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Abstract

The function of many biological systems, such as embryos, liver lob-

ules, intestinal villi, and tumors depends on the spatial organization of

their cells. In the past decade high-throughput technologies have been de-

veloped to quantify gene expression in space, and computational methods

have been developed that leverage spatial gene expression data to identify

genes with spatial patterns and to delineate neighborhoods within tissues.

To assess the ability and potential of spatial gene expression technologies

to drive biological discovery, we present a curated database of literature

on spatial transcriptomics dating back to 1987, along with a thorough

analysis of trends in the field such as usage of experimental techniques,

species, tissues studied and computational approaches used. Our anal-

ysis places current methods in historical context, and we derive insights

about the field that can guide current research strategies. A companion

supplement offers a more detailed look at the technologies and methods

analyzed:

https://pachterlab.github.io/LP_2021/.

1 Introduction

It has long been recognized that in biological systems ranging from theDrosophila
embryo to the hepatic lobule, many genes need to be properly regulated in space
for the system to function. In order to study the spatial patterns of gene expres-
sion, many different spatial transcriptomics methods, which produce spatially
localized quantification of mRNA transcripts as proxies for gene expression, have
been developed. Thanks to growing interest in the field, several reviews have
been written in the past 5 years, providing overviews of experimental techniques
for data collection [1, 2], and describing how such techniques can be applied to
specific biological systems, e.g. tumors [3], brain [4], and liver [5]. These re-
views typically begin with either laser capture microdissection (LCM) or single
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molecular fluorescent in situ hybridization (smFISH) in the late 1990s, although
the quest to profile the transcriptome in space is much older. The methods un-
derlying such “prequel” technologies are important because many of them are
used, in updated forms, in modern “current era” high-throughput methods.

Some important technologies enabling spatial transcriptomics date back to
the 1970s (Supplementary Material; Chapter 2). Various forms of in situ hy-
bridization (ISH) have been used for a long time to visualize gene expression
in space. Radioactive ISH was first introduced in 1969, visualizing ribosomal
RNA [6] and DNA [7] in Xenopus laevis oocytes, and was first used to visualize
transcripts of specific genes (globin) in 1973 [8] (Figure 1A). Non-radioactive
fluorescent or colorimetric ISH was developed in the 1970s and the early 1980s,
improving spatial resolution, enabling 3D staining, and shortening required ex-
posure times [9, 10] (Figure 1A). Early ISH was performed in tissue sections,
making it challenging to apply to blastrulas and to reconstruct 3D tissue struc-
tures; whole mount ISH (WMISH) was first introduced in Drosophila in 1989 [11]
and was soon adapted to other species such as mice in the early 1990s [12].

Another strand of development in early spatial transcriptomics was the en-
hancer and gene trap screen which was developed in the 1980s when DNA
sequencing throughput was increasing [54] and metazoan genomes were newly
opened frontiers. The first screens in Drosophila [14] and mice [15] were per-
formed in the late 1980s in order to visualize expression of untargeted, and
often previously unknown, genes. These could be identified with 5’ rapid am-
plification of cDNA ends (RACE) polymerase chain reaction (PCR) followed by
Sanger sequencing of the PCR products. A related technology, in situ reporter,
in which a promoter of a known gene or a predefined genomic fragment drives
the expression of a reporter, was first used in a gene expression screen in C. ele-
gans in 1991 [16]. With increasing throughput, enhancer and gene traps became
the technology of choice for spatial transcriptomics in the 1990s, until the rise of
(WM)ISH in the late 1990s which leveraged automation. WM(ISH) also avoided
the need for transgenic lines, and was facilitated by the widespread availability
of reference genomes in the early 2000s, which could be used for computational
probe design. Although now eclipsed by newer methods, enhancer trap, gene
trap, and in situ reporter methods have been used to build reference databases
of gene expression and enhancer usage patterns in transgenic lines throughout
the 2000s and 2010s [55, 56].

