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Abstract

Neurotransmitter receptors support the propagation of signals in the human brain. How receptor sys-
tems are situated within macroscale neuroanatomy and how they shape emergent function remains
poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron
emission tomography data from >1 200 healthy individuals to construct a whole-brain 3-D normative
atlas of 19 receptors and transporters across 9 different neurotransmitter systems. We find that receptor
profiles align with structural connectivity and mediate function, including neurophysiological oscilla-
tory dynamics and resting state hemodynamic functional connectivity. Using the Neurosynth cognitive
atlas, we uncover a topographic gradient of overlapping receptor distributions that separates extrinsic
and intrinsic psychological processes. Finally, we find both expected and novel associations between
receptor distributions and cortical thinning patterns across 13 disorders. We replicate all findings in
an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture
shapes brain structure and function, providing a new direction for studying multi-scale brain organi-
zation.

INTRODUCTION

The brain is a complex system that integrates signals
across spatial and temporal scales to support cognition
and behaviour. The key neural signalling molecule is the

∗ bratislav.misic@mcgill.ca

neurotransmitter: chemical agents that relay messages
across synapses. While neurotransmitters carry the mes-
sage, neurotransmitter receptors act as ears that cover
the cellular membrane, determining how the postsynap-
tic neuron will respond. By modulating the excitability
and firing rate of the cell, neurotransmitter receptors ef-
fectively mediate the transfer and propagation of electri-
cal impulses. As such, neurotransmitter receptors drive
synaptic plasticity, modify neural states, and ultimately
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Receptor/
transporter

Neurotransmitter Tracer Measure N Age References

D1 dopamine [11C]SCH23390 BPND 13 33± 13 Kaller et al., 2017 [58]

D2 dopamine [11C]FLB-457 BPND 37 48.4± 16.9 Smith et al., 2019 [109, 126]

D2 dopamine [11C]FLB-457 BPND 55 32.5± 9.7
Sandiego et al., 2015
[109, 110, 124, 126, 153]

DAT∗ dopamine [123I]-FP-CIT SUVR 174 61± 11 Dukart et al., 2018 [29]

NET∗ norepinephrine [11C]MRB BPND 77 33.4± 9.2 Ding et al., 2010 [11, 19, 27, 108]

5-HT1A serotonin [11C]WAY-100635 BPND 36 26.3± 5.2 Savli et al., 2012 [113]

5-HT1B serotonin [11C]P943 BPND 65 33.7± 9.7
Gallezot et al., 2010
[9, 39, 72, 80, 81, 94, 111]

5-HT1B serotonin [11C]P943 BPND 23 28.7± 7.0 Savli et al., 2012 [113]

5-HT2A serotonin [11C]Cimbi-36 Bmax 29 22.6± 2.7 Beliveau et al., 2017 [12]

5-HT4 serotonin [11C]SB207145 Bmax 59 25.9± 5.3 Beliveau et al., 2017 [12]

5-HT6 serotonin [11C]GSK215083 BPND 30 36.6± 9.0 Radhakrishnan et al., 2018 [98, 99]

5-HTT∗ serotonin [11C]DASB Bmax 100 25.1± 5.8 Beliveau et al., 2017 [12]

α4β2 acetylcholine [18F]flubatine VT 30 33.5± 10.7 Hillmer et al., 2016 [8, 52]

M1 acetylcholine [11C]LSN3172176 BPND 24 40.5± 11.7 Naganawa et al., 2021 [82]

VAChT∗ acetylcholine [18F]FEOBV SUVR 4 37± 10.2 PI: Lauri Tuominen & Synthia Guimond

VAChT∗ acetylcholine [18F]FEOBV SUVR 18 66.8± 6.8 Aghourian et al., 2017 [1]

VAChT∗ acetylcholine [18F]FEOBV SUVR 5 68.3± 3.1 Bedard et al., 2019 [10]

VAChT∗ acetylcholine [18F]FEOBV SUVR 3 66.6± 0.94 PI: Taylor W. Schmitz & R. Nathan Spreng

NMDA glutamate [18F]GE-179 VT 29 40.9± 12.7 Galovic et al., 2021 [41, 42, 73]

mGluR5 glutamate [11C]ABP688 BPND 73 19.9± 3.04 Smart et al., 2019 [125]

mGluR5 glutamate [11C]ABP688 BPND 22 67.9± 9.6 PI: Pedro Rosa-Neto & Eliane Kobayashi

mGluR5 glutamate [11C]ABP688 BPND 28 33.1± 11.2 DuBois et al., 2016 [28]

GABAA/BZ GABA [11C]flumazenil Bmax 16 26.6± 8 Nørgaard et al., 2021 [84]

H3 histamine [11C]GSK189254 VT 8 31.7± 9.0 Gallezot et al., 2017 [40]

CB1 cannabinoid [11C]OMAR VT 77 30.0± 8.9 Normandin et al., 2015 [31, 83, 87, 100]

MOR opioid [11C]carfentanil BPND 204 32.3± 10.8 Kantonen et al., 2020 [59]

TABLE 1. Neurotransmitter receptors and transporters included in analyses | BPND = non-displaceable binding potential; VT =

tracer distribution volume; Bmax = density (pmol/ml) converted from binding potential (5-HT) or distributional volume (GABA)
using autoradiography-derived densities; SUVR = standard uptake value ratio. Neurotransmitter receptor maps without citations
refer to unpublished data. In those cases, contact information for the study PI is provided in Table S3. Table S3 also includes more
extensive methodological details such as PET camera, number of males and females, modelling method, reference region, scan
length, and modelling notes. Asterisks indicate transporters.

shape network-wide communication [121, 123, 137].

How spatial distributions of neurotransmitter recep-
tors relate to brain structure and shape brain function
at the system level remains unknown. Recent technolog-
ical advances allow for high resolution reconstructions
of the brain’s wiring patterns. These wiring patterns
display non-trivial architectural features including spe-
cialized network modules that support the segregation
of information [128], as well as densely interconnected
hub regions that are thought to support the integration
of information [127, 138]. The spatial arrangement of
neurotransmitter receptors on this network presumably
guides the flow of information and the emergence of
cognitive function. Therefore, understanding the link
between structure and function is inherently incomplete
without a comprehensive map of the chemoarchitecture
of the brain [63, 90, 154, 156].

A primary obstacle to studying the relative density dis-
tributions of receptors across multiple neurotransmitter

systems is the lack of comprehensive openly accessible
datasets. An important exception is the autoradiogra-
phy dataset of 15 neurotransmitter receptors and recep-
tor binding sites, collected in three post-mortem brains
[154]. However, these autoradiographs are only avail-
able in 44 cytoarchitectonically defined cortical areas.
Alternatively, positron emission tomography (PET) can
estimate in vivo receptor concentrations across the whole
brain. Despite the relative ease of mapping receptor den-
sities using PET, there are nonetheless difficulties in con-
structing a comprehensive PET dataset of neurotransmit-
ter receptors. Due to the radioactivity of the injected
PET tracer, mapping multiple different receptors in the
same individual is not considered a safe practice. Com-
bined with the fact that PET image acquisition is rela-
tively expensive, cohorts of control subjects are small
and typically only include one or two tracers. There-
fore, constructing a comprehensive atlas of neurotrans-
mitter receptor densities across the brain requires exten-
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Figure 1. PET images of neurotransmitter receptors and transporters | PET tracer images were collated and averaged to
produce mean receptor distribution maps of 19 different neurotransmitter receptors and transporters across 9 different neuro-
transmitter systems and a combined total of over 1 200 healthy participants.

sive data sharing efforts from multiple research groups
[12, 30, 62, 71, 84, 86].

