
Combining evolutionary and assay-labelled data for protein

fitness prediction

Chloe Hsu1, Hunter Nisonoff2, Clara Fannjiang1, and Jennifer Listgarten1,2

1Department of Electrical Engineering and Computer Science,
2Center for Computational Biology, University of California, Berkeley

*Correspondence to: Chloe Hsu and Jennifer Listgarten: {chloehsu,jennl}@berkeley.edu

Abstract

Predictive modelling of protein properties has become increasingly important to the field of machine-
learning guided protein engineering. In one of the two existing approaches, evolutionarily-related se-
quences to a query protein drive the modelling process, without any property measurements from the
laboratory. In the other, a set of protein variants of interest are assayed, and then a supervised regres-
sion model is estimated with the assay-labelled data. Although a handful of recent methods have shown
promise in combining the evolutionary and supervised approaches, this hybrid problem has not been ex-
amined in depth, leaving it unclear how practitioners should proceed, and howmethod developers should
build on existing work. Herein, we present a systematic assessment of methods for protein fitness predic-
tion when evolutionary and assay-labelled data are available. We find that a simple baseline approach we
introduce is competitive with and often outperforms more sophisticated methods. Moreover, our simple
baseline is plug-and-play with a wide variety of established methods, and does not add any substantial
computational burden. Our analysis highlights the importance of systematic evaluations and sufficient
baselines.

Naturally occurring proteins serve many crucial functions in maintaining life, but have also been co-opted
for human endeavors such as gene editing1,2; lighting up specific parts of cells3; therapeutic drugs4; and
herbicide-resistant crops5. Furthermore, in many cases we re-engineer proteins to better serve our needs.
For example, we might enhance the original function, such as when we increase enzyme activity6 or make
green fluorescent proteins (GFPs) brighter7. Alternatively, we might modify the original function to a
related but different one, such as when we change an antibody to bind to a new target8. The two most com-
mon approaches to protein engineering are the iterative, laboratory-based method of directed evolution9,
and the computational methods for physics-based rational design10,11.

In recent years, efforts have been made to use machine learning (ML) for improved protein engineering,
toward the goal of achieving more desirable engineered proteins, or getting there with fewer laboratory
experiments, or both. When the design space—the part of the protein being engineered—is constrained
to be relatively small (e. g., four amino acid positions12), an ML-based protein fitness model can be used
to systematically screen all protein variants in the design space12–15. When the space becomes too large,
a layer of optimization must be added because a comprehensive screen is no longer possible16–19. In both
cases, a key component of the ML-guided protein engineering approach is a reliance on an accurate ML-
based fitness model—one that predicts protein property from protein sequence20–25.

There have been two main strategies for estimating protein fitness models. The first strategy leverages
implicit fitness constraints present in naturally occurring protein sequences, so-called evolutionary data.
Evolutionary approaches start from a single query protein with the presence of property of interest (e. g., a
particular GFP that fluoresces), and search through databases of naturally occurring proteins to find a set of
related proteins—typically by sequence homology—that are assumed to be enriched for the same property
as the query sequence. Then, a density model of this set of protein sequences is estimated, and the sequence
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Figure 1: Overview of machine learning strategies evaluated in this paper. We include weak-positive-only
evolutionary learning approaches (EVmutation20 and DeepSequence21), semi-supervised learningmethods
(fine-tuned ESM-1b23 and eUniRep regression26), and weak-positive semi-supervised learning approaches
(integrated Potts model27, TLmutation24, and augmented models).

density is used as a proxy for predicting fitness rankings20,21. Over the years, a set of increasingly richer
density models has been employed for this purpose, ranging from position-specific substitution matrices28,
profile Hidden Markov Models (HMMs)29, Potts models14,20, to Variational Autoencoders (VAEs)21 and
long short-termmemory networks (LSTMs)30. Some of these models assume that the evolutionarily-related
proteins have already been aligned into a Multiple Sequence Alignment (MSA)20,21,28,29, while others do
not30. Although the set of evolutionary proteins don’t typically have associated measurements for the
property of interest, the homology search itself is assumed to implicitly provide a weak, positive labeling
of all proteins in the set (e. g., each protein is assumed to have some amount of the desired activity). Thus,
we refer to estimating fitness from purely evolutionary data as weak-positive-only learning, rather than
unsupervised learning.

The second main strategy for estimating ML-based protein fitness models employs supervised learning
using protein variants that have had their properties assayed in the laboratory. Depending on the pro-
tein and the property of interest, a data set may comprise only hundreds of examples31, to hundreds of
thousands32. The assay may be a relatively direct measurement of the fitness of interest33, or be a crude
proxy34. Additionally, the set of variants may be restricted to one or two mutations away from a query
sequence (e. g., a wild type GFP)—a so-called mutational scanning experiment31,32,34, or they may be more
heterogeneously distributed33; the former setting is far more common. The labelled proteins may vary
at only a few sequence positions (e. g., four positions35), or vary more broadly32. By their limited con-
struction, these data sets are not typically believed to be sufficiently rich to comprehensively characterize
protein fitness landscapes, but they are a good starting point. As time progresses, the field will train and
test on better-powered data sets, revealing increasingly more nuances of fitness landscapes. Nevertheless,
increasingly richer supervised models are being applied for the supervised approach, from linear models
to convolutional neural networks (CNNs)12,36, LSTMs22,30, and Transformers22,23. Some of these classes
of models, such as LSTMs and Transformers, can be employed either as density models or as supervised
models. In some cases, a large and broad set of unlabelled proteins is also used to help find useful repre-
sentations for the supervised model22,23,26,30.

