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Abstract

Self-supervised deep language modeling has shown unprecedented success across natural
language tasks, and has recently been repurposed to biological sequences. However, existing
models and pretraining methods are designed and optimized for text analysis. We introduce
ProteinBERT, a deep language model specifically designed for proteins. Our pretraining
scheme consists of masked language modeling combined with a novel task of Gene Ontology
(GO) annotation prediction. We introduce novel architectural elements that make the model
highly efficient and flexible to very large sequence lengths. The architecture of ProteinBERT
consists of both local and global representations, allowing end-to-end processing of these
types of inputs and outputs. ProteinBERT obtains state-of-the-art performance on multiple
benchmarks covering diverse protein properties (including protein structure, post translational
modifications and biophysical attributes), despite using a far smaller model than competing
deep-learning methods. Overall, ProteinBERT provides an efficient framework for rapidly
training protein predictors, even with limited labeled data. Code and pretrained model weights
are available at https://github.com/nadavbra/protein_bert.

Keywords: transformer; attention; neural language model; protein language model; TAPE;
NLP; self-supervised learning.
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Background

Proteins are nature’s ultimate machines, found across the entire tree of life. While knowledge
of protein sequences is accumulating exponentially, understanding their functions remains
one of the greatest scientific challenges of our time, with numerous implications to human
health. Protein sequences can be viewed as strings of amino-acid letters. As such, machine-
learning methods developed for natural language and other sequences are a natural fit to
predictive protein tasks [1].

Modern deep neural network architectures specifically designed for sequences (such as BERT
[2, 3]), combined with pretraining on massive datasets, have led to a revolution in automated
text analysis [4]. The attention-based Transformer architecture in particular has shown
astounding performance over a wide range of benchmarks across many domains [5, 6].

At the heart of these successes are self-supervised and transfer learning. According to the
transfer-learning paradigm, a model is first pre-trained on one task, and then fine-tuned on
other downstream tasks of interest [7—9]. Assuming that the pretraining and downstream tasks
are somehow related (e.g. both require understanding texts in the same language), pretraining
can help the model learn useful representations for the downstream tasks. In self-supervised
pretraining, labels are automatically generated, allowing models to learn from enormous,
unlabeled datasets [10]. Acommon example of self-supervised learning is language modeling,
where a model (typically a deep neural network) learns language structure by filling missing
parts in a text (which have been hidden with a special mask token) or reconstructing corrupted
text [11, 12]. Fine-tuning, on the other hand, is typically supervised and requires labeled data.
The transfer-learning paradigm has allowed predictive models to achieve substantial
performance gains across numerous benchmarks, especially in tasks where labeled data is
scarce [13, 14].

Most sequence-based language models (e.g. BERT [2], ULMFiIT [11], XLNet [15], ELECTRA
[16]) have been designed for processing natural languages (with a bias towards English).
Thus, their architectures and pretraining tasks may not be optimal for proteins, which, despite
many structural similarities, have different properties from human language [1, 17]. Most
notably, proteins do not have clear-cut multi-letter building blocks (such as words and
sentences). Moreover, proteins are more variable in length than sentences, and show many
interactions between distant positions (due to their 3D structure). To this day, protein research
is still dominated by classical sequence-similarity methods (such as BLAST [18] and hidden
Markov models [19]), in contrast to domains such as computer vision which have become
dominated by deep learning. A few recent studies have pretrained deep neural language
models on protein sequences (e.g. ESM [20], TAPE-Transformer [21], UDSMProt [22],
UniRep [23]) [24-26]. Such works usually import existing architectures and tasks from the
natural language domain, without taking advantage of the unique characteristics of proteins.

