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Abstract

Long-read sequencing has the potential to transform variant detection by reaching currently
difficult-to-map regions and routinely linking together adjacent variations to enable read based
phasing. Third-generation nanopore sequence data has demonstrated a long read length,
but current interpretation methods for its novel pore-based signal have unique error profiles,
making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling
pipeline PEPPER-Margin-DeepVariant that produces state-of-the-art variant calling results with
nanopore data. We show that our nanopore-based method outperforms the short-read-based
single nucleotide variant identification method at the whole genome-scale and produces high-
quality single nucleotide variants in segmental duplications and low-mappability regions where
short-read based genotyping fails. We show that our pipeline can provide highly-contiguous
phase blocks across the genome with nanopore reads, contiguously spanning between 85% to
92% of annotated genes across six samples. We also extend PEPPER-Margin-Deep Variant to
PacBio HiFi data, providing an efficient solution with superior performance than the current
WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods
that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy
(Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished).

Keywords— Nanopore, Variant Calling, Long Reads, PacBio HiFi, Assembly Polishing, Haplotyping,
PEPPER, Margin, DeepVariant

Introduction

Most existing reference-based small variant genotyping methods are tuned to work with short-reads [1, 2].
Short-reads have high base-level accuracy but frequently fail to align unambiguously in repetitive regions [3].
Short-reads are also generally unable to provide substantial read-based phasing information, and therefore
require using haplotype panels for phasing [4] that provide limited phasing information for rarer variants.

Third-generation sequencing technologies, like linked-reads [5, 6, 7] and long-reads [8, 9], produce sequences
that can map more confidently in the repetitive regions of the genome [10], overcoming the fundamental
limitations of short-reads. Long-reads can generate highly contiguous de novo assemblies [11, 12, 13, 14, 15,
16, 17], and they are increasingly being used by reference-based analysis methods [18, 19, 20, 21, 22, 23, 24, 25].
The Genome-In-A-Bottle Consortium (GIAB) [26] used the additional power of long-reads and linked-reads
to expand the small variant benchmarking set to cover more of the genome [27]. This was essential to the
PrecisionFDA challenge V2, which quantified the limitations of short read-based methods to accurately
identify small variants in repetitive regions[28].


https://doi.org/10.1101/2021.03.04.433952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433952; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Oxford Nanopore Technologies (ONT) is a commercial nanopore-based high-throughput [13] long-read
sequencing platform that can generate 100kb+ long reads [13, 29]. Nanopore long-reads can confidently
map to repetitive regions of the genome [10] including centromeric satellites, acrocentric short arms, and
segmental duplications [11, 30, 31, 32]. Nanopore sequencing platform promises same-day sequencing and
analysis [33], but the base-level error characteristics of the nanopore-reads, being both generally higher and
systematic, make small variant identification challenging [34].

Pacific Biosciences (PacBio) provides a single-molecule real-time (SMRT) sequencing platform that employs
circular consensus sequencing (CCS) to generate highly-accurate (99.8%) high-fidelity (PacBio HiFi) reads
that are between 15kb-20kb long [21]. The overall accuracy of PacBio-HiFi-based variant identification
compete with short-read based methods [21]. These highly accurate long-reads enabled the small variant
benchmarking of major histocompatibility complex (MHC) region [35] and difficult-to-map regions [27].

In our previous work, we introduced DeepVariant, a universal small variant calling method based on a deep
convolutional neural network (CNN) [36]. We showed that by retraining the neural network of DeepVariant,
we can generate highly accurate variant calls for various sequencing platforms [36]. DeepVariant is a large
neural network which can learn complex rules, to limit the computational time, DeepVariant only uses
the neural network on candidate sites identified with simple heuristics. However, the higher error-rate of
nanopore-reads [13, 34] causes too many candidate variants to be picked up by the heuristic-based candidate
finder of DeepVariant, limiting the extension of DeepVariant to nanopore sequencing platform.