There have been recent attempts to combine the two aforementioned approaches, that is, combining
the weakly-positive evolutionary data with assay-labelled data24,26,27. We refer to such a hybrid learning
setting as weak-positive semi-supervised learning. Importantly, for many scenarios of practical importance,
property measurements can only bemade for hundreds of proteins, a regime sometimes referred to as “low-
N” protein engineering26. Especially in such a regime, but not only, it is important to combine as much
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useful data as possible so as to learn the most useful protein fitness models. Next we describe existing work
that tackles this hybrid problem.

Barrat-Charlaix et al.27 introduce an elegant approach called an integrated Potts model that assumes the
energy function of the Potts model for the evolutionary data is identical to that in an energy-based super-
vised regression model. The two models, coupled by their energy function, are learned jointly. Shamsi
et al.24 instead “transfer” information learned from a first step of modelling evolutionary data to the su-
pervised problem by learning a binary masking of an already-trained evolutionary Potts model using a
supervised objective function. Biswas et al.26 base their approach on the field of Natural Language Pro-
cessing (NLP)37,38, training an unsupervised autoregressive multiplicative LSTM (mLSTM) first on a large
database of naturally occurring protein sequences, then refining it with evolutionary data to produce a la-
tent representation called eUniRep. This representation is then used as as input features for a regularized
linear regression on the assay-labelled data. As such, this eUniRep regression approach uses evolutionary
data for the purpose of representation learning, and does not explicitly make use of the sequence density,
in contrast to the weak-positive-only learning evolutionary approaches. In general, we call all of these
methods hybrid approaches because they include both evolutionary and assay-labelled data.

Next we perform a systematic assessment of such hybrid methods, as well as comparisons to methods
that use only one of the two data types, and at times also a large reference database of proteins such as is
used by UniRep. In addition to the methods already developed for combining these data, we also introduce
a novel, simple baseline approach, which performs exceptionally well despite its simplicity. In fact, one in-
stantiation of this simple baseline consistently achieves maximal performance on 15 of the 19 data sets used
in our assessment—more than any other method—and is typically among the top competitors when it does
not. Furthermore, this baseline is a meta-method in that it can be used to augment any purely evolutionary
modelling approach to also account for assay-labelled data, and adds low computational burden.

Results

Published machine learning methods assessed. We assess a total of 11 machine learning strategies
which use evolutionary data, assay-labelled data, or both. Some23,26,30 additionally make use of a large
“universal” set of unlabelled protein sequences, namely the UniRef50 database39. In addition to the three
hybrid methods summarized earlier, we also include methods that use only one or the other type of data so
as to glean their relative importances across a range of settings. In particular, we include two representative
purely evolutionary methods: EVmutation20 and DeepSequence21, which model the evolutionary sequence
density with Potts models and VAEs, respectively. We also include two supervised methods that do not use
evolutionary data: a linear regression model with one-hot amino acid features that uses assay-labelled data
only, and the ESM-1b Transformer23 model which is pre-trained on UniRef50, and then fine-tuned with
the assay-labelled data. While several Transformers have been developed and published for protein se-
quences22,40, we chose the ESM-1b model because it has superior performance on a number of prediction
tasks when compared to other Transformers23. Figure 1 shows a graphical overview of the methods and
how they are related.

To enable all of these methods to run on our entire suite of benchmarking data sets we made minor
modifications to some of the training procedures so that they could run in a reasonable amount of time.
For eachmodification used, we show that the resulting performance closely matches the performance of the
original procedure on data sets used in the original papers (see Methods and Supplementary Figures 3-5).

A new, simple baseline hybrid method. We developed a new baseline hybrid approach that turns out to
be extremely competitive: for any already-trained evolutionary density model, use a linear ridge regression
model on one-hot amino acid features augmented with one other feature, namely the sequence density
evaluation (Supplementary Figure 1). We refer to this general meta-approach as “augmented”. For example,
if the evolutionary density model is a Potts model, we apply our strategy to obtain an augmented Potts
model. The augmented Potts model can be interpreted in a Bayesian light as updating a prior density model
from the evolutionary data with assay-labelled data (see Methods). Because we use only single amino acid
features in the regression, effectively we update mainly the single site parameters. If we had included
also pairwise amino acid features, then we would be more directly effectively updating all parameters in
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Figure 2: Comparison of existing machine learning approaches and the augmented Potts model. Spear-
man correlations and normalized average discounted cumulative gains (NDCG) are averaged over data
sets, with error bars indicate bootstrapped 95% confidence intervals estimated from 20 random seeds for
sampling training and test data. The horizontal axis shows the number of supervised training examples
used, or else when the 80-20 train-test split was used. The left column indicates performance on the full
test data, while the middle and right columns indicate performance among all single and double mutants
in the test data. Asterisks (*) indicate statistical significance (p < 0.01) from a two-sided Mann-Whitney U
test that the augmented Potts model is better than every other method. See Supplementary Figure 8-13 for
breakdown.

the Potts model prior, which would yield an approach that is conceptually similar to the integrated Potts
model27, albeit with different optimization objectives. Our augmenting approach can be readily deployed
on any density model, and enjoys a trivial training procedure and correspondingly low computational
burden. Although effective ways to incorporate richer features such as pairwise features into the augmented
regression could yield further improvements still, we wanted a carefree baseline that did not require feature
selection or specialized regularization41.

