
prediction speed is comparable to ABlooper, and is able to predict full-atom structures in less than a minute.

Table 1. Accuracy of predicted antibody Fv structures

Method OCD HFr(A) H1@A) H2A) H3A) LA L1A)  L2A) L3A)
ABodyBuilder 4.90 0.54 1.10 0.94 3.75 0.43 1.07 058 1.37
DeepAb 3.60 0.43 0.80 0.74 3.28 0.38 086 045 1.11
ABlooper 453 0.51 0.95 0.82 3.20 0.45 099 059 1.15
AlphaFold-Multimer ~ 3.69 0.43 0.75 0.69 3.02 0.39 082  0.41 1.13
IgFold 3.77 0.45 0.80 0.75 2.99 0.45 083  0.51 1.07

Deep learning methods converge on CDR H3 accuracy. The average prediction accuracy for the highly variable, confor-
mationally diverse CDR H3 loop was relatively consistent among the four deep learning methods evaluated (Table 1),
though AlphaFold-Multimer and IgFold performed slightly better. Given this convergence in performance, we again
considered the similarity between the CDR H3 loop structures predicted by each method. DeepAb and ABlooper
produced the most similar CDR H3 loops, with an average RMSD of 2.29 A between predicted structures (Figure S8).
This may be reflective of the similar training datasets used for both methods, which were limited to experimentally
determined antibody structures. AlphaFold-Multimer, by contrast, predicted the most distinct CDR H3 loops, with
an average RMSD 2.81 - 2.95 A to the other deep learning methods. Finally, IgFold CDR H3 loops were most similar
to those of ABlooper, perhaps reflective of both models training for end-to-end coordinate prediction, but less similar
than those of DeepAb.

The disimilarity of predictions between IgFold and AlphaFold-Multimer is surprising, given the extensive use
of AlphaFold-predicted structures for training IgFold. When we compared the per-target accuracy of IgFold and
AlphaFold-Multimer, we found many cases where one method predicted the CDR, H3 loop accurately while the other
failed (Figure 2B). Indeed, approximately 20% of CDR H3 loops predicted by the two methods were greater than
4 A RMSD apart, meaning the methods often predict distinct conformations. In one such case (target TN3G (38),
Figure 2C), AlphaFold-Multimer effectively predicts the CDR H3 loop structure (RMSDps = 1.18 A) while IgFold
predicts a distinct, and incorrect, conformation (RMSDys = 7.01 A). However, for another example (target TORA (39),
Figure 2D), IgFold more accurately predicts the CDR H3 loop structure (RMSDgs = 1.10 A) while AlphaFold-
Multimer predicts an alternative conformation (RMSDys = 5.95 A). In practice, these distinct predictions may be
useful for generating conformational ensembles for the CDR H3 loop.

Fast nanobody structure prediction remains a challenge. Single domain antibodies, or nanobodies, are an increasingly
popular format for therapeutic development (40). Structurally, nanobodies share many similarities with paried
antibodies, but with the notable lack of a second immunoglobulin chain. This, along with increased nanobody CDR3
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loop length, makes accessible a wide range of CDR3 loop conformations not observed for paired antibodies (41). We
compared the performance of IgFold for nanobody structure prediction to ABodyBuilder (37), DeepAb (14), and
AlphaFold (10) (Figure 2E, Table 2). We omitted ABlooper from the comparison as it predicts only paired antibody
structures.

As with paired antibodies, all methods evaluated produced highly accurate predictions for the framework residues,
with the average RMSD ranging from 0.47 A to 0.68 A. For CDR1 and CDR2 loops, we observe a substantial
improvement by IgFold and the other deep learning methods over ABodyBuilder, with AlphaFold achieving the
highest accuracy on average. For the CDR3 loop, ABodyBuilder prediction quality is highly variable (average RMSD
of 5.40 A), reflective of the increased difficultly of identifying suitable template structures for the long, conformationally
diverse loops. DeepAb achieves the worst performance for CDR3 loops, with an average RMSD of 8.41 A, probably
because its training dataset was limited to paired antibodies (14), and thus the model has never observed the full
range of conformations accessible to nanobody CDR3 loops. AlphaFold displays remarkable performance for CDR3
loops, with an average RMSD of 2.90 A, consistent with its high accuracy on general protein sequences. IgFold CDR3
predictions tend to be less accurate than those of AlphaFold (average RMSD of 3.85 A), but are significantly faster to
produce (less than 30 seconds for IgFold, versus 30 minutes for AlphaFold).