Previously, we trained DeepVariant on PacBio HiFi long-read data and showed highly competitive per-
formance against short-read based methods for small variant identification [21]. We showed that using
phasing information during genotyping with PacBio HiFi reads improved the overall genotyping accuracy
[21]. However, the run-time of the haplotype-aware mode of DeepVariant with PacBio HiFi reads remain a
bottleneck for production-level scaling.

Sufficiently accurate nanopore long-read based accurate small variant identification would enable new
research. It could allow same-day sequencing and variant calling by using highly multiplexed sequencing
with the PromethION device. It could allow researchers to study genomic variants in the most difficult
regions of the genome. Similarly, making PacBio HiFi haplotype-aware genotyping efficient would allow
researchers to adopt to production scale haplotype-aware genotyping.

Here we present a haplotype-aware genotyping pipeline PEPPER-Margin-DeepVariant that produces
state-of-the art small variant identification results with nanopore and PacBio HiFi long-reads. PEPPER-
Margin-DeepVariant outperforms other existing nanopore-based variant callers like Medaka[18], Clair [19],
and longshot [20]. For the first time we report that nanopore-based single nucleotide polymorphism (SNP)
identification with PEPPER-Margin-DeepVariant outperforms short-read based SNP identification with
DeepVariant at whole genome scale. For PacBio HiFi reads, we report PEPPER-Margin-DeepVariant is more
accurate and 3x faster and 1.4x cheaper than the current haplotype-aware pipeline DeepVariant-WhatsHap-
DeepVariant. We analyzed our pipeline in the context of GENCODE[37] genes and report phasing errors in
less than 1.5% of genes and over 88% of all genes being contiguously phased across six samples. Finally, we
extended PEPPER-Margin-DeepVariant to polish nanopore-based de novo assemblies with nanopore and
PacBio HiFi reads in a diploid manner. We report Q35+ nanopore-based and Q40+ PacBio-HiFi-polished
assemblies with lower switch error rate compared to the unpolished assemblies.

Results

Haplotype-aware variant calling

PEPPER-Margin-Deep Variant is a haplotype-aware pipeline for identifying small variants against a reference
genome with long-reads. The pipeline employs several methods to generate highly-accurate variant calls
(Figure la). Details of these methods are in the online methods section. An overview is presented here:

1. PEPPER-SNP: PEPPER-SNP finds single nucleotide polymorphisms (SNPs) from the read align-
ments to the reference using a recurrent neural network (RNN). The method works in three steps:
o Image generation: We take the reads aligned to a reference genome and generate base-level
summary statistics in a matrix-like format for each location of the genome. We do not encode
insertions observed in reads at this stage.
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o Inference: We use a gated recurrent unit (GRU)-based RNN that takes the base-level statistics
generated in the previous step and the provides likelihood of the two most likely bases present
at each genomic location.

o Find candidates: We take all of the base-mismatches observed in the reads-to-reference alignment.
We calculate a likelihood using the predictions from the inference step and if a base-mismatch
has high likelihood of being a potential variant, we pick the mismatch to be a potential SNP.
The likelihood of the bases at any location also helps to assign a genotype.

2. Margin: Margin is a phasing and haplotyping method that takes the SNPs reported by PEPPER-SNP
and generates a haplotagged alignment file using a hidden Markov Model (HMM).

o Read-allele alignment: We first extract read substrings around allelic sites and generate alignment
likelihoods between reads and alleles. These are used as emission probabilities in the phasing
HMM.

o Phasing Variants: We construct an HMM describing genotypes and read bipartitions at each
variant site which enforces consistent partitioning between sites. After running the forward-
backward algorithm, we marginalize over the posterior probability distribution at each site to
calculate the most likely phased genotype (aka diplotype).

e Haplotagging reads: After determining haplotypes using the maximum probability haplotype
decoding, we decide from which haplotype each read originated from by calculating the probability
of the read arising from each of the two haplotypes and picking the haplotype with maximum
likelihood. If a read spans no variants or has equal likelihood for each haplotype, it is assigned
the a “not haplotagged” tag.

o Chunking: The genome is broken up into 120kb chunks with 20kb of overlap between chunks.
Variant and read phasing occurs separately on each chunk, enabling a high degree of parallelism.
Chunks are stitched together using the haplotype assignment of the reads shared between
adjacent chunks.