Assay-labelled data sets. We assess all methods on 19 labelled mutagenesis datasets, each comprising
hundreds to tens of thousands of mutant sequences. Most related works21,23,24,27 evaluate on a subset of or
all of the mutation effect datasets introduced by EVmutation20. We included all EVmutation20 protein data
sets with at least 100 entries in order to have sufficient data to glean insights from. Additionally, we also
included a GFP brightness data set33 as done by Biswas et al.26 (their exact data was not available at the time
of our assessment). We did not use two other potentially relevant data sets centered on the IgG-binding
domain of protein G (GB1)32,35 because of the paucity of MSA data available for this protein. In each data
set, the mutations are spread across the whole protein sequence or across a particular protein domain.
Although most (16 out of the 19) labelled data sets only consist of single mutants that are one mutation
away from a fixed wild-type protein, we also include detailed case studies of the three data sets33,34,42 with
high-order mutants. Supplementary Table 1 provides a detailed overview of these data sets.

Evolutionary data sets. Each of these labelled data sets is paired with an evolutionary data set found by
searching through the UniRef100 database39 with the wild-type protein sequence as query. A jackhmmer43

search is commonly used for retrieving evolutionary data20,21,24,26; however, these search results can differ
depending on the jackhammer parameters used. Thus, for simplicity and ease of comparison with other
papers20,21,24, we use the MSAs provided by EVmutation20 when available, and in other cases conduct our
own jackhmmer with parameters as used in the EVmutation paper (see Methods).
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Figure 3: Comparison of augmented density models. Dashed lines show baseline evolutionary density
model performance, while solid lines in the matching color show the corresponding augmented model.
The evaluation setup here is identical to the left column in Figure 2.

Experimental overview. We systematically varied supervised training data sizes by randomly sampling
each of 48,72, · · · ,216,240 training examples from each data set. When computationally feasible, we use 5-
fold cross-validation for hyper-parameter selection, and otherwise use 20% of the training data. Regardless
of the training data size, we always use 20% of the full data (not used for training or validation) as test set.
In addition to these fixed sample sizes, for more direct comparison with TLmutation24 and ESM23, we also
test performance using train-test splits, training on 80% of all single mutants in each data set, and testing
on the remaining 20% of the data set. For each sample size and the 80-20 split, we evaluate performance
over 20 random seeds. We focus on regression fitness models that predict real-valued fitness measures, as
opposed to classification models that predict whether a protein sequence is functional or non-functional.

We use two measures of performance: (i) a Spearman correlation between the true and predicted fitness
values, and (ii) a ranking measure from the information retrieval community called normalized discounted
cumulative gain (NDCG)12,44, which gives high (good) values when the top predicted results are enriched
for truly high fitness proteins. In reality, the precise metric of relevance is task-specific. For example, in
protein engineering, we may be interested only in the best performance among the top k proteins that
will be assessed in the laboratory. By using both Spearman correlation and NDCG, we hope to be broadly
informative across a wide variety of settings. When space does not permit us to include both, the other is
always found in the Supplementary Information. Generally, the two metrics yielded similar conclusions.

Results for TLmutation24 are omitted from the main figures because the method is on the one hand con-
ceptually similar to our augmented Potts model, but only allows for zeroing out of the evolutionary Potts
model parameters by way of supervised learning, and because it performed worse than our augmented
Potts model (see Supplementary Figure 2). Moreover, TLmutation was much more computationally expen-
sive to run than the augmented Potts model.

Comparison of existingmethods and the augmented Pottsmodel. When comparing existing methods to
each other and to our augmented Potts model, averaged over all data sets, the augmented Potts model typi-
cally outperformed all other methods, including more sophisticated methods such as eUniRep regression26

(Figure 2). The sole exception was that the purely evolutionarily-based VAE outperformed the augmented
Potts model on the double mutant data in the low data regime. However, later we will show that augment-
ing the VAE itself improves the VAE results further, suggesting that the Potts model is not sufficiently rich in
some cases. As expected, with increasing labelled training data, the hybrid and purely supervised methods
increase in performance, whereas the purely evolutionary approaches remains constant. When breaking
down the average performance into individual data sets, the augmented Potts model is competitive on a
majority of data sets (Supplementary Figures 10-13). Remarkably, the extremely simple supervised-only
method of linear regression on one-hot amino acid features is also among the top performers in the 80-20
split setting.

Due to limited availability of data sets that include double mutants, the reported double mutant perfor-
mance is averaged over only the three relevant data sets and hence is heavily influenced by their character-
istics. We refer the reader to Supplementary Figure 8-9 for the double mutant performance breakdown.
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Figure 4: Frequency of each method achieving the highest Spearman correlation per data set. The hor-
izontal axis shows the number of times a given modelling strategy had better Spearman correlation than
all other methods. This count is computed by first identifying the top-performing method for any given
scenario, and then also including any other methods that come within the 95% confidence interval of this
top performer. Then both the top performer and those within the 95% confidence interval are counted.
Four settings are used: with no labelled data, when training on 48 or 240 labelled single-mutant exam-
ples, and in the 80-20 train-test split setting. See Supplementary Figure 14 for the normalized discounted
cumulative gains (NDCG) version of this figure.

Augmented models as a general, simple, and effective strategy. We next tried augmenting not only the
EVmutation Potts model, but also the DeepSequence VAE, eUniRep mLSTM, and ESM-1b Transformer.
Overall, we found that the augmented VAE achieved the highest average performance among the aug-
mented models, with the augmented Potts model a close second (Figure 3). No matter which density model
we augmented, the augmented version of the model always improved the performance, regardless of the
training data set size.

Next we counted how many times any given approach, among all approaches evaluated so far, tended
to be the best performer (Figure 4). As soon as any labelled data are made available in addition to evo-
lutionary data, the augmented VAE wins the most, followed by the other augmented models which are
roughly comparable—other than the augmented eUniRep which underperforms with only 48 training data
points. In all the experiments so far VAEs tend to perform slightly better than Potts models (when both
are augmented, and when neither is augmented) on average. However, it is worth noting that the VAE does
do worse on the GAL4 DNA-binding domain and on the kanamycin kinase APH(3’)II. This observation is
consistent with the comparison between VAEs and Potts models in Riesselman et al.21’s Figure 3.