To better understand the distinctions between IgFold- and AlphaFold-predicted nanobody structures, we highlight
two examples from the benchmark. First, we compared the structures predicted by both methods for the benchmark
target TAQZ (to be published, Figure 2F). This nanbody features a 15-residue CDR3 loop that adopts the "stretched-
twist" conformation (41), in which the CDR3 loop bends to contact the framework residues that would otherwise be
obstructed by a light chain in a paired antibody. IgFold correctly predicts this nanobody-specific loop conformation
(RMSDc¢prs = 3.20 A), while AlphaFold predicts an extended CDR3 conformation (RMSD¢pgrs = 7.74 A). Indeed,
there are other cases where either IgFold or AlphaFold correctly predicts the CDR3 loop conformation while the
other fails (see off-diagonal points in Figure S7G). In the majority of such cases, AlphaFold predicts the correct
conformation, yielding the lower average CDR3 RMSD. However, the distinct conformations from both methods
may be useful for producing an ensemble of structures for some applications. In the second example, we compared
the structures predicted by both methods for the benchmark target 7TAQY (to be published, Figure 2G). This
nanobody has a long 17-residue CDR3 loop with a short helical region. Although both methods correctly predict
the loop conformation, IgFold fails to predict the helical secondary structure, resulting in a less accurate prediction
(RMSDcpr3 = 3.93 A) than that of AlphaFold (RMSDc¢prs = 0.94 A). Such structured loops highlight a key strength
of AlphaFold, which was trained on a large dataset of general proteins and has thus encountered a broad variety of
structral arrangements, over IgFold, which has observed relatively few such structures within its training dataset.
Although AlphaFold performed better than IgFold for nanobdies, the distinct conformations from both methods may
be useful for generating diverse predictions when large movement of CDR3 loops are expected.

Table 2. Accuracy of predicted nanobody structures

Method Fr(A) CDR1(A) CDR2(A) CDR3(A)
ABodyBuilder 0.68 2.10 1.49 5.40
DeepAb 0.62 1.61 1.1 8.41
AlphaFold 0.47 1.26 0.79 2.90
IgFold 0.55 1.58 1.06 3.85

Error predictions identify inaccurate CDR loops. Although antibody structure prediction methods continue to
improve, accurate prediction of abnormal CDR loops (particularly long CDR H3 loops) remains inconsistent (6, 14, 15).
Determining whether a given structural prediction is reliable is critical for effective incorporation of antibody structure
prediction into workflows. During training, we task IgFold with predicting the deviation of each residue’s C, atom
from the native (under alignment of the beta barrel residues). We then use this predicted deviation as a per-residue
error estimate to assess expected accuracy of different structural regions.

To assess the utility of IgFold’s error predictions for identifying inaccurate CDR loops, we compared the average
predicted error for each CDR loop to the RMSD between the predicted loop and the native structure for the paired
Fy and nanobody benchmarks. For five of the six paired Fy, CDR loops, we observed significant correlations between
the predicted error and the loop RMSDs from native (Figure S10). For CDR L2 loops were no significant correlations
were observed; however, given the relatively high accuracy of CDR L2 loop predictions, there was little error to detect.
For nanobodies, we observed significant correlations between the predicted error and RMSD for all of the CDR loops
(Figure S11).
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Fig. 3. Error estimation for predicted antibody structures. (A) Comparison of CDR H3 loop RMSD to predicted error for paired antibody structure benchmark. Gray space
represents cumulative average RMSD of predicted CDR H3 loops from native structure. (B) Comparison of CDR3 loop RMSD to predicted error for nanobdy structure
benchmark. Gray space represents cumulative average RMSD of predicted CDR3 loops from native structure. (C) Predicted structure and error estimation for anti-HLA
antibody with a randomized CDR H1 loop. (D) Predicted structure and error estimation for benchmark target 7RAH (Luz = 12 residues). (E) Predicted structure and error
estimation for benchmark target 7RKS (Lus = 18 residues). (F) Predicted structure and error estimation for benchmark target 7033 (Lns = 3 residues).