Here we curate and share an atlas of PET-derived
whole-brain neurotransmitter receptor maps from 19
unique neurotransmitter receptors, receptor binding
sites, and transporters, across 9 different neurotrans-
mitter systems and over 1 200 healthy individuals,
available at https://github.com/netneurolab/hansen_
receptors. We use multiple imaging modalities to com-
prehensively situate neurotransmitter receptor densities
within microscale and macroscale neural architectures.
Using diffusion weighted MRI and functional MRI, we
show that neurotransmitter receptor densities follow
the organizational principles of the brain’s structural
and functional connectomes. Moreover, we find that
neurotransmitter receptor densities shape magnetoen-
cephalography (MEG)-derived oscillatory neural dynam-
ics. To determine how neurotransmitter receptor distri-
butions affect cognition and disease, we map receptor
densities to meta-analytic (Neurosynth-derived) func-
tional activations, where we uncover a spatially covary-
ing axis of neuromodulators and mood-related processes.
Next, we link receptor distributions to ENIGMA-derived
patterns of cortical atrophy across 13 neurological, psy-
chiatric, and neurodevelopmental disorders, uncovering
specific receptor-disorder links. We validate our findings
and extend the scope of the investigation to additional
receptors using an independently collected autoradiogra-
phy neurotransmitter receptor dataset [155]. Altogether
we demonstrate that, across spatial and temporal scales,

chemoarchitecture consistently plays a key role in brain
function.

RESULTS

A comprehensive cortical profile of neurotransmitter
receptor densities was constructed by collating PET im-
ages from a total of 19 different neurotransmitter recep-
tors, transporters, and receptor binding sites, across 9
different neurotransmitter systems, including dopamine,
norepinephrine, serotonin, acetylcholine, glutamate,
GABA, histamine, cannabinoid, and opioid (Fig. 1). All
PET images are acquired in healthy participants (see Ta-
ble 1 for a complete list of receptors and transporters,
corresponding PET tracers, ages, and number of partici-
pants). Each PET tracer map was processed according to
the best practice for the radioligand; for detailed acquisi-
tion and processing protocols see the publications listed
in Table 1. A group-average tracer map was constructed
across participants within each study. To mitigate varia-
tion in image acquisition and preprocessing, and to ease
biological interpretability, all PET tracer maps were par-
cellated into the same 68 cortical regions and z-scored
[26]. After parcellating and normalizing the data, maps
from different studies of the same tracer were averaged
together (Fig. S1 shows consistencies across studies). In
total, we present tracer maps for 19 unique neurotrans-
mitter receptors and transporters from a combined total
of 1239 healthy participants, resulting in a 68×19 matrix
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Figure 2. Constructing a cortical neurotransmitter receptor and transporter atlas | PET maps for 19 different neurotransmitter
receptors and transporters were z-scored and collated into a single neurotransmitter receptor atlas. (a) The mean neurotransmitter
receptor/transporter density across the cortex reveals that neurotransmitter receptors and transporters are enriched in insular
and limbic regions. (b) Pearson’s correlation between pairs of receptor/transporter distributions across 68 brain regions. (c) The
“receptor similarity” matrix is constructed by correlating (Pearson’s r) receptor/transporter fingerprints between pairs of brain
regions. (d) The distribution of receptor similarity values.

of relative neurotransmitter receptor/transporter densi-
ties. Finally, we repeat all analyses in an independently
collected autoradiography dataset of 15 neurotransmit-
ter receptors (Table S1; [155]), and across alternative
brain parcellations [18].

Receptor distributions reflect structural and functional
organization

Consistent with previous reports, we find that mean
density across all neurotransmitter receptors and trans-
porters are distributed heterogeneously across the cor-
tex, with enrichment in insular and cingulate regions
(Fig. 2a; [48, 155]). In addition, receptor/transporter
maps are generally positively correlated with one an-
other (Fig. 2b). To quantify the potential for two brain
regions to be similarly modulated by endogenous or ex-
ogenous input, we compute the correlation of recep-
tor/transporter fingerprints between pairs of brain re-
gions (Fig. 2c, d). Hereafter, we refer to this quantity
as “receptor similarity”, analogous to other commonly
used measures of inter-regional attribute similarity in-
cluding anatomical covariance [34], morphometric sim-
ilarity [118], gene coexpression [5, 37, 101], temporal
profile similarity [120], and microstructural similarity
[92]. We confirm that no single receptor or transporter

exerts undue influence on the receptor similarity matrix
(see Sensitivity and robustness analyses).

Using group-consensus structural and resting-state
functional connectomes from 70 individuals (see Meth-
ods for details), we show that neurotransmitter receptor
organization reflects structural and functional connectiv-
ity. Specifically, we find that receptor similarity is greater
between pairs of brain regions that are structurally con-
nected, suggesting that anatomically connected areas are
likely to be co-modulated (Fig. 3a). To ensure the ob-
served relationship between structural connections and
receptor similarity is not due to spatial proximity or
network topography, we assessed significance against
density-, degree- and edge length-preserving surrogate
structural connectivity matrices (p = 0.0001, 10 000 rep-
etitions [13]). Additionally, we find that receptor similar-
ity decays exponentially with Euclidean distance a find-
ing that has been reported for correlated gene expression
[35], temporal similarity [120], structural connectivity
[47, 54, 103, 107], and functional connectivity [106].

Likewise, receptor similarity is significantly greater be-
tween brain regions that are within the same intrin-
sic networks than between different intrinsic networks,
according to the Yeo-Krienen 7-network classification
(pspin = 0.016, 10 000 repetitions, Fig. 3b [152]). This
suggests that areas that are in the same cognitive sys-
tem tend to have similar receptor profiles [154]. Sig-
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Figure 3. Receptor distributions reflect structural and functional organization | (a) Top: group-consensus structural connec-
tivity matrix. Middle: receptor similarity is significantly greater between regions that are physically connected, against distance-
and edge length-preserving null structural connectivity matrices (p = 0.0001; [13]). Bottom: receptor similarity decreases expo-
nentially with Euclidean distance. (b) Top: group-average functional connectivity matrix, ordered by intrinsic networks [152].
Middle: receptor similarity is significantly greater within regions in the same functional network (pspin = 0.016). Bottom: receptor
similarity is positively correlated with functional connectivity (r = 0.24, p = 7× 10

−33). (c) Regional structure-function coupling
was computed as the fit (R2

adj) between measures of structural connectivity and functional connectivity. Top: structure-function
coupling at each brain region is plotted when receptor similarity is excluded (x-axis) and included (y-axis) in the model. Yellow
points indicate brain regions where receptor information significantly augments structure-function coupling (F > Fcritical). Bottom:
the difference in adjusted R2 when receptor similarity is and isn’t included in the regression model. Asterisks in panels (a) and
(b) denote significance. Boxplots in panels (a) and (b) represent the 1st, 2nd (median) and 3rd quartiles, whiskers represent the
non-outlier end-points of the distribution, and diamonds represent outliers.

nificance was assessed non-parametrically by permuting
the intrinsic network affiliations while preserving spatial
autocorrelation (“spin test”; [3, 70]). We also find that
receptor similarity is significantly correlated with func-
tional connectivity, after regressing Euclidean distance
from both matrices (r = 0.24, p = 7 × 10−33). In other
words, we observe that brain regions with similar recep-
tor and transporter composition show greater functional
co-activation. Collectively, these results demonstrate that
receptor profiles are systematically aligned with patterns
of structural and functional connectivity above and be-
yond spatial proximity, consistent with the notion that
receptor profiles guide inter-regional signaling.