3. PEPPER-HP: PEPPER-HP takes the haplotagged alignment file and finds potential SNP, insertion,
and deletion (INDEL) candidate variants using a recurrent neural network (RNN). In this step
PEPPER-HP ranks all variants arising from the read-to-reference alignment and picks variants with
high-likelihood derived from the RNN output. Filtering candidates enables DeepVariant to efficiently
genotype the candidates and produce a highly accurate variant set as it removes errors. PEPPER-HP
is used only during Oxford Nanopore-based variant calling and has proved unnecessary while using
PacBio HiFi reads.

o Image generation: We generate base-level summary statistics for each haplotype independently.
Summary statistics for each haplotype use both reads that were haplotagged to that haplotype
and which were not haplotagged. In this scheme, we encode insertions observed in the reads.

o Inference: We use a GRU-based RNN that takes the haplotype-specific summary statistics and
predicts two bases at each location of the genome, one for each haplotype. This haplotype-aware
inference scheme allows us to determine most likely alleles in a haplotype-specific manner.

o Find candidates: In the find candidates step we find all SNP and INDEL candidates arising from
the read alignment to the reference. We use the haplotype-specific predictions from the inference
step to generate the likelihood of each candidate variant belonging to haplotype-1 or haplotype-2.
Using the likelihood values we propose candidates with high likelihood for genotyping with
DeepVariant.

4. DeepVariant: DeepVariant identifies variants in a three step process:

e Make examples: Prior to this work [36], the make examples stage of DeepVariant used simple
heuristics to identify possible variant positions for classification. The different error profile of
Oxford Nanopore required the more sophisticated logic from PEPPER to generate a tractable
number of candidates for classification. DeepVariant was modified to take the candidate variant
set from PEPPER-HP and the haplotagged alignment from Margin, and to generate the tensor
input set with read features as channels (base, base quality, mapping quality, strand, whether
a read supports the variant, and the bases that mismatch the reference). Reads are sorted by
their haplotype tag.

o Call variants: This stage applies a model trained specifically for Oxford Nanopore data with
inputs provided by PEPPER-Margin. Apart from training on new data, and the sorting of reads
by haplotype, other software components of this step are unchanged.
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o Postprocess variants: Converts the output probability into a VCF call and resolves multi-allelic
cases. No other changes were made from previously published descriptions.
Combining PEPPER with DeepVariant in this way allows the faster and smaller neural network
of PEPPER to scan much more of the genome, and for the larger but slower neural network of
DeepVariant to apply more complicated models to a tractable number of candidates.

5. Margin: Margin takes the output of DeepVariant and the alignment file to generate a phased VCF
file using the same Hidden Markov Model as described before. In this mode, it annotates the VCF
with high-confidence phasesets using heuristics over the reads assigned to each variant’s haplotype. It
creates a new phaseset if there is no linkage between adjacent sites, if there is an unlikely binomial
p-value for the bipartition of reads at a site, or if there is high discordancy between read assignments
over adjacent variants.

We trained PEPPER-Margin-DeepVariant on HG002 sample using Genome-In-A-Bottle (GIAB) v4.2.1
benchmarking set. We trained PEPPER and DeepVariant on chri-chr19 and tested on chr20 and used
chr21-chr22 as holdout sets (See Online Methods).

Nanopore variant calling performance

We compared the nanopore variant calling performance of PEPPER-Margin-DeepVariant against Medaka[18],
Clair[19], and Longshot[20]. We called variants on two samples HG003 and HG004, with 90x coverage. We
also compared the performance against Medaka and Clair for the HG003 sample at various coverages ranging
from 20x to 90x. Finally, we benchmarked the variant calling performance of PEPPER-Margin-DeepVariant
on six Genome-In-A-Bottle (GIAB) samples.