For the challenging-to-predict, conformationally diverse CDR3 loops, we observed significant correlations for both
paired antibody H3 loops (Figure 3A, p = 0.70) and nanobody CDR3 loops (Figure 3B, p = 0.63). To illustrate the
utility of error estimation for judging CDR H3 loop predictions, we highlight three examples from the benchmark.
The first is the benchmark target TRAH (42), a mouse anti-adenylate-cyclase antibody with a 12-residue CDR H3
loop. For 7TRAH, IgFold accurately predicts the extended beta sheet structure of the CDR H3 loop (RMSDpys
= 1.43 A), and estimates a correspondingly lower RMSD (Figure 3D). The second target is TRKS (43), a human
anti-SARS-CoV-2-receptor-binding-domain antibody with a 18-residue CDR, H3 loop. IgFold struggles to predict the
structured beta sheet within this long H3 loop, instead predicting a broad ununstructured conformation (RM .S D3
= 6.18 A) Appropriately, the error estimation for the CDR H3 loop of TRKS is much higher (Figure 3E). The third
example is 7033 (44), a mouse anti-PAS (proine/alanine-rich sequence) antibody with a 3-residue CDR H3 loop.
Again, IgFold accurately predicts the structure of this short loop (RMSDgs = 1.64 A) and provides a correspondingly
low error estimate (Figure 3F).

Antibody engineering campaigns often deviate significantly from the space of natural antibody sequences (45).
Predicting structures for such heavily engineered sequences is challenging, particularly for models trained primarily on
natural antibody structural data (such as IgFold). To investigate whether IgFold’s error estimations can identify likely
mistakes in such sequences, we predicted the structure of an anti-HLA (human leukocyte antigen) antibody with a
sequence randomized CDR H1 loop (46) (Figure 3C). As expected, there is significant error in the predicted CDR H1
loop structure. However, the erroneous structure is accompanied by a high error estimate, revealing that the predicted
conformation is likely to be incorrect. This suggests that the RMSD predictions from IgFold are well-calibrated to
unnatural antibody sequences and should be informative for a broad range of antibody structure predictions.

Template data is successfully incorporated into predictions. For many antibody engineering workflows, partial
structural information is available for the antibody of interest. For example, crystal structures may be available
for the parent antibody upon which new CDR loops were designed. Incorporating such information into structure
predictions is useful for improving the quality of structure models. We simulated IgFold’s behavior in this scenario
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by predicting structures for the paired antibody and nanobody benchmark targets while providing the coordinates
of all non-H3 residues as templates. In general, we found that IgFold was able to incorporate the template data
into its predictions, with the average RMSD for all templated CDR loops being significantly reduced (IgFold[Fv-H3]:
Figure 4A, IgFold[Fv-CDR3]: Figure 4E). To illustrate the effectiveness of structural data incorporation, we identified
a paired antibody benchmark target with challenging-to-predict non-H3 CDR loops that were corrected by inclusion
of templates. We consider the benchmark target 7AJ6 (to be published), for which IgFold inaccurately predicted the
H2 and L1 loops (1.27 A and 2.01 A RMSD, respectively). We found that the model correctly inorporates the the
template data for both loops (Figure 4B), reducing the H2 and L1 loop RMSD to 0.73 A and 0.70 A, respectively.

Having demonstrated successful incorporation of structural data into predictions using templates, we next investi-
gated the impact on accuracy of the untemplated CDR H3 loop predictions. For the majority of targets, we found
little change in the accuracy of CDR H3 loop structures with the addition of non-H3 template information. However,
for several paired benchmark targets we observe notable improvements in predicted CDR H3 loop quality (Figure 4C).
In one such case, for benchmark target 7TRDL, inclusion of non-H3 structural data reduces the RMSD of the CDR
H3 loop from 5.45 A to 2.86 A (Figure 4D). For nanobodies, we observe fewer cases with substantial improvement
to CDR3 loop predictions given template data (Figure 4F). In only one case, benchmark target 7CZ0, do we see a
meaningful improvement in RMSD (from 2.03 A to 1.05 A) For this target, the improvement in CDR3 accuracy is
due to correction of C-terminal residues that anchor the end of the loop to the framework (Figure 4G).

We additionally experimented with providing the entire crystal structure to IgFold as template information. In this
scenario, IgFold sucessfully incorporates the structural information of all CDR loops (including H3) into its predictions
(IgFold[Fv]: Figure 4A, Figure 4E). Although this approach is of little practical value for structure prediction (as the
correct structure is already known) it may be a useful approach for instilling structural information into pre-trained
embeddings, which are valuable for other antibody learning tasks.