Since neurotransmitter receptor and transporter dis-
tributions are organized according to structural and

functional architectures, we next asked whether recep-
tor/transporter distributions might augment the cou-
pling between brain structure and function. To quan-
tify structure-function coupling, we used a method pre-
viously developed and validated [143] in which regional
structure-function coupling is defined as the adjusted
R2 of a multilinear regression model that fits measures
of the structural connectome to functional connectivity.
We then included receptor similarity as an independent
variable, to assess how receptor information changes
structure-function coupling. We find that receptor in-
formation significantly augments the coupling between
brain structure and function in multiple regions, espe-
cially the inferior temporal and dorsolateral prefrontal
cortex (F>Fcritical; Fig. 3c).
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Figure 4. Receptor profiles shape oscillatory neural dynamics | We fit a multilinear regression model that predicts MEG-derived
power distributions from receptor distributions. (a) Receptor distributions closely correspond to all six MEG-derived power bands
(0.85 ≤ R2

adj ≤ 0.94). (b) Dominance analysis reveals which receptors/transporters contribute most to the fit. Asterisks indicate
significant dominance (pspin < 0.05).

Receptor profiles shape oscillatory neural dynamics

Given that neurotransmitter receptors modulate the
firing rates of neurons and therefore population activity,
we sought to relate the cortical patterning of neurotrans-
mitter receptors to neural oscillations [122]. We used
MEG power spectra across six canonical frequency bands
from 33 unrelated participants in the Human Connec-
tome Project (see Methods for details; [45, 119, 140]).
We fit a multiple linear regression model that predicts
the cortical power distribution of each frequency band
from neurotransmitter receptor and transporter densi-
ties. We then cross-validated the model using a distance-
dependent method that was previously developed in-
house (Fig. S2; see Methods for details [49]). We found
a close fit between receptor densities and MEG-derived
power (0.85 ≤ R2

adj ≤ 0.94; Fig. 4a), suggesting that

overlapping spatial topographies of multiple neurotrans-
mitter systems may ultimately manifest as coherent os-
cillatory patterns.

To determine which independent variables (recep-
tors/transporters) contribute most to the fit, we ap-
plied dominance analysis, a technique that assigns a
proportion of the final R2

adj to each independent vari-

able (Fig. 4b; [7]). Dominance was assessed against
spin tests to identify neurotransmitter receptors that con-
tribute to the fit above and beyond the effects of spatial
autocorrelation. Notably, we find that the µ-opioid re-
ceptor (MOR) shows high dominance for theta and al-
pha frequency bands, consistent with previous reports
[93, 95, 148, 150, 158]. Interestingly, the ionotropic
GABAA receptor is significantly dominant for frequency
bands with fast timescales (alpha, low gamma, high

gamma). The prominence of ionotropic receptors is also
observed in the autoradiography dataset (see Replication
using autoradiography and Fig. S3). Collectively, these
results suggest that fast-acting ionotropic receptors pro-
mote neural oscillatory dynamics.

Mapping receptors to cognitive function

Previously, we showed that receptor and transporter
distributions follow the structural and functional organi-
zation of the brain, and that receptors are closely linked
to neural dynamics. In this and the next subsections,
we investigate how the spatial distribution of neurotrans-
mitter receptors and transporters correspond to cognitive
processes and disease vulnerability.

We used Neurosynth to derive meta-analytic task ac-
tivation maps, which represent the probability that spe-
cific brain regions are activated during multiple cogni-
tive tasks [151]. We selected a subset of 123 cognitive
processes at the intersection of Neurosynth and the Cog-
nitive Atlas [49, 96], and parcellated the data into the
same 68-region atlas used for receptor maps, resulting
in a region × cognitive process matrix of functional ac-
tivations. We then applied partial least squares (PLS)
analysis to identify a multivariate mapping between neu-
rotransmitter receptors/transporters and functional acti-
vation maps (see Methods for details and Table S2 for the
complete list of 123 cognitive terms; [64, 74]).

PLS analysis extracted a significant latent variable re-
lating receptor/transporter densities to functional acti-
vation across the brain (pspin = 0.036). The latent vari-
able represents a spatial pattern of receptor distributions
(receptor weights) and functional activations (cognitive
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Figure 5. Mapping receptors to cognitive function | (a) Using partial least squares analysis (PLS), we find a significant latent
variable that accounts for 44% of the covariation between receptor distributions and Neurosynth-derived cognitive functional
activation (pspin = 0.036, 10 000 repetitions). (b)–(c) This latent variable represents a pattern of coactivation between receptors
(“receptor scores”) and cognitive terms (“cognitive scores”). (d) Receptor and cognitive scores are designed to correlate highly (r =

0.79, out-of-sample mean r = 0.32). Points are coloured according to their Mesulam classes of laminar differentiation, revealing
a sensory-fugal gradient [76, 92]. (e) Receptor loadings are computed as the correlation between each receptor’s distribution
across the cortex and the PLS-derived scores, and can be interpreted as the contribution of each receptor to the latent variable. (f)
Similarly, cognitive loadings are computed as the correlation between each term’s functional activation across brain regions and
the PLS-derived scores, and can be interpreted as the cognitive processes that contribute most to the latent variable. Here, only the
25% most positively and negatively loaded cognitive processes are shown. For all stable cognitive loadings, see Fig. S5 and for all
123 cognitive processes included in the analysis, see Table S2. 95% confidence intervals are estimated for receptor and cognitive
loadings using bootstrap resampling (10 000 repetitions).

weights) that together capture 44% of the covariance be-
tween the two datasets (Fig. 5a). Projecting the recep-
tor density (functional activation) matrix back onto the
receptor (cognitive) weights reflects how well a brain
area exhibits the receptor and cognitive weighted pat-
tern, which we refer to as “receptor scores” and “cogni-
tive scores”, respectively (Fig. 5b, c). The receptor and
cognitive score patterns reveal a sensory-fugal spatial
gradient that reflects classes of laminar differentiation,
separating limbic, paralimbic, and insular cortices from
visual and somatosensory cortices (Fig. 5d; [76, 92]).
We then cross-validated the correlation between receptor
and cognitive scores using a distance-dependent method
(mean out-of-sample r = 0.29; see Methods for details on
the cross-validation). This result demonstrates a link be-
tween receptor distributions and cognitive specialization
that is perhaps mediated by laminar differentiation and
synaptic hierarchies.

To identify the receptors and cognitive processes that
contribute most to the spatial pattern in Fig. 5b and c, we
correlated each variable with the score pattern (Fig. 5e–
f; for all stable term loadings, see Fig. S5). This results
in a “loading” for each receptor and cognitive process,
where positively loaded receptors covary with positively
loaded cognitive processes in positively scored brain re-
gions, and vice versa for negative loadings. Interestingly,
we find that the cognitive processes with the greatest
negative loading are enriched for emotional and affec-
tive processes such as “fear”, “emotion”, and “valence”.
Likewise, the neurotransmitter receptors with the great-
est negative loading are broadly mood-related, including
MOR (pain management), D1, and 5-HT1A (mood reg-
ulation). On the other hand, cognitive processes with
the greatest positive loading are related to sensory pro-
cessing and interacting with the external environment,
including “visual attention”, “spatial attention” and “ac-
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Figure 6. Mapping receptors to disease vulnerability | Using a multilinear model, neurotransmitter receptor/transporter distri-
butions were fit to patterns of cortical thinning for thirteen neurological, psychiatric, and neurodevelopmental disorders, collected
by the ENIGMA consortium [67, 134]. (a) Model fit varies: idiopathic generalized epilepsy, OCD, and schizotypy atrophy patterns
show smaller fits, and ADHD, autism, and temporal lobe epilepsy atrophy patterns show greater fits. (b) Dominance analysis
identified the neurotransmitter receptors and transporters whose spatial distribution most influence model fit, for each disorder
separately. Asterisks indicate significant dominance (pspin < 0.05).

tion”. In other words, we find a patterning of receptor
profiles that robustly separates areas involved in extrinsic
function, including sensory-motor processing and atten-
tion, versus areas involved in affect and interoception.
Collectively, these results demonstrate a direct link be-
tween cortex-wide molecular receptor distributions and
functional specialization.