The foundation for many current era technologies was built in the decades
between the 1970s and the 2000s (Figure 1C). For example, UV laser was first
used to cut tissue in 1976 [37]. Popular IR and UV LCM systems were first
reported in 1996 [43, 44] and were soon commercialized. Microarray technology
was first reported in 1995 [42], and was originally used to quantify transcripts
hybridized to cDNAs printed on a slide, but it was soon adapted to quantify
the transcriptome from LCM samples in 1999 [46]. Popular current era tech-
nologies such as Spatial Transcriptomics (ST) [53] and 10X Visium rely on such
microarray technology, but to capture transcripts from the tissue mounted on
the microarray slides rather than from solution. Some highly multiplexed sm-
FISH technologies such as seqFISH [51] rely on combinatorial barcoding, i.e.
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Figure 1: A) Timeline of development of prequel era technologies. References:
1969 radioactive ISH [6, 7], 1973 goblin [8], 1977 FISH [10], 1982 immuno-
logical [9], 1982 FISH [13], 1987 enhancer trap [14], 1989 WMISH [11], 1989
ES cell [15], 1991 C. elegans [16]. B) Timeline of major (WM)ISH atlases
and gene expression pattern databases. References: 1994 WMISH [17], 1995
mouse WMISH [18], 1998 AXelDB [19], 1999 GXD [20], 2000 MAGEST [21],
2001 NEXTDB [22], 2001 GHOST [23], 2002 GenePaint [24], 2002 BDGP [25],
2003 MEPD [26], 2003 ZFIN [27], 2004 GEISHA [28], 2005 miRNA [29], 2006
Allen [30], 2006 BDTNP [31], 2007 Fly-FISH [32], 2007 Xenbase [33], 2011
GUDMAP [34], 2017 LungMAP [35], 2020 ZEBrA [36]. C) Timeline of develop-
ment of current era technologies and their notable precursors, colored by type of
technology. References: 1976 LCM [37], 1988 ligase mediated single nucleotide
variant (SNV) detection [38], 1989 amplification [39, 40], 1989 FISH [41], 1995
microarray [42], 1996 LCM [43, 44], 1998 smFISH [45], 1999 LCM [46], 2002
combinatorial [47], 2008 RNA-seq [48], 2012 Tomo-array [49], 2013 ISS [50],
2014 seqFISH [51], 2015 MERFISH [52], 2016 ST [53].

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.11.443152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443152
http://creativecommons.org/licenses/by-nc/4.0/


encoding each gene with a combination of colors so transcripts of more genes
than easily discernible colors (up to 5) can be quantified simultaneously. Com-
binatorial barcoding was first reported in immunological DNA FISH in 1989 [41]
and was first used for transcripts in 2002 [47]. The first unequivocal demon-
stration of smFISH showing each mRNA molecule as a spot was reported in
1998 [45]. Highly multiplexed smFISH would not have been possible without
the development of these technologies.

(WM)ISH was the technology of choice in the late 1990s and the 2000s before
the rise of highly multiplexed, high resolution, and more quantitative technolo-
gies, and has been used to create gene expression atlases in embryos of several
species such as Drosophila melanogaster [25], Mus musculus, and Gallus gal-
lus [28], in various mouse organs such as the brain [30], genitourinary tract [34],
and lung [35], and for specific types of genes such as miRNAs [29] (Figure 1B).
For species other than mice and humans, organs other than the brain, and miR-
NAs, the only spatial transcriptomics resources currently available are for the
most part (WM)ISH atlases. Model organism databases collecting the prolif-
erating gene expression patterns from various sources were also established in
this period, such as gene expression database (GXD) [57] and Zebrafish Infor-
mation Network (ZFIN) [58] (Figure 1B). The golden age of (WM)ISH seems
to have ended in the 2010s (Figure 1B), perhaps due to some of the disadvan-
tages of (WM)ISH, such as requiring stereotypical tissue structure, the need for
thousands of animals to generate an atlas, and the largely qualitative nature of
results.

Early motivating applications for spatial transcriptomics included identifica-
tion of genes with restricted patterns which indicated function in development,
identification of novel cell type markers, and identification of novel cell types
not evident from tissue morphology [14, 15]. In the 1980s and 1990s, analyses
were typically done manually, although more recently automated methods have
been developed (Supplementary Material Chapter 3). Recent developments in
machine learning, coupled to more powerful computing infrastructure and the
availability of more quantitative data, have opened up new possibilities. How-
ever, the legacy of the prequel era still lives on; current era studies still frequently
reference prequel atlases [59–61].

2 Data collection

Current era technologies broadly fall into five categories: Microdissection (Sup-
plementary Material Section 5.1), smFISH (Supplementary Material Section
5.2), in situ sequencing (ISS) (Supplementary Material Section 5.3), array (Sup-
plementary Material Section 5.4), and no imaging (Supplementary Material Sec-
tion 5.5). Developers of such technologies often seek to enable a trifecta of
transcriptome wide profiling, single cell resolution, and high gene detection effi-
ciency. While this achievement appears to be increasingly within reach, current
era technologies are characterized by trade offs between these goals.
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Figure 2: Schematics of common current era technologies. A) IR LCM. B)
UV LCM with LPC. C) UV LCM removing cut era by gravity. D) seqFISH
barcoding and error correction scheme. E) MERFISH Hamming distance 4
barcoding and error correction scheme. F) Cartana ISS with cPAL sequencing.
Yellow line stands for the RCA amplicon. Short blue lines stand for the gene
barcode. Brown stands for the probe; bases not labeled are degenerate. Gray
stands for primer matching constant region. G) Top: ST spot diameter and
spacing. Bottom: barcode and unique molecular identifier (UMI) lengths; the
light blue block denotes the glass slide. H) Similar to G, but for Visium. Created
with BioRender.com
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2.1 Microdissection

