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Abstract

Single-cell multimodal omics technologies pro-

vide a holistic approach to study cellular decision

making. Yet, learning from multimodal data is

complicated because of missing and incomplete

reference samples, non-overlapping features and

batch effects between datasets. To integrate and

provide a unified view of multi-modal datasets,

we propose Multigrate. Multigrate is a generative

multi-view neural network to build multimodal

reference atlases. In contrast to existing methods,

Multigrate is not limited to specific paired assays,

and it compares favorably to existing data-specific

methods on both integration and imputation tasks.

We further show that Multigrate equipped with

transfer learning enables mapping a query multi-

modal dataset into an existing reference atlas.

1. Introduction

Recent advances in single-cell technologies allow us to

quickly and efficiently measure several features of cells

at the same time. For instance, CITE-seq (Stoeckius et al.,

2017) measures gene expression levels and surface protein

counts, and ATAC-seq (Buenrostro et al., 2015) measures

transcriptome and chromatin openness in one cell. While

RNA-seq data integration has become a well-studied prob-

lem, similar methods for multi-omics are still pending.

Several approaches have tackled the integration of paired

single-cell multi-omic measurements such as CITE-seq

or/and ATAC-RNA (Gayoso et al., 2021; Argelaguet et al.,

2020; Hao et al., 2020). However, existing methods are

limited to a specific paired technology or they use simple

linear models and lack imputation mechanisms for missing
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modalities. Additionally, none of the existing methods al-

low mapping novel multi-omic query datasets (Lotfollahi

et al., 2020) to reference atlases constructed from multiple

multi-omic technologies. Finally, none of these models can

robustly integrate datasets with non-matching measurements

(Lopez et al., 2019; Lotfollahi et al., 2019).

Here, we present Multigrate, an unsupervised deep gener-

ative model to integrate multi-omic datasets and address

these challenges. Multigrate learns a joint latent space com-

bining information from multiple modalities from paired

and unpaired measurements while accounting for technical

biases within each modality. Combined with transfer learn-

ing, Multigrate can map novel multi-omic query datasets

to a reference atlas and impute missing modalities. We

first compare our model with state-of-the-art approaches on

integration and imputation tasks and later demonstrate the

multi-modal reference mapping feature of Multigrate.

2. Methods

We first define the observed data as X = {Xi}i=1,...,n

for modalities 1, . . . , n, where Xi denotes observations for

modality i and can be empty in case of a missing modality.

Let S = {Si}i=1,...,n be the set of study labels (i.e. samples,

experiments across labs or sequencing technologies), and

let Zi denote the conditional modality representation. We

employ the Product of Experts (PoE) framework (Lee &

van der Schaar, 2021) to calculate the joint distribution for

data that comes from several modalities, also when some of

the modalities are partially missing. Let φ = {φi}i=1,...,n

be parameters of the posterior distributions q and let θ =
{θi}i=1,...,n be parameters of the data distribution p. We

denote the joint latent representation by Zjoint and the joint

posterior by qφ(Z
joint|X,S). We model the joint posterior

as the product of the conditional marginal posteriors:

qφ(Z
joint|X,S) = Πn

i=1qφi
(Zi|Xi, Si), (1)

setting qφi
(Zi|Xi, Si) to 1 if modality i is missing.

Furthermore, modality encoder fi outputs parameters of

qφi
and modality decoder gi outputs parameters of pθi . We

assume that qφi
(Zi|Xi, Si) = N (Zi|µi, σi), where µi, σi

are the output of the modality encoder fi(X
i, Si). The
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Figure 1. (a-b) Multigrate architecture and applications.

parameters of the joint distribution are calculated as

µjoint = (µ0σ
−1
0 +

n∑

i=1

miµiσ
−1
i )(σ−1

0 +
n∑

i=1

miσ
−1
i )−1,

σjoint = (σ−1
0 +

n∑

i=1

miσ
−1
i )−1,

(2)

where µ0 and σ0 are the parameters of the prior N (µ0, σ0),
which in our case is standard normal, and mi is 1 if modality

i is present and is 0 otherwise.