Mapping receptors and transporters to disease
vulnerability

Neurotransmitter receptors and transporters are im-
plicated in multiple diseases and disorders. Identifying
the neurotransmitter receptors/transporters that corre-
spond to specific disorders is important for developing
new therapeutic drugs. We therefore sought to relate
neurotransmitter receptors and transporters to patterns
of cortical thinning (a proxy for loss of neurons and

synapses [146]) across a range of neurological, develop-
mental, and psychiatric disorders. We used datasets from
the ENIGMA consortium for a total of 13 disorders in-
cluding: 22q11.2 deletion syndrome (22q) [131], atten-
tion deficit hyperactivity disorder (ADHD) [53], autism
spectrum disorder (ASD) [142], idiopathic generalized
epilepsy, right and left temporal lobe epilepsy [149],
depression [114], obsessive-compulsive disorder (OCD)
[15], schizophrenia [139], bipolar disorder (BD) [51],
obesity [88], schizotypy [61], and Parkinson’s disease
(PD) [65]. All cortical thinning maps were collected
from adult patients, following identical processing pro-
tocols, for a total of over 21 000 scanned patients against
almost 26 000 controls. We then fit a multiple regression
model that predicts each disorder’s cortical thinning pat-
tern from receptor and transporter distributions (Fig. 6),
and evaluated each model using a distance-dependent
cross-validation (Fig. S4; see Methods for details on the
cross-validation).
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Figure 6a shows how receptor distributions map onto
cortical thinning patterns across multiple disorders. We
find that some disorders are more heavily influenced
by receptor distribution than others (0.17 < R2

adj <

0.76). Idiopathic generalized epilepsy, OCD, and schizo-
typy show lower correspondence with receptor distribu-
tions, whereas ADHD, autism, and temporal lobe epilep-
sies show greater correspondence with receptor distribu-
tions. Interestingly, we find that serotonin transporter
(5-HTT) distributions conform to cortical atrophy of psy-
chiatric mood disorders such as OCD, schizophrenia, and
bipolar disorder. Furthermore, MOR receptor distribu-
tions map onto cortical thinning patters of ADHD, con-
sistent with findings from animal models [23, 105]. We
also note that in some cases the analyses do not neces-
sarily recover the expected relationships. For instance,
in PD, the dopamine receptors are not implicated, likely
because the analysis was restricted to cortex only. Ad-
ditionally, 5-HTT is not significantly dominant towards
depression, possibly because cortical thinning does not
directly measure the primary pathophysiology associated
with some brain diseases. Our results present an initial
step towards a comprehensive “look-up table” that re-
lates neurotransmitter systems to multiple brain disor-
ders.

Replication using autoradiography

In the present report, we comprehensively situate neu-
rotransmitter receptor and transporter densities within
the brain’s structural and functional architecture. How-
ever, estimates for neurotransmitter receptor densities
are acquired from PET imaging alone, and the way in
which densities are quantified varies across radioligands,
image acquisition protocols, and preprocessing. Autora-
diography is an alternative technique to measure recep-
tor density, and captures local densities at a defined num-
ber of post-mortem brain sections [157]. Due to the high
cost and labor intensity of acquiring autoradiographs,
there does not yet exist a complete autoradiography 3-
D cross-cortex atlas of receptors (but see [38]).

Nonetheless, we repeated the analyses in an au-
toradiography dataset of 15 neurotransmitter receptors
across 44 cytoarchitectonically defined cortical areas,
from three post-mortem brains [48, 155]. This set of
15 neurotransmitter receptors consists of a diverse set of
ionotropic and metabotropic receptors, including excita-
tory glutamate, acetylcholine, and norepinephrine recep-
tors (see Table S1 for a complete list of receptors and
Fig. S6a for mean density of neurotransmitter receptors
across the 44 regions). Correlations of receptor density
distribution between every pair of receptors is shown in
Fig. S6b, and receptor similarity is shown in Fig. S6c.
Despite the alternate set of neurotransmitter receptors,
we find that autoradiography-derived receptor similar-
ity is significantly correlated with PET-derived receptor
similarity (r = 0.32, p = 1.9 × 10−14; Fig. S6d). Addi-

tionally, we find that autoradiography-derived receptor
densities follow similar architectural patterns as the PET-
derived receptor densities. Within the autoradiography
dataset, receptor similarity decays exponentially with
distance and is significantly greater between structurally
connected brain regions (p = 0.04), is non-significantly
greater in regions within the same intrinsic network
(pspin = 0.11), and is significantly correlated with func-
tional connectivity (r = 0.34, p = 9.4 × 10−16; Fig. S6e–
f). As before, receptor information augments structure-
function coupling in dorsolateral prefrontal and tempo-
ral regions (Fig. S6g).

Since the autoradiography dataset has a more diverse
set of ionotropic and metabotropic receptors, we also
asked whether we could replicate the dominance of
ionotropic receptors for MEG oscillations. When we fit
the fifteen autoradiography neurotransmitter receptors
to MEG power, we find that AMPA, NMDA, GABAA, and
α4β2—all ionotropic receptors—are most dominant, al-
though only AMPA, NMDA, and GABAA are significant
(Fig. S3). This confirms that the fast oscillatory dynamics
captured by MEG are closely related to the fluctuations
in neural activity modulated by ionotropic neurotrans-
mitter receptors.

Finally, we repeat analyses mapping receptor densi-
ties to cognitive functional activation and disease vul-
nerability. We find a similar topographic gradient
linking autoradiography-derived receptor densities to
Neurosynth-derived functional activations (Fig. S7a), as
well as consistencies regarding the loadings of recep-
tors (Fig. S7b) and cognitive processes (Fig. S7c). Next,
when we map autoradiography-derived receptor densi-
ties to cortical thinning patterns of multiple disorders,
we find prominent associations with receptors that were
not included in the PET dataset, including a relationship
between the ionotropic glutamate receptor kainate and
the epilepsies (Fig. S8; [89]).

Sensitivity and robustness analyses

Finally, to ensure results are not influenced by spe-
cific methodological choices, we repeated analyses using
different parcellation resolutions, different receptor sub-
sets, and we compared alternative PET tracers to the cho-
sen PET tracers in the present report. Due to the low spa-
tial resolution of PET tracer binding, we opted to present
our main results using a coarse resolution of 68 Desikan-
Killiany cortical regions. However, when using a parcel-
lation resolution of 114 and 219 cortical regions [18], we
find that the mean receptor density and receptor similar-
ity remains consistent (Fig. S9). We next asked whether
any single receptor or transporter disproportionately in-
fluences receptor similarity. To test this, we iteratively
removed a single receptor/transporter from the dataset
and recomputed the receptor similarity matrix. These 19
different receptor similarity matrices are all highly cor-
related with the original similarity matrix (r > 0.98),

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.10.28.466336doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466336
http://creativecommons.org/licenses/by/4.0/


10

confirming that the correspondence between regional re-
ceptor profiles is not driven by a single neurotransmitter
receptor/transporter.

Constructing a harmonized set of PET neurotransmit-
ter receptor maps necessitated several methodological
decisions. We combined PET maps from different re-
search groups that used the same tracer, except for data
from the Neurobiology Research Unit in Copenhagen (in-
cluding [12] and [84]; see https://xtra.nru.dk/) because
these images were converted from quantitative PET Units
to units of density (pmol/mL) using autoradiography
data. We combined two P943 (5HT1B [30, 39, 113]),
two FLB457 (D2 [109, 126]), three ABP688 (mGluR5

[28, 125]), and four FEOBV (VAChT [1, 10]) tracer maps
separately, all of which were highly correlated within
tracer groups (Fig. S1a). Next, when multiple tracers
were available for the same receptor or transporter, we
opted for maps constructed from a larger number of par-
ticipants (Fig. S1b; see Methods for details).