Current era microdissection constitutes the compilation of spatial locations of
samples during the course of microdissection, and the assaying of transcrip-
tomes of samples by cDNA microarray or RNA-seq. Since 1999, by far the
most widely used microdissection technology is LCM, which has been applied
to various biological fields such as oncology, neuroscience, immunology, devel-
opmental biology, and botany (see Supplementary Material Chapter 6 for topic
modeling of PubMed LCM literature). In UV LCM, sometimes also called laser
microbeam microdissection (LMM) or laser microdissection (LMD), a UV laser
ablates a narrow strand of tissue around the desired area, which is then collected
into tubes by gravity (Leica LMD) or laser pressure catapult (LPC, as in Zeiss
PALM microbeam) (Figure 2B, C). In IR LCM (Arcturus PixCell II), the tissue
section is mounted on a plastic membrane on tube caps. The IR laser briefly
heats the desired area, melting the membrane so the tissue in the area is fused
to the cap and captured (Figure 2A). IR and UV can be combined; for example
UV can be used to cut the tissue and IR to remove the desired area with the
plastic membrane (recent versions of Arcturus).

Advantages of LCM include transcriptome wide profiling, precise cuts in-
formed by histology, compatibility with formalin fixed paraffin embedded (FFPE)
tissues [62], and the possibility of applying the method to single cells from both
frozen [63] and FFPE sections [64]. LCM can also be applied to 3D tissues by
microdissecting non-overlapping domains as in Geo-seq [65]. Disadvantages of
LCM include difficulty to scale to larger number of samples, exclusion of whole
mount samples, and potential RNA degradation [66]. While LCM is widely used
to capture targeted areas according to histology, it can also cut tissue into an
untargeted grid [67].

Other microdissection techniques generally fall into two categories: Mechan-
ical (Supplementary Material 5.1.4) and optical (Supplementary Material 5.1.5).
The former includes 2000s voxelation [68] (Figure 4), and Tomo-seq [69], which
sections a tissue with a cryotome along an axis of interest, followed by RNA-
seq on each section. Optical microdissection includes GeoMX DSP [70], which
shines UV light on regions of interest (ROIs) to release photo-cleavable gene bar-
codes for quantification, and Niche-seq [71], which uses fluorescence activated
cell sorting (FACS) to isolate cells expressing photoactivated GFP in transgenic
mice for scRNA-seq.

2.2 Single Molecule FISH

Chronologically, the next technology developed in the current era is highly mul-
tiplexed single-molecule FISH (smFISH), which began with a 2012 prototype
(seqFISH) that relied on super-resolution microscopy (SRM) to simultaneously
profile 32 genes in yeast by hybridizing probes with different colors to tran-
scripts, and then deducing relative locations of the colors present [72]. SRM is
no longer needed; in 2014 seqFISH [51] was published, in which one color per
gene is visualized per round of hybridization and the probes are stripped before

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.11.443152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443152
http://creativecommons.org/licenses/by-nc/4.0/


the next round for the next color in the barcode. With 4 colors, 8 rounds of
hybridization (48 = 65536) are more than enough to encode all genes in the hu-
man or mouse genome. In practice, an error correcting round of hybridization
is performed, so that genes can still be distinguished if signal from one round of
hybridization is missing [73] (Figure 2D). More recently in a version of seqFISH
based on RNA SPOTS [74], the “colors” themselves are one hot encoded by
a sequence of hybridizations, expanding the palette to 20 “colors” per channel
and enabling the profiling of 10,000 genes [75].

Another smFISH technique is multiplexed error-robust FISH MERFISH [52],
which uses a different barcoding strategy, in which each gene is encoded by
a binary code. The color codes in each experiment must be separated by a
Hamming distance (HD) of 4 to allow for correction of missing signal in one
round, and by 2 to identify error without the facility for correcting it (Figure
2D). The length of barcodes can be increased to encode 10,000 genes [76]. As
only the fluorophores are removed but the probes are not stripped, numerous
rounds of hybridization in MERFISH are less time consuming than those in
seqFISH. Most other smFISH based techniques, such as HybISS [77] and split-
FISH [78], use either seqFISH-like or MERFISH-like barcoding.

Advantages of smFISH based techniques include high gene detection effi-
ciency (~95% for Hamming distance 4 MERFISH [79] compared to smFISH),
single cell resolution, and subcellular transcript localization, which can be bio-
logically relevant [80, 81]. Single round smFISH has nearly 100% detection effi-
ciency [72], and multiple rounds of hybridization tend to decrease the efficiency
in part because barcodes with incorrigible errors are discarded. Disadvantages
include requirement of pre-defined gene panel and probes, difficulty in probing
shorter transcripts, lengthy imaging time, limited scalability to large area of tis-
sues, possible challenges in cell segmentation, and the need to process terabytes
of images.