Here, we present ProteinBert, a new deep-learning model designed for protein sequences.
We improve upon the classic Transformer/BERT architecture, and introduce a novel
pretraining task of predicting protein functions. We pretrained ProteinBert on ~106M proteins
(representing the entire known protein space) on two simultaneous tasks. The first task is
bidirectional language modeling of protein sequences. The second task is Gene Ontology
(GO) annotation prediction, which captures diverse protein functions [27]. GO annotations are
a manually curated set of ~45K terms defined at the whole-protein level, covering the entire
protein space across all organisms. They cover molecular functions, biological processes and
subcellular locations. Unlike classic Transformers, ProteinBERT separates local (character
level) and global (whole protein level) representations, thereby supporting multitasking of both
local and global tasks in a principled way. While ProteinBERT is considerably smaller and
faster than existing models, it approaches or exceeds state-of-the-art performance on a
diverse set of benchmarks.
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Methods

Data

Protein dataset for pretraining

ProteinBERT was pretrained on ~106M proteins derived from UniProtKB/UniRef90, covering
the entire tree of life [28, 29]. UniRef90 provides a non-redundant set of protein clusters
sharing at least 90% sequence identity. Each cluster is represented by a single representative
protein, ensuring a relatively homogenous coverage of the protein space. For each protein,
we extracted its amino-acid sequence and associated GO annotations (according to
UniProtkKB). We considered only the 8,943 most frequent GO annotations that occurred at
least 100 times in UniRef90. Of the ~106M UniRef90 proteins, ~46M had at least one of the
8,943 considered annotations (with ~2.3 annotations per protein, on average across the ~46M
proteins).

Protein benchmarks

To evaluate ProteinBERT, we tested it on nine benchmarks concerning all major facets of
protein research, covering protein structure, post-translational modifications and biophysical
properties (Table 1). Labels in these benchmarks are either local (e.g. post-translational
modifications) or global (e.g. remote homology), and they are either continuous (e.g. protein
stability), binary (e.g. signal peptide) or categorical (e.g. secondary structure). Notably, in local
benchmarks the number of training samples is much greater than the number of protein
sequences, as target labels are per residue.

Four out of nine benchmarks (secondary structure, remote homology, fluorescence and
stability) were taken from TAPE (Tasks Assessing Protein Embeddings), a standardized set
of benchmarks for evaluating protein sequence models [21]. In addition, we introduce five new
benchmarks (see Supplementary Methods).

Table 1: Protein benchmarks

Topic Benchmark Target Resolution | # Training | Source
type? sequences
Protein Secondary Categorical | Local 8,678 [21, 30]
structure structure (3)
Disorder Binary Local 8,678 [30]
Remote Categorical | Global 12,312 [21, 31, 32]
homology (1,195)
Fold classes Categorical | Global 15,680 [31, 32]
(7)
Post- Signal peptide | Binary Global 16,606 [33]
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translational Major PTMs Binary Local 43,356 [34]
modifications
Neuropeptide [ Binary Local 2,727 [35-37]
cleavage
Biophysical Fluorescence | Continuous | Global 21,446 [21, 38]
properties
Stability Continuous | Global 53,679 [21, 39]

aFor categorical targets, the number of classes appears in parentheses.

Sequence and annotation encoding

Protein sequences were encoded as sequences of integer tokens. We used 26 unique tokens
representing the 20 standard amino acids, selenocysteine (U), an undefined amino-acid (X),
another amino acid (OTHER), and 3 additional tokens (START, END and PAD). For each
sequence, START and END tokens were added before the first amino acid and after the last
amino acid, respectively. The PAD token was added to pad sequences shorter than the
sequence length chosen for the minibatch.

The architecture of ProteinBERT (like all deep learning models) dictates that each minibatch
has a fixed sequence length. We included the START and END tokens to help the model
interpret proteins that are longer than the chosen sequence length. When encoding a protein
longer than the chosen sequence length, we selected a random subsequence of the protein,
leaving out at least one of its two ends. The absence of the START or END token allowed the
model to recognize that it only received part of a sequence.

GO annotations of every sequence were encoded as a binary vector of fixed size (8,943),
where all entries are zeros except those corresponding to GO annotation associated with the
protein.