We formulate the objective function for a specific dataset as

LAE(φ, θ,Xi, Si, α, η) =

αEqφ(Zjoint|Xi,Si)[log pθ(Xi|Z
joint, Si)]

− ηKL(qφ(Z
joint|Xi, Si)||pθ(Z

joint|Si)),

(3)

where α and η are hyper-parameters. Finally, to ensure

that different datasets are integrated well, we utilize the

maximum mean discrepancy (MMD) loss. It allows to

minimize the distance between two distributions and was

previously shown to improve the performance of VAE-

based models (Lotfollahi et al., 2019). We calculate the

MMD loss between the joint representations for pairs of

datasets. In the implementation, we use multi-scale ra-

dial basis kernels defined as k(x, x′) =
∑l

i=1 k(x, x
′, γi),

where k(x, x′, γi) = exp(γi||x − x′||2) is a Gaussian ker-

nel, x, x′ are observations from two different distributions

and l, γ1, . . . , γl are hyper-parameters. Given d datasets

X1, . . . , Xd with study labels S1, . . . , Sd, the final loss func-

tion is defined as

Lmultigrate =
d∑

i=1

LAE(φ, θ,Xi, Si, α, η)

+ β

d∑

i,j=0
i<j

LMMD(Z
joint
i , Z

joint
j )

(4)

where α, β, η are hyper-parameters.

The decoder part of the network consists of two parts (Figure

1a): zjoint is first fed into the shared decoder g that re-

introduces modality variation to the joint to obtain modality-

specific representations. Then modality decoders gi take

the modality-specific representations as input and output the

parameters of pθi . By default, a negative binomial loss is

used for the RNA modality, in which case the distribution

mean is output by the modality decoder, and the discrepancy

parameter is learned per batch. For normalized protein

counts and normalized binary chromatic peaks, we use the

mean squared error loss. In this case, the output of the

modality decoder can be seen as reconstructed data, hence

we refer to this part of the loss function as reconstruction

loss. The overall reconstruction loss is the sum over all

modalities.

We also implement the single-cell architectural surgery ap-

proach introduced in (Lotfollahi et al., 2020) to allow the

building of reference atlases and mapping of new query data

into the reference atlas. When a new query data needs to be

added to an existing reference atlas built with Multigrate,
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we introduce a new set of batch labels Sd+1 and fine-tune

conditional weights in modality decoders fi and modality

encoders gi.

To find optimal hyper-parameters, i.e. α, β and η, we used

the grid search over the parameter space. To quantitatively

access the performance of different methods, we use some

of the metrics proposed in (Luecken et al., 2020). Adjusted

rand index (ARI), normalized mutual information (NMI),

average silhouette width (ASW) cell type and isolated label

silhouette are biological conservation metrics that measure

how much of biological variance was preserved after the

integration. Graph connectivity and ASW batch are batch

correction metrics (in cases where there are several batches

present in the data) to assess how well batch effects were

removed after integration. The final score was calculated as

0.4*batch correction + 0.6*bio conservation.

We tested Multigrate on several peripheral blood mononu-

clear cell (PBMC) datasets: Dataset 1 is a paired RNA-

seq/ATAC-seq dataset (10x); Datasets 2, 3, and 4 (Hao et al.,

2020; Kotliarov et al., 2020; Stephenson et al., 2021) are

CITE-seq datasets. All datasets were quality controlled

and preprocessed following the same pipeline. RNA-seq

datasets were normalized to sum up to 10, 000 and log(x+1)
transformed. Peaks in Dataset 1 were binarized and log-

normalized as above. Protein counts were normalized us-

ing the centered log-ratio transformation (Stoeckius et al.,

2017).

Figure 1a depicts the complete architecture of Multigrate

and Figure 1b lists possible applications of our method

such as multi-modal reference building, query to reference

mapping, and imputations of missing modalities which we

investigate in the following.

3. Results

3.1. Benchmarking multi-modal integration quality

We applied Multigrate on three datasets (1-3) to assess its

ability to integrate a multi-modal single-cell dataset using

paired single-cell measurements ranged from CITE-seq to

joint ATAC-RNA. We compared our model against three

other methods: MOFA+ (Argelaguet et al., 2020), Seurat v4

(Hao et al., 2020) and totalVI (Gayoso et al., 2021).

In the benchmarks experiments, totalVI was run with de-

fault parameters. In Seurat, we first calculated the weighted

nearest neighbor (WNN) graph, and then to obtain embed-

dings in a latent space, we ran supervised PCA with default

parameters. When multiple batches were present in the data,

we first performed the integration for each modality sepa-

rately using Seurat v4 and Signac (Stuart et al., 2020) and

then ran the WNN analysis.

Figure 2a,b shows the UMAP of the integrated Dataset
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Figure 2. (a) UMAP embedding for the latent space of Multigrate

for Dataset 3. (b) Integration quality metrics for Dataset 3. (c)

Benchmarking against existing methods across three datasets.

3 and the individual metric scores for the same dataset.