Extrapolation from single to higher-order mutants. Because 16 of the 19 supervised data sets consisted
of only single mutants of a wild type, we next more closely examined the three data sets with higher-order
mutants, namely, data on the green fluorescent protein (GFP)33, the Poly(A)-binding protein (PABP) RRM
domain34, and the ubiquitination factor E4B (UBE4B) U-box domain42. In each case, we trained the models
using only single-mutant labelled data, and then evaluated on all the other mutants (including single, dou-
ble, triple, and quadruple mutants, as shown in Supplementary Figure 8). The results here echo the results
of our earlier comparisons (Figure 2 and Figure 3) in the sense that the augmented Potts model and the aug-
mented VAE outperform existing methods. It is worth noting, however, that on the E3 ligase ubiquitination
factor E4B (UBE4B), none of the methods achieve good performance on higher order mutants. Such poor
performance could be due to poor correlation between fitness in evolution and the selective pressure in the
assay. If indeed this is the case, then hybrid methods should be able to effectively discount evolutionary
data as increasingly more supervised data becomes available. While it is often difficult to know a priori
whether evolutionary fitness correlates well with the property-of-interest, if one knew that the correlation
was not useful, one would clearly use a purely supervised approach.

In data sets where the assay-labelled variants comprise a variety of edit distances from the wild type, it
is interesting to observe that simply using the edit distance itself can be highly predictive of fitness. For ex-
ample, for GFP fluorescence, edit distance as a predictive model achieves a Spearman correlation of 0.447
(Figure 5), presumably because most mutations are deleterious and roughly additively so. This result sug-
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Figure 5: Mutational count as a predictive model on GFP. Each dot represents a GFP sequence, with
darker color indicating further distance from the wild-type. Even the naive baseline of a single integer mu-
tation count, is highly rank-correlated with experimentally measured brightness. Supplementary Figure 15
shows a similar plot for the UBE4B U-box domain.

gests that correlation measures can be driven by rather simple features, and that by explicitly using these
in simple settings, one can better deduce from where the predictive signal is arising. In contrast to GFP,
mutation count is not as strongly predictive for the UBE4B U-box domain data (Supplementary Figure 15),
presumably because the mutational effects are more heterogeneous in the sense that they comprise either
more diverse (both deleterious and beneficial), or non-additive effects, or both. Moreover, none of the other
methods perform particularly well on the UBE4B U-box domain data (Supplementary Figure 8-9 and 15).
Indeed, the more heterogenous the mutational effects, the more rugged the fitness landscape, requiring
increasingly more diverse and larger training data to model well.

Discussion

We presented the first systematic comparison of hybrid machine learning strategies for protein fitness pre-
diction. That is, we investigated methods that make use of both evolutionary and assay-labelled data.
In addition to comparing to published approaches, we introduced a new baseline, the augmented density
model meta-approach, which we instantiated here through the augmented Potts model, augmented VAE,
augmented eUniRep, and augmented Transformer. Across a wide range of settings, one of the simplest
possible models—the augmented Potts model—is competitive with far more complicated and computa-
tionally expensive deep-learning-based approaches, such as Transformer- and LSTM-based approaches.
Indeed, in the relatively larger data settings—which were still quite small—even a simple linear regres-
sion using one-hot amino acid encoding performed quite well. This baseline has sometimes been neglected
in comparisons of vastly more complicated methods. Overall, the augmented VAE performs best. When
thousands of labelled examples are available, the augmented ESM-1b Transformer was competitive with
other methods despite not relying on evolutionary data at all, making it a promising choice for proteins
with limited evolutionary data and substantial labelled training data. Furthermore, faster and more accu-
rate approximations to the Transformer sequence log-likelihood have the potential to improve performance
further. The fact that the augmented Transformer outperforms the fine-tuned Transformer suggests it may
be worth revisiting some of the conventional embedding and fine-tuning techniques from NLP when using
them for tasks that include weak-positively labelled data.

As larger and more variable assay-labelled data sets emerge, we expect that increasingly richer models
will dominate. Moreover, different machine learning strategies are likely needed for the “low-N”, or limited
labelled data, regime and for the “high-N” regime, both of which are likely to remain. Therefore, when
making general methodological recommendations, researchers should either consider implications across
the full range of labelled data sizes or restrict recommendations to the regime tested.

Because the comparisons herein were already vast, we did not attempt to bring auxiliary information
into our evaluation. Recent studies12,13,45–47 show that protein structures, Rosetta energy terms, andmolec-
ular dynamics also provide valuable information in addition to protein sequence information. It therefore
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stands to reason that such features are likely to be helpful when included in any approach that allows for
them. However, we anticipate that the overall conclusions of our comparison are likely to remain in such
a context. Importantly, as more features go into the augmentation, there are likely opportunities to use a
more complex modelling strategy in the augmentation, based on regression trees, deep learning, or other
feature-construction approaches.

Although our goal was to assess different methods on real data rather than assuming certain simulation
settings are representative, these real data sets have their limitations and are not necessarily representative
of the test sets that one might encounter for protein engineering. In particular, in a protein engineering
setting, one would like to understand how the model performs across a larger swath of protein space. Most
importantly, one would like predictive models to extrapolate as accurately as possible to higher fitness areas
than that observed in the data48, and to be able to gauge when such extrapolations are unreliable17. While
it is possible to attempt to tackle extrapolation using techniques from covariate shift such as importance-
weighted empirical risk minimization48,49, such approaches come with their own problems, and hence we
focused on directly evaluating methods without such corrections to account for domain shifts.