PEPPER-Margin-DeepVariant produces more accurate nanopore-based SNP calls (F1-scores of 0.9969 and
0.9977) for HG003 and HGO004 respectively than Medaka (0.9926, 0.9933), Clair (0.9861, 0.9860), and
Longshot (0.9775, 0.9776). We also observe higher INDEL performance with PEPPER-Margin-Deep Variant
(F1-scores of 0.7257 and 0.7128 for HG003 and HG004) compared to Medaka (0.7089, 0.7128) and Clair
(0.5352, 0.5260) (Figure 1b, Supplementary table 1).

To understand performance over realistic coverage ranges, we downsampled the HG003 nanopore sample
at coverages varying between 20x and 90x and compared PEPPER Margin-DeepVariant against Medaka
and Clair. The INDEL performance of PEPPER-Margin-DeepVariant achieves the highest Fl-score at any
coverage compared to other tools (Figure 1c, Supplementary table 2). At coverage above 30x, PEPPER-
Margin-DeepVariant achieves a higher Fl-score than Medaka and Clair (Supplementary table 3). Overall,
we observe that PEPPER-Margin-DeepVariant can yield high-quality variant calls at above 40X coverage
on Oxford Nanopore data.

We investigated the nanopore variant calling performance of PEPPER-Margin-DeepVariant on six GIAB
samples (HG001, HG003-HGO007), each sample with various coverage (Supplementary Table 4) and against
GRCh37 and GRCh38 reference genomes (Supplementary Table 5). PEPPER-Margin-DeepVariant achieves
SNP F1l-score 0.995 or higher and INDEL F1-score of 0.709 or higher for each sample, demonstrating the
ability to generalize the variant calling across samples and reference genomes (Figure 1d, Supplementary
table 6).

We compared the run-time and cost of Oxford nanopore-based variant calling pipelines on 50x and 75x
HGO001 data (Table 1, Supplementary table 7). Clair (HG001-50x: 2.5h/$11.40, HG001-75x: 3.1h/$14.13)
is the most run-time and cost efficient variant caller for Oxford Nanopore, however, previous analysis
(Figure 1, Supplementary Table 1) show that Clair fails to generate high-quality variant calls. Longshot
(HG001-50x: 51h/$49, HG001-75%: 74h/$139) is single-theraded and has higher memory requirement,
which forces to use high-memory instances and increases the cost. Similarly, Medaka can not use all the
available resources. Medaka can only use 2-CPUs but have a higher memory requirement which makes
it unsuitable for CPU-based instances (HG001-50x: 95h/$90, HG001-75x: 117h/$175). We observed
run-time improvement on a GPU platform with Medaka (HG001-50x: 40h/$97, HG001-75x: 46h/$225),
but the memory requirement increases the cost. PEPPER-Margin-DeepVariant is designed for CPU and
GPU platforms. On a CPU-platform, PEPPER-Margin-DeepVariant (HG001-50x: 13h/$60, HG001-75x:
15h/$68) is 8 faster than Medaka and 4x faster than Longshot while providing the best variant calling
performance. On GPU-platforms we see further run-time improvement with PEPPER-Margin-DeepVariant
(HG001-50x: 7h/$70, HG001-75%: 9h/$94). Overall, PEPPER-Margin-DeepVariant provides a scalable
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Figure 1: Nanopore variant calling results. (a) Illustration of haplotype-aware variant calling
using PEPPER-Margin-DeepVariant. (b) Nanopore variant calling performance comparison between
different nanopore-based variant callers. (c) Evaluating variant calling performance at different
coverage of HG003. (d) Variant calling performance of PEPPER-Margin-DeepVariant on six GIAB

samples.
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solution to haplotype-aware variant calling with nanopore-based long reads as it is designed to efficiently
use all available resources.