Finally, we tested whether participant age affects the
reported results. However, only mean age of individuals
included in each tracer map was available. Therefore, we
fit a linear model between the mean age of scanned par-
ticipants contributing to each receptor/transporter tracer
map and the z-scored receptor/transporter density, for
each brain region separately. We then subtracted the
relationship with age from the original receptor densi-
ties, resulting in an age-regressed receptor density ma-
trix. We find that both age-regressed receptor density
and age-regressed receptor similarity is highly correlated
with the original receptor density/similarity (r = 0.81
and r = 0.98, respectively; Fig. S10), suggesting that age
has negligible effect on the reported findings.

DISCUSSION

In the present report, we curate a comprehensive 3-D
atlas of 19 neurotransmitter receptors and transporters.
We demonstrate that chemoarchitecture is a key layer of
the multi-scale organization of the brain. Neurotransmit-
ter receptor profiles closely align with the structural con-
nectivity of the brain and mediate its link with function,
including neurophysiological oscillatory dynamics, and
resting state hemodynamic functional connectivity. The
overlapping topographic distributions of these receptors
ultimately manifest as patterns of cognitive specializa-
tion and disease vulnerability.

A key question in neuroscience remains how the
brain’s structural architecture gives rise to its function
[6, 130]. The relationship between whole-brain struc-
ture and function has been viewed through the lens of
“connectomics”, in which the brain’s structural or func-
tional architectures are represented by regional nodes
interconnected by structural and functional links. The
key assumption of this model is that nodes are homoge-
nous, effectively abstracting away important microarchi-
tectural differences between regions. The present work

is part of an emerging effort to annotate the connectome
with molecular, cellular, and laminar attributes [145].
Indeed, recent work has incorporated microarray gene
transcription [17, 49], cell types [4, 117], myelination
[24, 25, 55], laminar differentiation [147], and intrinsic
dynamics [43, 69, 79, 120] into structural and functional
models of the brain.

Neurotransmitter receptors and transporters are an
important molecular annotation for bridging brain struc-
ture to brain function. Neurotransmitter receptors sup-
port signal propagation across electrochemical synapses
and tune neural gain [121, 123]. Despite their im-
portance, a comprehensive cortical map of neurotrans-
mitter receptors has remained elusive due to numerous
methodological and data sharing challenges (but see the
ongoing PET-BIDS effort as well as the OpenNeuro PET
initiative at https://openneuropet.github.io/ [62, 86]).
The present study is an ongoing Open Science grass-
roots effort to assemble harmonized high-resolution nor-
mative images of receptors and transporters that can
be used to annotate connectomic models of the brain.
This work builds on previous initiatives to map recep-
tor densities using autoradiography, which has discov-
ered prominent gradients of receptor expression in both
human and macaque brains [36, 48, 155]. Importantly,
we find consistent results between autoradiography and
PET datasets, which is encouraging because the PET
dataset consists of a different group of receptors and
transporters, and has the added advantage of provid-
ing in vivo whole-brain data in large samples of healthy
young participants.

We find that structurally connected areas have more
similar receptor profiles, suggesting that neurotransmit-
ter receptors are systematically aligned with network
structure to regulate inter-regional communication. In-
deed, we find a prominent link between receptor distri-
bution and function, including correlated receptor sim-
ilarity and functional connectivity, as well as greater
receptor similarity within intrinsic functional networks.
These results support the idea that the emergent func-
tional architecture strongly depends on the underlying
chemoarchitecture [122, 154]. Interestingly, we find that
the canonical electrophysiological frequency bands can
be captured by the overlapping topographies of multiple
receptors, consistent with the notion that receptors in-
fluence function by tuning gain and synchrony between
neuronal populations.

Since receptors modulate the link between structure
and function, a natural next question is how receptor
distributions relate to psychological processes. We find
a prominent spatial gradient of receptor profiles that
separates areas involved in extrinsic function, including
sensory-motor processing and attention, versus areas in-
volved in affect and interoception. This gradient maps
on to the sensory-fugal synaptic hierarchy proposed by
Mesulam [36, 75]. The concordance between the two
maps is noteworthy because one is derived from the
wiring patterns of the brain, while the other is derived
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from mapping receptors to task-based activations. This
suggests that the brain is characterized by universal or-
ganizational principles that can be observed at multiple
scales of description. Our results bridge the microscale
and macroscale to reveal a molecular signature of psy-
chological processes.

Finally, we discover a robust spatial concordance be-
tween multiple receptor maps and cortical thinning
across a wide range of brain disorders. A key step to-
ward developing therapies for specific syndromes is to
reliably map them onto underlying neural systems. This
goal is challenging because psychiatric and neurologi-
cal nosology is built around clinical features, rather than
neurobiological mechanisms [56]. Our results comple-
ment some previously established associations between
disorders and neurotransmitter systems, and also reveal
new associations. For instance, we find that the serotonin
transporter is consistently implicated in OCD and bipolar
disorder, consistent with the fact that selective serotonin
reuptake inhibitors (SSRI) are frequently used to treat
such disorders—although we do not find a significant
spatial relationship between the serotonin transporter
and depression. Additionally, we find that serotonin re-
ceptors are associated with obesity, consistent with the
notion that serotonin systems regulate homeostatic and
hedonic circuitry and are therefore implicated in food in-
take [141]. On the other hand, we find associations that
have some preliminary support in the literature, but to
our knowledge have not been conclusively established
and adopted into clinical practice, including histamine
H3 in Parkinson’s disease [102, 116], MOR in ADHD
[23, 105], and D1 and NET in temporal lobe epilepsy
[20, 44, 129]. Mapping disease phenotypes to recep-
tor profiles will help to identify novel targets for phar-
macotherapy [60]. This analysis is restricted to a single
perspective of disease pathology (cortical thinning) and
should be expanded in future work to encompass other
forms of disease presentation as well as the effects of
age and pathology on receptor/transporter density. The
present work should be considered alongside some im-
portant methodological considerations. First, main anal-
yses were conducted using PET images, which detect
tracer uptake at a low spatial resolution and without lam-
inar specificity. Although results were replicated using
an autoradiography dataset, and in a finer parcellation
resolution, a comprehensive atlas of laminar-resolved re-
ceptor density measurements is necessary to fully under-
stand how regional variations in receptor densities affect
brain structure and function [91]. Second, PET tracer
maps were acquired around the world, in different par-
ticipants, on different scanners, and using specific image
acquisition and processing protocols recommended for
each individual radioligand [85, 144]. To mitigate this
challenge, we normalized the spatial distributions and
focused only on analyses related to the relative spatial
topographies of receptors as opposed to the absolute val-
ues. Third, the linear models used in the present analy-
ses assume independence between observations and lin-

ear relationships between receptors [? ]; we therefore
employ spatial-autocorrelation preserving null models to
account for the spatial dependencies between regions
throughout the report. Fourth, analyses were conducted
in the cortex only, due to data availability and well doc-
umented differences in tracer uptake between the cor-
tex and subcortex [32, 136]. Altogether, a 3-D whole-
brain comprehensive neurotransmitter receptor density
dataset constructed using autoradiographs would be a
valuable complement to the present work [38, 91, 155].

In summary, we assemble a normative 3-D atlas of
neurotransmitter receptors in the human brain. We
systematically map receptors to connectivity, dynamics,
cognitive specialization, and disease vulnerability. Our
work uncovers a fundamental organizational feature of
the brain and provides new direction for a multi-scale
systems-level understanding of brain structure and func-
tion.

METHODS

All code and data used to perform the analy-
ses can be found at https://github.com/netneurolab/
hansen_receptors. Volumetric PET images are in-
cluded in neuromaps (https://github.com/netneurolab/
neuromaps) where they can be easily converted between
template spaces.