Another issue we did not explore is to what extent a particular protein’s fitness is correlated with the
density of a corresponding set of evolutionary sequences. Herein, we focused predominantly on proteins
for which some such correlation has already been shown to exist, and further assumed that the extent of
this correlation did not differentially affect the methods assessed.

Finally, while we have focused on evaluating predictive performance, in cases where the predictive
model is used in conjunction with a design strategy12,17–19,48, it could be useful to evaluate both the out-
come of the design process, and the predictive model by itself, rather than tying them up into a single
comparison, so as to achieve a finer-grained understanding.
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Methods

Evolutionary sequences. We use the MSAs provided by EVmutation1 whenever possible. For the green
fluorescent protein (GFP), the only exception, we follow the same procedure as EVmutation to gather se-
quences using the profile HMM homology search tool jackhmmer2. We determine the bit score threshold
in jackhmmer search with the same criterion from EVmutation. In particular, for GFP, we started with
0.5 bits/residue and subsequently lowered the threshold to 0.1 bits/residue to meet the sequence number
requirement (redundancy-reduced number of sequences � 10L where L is the length of the aligned region).
For sensitivity analysis, when using the bit score to 0.5 bits/residue or increasing the number of iterations
to 10, the resulting MSAs on GFP still lead to similar downstream model performance (data not shown).

Mutation effect data sets. Hopf et al.1 identified a list of mutation effect data sets generated by mutage-
nesis experiments of entire proteins, protein domains, and RNA molecules. We exclude the data sets for
RNA molecules and influenza virus sequences, as well as excluding data sets that contain fewer than 100
entries, in order to have meaningful train/test splits with at least 20 examples in test data. This leaves us
with 18 data sets from EVmutation.

Following the convention in EVmutation and DeepSequence, we exclude sequences with mutations at
positions that have more than 30% gaps in MSAs, to focus on regions with sufficient evolutionary data. On
most data sets, this excludes less than 10% of the data, although for a few proteins such as GFP this affects
as much as half of the positions. For example, on GFP, out of 237 positions, only positions 15-150 pass the
criterion of less than 30% gaps in the MSA. Coincidentally, the selected position 15-150 region covers the
81 amino region studied by Biswas et al.3.

Among those 18 EVmutation data sets, only two on the poly(A)-binding protein activity4 and the UBE4B
auto-ubiquitination activity5 include higher-order mutants.† While EVmutation only evaluates perfor-
mance on the single mutants from the UBE4B U-box domain data5, we also include higher-order mutants
in evaluation. Additionally, we also include a green fluorescent protein (GFP) brightness data set7, since
GFP is a core example used by Biswas et al.3. The GFP data also include higher-order mutants. This results
in 19 data sets total as listed in Supplementary Table 1.

Encodings. In addition to the one-hot amino acid encoding, we also experiment with the 19-dimensional
physicochemical representation of the amino acid space developed by Georgiev8, as also used by Wittman
et al.9. The features in Georgiev representation are principal components of over 500 amino acid indices
from the AAIndex database10. As shown in Supplementary Figure 7, the Georgiev encoding achieves better
performance than the one-hot amino acid encoding on data sets with higher-order mutants when presented
with sufficient training data (bottom right), agreeing with previous findings9. However, on single-mutant
only data sets or on limited training examples, the Georgiev encoding leads to almost identical performance
as the one-hot encoding. For the augmented Potts model, the Georgiev encoding also does not improve
performance compared to the one-hot encoding in any setting.

Since the other evaluated methods, such as EVmutation1, DeepSequence11, and UniRep12, all use the
one-hot amino acid encoding as inputs to their models, we omit the Georgiev encoding results in the main
text for fair comparison.

One-hot linear model. For a sequence s = (s1, · · · , sL) of length L in alphabet A where si 2 A, the linear
model with one-hot amino acid encoding maps the sequence to a scalar regression output by

f (s;7) = 70 +

LX

i=1

7i (si ),

where 70 2 R is the bias term, and each 7i 2 R
A is a |A|-dimensional vector. Each coefficient of 7i cor-

responds to a different amino acid at position i, and we use the notation 7i (si ) to denote the coefficient

†Even though EVmutation Supplemental Table 1 indicates that the YAP1 (WW domain 1) peptide binding data set also include
higher-order mutants, the supplemental data for YAP1 only contain single-mutant sequences, and no higher-order mutant data are

available in the original publication6 either.
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corresponding to the particular amino acid si . When fitting the linear model, we use ridge regression with
regularization strength chosen by five-fold cross validation.

Importantly, when training and testing the one-hot linear model on non-overlapping single mutants,
only the coefficients corresponding to wild-type amino acids appear in both training and testing, and there-
fore effectively the model can only learn position-specific information from mutations but not position-
specific amino-acid specific information on single-mutant-only data sets.

EVmutation Potts model. Briefly, EVmutation learns a sequence distribution under site-specific con-
straints and pairwise constraints for each protein family. Under a Potts model (also sometimes known
as a generalized Ising model) with alphabet A, the probability of a sequence s = (s1, · · · , sL) 2A

L of length L
is given by a Boltzmann distribution:

P(s) =
1

Z
exp{�H(s)}, H(s) = �

LX

i<j

Jij (si , sj )�

LX

i

hi (si )

where Z is a normalization constant, hi 2 R
|A| are site-specific amino-acid-specific parameters, Jij 2 R

|A|å|A|

are pair-specific amino-acid-specific parameters, and si 2A indicates the amino acid at position i. The h and
J parameters are estimated by regularized maximum pseudo-likelihood. See EVmutation paper for the full
modeling fitting details of sequence re-weighting, pseudolikelihood approximation, regularization, and
optimization. We use the same plmc package as EVmutation to fit Potts models with default parameters.