Instance Total Total
Sample Method CPUs Memory GPUs
cost/h | runtime cost
Longshot 16vCPUs | 104 GB - $0.95 51:25:31 $48.84
Clair 96vCPUs | 360 GB - $4.56 02:30:05 $11.40
1x NVIDIA
16vCPUs | 104 GB $2.41 | 40:21:11 | $97.24
HGoo1 | Medaka Tesla P100
50x 16vCPUs | 104 GB - $0.95 95:14:01 $90.47
ONT PEPPER | 96vCPUs | 360 GB - $4.56 12:59:19 | $59.28
Margin 4x NVIDIA
96vCPUs | 360 GB $10.4 6:41:56 $70
DeepVariant Tesla P100
Longshot | 32vCPUs | 208 GB - $1.89 73:56:43 | $139.73
Clair 96vCPUs | 360 GB - $4.56 03:05:46 | $14.13
2x NVIDIA
32vCPUs | 206GB $4.81 46:58:11 | $225.87
Medaka Tesla P100
HGO001 32vCPUs | 206GB - $1.50 | 116:41:04 | $175.025
75x PEPPER | 96vCPUs | 360 GB - $4.56 14:44:40 $68.4
ONT Margin 4x NVIDIA
96vCPUs | 360 GB $10.4 9:05:01 $94.4
DeepVariant Tesla P100

Table 1: Run-time and cost analysis of Oxford nanopore-based variant calling pipelines
on 50x and 75x HGOO1l data. We used various nl-series instance types available on
Google Cloud Platform (GCP). The we calculated the cost using the GCP cost calculator
(https://cloud.google.com/products/calculator). Logs of all the runs are publicly available
(See supplementary Notes).
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PacBio HiFi variant calling performance

Runtime Cost INDEL SNP
Sample Haplotype-aware pipeline

hh:mm:ss | USD($) | F1-Score | F1-Score

DeepVariant-Whatshap-DeepVariant | 15:11:52 | $36.24 0.9942 0.9990

HGO003 DeepVariant-Margin-DeepVariant | 08:03:43 | $36.71 0.9945 0.9991

PEPPER-Margin-DeepVariant | 05:55:28 | $26.99 0.9944 0.9990

DeepVariant-Whatshap-DeepVariant | 15:47:29 | $37.35 0.9940 0.9992

HG004 DeepVariant-Margin-DeepVariant | 08:26:36 | $38.45 0.9942 0.9992

PEPPER-Margin-DeepVariant | 05:58:57 | $27.26 0.9941 0.9992

Table 2: PacBio HiFi variant calling performance and runtime comparison between three haplotype-
aware pipelines on 35x coverage HG003 and HG004 samples. For PEPPER, Margin and DeepVariant
we used $4.56/h nl-standard-96 and for WhatsHap we used $0.09/h nl-standard-2 instance
types on google cloud platform. The Fl-scores are derived by comparing the variant calls against
GIAB v4.2.1 benchmark variants for HG003 and HG004.

Similar to the nanopore-based haplotype-aware pipeline the PacBio HiFi based PEPPER-Margin-DeepVariant
pipeline produces highly accurate variant calls. In the PacBio HiFi pipeline, we do not use PEPPER-HP to
find candidate variants; the highly accurate (99.8%) PacBio HiFi reads are suitable for the heuristic-based
candidate generation approach of DeepVariant [21, 36].

In table 2, we show the PacBio HiFi PEPPER-~-Margin-DeepVariant variant calling performance on the 35x
HG003 and HG004 from precisionFDA [28] against DeepVariant-WhatsHap-DeepVariant and DeepVariant-
Margin-DeepVariant where Deep Variant-WhatsHap-DeepVariant is currently the state-of-the-art method
[28, 21]. In this comparison we see that DeepVariant-Margin-DeepVariant produces best performance
(HGO003 SNP-F1: 0.9991 INDEL-F1: 0.9945 , HG004 SNP-F1: 0.9992, INDEL-F1: 0.9942) compared to
DeepVariant-WhatsHap-DeepVariant (HG003 SNP-F1:0.9990 INDEL-F1:0.9942 , HG004 SNP-F1: 0.9992 ,
INDEL-F1: 0.9940) and PEPPER-Margin-DeepVariant (HG003 SNP-F1:0.9990, INDEL-F1:0.9944, HG004
SNP-F1: 0.9992 , INDEL-F1: 0.9941). Notably, the PEPPER-Margin-DeepVariant pipeline outperforms
DeepVariant-WhatsHap-DeepVariant and is 3x faster and 1.4x cheaper, which establishes a faster and
more accurate solution to haplotype-aware variant calling with PacBio HiFi data (Supplementary table 8,
Supplementary table 9).