Large-scale prediction of paired antibody structures. The primary advantage of IgFold over highly accurate methods
like AlphaFold is its speed at predicting antibody structures. This speed enables large-scale of antibody structures on
modest compute resources. To demonstrate the utility of IgFold’s speed, we predicted structures for a non-redundant
set of 104,994 paired antibody sequences (clustered at 95% sequence identity) from the OAS database (31). These
sequences are made up of 35,731 human, 16,356 mouse, and 52,907 rat antibodies. The structures are predicted with
low estimated RMSD by IgFold, indicating that they are accurate (Figure S12). As of this publication, only 2,431
unique paired antibody structures have been determined experimentally, and thus our predicted dataset represents an
over 40-fold expansion of antibody structural space. These structures are made available for use in future studies.

Discussion

Protein structure prediction methods have advanced significantly in recent years, and they are now approaching
the accuracy of the experimental structures upon which they are trained (10). These advances have been enabled
in large part by effective exploitation of the structural information present in alignments of evolutionarily related
sequences (MSAs). However, constructing a meaningful MSA is time-consuming, contributing significantly to the
runtime of general protein structure prediction models, and making high-throughput prediction of many protein
structures computationally prohibitive for many users. In this work, we presented IgFold: a fast, accurate model that
specializes in prediction of antibody structures. We demonstrated that IgFold matches the accuracy of the highly
accurate AlphaFold-Multimer model (13) for paired antibdy structure prediction, and approaches the accuracy of
AlphaFold for nanobodies. Though prediction accuracy is comparable, IgFold is significantly faster than AlphaFold,
and is able to predict structures in under one minute. Further, for many targets IgFold and AlphaFold produce
predict distinct conformations, which should be useful in assembling structural ensembles for applications where
flexibility is important. Predicted structures are accompanied by informative error estimates, which provide critical
information on the reliability of structures.

Analyses of immune repertoires have traditionally been limited to sequence data alone (1), as high-throughput
antibody structure determination was experimentally prohibitive and prediction methods were too slow or inaccurate.
However, incorporation of structural context has proven valuable, particularly for identification of sequence-disimilar
binders to common epitopes (47). For example, grafting-based methods have been used to identify sequence-diverse
but structurally similar antibodies against SARS-CoV-2 (48). The increased accuracy of IgFold, coupled with its
speed, will make such methods more effective. Additionally, consideration of structural uncertainty via IgFold’s error
estimation should reduce the rate of false positives when operating on large volumes of sequences. As a demonstration
of IgFold’s capabilities, we predicted structures for over 100 thousand paired antibody sequences spanning three
species. These structures expand on the number of experimentally determined antibody structures by a factor of 40.
The vast majority of these structures are predicted with high confidence, suggesting that they are reliable. Although
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Fig. 4. Incorporation of structure data into IgFold predictions. (A) Paired antibody structure prediction benchmark results for IgFold without templates, IgFold given the Fy
structure without the CDR H3 loop (IgFold[Fv-H3]), and IgFold given the complete Fv structre (IgFold[Fv]). (B) Superimposition of IgFold and IgFold[Fv-H3] predictions for
benchmark target 7AJ6 onto native (gray). Errors in the predicted CDR H2 and L1 loops are corrected by inclusion of template data. (C) Per-target comparison of CDR
H3 loop structure prediction for IgFold and IgFold[Fv-H3], with each point representing the RMSDyj3 for both methods on a single benchmark target. (D) Superimposition of
predicted CDR H3 loop predictions for target 7RDL (Lys = 20 residues) for IgFold (RMSDy3 = 5.45 A) and IgFold[Fv-H3] (RMSDy3 = 2.86 A) onto native (gray). (E) Nanobody
structure prediction benchmark results for IgFold without templates, IgFold given the Fy- structure without the CDR3 loop (IgFold[Fv-CDR3]), and IgFold given the complete
Fv structre (IgFold[Fv]). (F) Per-target comparison of CDR3 loop structure prediction for IgFold and IgFold[Fv-CDR], with each point representing the RMSD¢pgs for both
methods on a single benchmark target. (G) Superimposition of predicted CDR3 loop predictions for target 7CZ0 (Lo p g = 6 residues) for IgFold (RMSD¢prs = 2.03 A) and
IgFold[Fv-H3] (RMSDcprs = 1.05 A) onto native (gray).
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our analysis of these structures was limited, we are optimistic that this large dataset will be useful for future studies
and model development.