Self-supervised pretraining on protein sequences and
annotations

To learn efficient protein representations, ProteinBERT was pretrained on protein sequences
and GO annotations extracted from UniRef90. The model received corrupted inputs (protein
sequences and GO annotations) and had to recover the uncorrupted data. The corruption of
protein sequences was performed by randomly replacing tokens with 5% probability (i.e.
keeping the original token with 95% probability, or replacing it with a uniformly-selected
random token with 5% probability). Input GO annotations were corrupted by randomly
removing existing annotations with 25% probability, and adding random false annotations with
probability of 0.01% for each annotation not associated with the protein. For 50% of the
processed proteins, we removed all input annotations altogether, to force the model to predict
GO annotations from sequence alone (as was the case in all tested benchmarks). In summary,
the described pretraining is a dual task, where the model has to recover both the protein
sequence and its known GO annotations. The latter task is relevant to numerous domains of
protein research, given the wide range of functions covered by GO terms.
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To avoid learning the GO annotations of proteins in the tested benchmarks (Table 1), we
ignored the GO annotations of proteins with at least 40% sequence similarity to any record in
the test-sets of the benchmarks. To this end, we used BLASTP [40] (with default settings),
identifying ~600K such sequences (out of the ~106M pretraining proteins).

The loss function minimized by ProteinBERT during pretraining was a sum of the categorical
cross-entropy over the protein sequences and the binary cross-entropy over the GO

annotations, namely L= -3i_,log(S;s,)— 237 (Aj log(4;) + (1 - 4;) - log(1 - Aj)),
where [ is the sequence length, S; € {1, ...,26} is the sequence’s true token at position i, $;, €
[0,1] is the predicted probability that position i has the token k (for any k € {1,...,26}), 4; €
{0,1} is the true indicator for annotation j (for any j € {1,..8943}), and 4; € [0,1] is the
predicted probability for the protein to have annotation j.

An important feature of ProteinBERT is sequence length flexibility. To avoid the risk of
overfitting the model to a specific constant length, we periodically (every 15 minutes of training)
switched the encoding length of protein sequences, using lengths of 128, 512 or 1,024 tokens.

Pretraining speed on a single GPU (Nvidia Quadro RTX 5000) was 280 protein records per
second. We trained the model for 28 days over ~670M records (i.e. ~6.4 iterations over the
entire training dataset of ~106M records). The trained model weights are publicly available
along with our code (see below).

Supervised fine-tuning on protein benchmarks

Following pretraining, we fine-tuned and evaluated the model on a diverse set of benchmarks
(Table 1). For all benchmarks, ProteinBERT was initialized from the same pretrained state
and fine-tuned through the same protocol. Initially, all layers of the pretrained model were
frozen, and only a newly added fully-connected layer was allowed to train for up to 40 epochs.
Next, we unfroze all the layers and trained the model for up to 40 additional epochs. Finally,
we trained the model for 1 final epoch of a larger sequence length (see Supplementary
Methods). Throughout all epochs, we reduced the learning rate on plateau and applied early
stopping based on an independent validation set. Model evaluation was then performed over
a held-out test set. The entire fine-tuning procedure took ~14 minutes on a single GPU (on
average across the nine benchmarks).

Deep-learning architecture

While inspired by BERT [2], the architecture of ProteinBERT is different and includes several
innovations. ProteinBERT is a type of a denoising autoencoder, with corresponding inputs and
outputs (Fig. 1). The two inputs (and outputs) of ProteinBERT are i) protein sequences
(encoded as token sequences) and ii) protein GO annotations (encoded as fixed-size binary
vectors).

The architecture of the model consists of two almost parallel paths: one for local
representations and the other for global representations (Fig. 1). The local representations are
3D tensors of shape B x L X d;,.; Where B is the batch size, L is the minibatch sequence
length, and d;,.q; is the number of channels for the local representations (we used d;ycq; =
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128). The global representations are 2D tensors of shape B X dg;opq; (USING dgiopar = 512). In
the first layers of the model, the input sequences are transformed into the local-representation
3D tensor by an embedding layer with d;,.,; output features (which is applied independently
and identically position-wise), and the input binary annotations are transformed into the global-
representation 2D tensor by a fully-connected layer with dg;,p4; Output features.