PET data acquisition

Volumetric PET images were collected for 19 different
neurotransmitter receptors and transporters across mul-
tiple studies. To protect patient confidentiality, individ-
ual participant maps were averaged within studies be-
fore being shared. Details of each study, the associated
receptor/transporter, tracer, number of healthy partici-
pants, age, and reference with full methodological de-
tails can be found in Table 1. A more extensive table
can be found in the supplementary material (Table S3)
which additionally includes the PET camera, number of
males and females, PET modelling method, reference re-
gion, scan length, modelling notes, and additional refer-
ences, if applicable. Note that three tracer maps were
shared prior to publication, but contact information is
available for the corresponding authors (Table S3). In
all cases, only healthy participants were scanned. Im-
ages were acquired using best practice imaging protocols
recommended for each radioligand [85]. Altogether, the
images are an estimate proportional to receptor densities
and we therefore refer to the measured value (i.e. bind-
ing potential, tracer distribution volume) simply as den-
sity. Note that the NMDA receptor tracer ([18F]GE-179)
binds to open (i.e. active) NMDA receptors [73, 115].
PET images were all registered to the MNI-ICBM 152
nonlinear 2009 (version c, asymmetric) template, then
parcellated to 68, 114, and 219 regions according to
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the Desikan-Killiany atlas [18, 26]. Receptors and trans-
porters with more than one mean image of the same
tracer (i.e. 5-HT1B, D2, mGluR5, and VAChT) were com-
bined using a weighted average. Finally, each tracer map
corresponding to each receptor/transporter was z-scored
across regions and concatenated into a final region by
receptor matrix of relative densities.

In some cases, more than one tracer map was available
for the same neurotransmitter receptor/transporter. We
show the comparisons between tracers in Fig. S1b for
the following neurotransmitter receptors/transporters:
5-HT1A [12, 113], 5-HT1B [12, 39, 113], 5-HT2A [12,
113, 133], 5-HTT [12, 113], CB1 [68, 87], D2 [2,
57, 109, 126], DAT [29, 112], GABAA [29, 84], MOR
[59, 135], and NET [27, 50]. Here we make some
specific notes: (1) 5-HTT and GABAA involve compar-
isons between the same tracers (DASB and flumazenil,
respectively) but one map is converted to density us-
ing autoradiography data (see [12] and [84]) and the
other is not [29, 30, 113]; (2) raclopride is a popular
D2 tracer but has unreliable binding in the cortex, and
is therefore an inappropriate tracer to use for mapping
D2 densities in the cortex, but we show its comparison to
FLB457 and another D2 tracer, fallypride, for complete-
ness [2, 22, 57]; (3) the chosen carfentanil (MOR) map
was collated across carfentanil images in the PET Turku
Centre database—since our alternative map is a partly
overlapping subset of participants, we did not combine
the tracers into a single mean map [59, 135].

Autoradiography receptor data acquisition

Receptor autoradiography data were originally ac-
quired as described in [155]. 15 neurotransmitter re-
ceptor densities across 44 cytoarchitectonically defined
areas were collected in three post-mortem brains (age
range: 72–77, 2 males). See Table S1 for a com-
plete list of receptors included in the autoradiography
dataset, Supplementary Table 2 in [155] for the orig-
inally reported receptor densities, and https://github.
com/AlGoulas/receptor_principles for machine-readable
Python numpy files of receptor densities [48]. To best
compare PET data analyses with the autoradiography
dataset, a region-to-region mapping was manually cre-
ated between the 44 available cortical areas in the au-
toradiography dataset and the 34 left hemisphere cor-
tical Desikan Killiany regions. In only one case (the in-
sula) was there no suitable mapping between the autora-
diography data and the Desikan Killiany atlas. As such,
the 44-region autoradiography atlas was converted to 33
Desikan Killiany left hemisphere regions (all but the in-
sula). Finally, receptor densities were z-scored and av-
eraged across supragranular, granular, and infragranular
layers, to create a single map of receptor densities across
the cortex.

Structural and functional data acquisition

Structural and functional data were collected at the
Department of Radiology, University Hospital Center and
University of Lausanne, on n = 70 healthy young adults
(27 females, 28.8 ± 9.1 years). Informed consent was
obtained from all participants and the protocol was ap-
proved by the Ethics Committee of Clinical Research
of the Faculty of Biology and Medicine, University of
Lausanne. The scans were performed in a 3-T MRI
scanner (Trio; Siemens Medical), using a 32-channel
head coil. The protocol included (1) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) se-
quence sensitive to white/grey matter contrast (1 mm
in-plane resolution, 1.2 mm slice thickness), (2) a DSI
sequence (128 diffusion-weighted volumes and a sin-
gle b0 volume, maximum b-value 8 000s/mm2, 2.2 ×

2.2× 3.0 mm voxel size), and (3) a gradient echo-planar
imaging (EPI) sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolu-
tion and slice thickness with a 0.3 mm gap, TR 1 920
ms, resulting in 280 images per participant). Partici-
pants were not subject to any overt task demands dur-
ing the fMRI scan. The Lausanne dataset is available at
https://zenodo.org/record/2872624#.XOJqE99fhmM.

Structural network reconstruction

Grey matter was parcellated according to the 68-
region Desikan-Killiany cortical atlas [26]. Structural
connectivity was estimated for individual participants us-
ing deterministic streamline tractography. The procedure
was implemented in the Connectome Mapping Toolkit
[21], initiating 32 streamline propagations per diffusion
direction for each white matter voxel. A group-consensus
binary network was constructed using a method that pre-
serves the density and edge-length distributions of the
individual connectomes [14, 77, 78]. The density for the
final 68-region structural connectome was 24.6%.

Functional network reconstruction

Functional MRI data were preprocessed using proce-
dures designed to facilitate subsequent network explo-
ration [97]. fMRI volumes were corrected for physio-
logical variables, including regression of white matter,
cerebrospinal fluid, and motion (3 translations and 3 ro-
tations, estimated by rigid body coregistration). BOLD
time series were then subjected to a low-pass filter (tem-
poral Gaussian filter with full width at half maximum
equal to 1.92 s). The first four time points were excluded
from subsequent analysis to allow the time series to sta-
bilize. Motion “scrubbing” was performed as described
by [97]. The data were parcellated according to the
same 68-region Desikan-Killiany atlas used for the struc-
tural network. Individual functional connectivity matri-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.10.28.466336doi: bioRxiv preprint 

https://github.com/AlGoulas/receptor_principles
https://github.com/AlGoulas/receptor_principles
https://zenodo.org/record/2872624#.XOJqE99fhmM
https://doi.org/10.1101/2021.10.28.466336
http://creativecommons.org/licenses/by/4.0/


13

ces were defined as zero-lag Pearson correlation among
the fMRI BOLD time series. A group-consensus func-
tional connectivity matrix was estimated as the mean
connectivity of pairwise connections across individuals.
Note that one individual did not undergo an fMRI scan
and therefore the functional connectome was composed
of n = 69 participants.

Structure-function coupling

Structure-function coupling was computed as per
[143]. At each brain region, mutlilinear regression
model was used to predict functional connectivity from
three measures of the binary structural connectome.
These structural measures were the Euclidean distance,
shortest path length, and communicability between the
region of interest and every other region. In the receptor-
informed model, receptor similarity between the region
of interest and every other region was included as an
additional independent variable. Path length was com-
puted using the Python package bctpy and is defined
as the shortest contiguous set of edges between two
brain regions, which represents a form of routing com-
munication [104]. Communicability is defined as the
weighted average of all walks and paths between two
brain regions, and represents diffusive communication
[33]. Coupling was defined as the adjusted R2 of the
model.