Despite considerable improvements by deep learning methods for general protein complex prediction, prediction of
antibody-antigen binding remains a challenge. Even the recent AlphaFold-Multimer model, which can accurately
predict the interactions of many proteins, is still unable to predict how or whether an antibody will bind to a given
antigen (13). One of the key barriers to training specialized deep learning models for antibody-antigen complex
prediction is the limited availability of experimentally determined structures. The large database of predicted antibody
structures presented in this work may help reduce this barrier if it can be employed effectively. In the meantime,
IgFold will provide immediate benefits to existing antibody-antigen docking methods. For traditional docking methods,
the improvements to speed and accuracy by IgFold should be sufficient to make them more effective (49, 50). For
newer docking methods that incorporate structural flexibility, the error estimates from IgFold may be useful for
directing enhanced sampling (51).

Deep learning methods trained on antibody sequences and structures hold great promise for design of novel
therapeutic and diagnostic molecules. Generative models trained on large numbers of natural antibody sequences
can produce effective libraries for antibody discovery (28, 29). Self-supervised models have also proven effective
for humanization of antibodies (27). Meanwhile, methods like AlphaFold and RoseTTAFold have been adapted for
gradient-based design of novel protein structures and even scaffolding binding loops (52, 53). IgFold will enable similar
applications, and will additionally be useful as an oracle to test or score novel antibody designs. Finally, embeddings
from IgFold (particularly when injected with structural information from templates) will be useful features for future
antibody design tasks.

Code and Data Availability

Code and pre-trained models for IgFold will be made available at https://github.com/Graylab/IgFold. Paired antibody
structures predicted by IgFold for the 104,994 OAS sequences will be made available online shortly. All structures
generated by IgFold and alternative methods for benchmarking will be deposited at Zenodo and released upon
publication.

Methods

A. Predicting antibody structure from sequence. The architecture and training procedure for IgFold are described
below. Full details of the model architecture hyperparameters are detailed in Table 3. In total, IgFold contains 1.6M
trainable parameters.

A.1. Generating AntiBERTy embeddings. To generate input features for structure prediction, we use the pre-trained
AntiBERTY language model (21). AntiBERTY is a bidirectional transformer trained by masked language modeling
on a set of 558M antibody sequences from the Observed Antibody Space. For a given sequence, we collect from
AntiBERTY the final hidden layer state and the attention matrices for all layers. The hidden state of dimension
L x 512 is reduced to dimension L X dpyoqe by a fully connected layer. The attention matrices from all 8 layers of
AntiBERTY (with 8 attention heads per layer) are stacked to form an L x L x 64 tensor. The stacked attention tensor
is transformed to dimension L X deqge by a fully connected layer.

A.2. IgFold model implementation. The IgFold model takes as input per-residue embeddings (nodes) and inter-residue
attention features (edges). These initial features are processed by a series node updates via graph transformer
layers (34) and edge updates via triangular multiplicative operations (10). Next, template data is incorporated via
fixed-coordinate invariant point attention. Finally, the processed nodes and edges are used to predict the antibody
backbone structure via invariant point attention. We detail each of these steps in the following subsections. Where
possible, we use the same notation as in the original papers.

Node updates via graph transformer layers. Residue node embeddings are updated by graph transformer (GT)
layers, which extend the powerful transformer architecture to include edge information (34). Each GT layer takes as
input a series of node embeddings H") = {h1,ha, ..., hy}, with h; € Rdode and edges eij € Réease. We calculate the
multi-head attention for each node ¢ to all other nodes j as follows:

Gei = Wc,qhi
kc,j = Wc,khj

€cij = Wc,eeij
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o is — <qc,i7 kc,j + ec,ij>
o ZueL<QC,ia kc,u + ec,iu>

where W, o, W, W, € Rnode Xdgi-head are Jearnable parameters for the key, query, and edge tranformations for the

c-th attention head with hidden size dgineaa. In the above, (g, k) = exp ‘ITT; is the exponential of the standard scaled

dot product attention operation. Using the calculated attention, we aggregate updates from all nodes j to node 7 as
follows:
Uc,j = Wc,vhj

hi =181 aeij(ve + ecij)
jeL
where W, € Rnode Xdgi-nead ig g learnable parameter for the value transformation for the c-th attention head. In the

above, || is the concatenation operation over the outputs of the C' attention heads. Following the original GT, we use
a gated residual connection to combine the updated node embedding with the previous node embedding:

R2Y = (1 — B;)hi + Bihs

where W, € R3*dnode 1 jg 3 Jearnable parameter that controls the strength of the gating function.