The local and global representations are processed by a series of 6 transformer blocks with
skip connections and layer normalizations between their hidden layers. Within each block, the
local representation is transformed first by 1D convolutional layers, and then by a (location-
wise) fully-connected layer. To allow the local representations at each position to be based on
other positions at both short and remote proximity, we used both a narrow (without dilation)
and a wide (with dilation rate of 5) convolutional layer. Both types of convolution layers have
a kernel size of 9 and stride size of 1. Accordingly, each narrow layer has a receptive field of
9 and each wide layer has a receptive field of 41 over the previous layer, meaning that the 6th
transformer block has a receptive field of 241 over the input sequence. The global
representations, on the other hand, are transformed by two simple fully-connected layers per
block (with normalizations between them). All the hidden fully-connected and convolutional
layers of the model use GELU (Gaussian Error Linear Unit) activations [41].

The only information flow between the local and global representations occurs through
broadcast fully-connected layers (from the global to the local representations) and global
attention layers (from the local to the global representations). The broadcast layers are fully-
connected layers that transform the dg;,p4; features of the global representation into djycq
features of the local representations, and then replicate that representation across each of the
L sequence positions.

The global attention layer is a novel architectural innovation inspired by self-attention [3]. While
self-attention takes an input sequence and outputs another sequence by allowing each
position to attend to each other position, global attention takes as input both a sequence and
a global fixed-size vector and outputs a global fixed-size vector created by attending to each
of the local input positions according to the global input vector. Formally, a single-head global
attention layer takes as inputs a global representation vector x € R%tobal and local
representation vectors across L positions, sy, ..., s, € R%ocal, and outputs a global output y €
R%vatue, Similar to self-attention, the output is calculated by y = ¥¥_, z;v; where v; € Rdvae is
the value associated with each position i € {1,...L} and z; € [0,1] is the amount of attention
allocated to that position (satisfying z; + -+ 2z, = 1). Like in self-attention, the value
associated with each position is calculated by v; = o(W,s;), using a parameter matrix W, €
Ré%vatue*diocal gnd an activation function o (we chose GELU). Attention values are calculated
(q.ki)
Vkey
while the key vectors kq, ..., k;, are specific to each position, the query vector q is global. Like
in self-attention, the key vectors are calculated by k; = tanh(Wys;), using a second parameter
matrix W, € R%ey*diocal The global query vector is calculated by g = tanh(Wch), using a third
parameter matrix W, € R%ey*dgwobal, Qverall, a single-head global attention layer uses three
parameter matrices fit during training, W,, W, and W,,. It is also parameterized by the key
dimension dy., (we used dy., = 64). A multi-head global attention layer is obtained by
applying np.qqas independent single-head global attention layers (each with its own

L
by zy, ...,z = softmax{ } , based on query and key vectors q, k; € R%ey. Notice that
i=1
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parameters) and concatenating their outputs, obtaining an output of dimension nyeq4s * dvaiue
(we used ny,qqs = 4 across all 6 transformer blocks of ProteinBERT). To satisfy dimensionality

constraints, ProteinBERT uses dyqye = @ = 128.

heads
Overall, the ProteinBERT model includes 6 transformer blocks with 4 global attention heads
in each block. Altogether, it includes ~16M trainable parameters, making it substantially
smaller than other protein language models. For comparison, there are ~38M parameters in
the TAPE Transformer [21], ~110M in BERT-base [2], and ~650M in the ESM-1b model [20].