MEG power

6-minute resting state eyes-open magenetoen-
cephalography (MEG) time-series were acquired from
the Human Connectome Project (HCP, S1200 release)
for 33 unrelated participants (age range 22—35, 17
males) [45, 140]. Complete MEG acquisition protocols
can be found in the HCP S1200 Release Manual. For
each participant, we computed the power spectrum at
the vertex level across six different frequency bands:
delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz),
beta (15–29 Hz), low gamma (30–59 Hz), and high
gamma (60–90 Hz), using the open-source software,
Brainstorm [132]. The preprocessing was performed
by applying notch filters at 60, 120, 180, 240, and 300
Hz, and was followed by a high-pass filter at 0.3 Hz to
remove slow-wave and DC-offset artifacts. Preprocessed
sensor-level data was used to obtain a source estimation
on HCP’s fsLR4k cortex surface for each participant.
Head models were computed using overlapping spheres
and the data and noise covariance matrices were esti-
mated from the resting state MEG and noise recordings.
Brainstorm’s linearly constrained minimum variance
(LCMV) beamformers method was applied to obtain the
source activity for each participant. Welch’s method was
then applied to estimate power spectrum density (PSD)
for the source-level data, using overlapping windows

of length 4 seconds with 50% overlap. Average power
at each frequency band was then calculated for each
vertex (i.e. source). Source-level power data was then
parcellated into 68, 114, and 219 cortical regions for
each frequency band [18].

ENIGMA cortical thinning maps

The ENIGMA (Enhancing Neuroimaging Genetics
through Meta-Analysis) Consortium is a data-sharing
initiative that relies on standardized image acquisition
and processing pipelines, such that disorder maps are
comparable [134]. Patterns of cortical thinning were
collected for thirteen neurological, neurodevelopmen-
tal, and psychiatric disorders from the ENIGMA con-
sortium and the Enigma toolbox (https://github.com/
MICA-MNI/ENIGMA; [66]) including: 22q11.2 deletion
syndrome (22q) [131], attention deficit hyperactivity
disorder (ADHD) [53], autism spectrum disorder (ASD)
[142], idiopathic generalized epilepsy [149], right tem-
poral lobe epilepsy [149], left temporal lobe epilepsy
[149], depression [114], obsessive-compulsive disorder
(OCD) [15], schizophrenia [139], bipolar disorder (BD)
[51], obesity [88], schizotypy [61], and Parkinson’s dis-
ease (PD) [65]. Altogether, over 21 000 patients were
scanned across the thirteen disorders, against almost
26 000 controls. The values for each map are z-scored
effect sizes (Cohen’s d) of cortical thickness in patient
populations versus healthy controls. For visualization
purposes, data are inverted such that larger values rep-
resent greater cortical thinning. Imaging and process-
ing protocols can be found at http://enigma.ini.usc.edu/
protocols/.

Dominance analysis

Dominance analysis seeks to determine the rel-
ative contribution (“dominance”) of each indepen-
dent variable to the overall fit (adjusted R2) of the
multiple linear regression model (https://github.com/
dominance-analysis/dominance-analysis [7, 16]). This
is done by fitting the same regression model on every
combination of input variables (2p − 1 submodels for a
model with p input variables). Total dominance is de-
fined as the average of the relative increase in R2 when
adding a single input variable of interest to a submodel,
across all 2p − 1 submodels. The sum of the dominance
of all input variables is equal to the total adjusted R2

of the complete model, making total dominance an intu-
itive measure of contribution. Significant dominance was
assessed using the spin test (see Null models), whereby
dominance analysis was repeated between a spun de-
pendent variable and the original independent variables
(1 000 repetitions).
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Distance-dependent cross-validation

The robustness of each multilinear model was as-
sessed by cross-validating the model by using a distance-
dependent method [49]. For each brain region, we se-
lect the 75% closest regions as the training set, and the
remaining 25% of brain regions as the test set, for a total
of 68 repetitions. This stratification procedure minimizes
the dependence among the two sets due to spatial auto-
correlation. The model was fit on the training set, and
the predicted test-set output variable (either MEG power
or cortical thinning) was correlated to the empirical test
set values. The distribution of Pearson’s correlations be-
tween predicted and empirical power/cortical thinning
across all repetitions (i.e. all brain regions) can be found
in Fig. S2 and Fig. S4. Cross-validation of the partial
least squares model is similarly conducted; more details
can be found under Partial least squares analysis.

Cognitive meta-analytic activation

Probabilistic measures of the association between vox-
els and cognitive processes were obtained from Neu-
rosynth, a meta-analytic tool that synthesizes results
from more than 15 000 published fMRI studies by search-
ing for high-frequency key words (such as “pain” and “at-
tention”) that are published alongside fMRI voxel coordi-
nates (https://github.com/neurosynth/neurosynth, us-
ing the volumetric association test maps [151]). This
measure of association is the probability that a given
cognitive process is reported in the study if there is
activation observed at a given voxel. Although more
than a thousand cognitive processes are reported in Neu-
rosynth, we focus primarily on cognitive function and
therefore limit the terms of interest to cognitive and be-
havioural terms. These terms were selected from the
Cognitive Atlas, a public ontology of cognitive science
[96], which includes a comprehensive list of neurocog-
nitive processes and has been previously used in con-
junction with Neurosynth [3]. We used 123 terms,
ranging from umbrella terms (“attention”, “emotion”) to
specific cognitive processes (“visual attention”, “episodic
memory”), behaviours (“eating”, “sleep”), and emotional
states (“fear”, “anxiety”). The coordinates reported by
Neurosynth were parcellated according to the 68-node
Desikan Killiany atlas and z-scored. The probabilistic
measure reported by Neurosynth can be interpreted as a
quantitative representation of how regional fluctuations
in activity are related to psychological processes. The full
list of cognitive processes is shown in Table S2.

Partial least squares analysis

Partial least squares analysis (PLS) was used to relate
neurotransmitter receptor distributions to functional ac-
tivation. PLS is an unsupervised multivariate statistical

technique that decomposes the two datasets into orthog-
onal sets of latent variables with maximum covariance
[64, 74]. The latent variables consist of receptor weights,
cognitive weights, and a singular value which represents
the covariance between receptor distributions and func-
tional activations that is explained by the latent variable.
Receptor and cognitive scores are computed by project-
ing the original data onto the respective weights, such
that each brain region is assigned a receptor and cog-
nitive score. Finally, receptor loadings are computed as
the Pearson’s correlation between receptor densities and
receptor scores, and vice versa for cognitive loadings.

The significance of the latent variable was assessed on
the singular value, against the spin-test (see Null mod-
els). In the present report, only the first latent variable
was significant; remaining latent variables were not an-
alyzed further. Finally, the correlation between receptor
and cognitive scores was cross-validated (see Distance-
dependent cross-validation). After fitting PLS on the train-
ing set and correlating the ensuing receptor and cogni-
tive scores, the test set was projected onto the training
set-derived weights and the test set scores were corre-
lated. The empirical correlation between receptor and
cognitive scores across all brain regions was r = 0.79,
the mean training set correlation was 0.86, and the mean
test set correlation was 0.29.

Null models

Spatial autocorrelation-preserving permutation tests
were used to assess statistical significance of associations
across brain regions, termed “spin tests” [3, 70]. We cre-
ated a surface-based representation of the parcellation
on the FreeSurfer fsaverage surface, via files from the
Connectome Mapper toolkit (https://github.com/LTS5/
cmp). We used the spherical projection of the fsaver-
age surface to define spatial coordinates for each par-
cel by selecting the coordinates of the vertex closest to
the center of the mass of each parcel [143]. These par-
cel coordinates were then randomly rotated, and original
parcels were reassigned the value of the closest rotated
parcel (10 000 repetitions). Parcels for which the medial
wall was closest were assigned the value of the next most
proximal parcel instead. The procedure was performed
at the parcel resolution rather than the vertex resolution
to avoid upsampling the data, and to each hemisphere
separately.