Edge updates via triangular multiplicative operations. Inter-residue edge embeddings are updated using the efficient
triangular multiplicative operation proposed for AlphaFold (10). Following AlphaFold, we first calculate updates using
the "outgoing" triangle edges, then the "incoming" triangle edges. We calculate the outgoing edge transformations as
follows:

aij = sigm(Wo g€i) W vei;

bij = sigm(Wb,geij)Wbﬁveij

where W, ,, Wy, , € Redze X 2%deaze gre learnable parameters for the transformations of the "left" and "right" edges
of each triangle, and W, 4, Wy, 4 € Redge X2dedze are learnable parameters for their respective gating functions. We
calculate the outgoing triangle update for edge ij as follows:

out __ _: out
gt = 81gm(Wc7g eij)

~out __ _out out
et =g © WU (i © byk)
kel

ey = eij + é‘i)Jl'lt
where W24 € R2#dedge X deage and Wo e Rdedge Xdedze are learnable parameters for the value and gating transformations,
respectively, for the outgoing triangle update to edge e;;. After applying the outgoing triangle update, we calculate

the incoming triangle update similarly as follows:

g;? = sigm(WL‘}geM)

~in __ _in in
eij - gij © Wc,v E :(a’ki © bkj)
kel
new __ . sin
€y = €ij T €

where W1, € R?*dedse Xdedze and WP € Redse Xdedze are Jearnable parameters for the value and gating transformations,
respectively, for the incoming triangle update to edge e;;. Note that a;; and b;; are calulated using separate sets of
learnable parameters for the outgoing and incoming triangle updates.

Template incorporation via invariant point attention. To incorporate structural template information into the node
embeddings, we adopt the invariant point attention (IPA) algorithm proposed for AlphaFold (10). The updated
node and edge embeddings correspond to the single and paired representations, respectively, as described in the
original implementation. The IPA layer is followed by a three-layer feedforward transition block as in the original
implementation. Because our objective is to incorporate known structural data into the embedding, we omit the
translational and rotational updates used in the AlphaFold structure module. We incorporate partial structure
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information by masking the attention between residue pairs that do not both have known coordinates. As a result,
when no template information is provided, the node embeddings are updated only using the transition layers.

Structure realization via invariant point attention. The processed node and edge embeddings are passed to a
block of three IPA layers to predict the residue atomic coordinates. Following the structure module of AlphaFold,
we adopt a "residue gas" representation, in which each residue is represented by an independent coordinate frame.
The coordinate frame for each residue is defined by four atoms (N, C,, C, and Cj) placed with ideal bond lengths
and angles. We initialize the structure with all residue frames having C\, at the origin and task the model with
predicting a series of translations and rotations that assemble the complete structure. Contrary to the AlphaFold
implementation, we do not share parameters across the IPA layers, but instead learn separate parameters for each
layer.

A.3. Training procedure. The model is trained using a combination of structure prediction and error estimation loss
terms. The primary structure prediction loss is the mean-squared-error between the predicted residue frame atom
coordinates (N, Cq, C, and Cg) and the label coordinates after Kabsch alignment of all atoms. We additionally apply
an L1 loss to the inter-atomic distances of the (i,7 + 1) and (4,7 + 2) backbone atoms to encourage proper bond
lengths and secondary structures. Finally, we use an L1 loss for error prediction, where the label error is calculated as
the C, deviation of each residue after Kabsch alignment of all atoms belonging to beta sheet residues. The total loss
is the sum of the structure prediction loss, the inter-atomic distance loss, and the error prediction loss:

LOSS(SCpred, Ilabel) = Lcoords + Clamp(lo X LbondS7 1) + Lerror

where Xpreq and Xjabel are the predicted and experimentally determined structures, respectively. We scale the bond
length loss by a factor of 10 (effectively applying the loss on the nanometer scale) and clamp losses greater than
1. Clamping the bond length loss allows the model to learn global arrangement of residues early in training then
improve smaller details (e.g., bond lengths) later in training.