Under the assumption that learned sequence probabilities are correlated with sequence fitness, EVmu-
tation predicts the mutation effect of a mutant according to the log-odds ratios of sequence probabilities
between the wild-type and mutant sequences, which is equivalent to the log-likelihood of the mutant up to
a constant.

DeepSequence VAE. Similar to EVmutation, DeepSequence11 also models a sequence distribution for
each protein family and predicts mutation effects according to approximations of log-odds ratios of se-
quence probabilities between the wild-type and mutant sequences. Here, the sequence distribution is mod-
eled by a nonlinear variational autoencoder model with a multivariate Gaussian latent variable z. A neural
network parameterizes the conditional distribution p(s | z,7), and the sequence likelihood p(s | 7) is then

p(s | 7) =

Z

p(s | z,7)p(z)dz. (1)

While the exact log likelihoods are intractable, they are lower-bounded by the evidence lower bound
(ELBO)

L(�;s) = Eq[logp(s | z,7)]�DKL(q(z|s,�)||p(z)),

where q(z | s,�) is a variational approximation for the posterior distribution p(z | s,7) that is alsomodeled by
a neural network. As an approximation to log-likelihoods, the ELBO can also be used to predict mutation
effects. Whenever possible, we use the available ensemble predictions from DeepSequence11. For the
GFP, the UBE4B U-box domain, and the BRCA1 ring domain, we followed the DeepSequence code and
parameters to train an ensemble of VAE models (5 models with different random seeds). When computing
the evidence-based lower bound (ELBO) as sequence log-likelihood estimations, we follow DeepSequence
to take the average of 2000 ELBO samples (400 samples from each of the 5 VAE models in the ensemble).

eUniRep mLSTM. The UniRep12 multiplicative long short-term memory network (mLSTM) can also be
viewed as a sequence distribution. Given the first i amino acids of a sequence, a neural network parameter-
izes the conditional probabilities of the next amino acid P(si+1 | s1 · · ·si ). From the conditional probabilities
we can also reconstruct the sequence probability as

P(s) =Π
L
i=1P(si | s1 · · ·si�1).

For convenience, artificial start and stop tokens are added at the two ends of sequences. Under this prob-
abilistic interpretation, the unsupervised pre-training on UniRef50 sequences with next-step predictions
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is equivalent to finding model parameters that maximize likelihood on UniRef50 sequences. We omit the
performance of the pre-trained (not evo-tuned) UniRep model in our results since generally it is largely
outperformed by the eUniRep described below.

To adapt the UniRep model to specific protein families, Biswas et al.3 propose the “evo-tuning” proce-
dure, which fine-tunes the UniRepmodel byminimizing the same next-step prediction loss on evolutionary
sequences in addition to on UniRef50 sequences. Following the naming convention3, We refer to the model
after “evo-tuning” as eUniRep. After fine-tuning, Biswas et al.3 then perform supervised regression with
the 1900-dimensional average embeddings (averaged over sequence length axis) from the final hidden layer
in the eUniRep model as regression features.

While the original fine-tuning procedure for eUniRep3 optimizes for next-step prediction loss on entire
evolutionary sequences up to length 500 (discarding longer sequences), we find that next-step prediction
on aligned portions of evolutionary sequences (with gaps included as gap tokens) works as well on GFP
and beta-lactamase (Supplementary Figure 4), and therefore fine-tune on only aligned portions to lower
computational costs as the mLSTM memory usage scales quadratically with respect to sequence length.

For each protein family, we randomly split the evolutionary sequences from the MSA into an 80% train-
ing set and a 20% validation set to check for over-fitting. When training for 10,000 gradient steps with the
same learning rate 1 å 10�5 as Biswas et al.3, the validation loss eventually plateaus but does not increase.
Since the validation loss typically plateaus before 10,000 steps, we chose to stop training at 10,000 steps.

ESM-1b Transformer. The ESM-1b Transformer13 is pre-trained on UniRef50 representative sequences
with themasked languagemodeling objective, where a fraction (15%) of amino acids in each input sequence
aremasked and themodel is trained to predict themissing tokens. We chose the ESM-1bmodel to represent
Transformers as it has the best performance on downstream secondary structure prediction and contact
prediction tasks13 among Transformers from prior works14,15 and other Transformer architectures tested.
While the original mutation effect prediction results13 were based on the older 34-layer ESM-1 model, we
found that ESM-1b slightly improves performance over the ESM-1 model (data not shown).

When using Transformer models for sequence fitness predictions, Rives et al.13 mask the mutated po-
sitions and used the difference in conditional log-likelihoods (conditioned on non-mutated amino acids)
between the mutated amino acids and the wild-type amino acids as fitness prediction. We explain below
that this could be viewed as an approximation for pseudo log-likelihoods (PLLs).

Masked token language models can also be viewed as sequence distributions, where the sequence distri-
bution is implicitly represented by conditional likelihoods P(si | s�i ), where s�i indicates all other sequence
positions excluding position i, i.e. s�i = s1 · · ·si�1si+1 · · ·sL.

Since exact likelihood are too computationally expensive for Transformers, we resort to pseudo-likelihoods.
In general, given a sequence s of length L, its pseudo-likelihood16 is defined as the product of conditional
likelihoods for each site. Hence, the pseudo-log-likelihood of a sequence s is

PLL(s) =

LX

i=1

logP(si | s�i ).