Challenges with smFISH have been addressed by various methods: Signal
to noise ratio can be improved with rolling circle amplification (RCA) [77],
branched DNA (bDNA) [82], hybridization chain reaction (HCR) [73], and tis-
sue clearing [83]. With increasing number of genes profiled, the transcript spots
are increasing likely to overlap, causing optical crowding. This can be miti-
gated by expansion microscopy (ExM) [84], only imaging a subset of probes at
a time and using computational super-resolution [75], imaging highly expressed
genes without combinatorial barcoding [52], and computationally resolving over-
lapping spots [85]. While smFISH based techniques are typically designed for
frozen sections, SCRINSHOT is designed for FFPE sections [86].

2.3 In Situ Sequencing

ISS methods yield spatial transcriptome information by sequencing, typically
by ligation (SBL), gene barcodes (targeted) or short fragments of cDNAs (un-
targeted) in situ. Such methods rely on ligase only joining two pieces of DNA –
a primer with known sequence and a probe – if they match the template, with
non-matching probes washed away. The probes used are degenerate except for
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one or two query bases encoded by a color. The 2013 ISS [50], later commer-
cialized by Cartana, uses one query base per probe as in cPAL [87] to sequence
gene barcodes (Figure 2E). FISSEQ [88] and a later adaptation with ExM called
ExSeq [89] use SOLiD, which uses two query bases per probe to sequence cir-
cularized and RCA amplified cDNAs. In STARmap [90], gene barcodes are
sequenced by SEDAL, in which SOLiD-like two query bases are also used to
reject error, but one base encoding can also be used [90]. BARseq also RCA
amplifies probes with gene barcodes, but uses sequencing by synthesis (SBS)
instead of SBL to sequence the barcodes [91].

Advantages of ISS include single cell resolution and subcellular transcript
localization, as ISS displays each mRNA molecule as a spot. The ISS tech-
nologies mentioned above use RCA, which greatly amplifies signal, but misses
many transcripts. This can be an advantage, as brighter and less crowded spots
allow ISS to be applied to larger tissue areas such as whole mouse brain sec-
tions, with lower magnification (20x, while MERFISH uses 60x) [92, 93]. How-
ever, ISS techniques tend to have low detection efficiency. Whereas detection
efficiency of scRNA-seq techniques is between 3% - 25% [94–98], the detection
efficiencies of Cartana ISS and FISSEQ [99] are ~5% and ~1% respectively, with
STARmap only marginally better. However, ExSeq claims up to 62% efficiency
compared to smFISH, i.e. for genes of interest in the same cell type, ExSeq
detects around 62% as many transcripts as smFISH. Untargeted ExSeq can be
transcriptome wide, but the targeted ISS techniques have only been used for up
to 1020 genes [90] though more typically fewer than 300 genes [89], perhaps due
to limited read length of SBL and challenges of imaging and image processing
as in smFISH.

2.4 Arrays

Spatial locations of transcripts can also be preserved by capturing the tran-
scripts from tissue sections on in situ arrays. Such arrays can be manufactured
by printing spot barcodes, UMIs, and poly-T oligos on commercial microarray
slides to capture polyadenylated transcripts, as in the ST and Visium tech-
nologies (Figure 2G, H). They can also be Drop-seq-like beads [94] with split
pool barcodes, UMIs, and poly-T oligos spread on slides in a single layer (e.g.,
Slide-Seq [100]) or confined in wells etched on the slides (e.g., HDST [101]),
with bead barcodes subsequently located using in situ SBL. Alternatively, in
DBiT-seq [102], an array is generated by microfluidic channels, which are used
to deposit one type of barcode in one direction, and then another in a per-
pendicular direction, with the orthogonal barcodes ligated so each spot can be
identified with a unique pairwise combination. While array based techniques
are typically designed for frozen sections and 3’ end Illumina sequencing, Vi-
sium has recently been adapted to FFPE sections [103] and Nanopore long read
sequencing [104].

Array based techniques have been applied to large areas of tissue [61], and
their use is increasing (Figure 3A). Nevertheless, they do not have single cell
resolution, and the spot diameter of ST is 100 µm with spots 200 µm apart
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(Figure 2G). Visium, which is an improved version of ST released after 10X
Genomics acquired ST, has spots in a hexagonal array with diameter 55 µm
(Figure 2H). Bead diameter is 10 µm in Slide-seq, and 2 µm in HDST. Slide-
seq and HDST use bead size smaller than single cells, however they still don’t
provide single cell resolution because one bead can span two or more cells.
Resolution of DBiT-seq is determined by channel width (either 50, 25, or 10 µm).
More recently, the spot size can be reduced to below 1 µm, with RCA amplified
DNA nanoballs as small as 0.22 µm across with spot barcodes deposited in
wells 0.5 or 0.715 µm apart in Stereo-seq [105], and in Seq-Scope polonies with
spatial barcodes 0.5 µm in diameter on an Illumina flow cell re-purposed to
capture transcripts from tissue sections [106]. Another polony based method
PIXEL-seq achieves spot diameter of about 1.22 µm but unlike in the flow cell,
PIXEL-seq does not have much spacing around each polony [107].