Nanopore, Illumina and PacBio HiFi variant calling performance compar-
ison

We compared the variant calling performance of Oxford Nanopore and PacBio HiFi long-read based PEPPER-
Margin-DeepVariant against Illumina short-read based DeepVariant method. We used 35x Illumina NovaSeq,
35x PacBio HiFi, and 90x Oxford Nanopore reads basecalled with Guppy v4.2.2 for HG003 and HG004
samples available from PrecisionFDA [28]. We used GIAB v4.2.1 benchmarking data for HG003 and HG004,
which is notable for including difficult-to-map regions. Finally we used GIAB v2.0 stratificiations to compare
variant calling performance in difficult-to-map regions and low-complexity regions of the genome.

The SNP Fl-score of PacBio HiFi (HG003 SNP-F1: 0.9990, HG004 SNP-F1: 0.9992) is higher than Oxford
Nanopore (HG003 SNP-F1: 0.9969, HG004 SNP-F1: 0.9977) and Illumina (HG003 SNP-F1: 0.9963, HG004
SNP-F1: 0.9962) in all benchmarking regions. Notably, both long-read sequencing platforms outperform
the short-read based method in accurate SNP identification performance. The INDEL F1-score of Oxford
Nanopore (HG003 INDEL-F1: 0.7257, HG004 INDEL-F1: 0.7128) is well below the performance with
PacBio HiFi (HG003 INDEL-F1: 0.9945, HG004 INDEL-F1: 0.9941) and Illumina (HG003 INDEL-F1:
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Figure 2: Comparison between Nanopore, Illumina and PacBio HiFi variant calling
performance. (a) SNP and INDEL performance comparison of Nanopore, Illumina and PacBio
HiFi in all benchmarking regions. (b) SNP performance comparison in difficult-to-map regions of
the genome. (¢) SNP performance comparison in low-complexity regions of the genome.
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0.9959, HG004 INDEL-F1: 0.9958) suggesting further improvement required for nanopore-based methods.
Overall, we find that haplotype-aware long-read-based variant calling produces high-quality SNP variant calls
comparable to those produced by short-read-based variant identification methods (Figure 2a, Supplementary
table 10). This is the first demonstration we are aware of in which SNP variant calls with Oxford Nanopore
data achieved similar accuracy to Illumina SNP variant calls.

In segmental duplications, 250bp+ non-unique regions, and low-mappability regions where short-reads have
difficulty in mapping, we observe the average SNP F1-scores of Illumina (Seg. Dup. Fl-score: 0.94, 250bp+
non-unique:0.66, Low-mappability: 0.94) drop sharply for both HG003 and HG004 samples. Long-read
based PacBio HiFi (Seg. Dup. Fl-score: 0.99, 250bp+ non-unique:0.90, Low-mappability: 0.99) and Oxford
Nanopore (Seg. Dup. Fl-score: 0.98, 250bp+ non-unique:0.94, Low-mappability: 0.98) produce more
accurate SNP variants. In the major histocompatibility complex (MHC) region, we see Oxford Nanopore
(HG003 SNP F1-score: 0.9958, HG004 SNP Fl-score: 0.9966) achieve best performance followed by PacBio
HiFi (HG003 SNP Fl-score: 0.9951, HG004 SNP Fl-score: 0.9955) and Illumina HG003 SNP F1l-score:
0.9939, HG004 SNP F1l-score: 0.9921). In general, the long-read-based haplotype-aware methods outperform
short-reads in more repetitive regions of the genome (Figure 2b, Supplementary table 11).