However, even the evaluation of pseudo log-likelihoods (PLLs) is computationally expensive, since it re-
quires L inferences for a sequence of length L. As a more computationally efficient approximation, we
only compute conditional likelihoods on the mutated positions, and then use the difference between the
conditional log-likelihoods of the mutated sequence and the wild-type sequence as an approximation for
pseudo-log-likelihoods. More specifically, for a mutant sequence � and wild-type sequence � , we approxi-
mate the PLL difference by the following, as equivalent to the existing formula used by Rives et al.13:

PLL(�)�PLL(�) =
X̀

i=1

logp(�i | ��i )�
X̀

i=1

logp(�i | ��i )

=
X

i:�i,�i

(logp(�i | ��i )� logp(�i | ��i )) +
X

i:�i=�i

(logp(�i | ��i )� logp(�i | ��i ))

|                                          {z                                          }

á 0
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The underlying assumption here is that the conditional log-likelihoods of wild-type amino acids on mutant
backgrounds are roughly the same as on wild-type backgrounds. While this might be accurate for mutant
sequences that are close enough to wild-type sequences, in general there is no support for this approxima-
tion on high-order mutant sequences and the full pseudo-log-likelihoods will likely be more accurate for
mutation effect predictions.

For supervised learning, we evaluated two approaches with the same Transformer model. The first one
(“fine-tuned Transformer”) is to fine-tune the entire Transformer model to regress the PLL difference to
mutation effects as done by Rives et al.13. We perform 20 epochs of supervised fine-tuning with learning
rate 3å10�5 andwith early stopping according to validation Spearman correlation. For a given training data
size, we keep 20% of the data for validation (early-stopping) and use the remaining 80% for fine-tuning.
Using Spearman correlation as opposed to validation loss for early stopping is crucial for performance,
especially on small data sizes. Although the implementation details might not exactly match those from
Rives et al. (since the fine-tuning code is not available), we show that our method is able to reproduce the
same results on most of the Envision data sets used by Rives et al., as shown in Supplementary Figure 3.

In the second approach (“augmented Transformer”), while keeping the Transformer model constant, we
concatenate the PLL difference inferred from the pre-trained (not fine-tuned) model together with one-hot
amino acid encoding as features for regression.

We also attempted unsupervised fine-tuning (“evo-tuning”) of the ESM-1b Transformer model on evo-
lutionarily related sequences from MSAs, although our preliminary efforts on �-lactamase and PABP-RRM
do not result in improved performance (data not shown).

Integrated (tied-energy) Potts model. The integrative approach17 for Potts models optimizes the joint
log-likelihood for model parameters on both evolutionary data and labelled data. Given evolutionary se-
quences �1, · · · ,�M , the log-likelihood on evolutionary data is

logP(�1, · · · ,�M | J ,h) = �

MX

k=1

H(�k)�M logZ,

where

H(�) = �

LX

i<j

Jij (�i ,�j )�

LX

i

hi (�i ).

On the other hand, given sequence-fitness pairs (s1, y1), · · · , (sN , yN ), assuming i.i.d. Gaussian noise drawn
fromN (0,∆2), the log-likelihood on labelled data is

logP(s1, · · · , sM , y1, · · · , yM | J ,h) = �
1

2∆2

NX

k=1

[yk �H(sk)]2 �
N

2
log(2á∆2).

The integrated Potts model is learned bymaximizing the joint log-likelihood logP(�1, · · · ,�M | J ,h)+logP(s1, · · · , sM , y1, · · · , yM

J ,h) with `2-regularization.
The noise variance∆2 determines the relative weighting between the two losses in the joint log-likelihood.

Using existing notation17, the relative weighting parameter is

� =
1

1+∆2
.

In practice, since we do not know the noise variance, we use 20% of the training data for validation and
choose the best � according to Spearman correlation on validation set. Another practical complication is
that we only have fitness labels that are up to some monotonic transformation from the energies. Following
Figliuzzi et al.18, we use a monotonic mapping between sorted energy values and sorted fitness labels.

Following recommendations from the authors, the Potts model parameters are initialized with parame-
ters estimated by pseudo-likelihood. Before introducing labelled data, we first give the model a warm start
by training 500 iterations only on evolutionary data. Then, we optimize the regularized joint log-likelihood
for 100 iteration for each � value. The only exception is for �-glucosidase, where the protein sequences are
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too long (> 500 amino acids) and lead to very high memory consumption and long run-time (> 2 days) for
the integrated Potts model. Therefore, for �-glucosidase alone we use the Potts model performance without
labelled data as a substitute for the integrated model performance.

We follow the publicly available code (https://github.com/PierreBarrat/DCATools/tree/master/src) with
slight modifications to use zero-sum gauge instead of wild-type gauge for Potts models. In Potts models
for categorical variables, there are more free parameters than independent constraints, and gauge fixing
refers to reducing the number of independent parameters to match match the number of independent
constraints19. The wild-type gauge forces all parameters corresponding to wild-type amino acids to be
zero, while the zero-sum gauge requires

P

!2A hi (!) = 0 and
P

!2A Jij (!,µ) =
P

!2A Jij (µ,!) = 0. When
there is regularization involved, different gauge fixings lead to non-equivalent models. Although gradient
calculations are easier in the wild-type gauge, we found that the zero-sum gauge led to better predictive
performance (Supplementary Figure 5) and hence adopted the zero-sum gauge.