Array based techniques tend to have low detection efficiency. The efficiency
of ST is estimated to be 6.9% compared to smFISH for select genes in the same
tissue type, comparable to that of scRNA-seq. Visium’s efficiency seems to be
moderately higher than that of ST, and DBiT-seq’s is even higher, at ~15.5%
compared to smFISH. Slide-seq and HDST are much less efficient. Efficiency
of Slide-seq1 is only ~2.7% of that of Drop-seq, while Slide-seq2 is on par with
Drop-seq [108]. Efficiency of HDST is ~1.3% per bead compared to smFISH.
Efficiencies of the submicron techniques, in number of UMIs per unit area in
the same tissue, might be comparable to that of Visium [107].

2.5 Methods that don’t rely on imaging

Some technologies have been developed to preserve information necessary to
computationally reconstruct spatial gene expression patterns without imaging.
One such technology is DNA microscopy [109], which records proximity be-
tween cDNAs. This information can be used to reconstruct relative locations
of transcripts. At the cellular level, gene expression in rare cell types can be
reconstructed by deliberately assaying multiplets, and then mapping them to
locations in a spatial reference based on gene expression of cells from common
cell types attached to cells from the rare cell types [110, 111]. Variants of the
term “spatial transcriptomics” have also been used to describe techniques lo-
calizing transcripts to organelles (e.g., APEX-seq [112]), although no spatial
coordinates are recorded.

2.6 Multi-omics

Another direction of development is multi-omics (Supplementary Material 4.6).
Oligo-tagged antibodies are used to detect proteins of interest, and the oligonu-
cleotide signifying the protein species can be detected with smFISH based meth-
ods. Such antibody panels have been combined with a variant of ST as SM-
Omics [113], GeoMX DSP [70], and MERFISH [90]. A disadvantage of an-
tibody panels is that the number of proteins profiled is limited to at most a

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.11.443152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443152
http://creativecommons.org/licenses/by-nc/4.0/


few dozens. MERFISH [114] and seqFISH+ [115] have been adapted to visu-
alize chromatin structure, by targeting DNA genomic loci [114] or introns of
nascent transcripts [114, 115]. Multiplexed transcript quantification can also be
combined with neuron projection tracing. For instance, cholera toxin subunit
b (CTb) retrograde tracing has been used in conjunction with MERFISH to
visualize axons [116]. Also, BARseq was originally designed to use ISS for axon
tracing by sequencing neuron specific barcodes introduced by a virus injected
into the brain, but was later adapted to sequence gene barcodes as well.

3 Data analysis

The processing and analysis of high-throughput spatial transcriptomics data
requires novel methods and tools, especially for problems such as image pre-
processing, spatial reconstruction of scRNA-seq data, cell type deconvolution
of array-based data, identification of spatially variable genes, and inference of
cell-cell interactions.

For smFISH and ISS based data, the raw data consists of images of flu-
orescent spots, which must be processed to identify transcript spots, match
spots to genes, and assign spots to cells (Section 5.1). SmFISH and ISS studies
often use classical image processing tools such as top-hat filtering to remove
background, translation to align images from different rounds of hybridization,
and watershed for cell segmentation [73, 79, 90]. Machine learning in Ilastik,
deep learning packages like DeepCell [117], and alternative tools incorporating
scRNA-seq data [118], can also be used for cell segmentation. However, with-
out visualizing the plasma membrane, accuracy of cell segmentation is limited.
Some analyses, such as identification of tissue regions, can be performed without
cell segmentation [118]. Until 2019, image processing was typically performed
with poorly documented and technique specific code written in the proprietary
language MATLAB, but more recently such code is increasingly written in the
open source language Python. The package starfish [119] was developed as
an attempt to provide a unified and well-documented user interface to process
images from different techniques such as seqFISH, MERFISH, and ISS, but it
has not yet been widely adopted.