The ProteinBERT architecture has several appealing properties. Most importantly, the entire
architecture is agnostic to the length of the processed sequences, and it can be applied over
sequences of any given length without changing its learned parameters (our experiments
prove that the model indeed generalizes very well across different lengths). This good
generality across sequence lengths is also achieved by avoiding positional embeddings used
in the standard version of BERT which, in accordance with previous reports [42] and our
experimentation, do not always generalize well to sequence lengths longer than those present
in the training data. Instead, the convolutional layers and special tokens used at the beginning
and end of each sequence provide the model with information on the relative locations of
positions. Due to the use of global attention rather than self-attention, the amount of
computation performed by the model grows only linearly with sequence length (as opposed to
quadratic growth in models with standard self-attention). This linear growth also applies to the
model's memory consumption, allowing ProteinBERT to process extremely long protein
sequences (of tens of thousands of amino-acids) intact. Despite this simplification, each
position in the local representations and sequence outputs can still depend on the content of
each other position, thanks to the alternating information flow between the local and global
representations. On top of that, the wide and narrow convolutional layers allow the
representation of each position to depend on a large context. By relying on convolutional and
attention layers, but avoiding recurrent layers, the computation performed by the network is
more efficient and stable with respect to sequence length (as there are no long-term
dependencies). Notably, we did not use dropout or any other form of regularization (except for
the final fully-connected layer added when fine-tuning the model, which included dropout).

When fine-tuning ProteinBERT on a labeled dataset, another layer is added to its output. The
final layer is fed with a concatenation of either the local or global hidden states of the model,
depending on whether the output labels are local or global. The activation used for the final
layer depends on the output type (i.e. softmax activation for categorical labels, sigmoid
activation for binary labels, or no activation for continuous labels).
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Fig. 1: The ProteinBERT architecture

ProteinBERT’s architecture is inspired by BERT. Unlike standard Transformers, ProteinBERT supports
both local (sequential) and global data. The model consists of 6 transformer blocks manipulating local
(left side) and global (right side) representations. Each such block manipulates these representations
by fully-connected and convolutional layers (in the case of local representations), with skip connections
and normalization layers between them. The local representations affect the global representations
through a global attention layer, and the global representations affect the local representations through
a broadcast fully-connected layer.

Availability

Python code for ProteinBERT’s architecture, pretraining and fine-tuning is open source and
available at https://github.com/nadavbra/protein bert. The repository also includes pretrained
model weights and code for downloading and generating the datasets and benchmarks.
ProteinBERT is implemented in TensorFlow’s Keras [43, 44].

Results

Pretraining improves protein modeling

ProteinBERT was pretrained on ~106M UniRef90 records for ~6.4 epochs. We see that the
language modeling loss continues to improve on the training set (i.e does not saturate), even
after multiple epochs (Fig. 2), in accordance with other studies [20]. The GO annotations task,
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on the other hand, does show saturation. During pretraining, we periodically changed the
sequence length used to encode the input and output protein sequences (128, 512 or 1024
tokens). We observe somewhat lower performance for the 128-token encoding, but similar for
512 and 1024.

Sequence loss Annotation loss
&= 0.280 Length = 128 0.0012 Length = 128
£ Length = 512 2 [ Length = 512
e 0.275 Length = 1024 £ oo 4 Length = 1024
th c i
w0270 ' |
g U 0.0008
- 2
0265

g 2 0.0008
S T
o 0260 =
3 ‘5 00004
]
v Dzss T T T T T T T T T T T T

0 1 2 3 4 5 6 0 1 2 3 4 5 6

# processed samples 1= # processed samples 1=8

Fig. 2: Pretraining loss

Training-set loss over the two pretraining tasks: i) protein sequence language modeling, and ii) GO
annotation recovery. Losses were evaluated with input sequence length of 128, 512 or 1,024 tokens on
the first 100 batches of the dataset.

ProteinBERT achieves state-of-the-art results on diverse protein
benchmarks

To evaluate ProteinBERT, we used nine benchmarks covering a variety of tasks in protein
research (see definitions of the benchmarks in Table 1; full results for all benchmarks are
available in Supplementary Table S1). For the four benchmarks taken from TAPE (secondary
structure, remote homology, fluorescence and stability prediction), we compared our
performance to other state-of-the-art sequence models which had been evaluated on the
same benchmarks. Specifically, we compared against a BERT Transformer and LSTM models
evaluated in TAPE [21, 23, 45] (Table 2). Notably, the compared deep learning models have
~38M parameters, in contrast to ~16M parameters in ProteinBERT. We evaluated
ProteinBERT with and without pretraining, observing that pretraining has a major, positive
effect on performance in all tasks. Across these benchmarks, ProteinBERT shows
performance comparable, or that exceeds similar, larger models, such as the Transformer
used in TAPE.