During training we sampled structures evenly between the SAbDab dataset (30) and the paired and unpaired
synthetic structre datasets. We held out 10% of the SAbDab structures for validation during training. We used the
RAdam optimizer (54) with an initial learning rate of 5 x 10~%, with learning rate decayed on a cosine annealing
schedule. We trained an ensemble of four models with different random seeds. Each model trained for 2 x 108 steps,
with a batch size of one structure. Training took approximately 110 hours per model on a single A100 GPU.

A.4. Ensemble structure prediction. To generate a structure prediction for a given sequence, we first make predictions
with each of the four ensemble models. We then use the predicted error to select a single structure from the set
of four. Rather than use the average predicted error over all residues, we instead rank the structures by the 90"
percentile residue error. Typically, the 90" percentile residue error corresponds to the challenging CDR3 loop. Thus,
we effectively select the structure with the lowest risk of significant error in the CDR3 loop.

B. Benchmarking antibody structure prediction methods.

B.1. Benchmark datasets. To evaluate the performance of IgFold and other antibody structure prediction methods, we
collected a set of high-quality paired and single-chain antibody structures from SAbDab. To ensure none of the deep
learning models were trained using structures in the benchmark, we only used structures deposited after July 1, 2021
(after DeepAb, ABlooper, AlphaFold, and IgFold were trained). Structures were filtered at 99% sequence identity.
From these structures, we selected those with resolution greater than 3.0 A. Finally, we removed structures with
CDR H3 loops longer than 20 residues (according to Chothia numbering). These steps resulted in 67 paired and 21
single-chain antibody structures for benchmarking methods.

B.2. Alternative methods. We compared the performance of IgFold to four alternative methods for antibody structure
prediction: ABodyBuilder, DeepAb, ABlooper, and AlphaFold. ABodyBuilder structures were predicted using the
web server. Because the ABodyBuilder web server only allows exclusion of up to 50 PDB structures for grafting, we
could not completely restrict access to newer structures. Instead, we omitted structures released after July 1, 2021
(benchmark collection date) and with greater than 70% sequence identity. DeepAb structures are generated using
the public code repository, with five decoys per sequence as recommended in the publication. ABlooper structures
are predicted using the public code repository, with CDR loops built onto grafted frameworks from ABodyBuilder.
AlphaFold (and AlphaFold-Multimer) structures were predicted using the public code repository. For nanobody
predictions with AlphaFold, we used the CASP14 pre-trained models. For both AlphaFold and AlphaFold-Multimer,
we made predictions with all five pre-trained models and selected the highest-ranked structure for benchmarking.
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Table 3. IgFold hyperparameters

Parameter Value  Description

dnode 64 Node dimension

dedge 64 Edge dimension

dgt-head 32 Graph transformer attention head dimension
Ngt-head 8 Graph transformer attention head number

dgt-ft-gim 256 Graph transformer feedforward transition dimension
Ngt-layers 4 Graph transformer layers

dipa-temp-head-scalar 16 Template IPA scalar attention head dimension
dipa-temp-head-point 4 Template IPA point attention head dimension
TNipa-temp-head 8 Template IPA attention head number

dipa-temp-fi-dim 64 Template IPA feedforward transition dimension
dipa-temp-ff-layers 3 Template IPA feedforward transition layers
Nipa-temp-layers 2 Template IPA layers

dipa-str-head-scalar 16 Structure IPA scalar attention head dimension
dipa-str-head-point 4 Structure IPA point attention head dimension
Nipa-str-head 8 Structure IPA attention head number

dipa-str-ff-dim 64 Structure IPA feedforward transition dimension
dipa-str-fi-layers 3 Structure IPA feedforward transition layers
TNipa-str-layers 3 Structure IPA layers

dipa-err-head-scalar 16 Error prediction IPA scalar attention head dimension
dipa-err-head-point 4 Error prediction IPA point attention head dimension
Nipa-err-head 4 Error prediction IPA attention head number
dipa-err-ft-dim 64 Error prediction IPA feedforward transition dimension
dipa-err-f-layers 3 Error prediction IPA feedforward transition layers
Nipa-err-layers 2 Error prediction IPA layers

We permitted the use of template structures released prior to July 1, 2021, though the AlphaFold authors note that
templates have a minimal effect on performance.
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