Recently, improvements in scRNA-seq technology have inspired new meth-
ods for leveraging the complementary nature of high-resolution transcriptome
quantification with spatial transcriptomics data. For smFISH and ISS data
that is not transcriptome wide, expression patterns of genes not profiled in the
spatial data can be imputed with scRNA-seq data, either by mapping disso-
ciated scRNA-seq cells to the spatial reference or by directly imputing gene
expression in space using expression profiles from scRNA-seq (Supplementary
Material 7.3). Cells can be mapped to spatial locations on an existing spatial
dataset with genes shared by the two datasets, with an ad hoc score favoring sim-
ilarity between cell and location [60] or via optimal transport modeling [120].
While ad hoc scoring is simple to implement, the results tend to be qualita-
tive. Alternatively, spatial locations of scRNA-seq cells can be reconstructed de
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novo, by optimal transport modeling, or projection into 2 or 3 dimensions cor-
responding to the spatial dimensions [121]. Optimal transport exploits spatial
autocorrelation of gene expression to map cells to locations. However, spatial
autocorrelation in tissues breaks down when different cell types are co-localized.
When a spatial reference is not available, the de novo approach often does not
yield results resembling the original tissue [121].

Gene expression in space can also be imputed from scRNA-seq without ex-
plicitly mapping scRNA-seq cells to locations. A common approach is to project
the spatial and scRNA-seq data into a shared low dimensional and batch-free
latent space, and to subsequently estimate gene expression by projecting the spa-
tial cells into the latent space. Examples of this approach include Seurat3 [122]
and gimVI [123]. These methods may also be used to add spatial context to
single cell multi-omics data when spatial techniques for some of the multi-omics
data are not available.

In spatial data without single cell resolution, such as those derived from
ST and Visium, scRNA-seq data can inform cell type composition of the spots
or voxels (Supplementary Material 7.4). A common approach is to explicitly
model observed gene expression at the spots as a weighted sum of mean gene
expression of each cell type from scRNA-seq. Gene counts can then be modeled
with negative binomial (NB) or Poisson distributions, and cell type proportions
in each spot can then be estimated from the parameters of the model. Examples
of such methods include stereoscope [124], and RCTD [124].

Given the relevance of scRNA-seq to spatial data, popular scRNA-seq ex-
ploratory data analysis (EDA) ecosystems such as Seurat [122], SCANPY (Squidpy)
[125], and SingleCellExperiment (SpatialExperiment) [126] have added func-
tionalities for spatial data, such as updates to data containers and functions to
facilitate visualization of gene expression and cell/spot metadata at spatial lo-
cations (Supplementary Material 7.2). EDA packages dedicated to spatial data
with beautiful graphics and good documentation have also been written, such
as Giotto [127], STUtility [128], and SPATA [129]. Seurat, Giotto, and SPATA
also implement basic methods to identify spatially variable genes. In addition,
Giotto implements methods to identify cell type enrichment in ST and Visium
spots, identify gene coexpression and association between gene expression and
cell type colocalization, and to identify spatial regions [130].

Spatially variable genes are genes whose expression is associated with spatial
location (Supplementary Material 7.5). Two approaches are commonly used:
Gaussian process regression (GPR) [131] and its generalization to Poisson [132]
and NB [133], and Laplacian score [134]. The former models normalized gene
expression or the rate parameter of Poisson or NB gene expression as a GPR
and finds whether the model better describes the data with the spatial term
than without. To speed up computation, the cells or spots can be aggregated
with self-organizing map before the GPR approach is applied [135]. The lat-
ter approach identifies genes whose expression better reflects the structure of
a spatial neighborhood graph. The locations of cells can also be modeled as
a spatial point process with gene expression as marks; spatially variable genes
can be identified as marks associated with locations [136]. GPR based meth-
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ods approximate the p-values of genes from theory, while other methods use
permutation testing, which makes them less scalable. However, the Gaussian
kernel commonly used for GPR based methods doesn’t account for anisotropy
observed in tissues.

Spatial information also enables identification of potential cell-cell interac-
tion (Supplementary Material 7.8). This is commonly done with knowledge of
ligand-receptor (L-R) pairs and testing of whether L-R pairs are more likely to
be expressed in neighboring cells or spots [137]. Expression of genes of interest
can also be modeled, including a term for cell-cell co-localization; the gene is
considered associated with cell-cell co-localization if the model better describes
the data with this term than without [138, 139].

There are many other types of analyses that are useful for spatial transcrip-
tomics analysis, including identification of archetypal gene patterns (Supplemen-
tary Material 7.6), spatial regions defined by the transcriptome (Supplementary
Material 7.7), inferring gene-gene interactions (Supplementary Material 7.9),
subcellular transcript localization (Supplementary Material 7.10), and gene ex-
pression imputation from H&E (Supplementary Material 7.11).