Multigrate performed well in both the batch correction met-

rics and the bio-conservation metrics and overall performed

slightly better than all the other three methods. Figure 2c

depicts the overall score for all three datasets demonstrat-

ing the robust performance of our method against existing

approaches. Since totalVI is a method for CITE-seq in-

tegration, we benchmarked it only on the two CITE-seq

datasets. Dataset 1 does not contain batches, therefore only

the batch-independent metrics are reported. We observed

that Multigrate compares favorably to the existing methods.

3.2. Multi-modal reference building and mapping

query

To demonstrate Multigrate’s functionality to build reference

atlases and map new query data, we first built a healthy

blood cell atlas using healthy cells from Datasets 1, 2 and 4.

In total, the reference atlas comprised around 160, 000 cells.

The reference atlas incorporated measurements from three

modalities: gene expressions, protein counts, and chromatin

openness. Next, we mapped a new query dataset consisting

of 50, 000 sampled diseased COVID-19 cells from Dataset

4 into the reference atlas by fine-tuning the new conditional

weights using scArches (Lotfollahi et al., 2020). Figure 3a-

c shows the UMAPs of the integrated reference and query

data together across studies, cell types and conditions. We

observe that the query was well integrated into the reference.

To transfer cell-type annotations from the reference data

to the query, we trained a random forest classifier on the

reference data and predicted cell types for the query data.

The classifier achieves an overall accuracy of 79% over all

cell types. Figure 3d shows a heatmap of the confusion

matrix between the true and the predicted cell types. The

cell types that were not correctly classified, e.g. ASDC or

Treg, were present in the reference as very small populations
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a Study Cell type

Condition

b

c d Random forest classifier

Figure 3. (a-c) UMAPs of the integrated reference and query

across studies, cell types and conditions. (d) Heatmap of a confu-

sion matrix between true cell types and predicted cell types for the

query.

comprising less than 100 cells each. Overall, we observed

that Multigrate can successfully build multi-modal reference

atlases, update the atlas with new query datasets and transfer

information from reference to query.

3.3. Imputation of missing modalities

Multigrate can also integrate unpaired datasets, for instance,

CITE-seq data and RNA-seq data, and impute missing

modalities as protein abundance in this case. To illustrate

this functionality, we leveraged a PBMCs CITE-seq dataset

(Gayoso et al., 2021), consisting of 15, 000 cell with both

transcriptomic and 14 protein measurements. We first inte-

grated 10, 000 paired observations and 5, 000 RNA-seq only

observations, where we left out protein counts in the latter

as ground truth. Then we imputed protein expression and

calculated Pearsons’s correlation coefficients between the

predicted protein expressions and the ground truth. We com-

pared the performance of Multigrate on this task to Seurat

v4 and totalVI which were run with default parameters.

As an example, we observe the imputed CD3 protein agrees

with the ground truth protein abundance (Figure 4a). Next,

we evaluated the overall accuracy of the imputed measure-

ments for individual proteins and overall average perfor-

mance (see the last column of the barplot in Figure4b).

These results demonstrate the generalization power and ro-

bustness of Multigrate in imputing missing proteins com-

pared to state-of-the-art models as totalVI specifically de-

signed for this task. On average, Multigrate slightly outper-

forms both of the other methods.
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Figure 4. (a) UMAPs of observed expressions of CD3 (left) and im-

puted expressions by Multigrate (right). (b) Bar plot of Pearson’s

correlation coefficients across all proteins comparing Multigrate,

Seurat and totalVI.

4. Conclusion

We introduced Multigrate, a scalable deep learning approach

to learn a joint representation from multi-omic single-cell

datasets. While Multigrate is generalizable to potentially

any multi-omic technology, it compares favorably to exist-

ing integration approaches for specific paired measurements

for both integrating and imputation tasks. Multigrate is also

able to map multi-modal COVID-19 data onto a healthy

reference atlas and transfer knowledge from reference to

query.

We predict that the addition of regularization terms as cycle-

consistency (Zhu et al., 2020) would improve imputation

accuracy and unpaired data integration quality. Moreover,

replacing one-hot modality labels with learnable embed-

dings (Lotfollahi et al., 2021) to induce modality effect will

further help to decompose the explained variance for each

modality and increase the interpretability of the model by

comparing modality vectors.

With the increased availability of single-cell multi-omic

datasets, we expect Multigrate to enable users to easily in-

tegrate and analyze these data, providing a holistic view of

cells instead of looking through the lens of a single measure-

ment with limited information.

The code to reproduce the results is available at

https://bit.ly/3fOvupR.
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