A second null model was used to test whether recep-
tor similarity is greater in connected regions than un-
connected regions. This model generates a null struc-
tural connectome that preserves the density, edge length,
and degree distributions of the empirical structural con-
nectome [13, 46, 103]. Briefly, edges were binned ac-
cording to Euclidean distance. Within each bin, pairs of
edges were selected at random and swapped. This pro-
cedure was then repeated 10 000 times. To compute a p-
value, the mean receptor similarity of unconnected edges
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was subtracted from the mean receptor similarity of con-
nected edges, and this difference was compared to a null
distribution of differences computed on the rewired net-
works.
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Figure S1. Comparing different PET tracer images | (a) PET maps of the same tracer were combined into a single average
receptor/transporter map. Each individual PET tracer map (y-axis) is highly correlated to the mean map (x-axis). Names indicate
the source of each PET map; see Table 1. (b) Multiple PET tracers were available for certain receptors/transporters. Scatter plots
show the correlation between the selected tracer map (x-axis) and alternative maps (y-axis).

Figure S2. Cross-validating models that predict MEG power distribution from receptor/transporter densities | All six
multilinear models between receptor/transporter densities and MEG power distributions were cross-validated using a distance-
dependent method. This method selects the 25% of regions closest to a source-region as a training set and the remaining 75%
of regions as the test set. The procedure is repeated for each brain region as the source region (68 iterations). We assessed the
prediction by correlating predicted power to the empirical power in the test set.
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Figure S3. Excitatory ionotropic receptor densities shape neural dynamics | Multilinear regression models were fit between
autoradiography-derived neurotransmitter receptor densities and MEG power, done analogously in Fig. 4. (a) Autoradiography-
derived receptor densities map closely to neural dynamics. (b) Dominance analysis was applied to distribute the overall fit (adjusted
R2) across the independent variables (receptors), revealing that excitatory ionotropic receptors contribute most to neural dynamics.
Asterisks indicate significant dominance pspin < 0.05.

Figure S4. Cross-validating models that predict disorder-specific cortical thinning from receptor/transporter densities |
All thirteen multilinear models between receptor/transporter densities and disorder-specific cortical thinning were cross-validated
using a distance-dependent method. This method selects the 25% of regions closest to a source-region as a training set and the
remaining 75% of regions as the test set. The procedure is repeated for each brain region as the source region (68 iterations). We
assessed the prediction by correlating predicted atrophy to the empirical atrophy in the test set.
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Figure S5. Neurosynth cognitive loadings | The loading for each cognitive process is calculated as the Pearson’s correlation
between functional activations across brain regions and PLS-derived receptor scores. Error bars indicate bootstrap-estimated 95%
confidence intervals (10 000 bootstrap samples). All cognitive processes with a confidence interval that changes sign are excluded.
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Figure S6. Autoradiography-informed neurotransmitter receptor densities follow similar organizational principles as PET-
informed neurotransmitter receptor densities | Autoradiography images of fifteen neurotransmitter receptors across three post-
mortem brains were acquired by [155]. (a) Mean z-scored density, excluding the insula for which no data was available. (b)
Pearson’s correlation between the receptor distribution across n = 33 brain regions for every pair of receptors. (c) The receptor
similarity matrix is constructed by correlating receptor fingerprints at each pair of brain regions. (d) PET-derived receptor similarity
is correlated to autoradiography-derived receptor similarity (r = 0.32, p = 1.9 × 10

−14). (e) Receptor similarity is significantly
greater between pairs of regions that are physically connected, against a degree- and edge-length-preserving null model (left;
p = 0.04 [13]), and decays exponentially with Euclidean distance (right). (f) Receptor similarity is non-significantly greater in
regions within the same functional network as opposed to between functional networks (left; pspin = 0.11), and is correlated to
functional connectivity (right; r = 0.34, p = 9.4 × 10

−16). (g) Consistent with PET-derived results, receptor similarity augments
structure-function coupling in temporal and prefrontal regions. Asterisks in panel (e) denote significance. Boxplots in (e) and (f)
represent the 1st, 2nd (median) and 3rd quartiles, whiskers represent the non-outlier end-points of the distribution, and crosses
represent outliers.
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Figure S7. Mapping autoradiography-derived receptors to cognition | Partial least squares analysis was applied to
autoradiography-derived receptor densities and Neurosynth-derived cognitive functional activations, done analogously in Fig. 5.
(a) Receptor (top) and cognitive (bottom) score patterns follow a similar sensory-fugal gradient. (b) Receptor loadings are defined
as the Pearson’s correlation between each receptor’s distribution across the cortex and the PLS-derived receptor scores and can be
interpreted as the contribution of each receptor to the latent variable. (c) Cognitive loadings are shown for most positively- and
negatively-loaded cognitive processes. 95% confidence intervals are estimated for receptor and cognitive loadings using bootstrap
resampling (10 000 repetitions).

Receptor Neurotransmitter Excitatory/Inhibitory Ionotropic/Metabotropic

AMPA glutamate excitatory ionotropic

NMDA glutamate excitatory ionotropic

Kainate glutamate excitatory ionotropic

GABAA GABA inhibitory ionotropic

GABAA/BZ GABA inhibitory ionotropic

GABAB GABA inhibitory metabotropic

M1 acetylcholine excitatory metabotropic

M2 acetylcholine inhibitory metabotropic

M3 acetylcholine excitatory metabotropic

α4β2 acetylcholine excitatory ionotropic

α1 norepinephrine excitatory metabotropic

α2 norepinephrine inhibitory metabotropic

5-HT1A serotonin inhibitory metabotropic

5-HT2 serotonin excitatory metabotropic

D1 dopamine excitatory metabotropic

TABLE S1. Neurotransmitter receptors included in the autoradiography dataset
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Figure S8. Mapping autoradiography-derived receptors to disease vulnerability | For each disorder, we fit a multilinear regres-
sion model between autoradiography-derived receptor densities and cortical thinning, done analogously in Fig. 6. (a) Model fit
(adjusted R2) varies across disorders. (b) Dominance analysis identified the neurotransmitter receptors whose spatial distribution
most influence model fit, for each disorder separately. Asterisks indicate significant dominance (pspin < 0.05).
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Figure S9. Replicating results using different parcellation resolutions | Top: mean normalized neurotransmitter recep-
tor/transporter density maps are consistent across three increasingly fine parcellation resolutions (68 regions (original), 114
regions, and 219 regions) [18]. Bottom: receptor similarity matrices also demonstrate high conformity across parcellation res-
olutions.

Figure S10. Age has negligible effect on the reported findings | To test age effects of the PET tracer images, we regressed out
the relationship between mean age of each tracer map and z-scored receptor densities, at each brain region separately. Age has
little impact on receptor density (left; r = 0.81) and receptor similarity (right; r = 0.98).
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action eating insight naming semantic memory

adaptation efficiency integration navigation sentence comprehension

addiction effort intelligence object recognition skill

anticipation emotion intention pain sleep

anxiety emotion regulation interference perception social cognition

arousal empathy judgment planning spatial attention

association encoding knowledge priming speech perception

attention episodic memory language psychosis speech production

autobiographical memory expectancy language comprehension reading strategy

balance expertise learning reasoning strength

belief extinction listening recall stress

categorization face recognition localization recognition sustained attention

cognitive control facial expression loss rehearsal task difficulty

communication familiarity maintenance reinforcement learning thought

competition fear manipulation response inhibition uncertainty

concept fixation meaning response selection updating

consciousness focus memory retention utility

consolidation gaze memory retrieval retrieval valence

context goal mental imagery reward anticipation verbal fluency

coordination hyperactivity monitoring rhythm visual attention

decision imagery mood risk visual perception

decision making impulsivity morphology rule word recognition

detection induction motor control salience working memory

discrimination inference movement search

distraction inhibition multisensory selective attention

TABLE S2. Neurosynth terms | Terms that overlapped between the Neurosynth database [151] and the Cognitive Atlas [96] were
included in the PLS analysis.
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