Alternative tied-energy models. In addition to integrated Potts models, we also evaluate alternative
ways to train a density model of a protein family and a predictive model of fitness in an integrated fash-
ion. Rather than using a fixed and possibly incorrect monotonic mapping between sorted energy val-
ues and sorted fitness labels18, we consider a differentiable proxy of the Spearman correlation20 between
the predicted and true fitness values. Specifically, given N sequence-fitness pairs, (s1, y1), · · · , (sN , yN ), let
(s1, r(y1)), · · · , (sN , r(yN )) denote the corresponding sequence-ranking pairs, where r(yk) 2 {1, . . . ,N } gives the
rank in descending order of the value yk among the values {y1, . . . , yN }. We fit a Potts model by optimizing
the joint loss

1

M
logP(�1, · · · ,�M | J ,h) +�

1

N

NX

k=1

[r(yk)� r̂(H(sk))]2

with `2-regularization, where r̂(H(sk)) is a differentiable proxy20 of the rank r(H(sk)). For tractability, we
optimize the pseudo-likelihood approximation of the log-likelihood term in the joint loss. We choose the
value of � 2 {0.0001,0.001,0.01,0.1,0.9} with 5-fold cross-validation.

To explore the effect of training energy-based models (EBMs) other than the Potts model in this fashion,
we use the same procedure to fit an EBM with an energy function parameterized by a two-layer feed-
forward neural network with hidden layer sizes of (300,100) and ELU activations. As with the Potts model,
we optimize the pseudo-likelihood approximation of the log-likelihood term in the joint loss.

BLOSUM62 substitution scores. For a mutant sequence, we sum the BLOSUM62 substitution scores be-
tween every amino acid in the wild-type sequence and the mutant sequence. The scores are then calibrated
up to a constant to be zero for the wild-type sequence.

Augmentedmodels. To augment an existing density model, we concatenate the sequence density estima-
tion from the original model together with one-hot encoding as features, as illustrated in Supplementary
Figure 1. Mathematically, following the same notation for one-hot linear models, given a density model
with sequence probability distribution p(s;') and fixed density model parameters ', the corresponding
augmented model is

f (s;',7,�) = � logp(s;') +70 +

LX

i=1

7i (si ),

where the parameters 7i 2 R
|A|, 70 2 R, and � 2 R are learned from assay-labelled data. In Ridge regression

on the joint features, the regularization strength for the coefficient � for sequence density estimation is
set to 10�8 (practically unregularized, set to a very small quantity for ease of implementation), while the
one-hot encoding parameters 7 are regularized with cross-validated regularization strength. For density
models where computing exact log-likelihoods is challenging, we use pseudo-log-likelihood instead of log-
likelihood as a regression feature.
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Bayesian interpretation of augmented Potts model. The augmented Potts model can also been seen as
updating a Bayesian Potts model prior with assay-labelled data. If we fit the augmented Potts model in
a two-step procedure, first fitting a scalar parameter � for the log-likelihood feature and then fitting the
remaining parameters, then the second ridge regression estimate step effectively fits a one-hot linear model
to the residuals y0 = y�� logp(s;'). Under the Bayesian interpretation of ridge regression, this is equivalent
to a zero-mean Gaussian Bayesian prior 7i (µ) á N (0,'2) on all one-hot coefficients 7i (µ) (coefficients for
regressing on the residuals) for i = 1, · · · ,L and µ 2A, where ' is determined by the regularization strength.
Therefore, the augmented Potts model can be seen as a Bayesian update on site-specific parameters hi where
the prior

hi (µ) áN (�h̃i (µ),'
2).

is centered on a scaled version of the site-specific Potts model parameter h̃i (µ) estimated from evolution-
ary data. Intuitively, the augmented Potts model keeps the pairwise Potts model parameters fixed while
correcting for the site-specific parameters according to labelled data. In the most general formulation, one
could also further augment Potts models with pairwise features (not shown).

Model evaluation. For each data set, we randomly sample 20% of the data set as held-out test data.
Among the remaining 80% data, we randomly sampleN = 24,48,72,96, · · · , or 240 single mutant sequences
as training data in separate experiments, or use all single mutant sequences in the 80% training data in the
80-20 split experiments. When computationally feasible (for one-hot linear model, eUniRep regression,
and all augmented models), we use five-fold cross-validation to determine hyperparameters. Otherwise,
for the fine-tuned Transformer and the integrated Potts model, we set aside 20% of the training data to
determine hyperparameters (i. e., the number of fine-tuning epochs for the Transformer and the relative
weighting between evolutionary and assay-labelled data for the integrated Potts model). For each fixed
sample size, the model evaluation procedure is repeated 20 times with different random seeds for uncer-
tainty estimation. The only exception is for the integrated Potts model, where we only use 5 random seeds
due to the long computation time. The 95% confidence intervals of the means are estimated via bootstrap-
ping.

NDCG. Discounted cumulative gain (DCG) is a common measure of ranking quality. When sorting all
examples by predicted score ŷ1 � ŷ2 � · · · � ŷM , DCG sums the true scores y after applying a logarithmic
discount,

DCG =

MX

i=1

yi
log(i +1)

.

When calculating the DCG, we first standardize the true scores y to have zero mean and unit variance
to make DCG values comparable across data sets. The normalized discounted cumulative gain (NDCG)
metric further normalizes DCG by dividing by the best possible score (i. e., ideal DCG, obtained for a
perfect ranking) to obtain a score between 0 and 1. The NDCG score can be seen as a smoothed version of
the mean label of the top k predictions, without having to fix an arbitrary k.

Mann–Whitney U test. We use the two-sided nonparametric Mann–Whitney U test for comparing aver-
age performance between different methods. The null hypothesis of the U-test is that, for randomly selected
values X and Y from two populations, the probability of X being greater than Y is equal to the probability
of Y being greater than X. The alternative hypothesis is that one population is stochastically greater than
the other. In the context of Figure 2, since we are comparing the average performance over all data sets, the
population consists of the average performance of a given method computed from different random seeds.
This satisfies the assumption that the observations in each population are independent of each other.

Data availability

All data used were publicly available through citations available in the paper. A processed version of the
data used herein will be made available upon publication.
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Code availability

The evaluation framework, method implementations, and analysis code will be made publicly available
upon publication.
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