To further discern the impact of pretraining on downstream benchmark performance, we
evaluated ProteinBERT following different pretraining durations. Specifically, we initiated the
model from different snapshots along its pretraining and evaluated its down-stream
performance after fine-tuning from these states (Fig. 3). While some tasks do not benefit from
pretraining, other tasks (e.g. secondary structure and remote homology) show clear gains from
ever more pretraining, and do not show saturation in that improvement. This is notable given
that these are among the more challenging tasks.


https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445464; this version posted May 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Table 2: TAPE benchmark results
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Fig. 3: The impact of pretraining on downstream tasks

# pretraining samples

Performance of fine-tuned ProteinBERT models over the 4 TAPE benchmarks as a function of
pretraining amount (measured by the number of processed proteins). Similar plots for all nine

benchmarks are shown in Supplementary Fig. S1.
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ProteinBERT generalizes across protein lengths

The architecture of ProteinBERT is efficient and flexible towards different sequence lengths
(i.e. the number of tokens encoding the input and output sequences). To test the model's
capacity to generalize across sequence lengths, we measured the test-set performance of
ProteinBERT on the 4 of 9 benchmarks that had a non-negligible number of test-set records
in proteins longer than 512 tokens (Fig. 4). Specifically, we required at least 25 such records,
where a record comprises either an entire protein (in the case of global tasks) or a residue (in
the case of local tasks). We observe that in most cases ProteinBERT performs slightly worse
for longer sequences, but only modestly, showing that it indeed generalizes across a very
wide range of protein lengths. Moreover, the fact that in some cases longer sequences achieve
better performance (e.g. 16,384-token sequences in the “Major PTMs” benchmark, or 1,024-
token sequences in the “Neuropeptide cleavage” benchmark) suggests that the changes in
performance might be due to other factors (e.g. predicting the secondary structure of longer
sequences might be an inherently more difficult task).
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Fig. 4: Performance across sequence lengths

Test-set performance of fine-tuned ProteinBERT models with different input sequence lengths.
Sequence lengths (e.g. 512, 1,024, etc.) always encode proteins of shorter lengths (e.g. a protein of
700 residues will be encoded as a 1,024-long sequence). Boxplot distributions are over the 371
pretraining snapshots used in Fig. 3.

Understanding global attention

To demonstrate the inner workings of the global attention mechanism, we extracted the values
of the 24 attention heads in ProteinBERT for two proteins selected from the test-set of the
signal peptide benchmark, before and after fine-tuning the model on that task (Fig. 5). The
patterns of global attention are clearly distinct across different proteins, but some shared
patterns exist. For example, attention head #3 in the 3rd transformer block tends to
concentrate on the beginning of protein sequences, while attention head #2 in the same layer
tends to concentrate on the other parts (i.e. the middle and end of sequences). Fine-tuning
the model on signal peptide prediction appears to have mostly altered the last (6th) global
attention layer. For example, attention head #1 in that layer changed to emphasize more the
beginning of sequences. It is worth stressing that the exact attention values are dependent on
the model weights obtained from training, which can change between runs. From our
experience, fine-tuning tends to produce rather consistent results, but small differences are
sometimes observed.
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Fig. 5: Global attention before and after fine-tuning on signal peptide prediction

Global attention values obtained for two selected proteins: Heme-binding protein 1 (Hebp1) in mouse
(top), and Gamma carbonic anhydrase-like 2, mitochondrial protein (GAMMACAL2) in arabidopsis
(bottom). The left panels (red colors) show the attention values obtained by the generic ProteinBERT
model, after pretraining it as a language model on UniRef90 (but before fine-tuning it on any specific
task). The heatmap shows the global attention values at each residue of the protein by each of the 24
attention heads of the model. The bar plot shows the total attention at each residue by summing the
attention values across all attention heads. The right panels show the difference in attention values after
fine-tuning ProteinBERT on the signal peptide prediction benchmark. The heatmap shows the increase
(green) or decrease (purple) of attention across all positions and attention heads. The bar plot shows
the total difference in attention at each residue by summing the differences across all attention heads.
Notice that each attention head necessarily sums up to 100%. Accordingly, differences sum up to 0%.