4 Trends in the spatial transcriptomics field

The quality vs. quantity trade off inherent in existing technologies means that
there is no single “best” solution currently available, and the difficulty in im-
plementing methods has resulted in many technologies never spreading beyond
their institutions of origin. LCM, ST, Visium, ISS, and Tomo-seq have been
the most widely adopted (Figure 3A), and in almost all cases in the US and
western Europe (Supplementary Figures 4.9, 5.25, 5.31). In terms of tissues an-
alyzed, multiplexed current era techniques have been used widely to characterize
human tissues [140], tumors [53] (especially breast tumors and squamous cell
carcinoma), and pathological tissues that don’t necessarily have a stereotypical
structure [141] (Figure 3B, C). In the SARS-CoV-2 pandemic, GeoMX DSP
has been used for spatial transcriptomic profiling in lung autopsy of COVID
victims [142, 143].

Some of the processed data, and associated spatially variable genes, can be
downloaded and visualized from SpatialDB [144]. Excluding LCM, the vast ma-
jority of current era studies were performed on either humans or mice (Figure
3D), and the brain is the most studied organ (Figure 3B, E, F). In particular, the
international project Brain Research through Advancing Innovative Neurotech-
nologies (BRAIN) Initiative - Cell Census Network (BICCN) is constructing a
multi-modal atlas for the human, mouse, and non-human primate brain, in-
cluding spatial data such as MERFISH and seqFISH [145]. While the smFISH
techniques being utilized for this project can in principle scale to many genes,
in practice they have for the most part been used for limited numbers of genes
(Figure 3G) and cells (Figure 3H).

All packages mentioned in the Data analysis section are open source and
written in languages such as R, Python, and Julia. Downstream analyses in
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Figure 3: A) Number of institutions that have published papers or preprints with
each technique, excluding LCM. Only techniques used by at least 3 institutions
are shown. B) Number of publications for each healthy organ in human (male
shown here, as there is no study on healthy female specific organs in humans at
present). C) Number of publications for pathological organs in human (female
shown here, but there are two studies on prostate cancer [146, 147]). D) Number
of publication per species. E) Number of publications per healthy organ in the
mouse. F) Number of publications for pathological organs in mouse. G) Number
of genes per dataset over time. The studies profiling 10,000 genes are shown
with broken y-axis to better show the trend among more ordinary studies. Gray
ribbon in G and H stands for 95% confidence interval and the trend line is fitted
without the 10,000 gene datasets. H) Total number of cells per study profiled
by smFISH based techniques over time among studies that reported the number
of cells. All studies that reported number of cells are shown. In C and D, the
slopes of the fitted line do not significantly differ from 0 (t-test). I) Number of
publications for data collection using each of the 5 most popular programming
languages for downstream data analysis. J) Number of publication for data
analysis using each of the 5 most popular programming languages for package
development. In both A and B, each icon stands for 10 publications. Note that
multiple programming languages can be used in one publication.
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studies primarily concerning new data and data analysis packages predominantly
use open source programming languages such as R, Python, and C++ (Figure
3I, J). While MATLAB is still popular, its use appears to be declining with
R and Python gaining in popularity (Supplementary Figure 5.9). While R is
more popular for downstream analyses and EDA, Python and C++ are more
popular for package development (Figure 3I, J), reflecting relative strengths of
these languages and their surrounding cultures. Most of the packages are not
hosted on standard repositories such as the Comprehensive R Archive Network
(CRAN), Bioconductor, pip, and conda (Supplementary Figure 7.9). While
most packages using R, Python, and C++ are well-documented, most MATLAB
packages are not, perhaps reflecting the central role of documentation in open
source culture (Supplementary Figure 7.9).

5 Future prospective

While technologies of the prequel are rapidly being deprecated, the ideas and
methods that underlie them are fundamental to current era spatial transcrip-
tomics. The field has dramatically expanded over the past 5 years (Figure
4A), with a plethora of new techniques and popularization of Visium driving
growth (Figure 4B, Supplementary Figures 4.8, 5.34). The popularity of these
techniques may be attributable to applicability to diverse tissues and the avail-
ability of commercial kits and core facilities translating to less work and cost to
set up instruments and train personnel.

What lies ahead of the rising curves? First, more can be done to improve
data collection techniques. For example, most current era techniques require
tissue sections. Highly multiplexed whole mount smFISH and tissue clearing
protocols, and more efficient computational tools for aligning multiple sections
that may come from multiple individuals or even developmental stages, should
be developed to extend current era techniques to 3D and to spatiotemporal
analysis. Furthermore, smFISH and ISS techniques, with signal amplification
to reduce the number of probes per transcript, can be adapted to target isoform
specific exons or untranslated regions rather than all transcripts of a gene.

Second, current era data has not yet been integrated into comprehensive
databases. Prequel databases such as GXD, e-Mouse Atlas and Gene Expres-
sion (EMAGE) [148], and FlyExpress [149] include data from multiple sources
and can be queried by gene symbol and developmental and spatial ontologies.
In addition, ABA [30], EMAGE, and FlyExpress aligned ISH images to common
coordinates and can be queried with expression patterns. While some current
era authors provide online interactive visualization of datasets from their stud-
ies [61], comprehensive databases integrating data from multiple sources as in
the prequel era have not yet been developed. Furthermore, while prequel on-
tologies are still used in current era studies, such ontologies may be improved
with the transcriptome wide quantitative data from the current era.

Third, outside of LCM, the current era is highly focused on the brain in
human and mice, with potential spatial transcriptomics investigations of other
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Figure 4: A) Number of publication over time for current era data collection and
data analysis. Bin width is 120 days. Non-curated LCM literature is excluded.
B) The data collection curve in A, broken down by category of techniques. The
colors are stacked and sorted in descending order of total number of publications
using techniques in that category.
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organs such as the liver and the leaf lagging behind. Technological modern-
ization of prequel consortia for organisms other than human and mice, and for
organs other than the brain, holds much promise for the development of useful
spatial transcriptomics atlases.

Fourth, an open source, well-documented, interoperable, and scalable work-
flow with an integrated easy-to-use interface would greatly simplify spatial tran-
scriptomics data collection and analysis. At present, for tasks beyond EDA,
users still often need to learn new syntax, convert object types, and even learn
new languages to use some data analysis tools. Finally, our survey of methods
shows that spatial transcriptomics methods need to be more open and accessi-
ble so that they become adopted around the world, and are not restricted to
Western elite institutions.

6 Methods

6.1 Database

The criterion for including studies in the database was that the study used a
method for quantification of transcripts while recording spatial context of sam-
ples within a tissue or cell. Methods were required to be able to quantify more
transcripts and genes than possible with one round of FISH or immunofluores-
cence. Reviews and protocols were excluded. For publications on data analysis
methods, the criterion for inclusion was that the proposed method went beyond
the use of existing packages, and demonstrated a novel methodological approach
or technique on a spatial transcriptomic dataset. In addition to collating pub-
lications through extensive reading and citation searching, keywords such as
”spatial transcriptomics”, ”digital spatial profiling”, ”in situ sequencing”, as
well as technology specific terms such as ”visium”, ”seqfish”, and ”merfish”,
were searched on PubMed and bioRxiv. The search results, as well as related
papers and other papers citing the publication of interest on PubMed were man-
ually screened and entered into the database. The sharing of the database is
intended to foster crowd sourcing of literature in the future.

6.2 Analysis

All analyses were performed with R version 4.0.4. The timelines were generated
with the R package ggtext [150]. The tissue maps in Figure 3B-C, E-F were
generated with the R package gganatogram [151]. All trend lines were estimated
by linear regression, and significance of the slope for each was computed by
a t-test. The pictograms in Figure 3I-J were generated with the R package
ggtextures [152].

In the supplement, the medium resolution world map was generated with
the R package rnaturalearth using the Robinson projection option. Cities
and institutions were geocoded with the Google geocoding API.

For LCM text mining, PubMed abstracts and metadata were downloaded
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by searching for the expression ”((laser capture microdissection) OR (laser mi-
crodissection)) AND ((microarray) OR (transcriptome) OR (RNA-seq))” with
the PubMed API, with R package easyPubMed [153], BioRxiv abstracts were
downloaded by web scraping with Python package biorxiv-retriever [154]
and metadata was downloaded with the bioRxiv API. The abstracts were tok-
enized into unigrams while preserving common phrases. Stopwords and punc-
tuations were removed and the words were stemmed. With token counts in
each abstract, the R package stm [155] was used for topic modeling of LCM
abstracts from PubMed and bioRxiv. The date of publication, city of first
authors (PubMed) or corresponding authors (bioRxiv), and journal (including
bioRxiv) were used as covariates to model topic prevalence. Due to the large
number of cities and journals, cities and journals with fewer than 5 publications
were grouped into ”Other” prior to modeling. The number of topics was cho-
sen based on a trade off between hold out likelihood and residual, and between
topic exclusivity and semantic coherence; 50 topics were used. Global vector
(GloVe) embedding [156] of words from the abstracts was performed with the
R package text2vec [157], using 125 dimensions. The word embeddings were
then Louvain clustered [158] with the R package igraph [159] and projected to
lower dimensions for visualization with principal component analysis (PCA) us-
ing the R function prcomp, and uniform manifold approximation and projection
(UMAP) [160] with the R package uwot [161].

The paper and supplement can be continuously updated to reflect the con-
tents of the database.

6.3 Code and data availability

All code for generating the figures is available at
https://github.com/pachterlab/LP_2021, and the version as of submission is
archived at https://doi.org/10.5281/zenodo.4795375. The curated database
can be accessed at
https://docs.google.com/spreadsheets/d/1sJDb9B7AtYmfKv4-m8XR7uc3XXw_

k4kGSout8cqZ8bY/.
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