Discussion

We have presented ProteinBERT, a new deep language model for protein sequences
designed to capture local and global representations of proteins in a natural way (Fig. 1). We
have demonstrated the universality of the model, showing that it can be fine-tuned on a wide
range of protein tasks in a matter of minutes and achieve state-of-the-art results (Table 2).

To pretrain ProteinBERT, we introduce a novel pretraining task of protein annotation prediction
which is highly suited to proteins (unlike sentence order prediction and other natural language
centric tasks [46]). We argue that GO annotations [27] are a sensible extension to language
modeling in proteins. They are ubiquitous and available for a large portion of curated proteins
(~46M of the ~106M proteins in the UniRef90 dataset). Additionally, they can teach the model
about a wide range of protein functions (from subcellular localizations to pathways to
biochemical roles).

Unlike previous works which included ~250M putative, redundant sequences [20], we
constrained the pretraining of ProteinBERT to ~106M representative proteins taken from
UniRef90 [29], out of the entire known protein space of ~215M proteins in UniProt [28]. We
argue that using a non-redundant set of proteins is more sensible and eliminates a lot of
unnecessary bias caused by uneven sampling of the protein space, which is prevalent in the
non-filtered version of UniProt. For example, there are >1M proteins in UniProt from the
proteome of human immunodeficiency virus 1 (HIV-1), even though the real virus contains
only 9 proteins. Such redundancy reflects the abundance of sequence variations along HIV-1
evolution, and the great interest that researchers have had in this variation (compared to most
other, far less studied organisms). Using a non-redundant set of proteins is also more efficient,
especially when pretraining the model for less than an entire epoch (such as when searching
for optimal hyper-parameter combinations).

ProteinBERT’s architecture is efficient and highly scalable, allowing it to process protein
sequences of any length. The same model weights conform to any sequence length, allowing
it to be trained on a specific range of lengths and then generalize to other, unseen sequence
lengths (Fig. 4). By supporting extremely long sequences (more than tens of thousands of
residues), ProteinBERT spares the complication of splitting long sequences into smaller
chunks, a common practice with self-attention-based models which grow quadratically (rather
than linearly) with sequence length [47, 48]. At the core of the model’s flexibility is its use of
global attention layers, a new architectural innovation. The compactness of global attention
(relative to self-attention) also allows easier inspection of the model’s attention, as all attention
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values (across all positions and attention heads) can be displayed as a simple 2D map (Fig.
5), as opposed to the 3D map that would be required to cover all-by-all self-attention.

Compatible with the general trends in the field of language modeling [5], we observe that
longer pretraining of ProteinBERT shows clear performance gains, both as a language model
(Fig. 2) and across many specific tasks (Fig. 3, Supplementary Fig. S1). Existing works show
that, other things being equal, larger models and additional pretraining computation time
correlates with improved model performance [2, 5, 20]. Thus, we expect larger versions of
ProteinBERT (e.g. with more, wider layers) to yield additional improvements. Yet, even with
the modest computing resources used in this work (a single GPU), ProteinBERT competes
with state-of-the-art models (Table 2), providing a simple and efficient out-of-the-box solution
for a wide range of protein tasks. The representations learned by the model through its
pretraining are universally applicable across a wide array of tasks, making it useful for few-
shot-learning tasks involving limited labelled data.

To facilitate easy usage of ProteinBERT, we provide the pretrained model as a Python
package (based on TensorFlow and Keras [43, 44]), which allows automatic downloading of
a pretrained model state, fine-tuning and evaluation on labeled datasets.

By providing an effective and accessible model of protein sequence and function, we hope to
expedite the adoption of deep language modeling by the protein research community and
allow this new powerful tool to further push the boundaries of protein research.
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Supplementary Table S1 - Full benchmark results: Test-set performance of ProteinBERT
(following fine-tuning) over all nine benchmarks across 371 snapshots along the pretraining
process.
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