In low-complexity regions like homopolymer, di-mer and tri-mer repeat regions of the genome, the aver-
age variant calling performance of Nanopore drops (7bp-11bp homopolymer SNP Fl-score: 0.96, 11bp+
homopolymer SNP F1-Score: 0.88) for both HG003 and HG004 samples compared to Illumina (7bp-11bp
homopolymer SNP Fl-score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.998) and PacBio HiFi (7bp-11bp
homopolymer SNP F1l-score: 0.998, 11bp+ homopolymer SNP F1-Score: 0.984). In 11bp-50bp di-mer and
15bp-50bp tri-mer repeat regions of the genome, we see the average performance of Oxford Nanopore (di-mer
SNP Fl-score: 0.969, tri-mer SNP Fl-score: 0.984) is lower than PacBio HiFi (di-mer SNP F1l-score: 0.995,
tri-mer SNP Fl-score: 0.995) and Illumina (di-mer SNP Fl-score: 0.998, tri-mer SNP Fl-score: 0.998).
Overall, the Illumina short-read based variant calling method achieves higher accuracy in low-complexity
regions of the genome (Figure 2¢, Supplementary table 12).

Phaseset and Haplotagging Accuracy

We compared phaseset accuracy for Margin and WhatsHap on HG001 against GIAB’s phased v3.3.2 variants
with 25X nanopore, 50x nanopore, 75x nanopore, and 35x PacBio HiFi data. We generated genotyped
variants with PEPPER-Margin-DeepVariant, and used both Margin and WhatsHap to phase the final variant
set. The phasesets produced by both tools were analyzed using whatshap stats and whatshap compare
against the trio-confirmed truth variants in high-confidence regions.

For all datasets, Margin had a lower switch error rate (0.00875, 0.00857, 0.00816, 0.00895) than WhatsHap
(0.00923, 0.00909, 0.00906, 0.00930), but lower phaseset N50 (2.07, 4.21, 6.13, 0.24 Mb) than WhatsHap
(2.37, 4.90, 8.27, 0.25 Mb) (Figure 3a, Supplementary Tables 13 and 14).

We also compared phaseset accuracy for Margin and WhatsHap on the same data using a novel metric we
call “Local Phasing Correctness” (LPC). In brief, the LPC is a value between 0 and 1 that summarizes
whether every pair of heterozygous variants is correctly phased relative to each other. The contribution of
each pair of variants is weighted based on the distance between them, with the weights varying according to
a tunable parameter, the “length scale”. The length scale can be understood roughly as the scale of distances
that influence the metric (see online methods). The LPC is a generalization of the standard metrics of
switch error rate and Hamming rate, which have a close relationship with the LPC at length scales 0 and
infinity respectively. We plot the LPC across various length scale values (Figure 3b). Margin produced more
accurate phasing for all length scales for 25x nanopore and 35x CCS. Margin also produced more accurate
phasing for 50 x nanopore for length scales up to 128kb and for 75x nanopore for length scales up to 242kb,
after which WhatsHap outperforms Margin. Both tools exhibit local maxima for length scales from 20-30
kilobases.

To analyze haplotagging accuracy, we artificially constructed an admixture sample by trio-binning reads
from HG005 and HG02723 and combining an equal amount of maternal reads from each sample, resulting in
a 55X nanopore alignment and a 35x PacBio HiFi alignment. We ran PEPPER-SNP, haplotagged each
alignment with Margin using these variants, and compared the number of direct-matched reads R4 (truth
H1 to tagged H1 or truth H2 to tagged H2) and cross-matched reads R, (truth HI to tagged H2 or truth H2
to tagged H1) of the output. In Figure 3c, for each 10kb bucket in chrl we plot the number of reads that
were direct-matched (top, red) and cross-matched (bottom, blue) for both data types, with phasesets plotted
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Figure 3: Margin and WhatsHap phasing results. (a) Phaseset switch rate to N50. (b) Novel
metric “Local Phasing Correctness” analyzing phaseset accuracy across different length scales. For
visibility, we plot the full data (left), short length scales (right top), and medium length scales (right
bottom). (c¢) Novel visualization “Natural Switch Rate” describing haplotagging accuracy for reads.
Phasing is consistent across the top/red and bottom/blue blocks, with switch errors occurring at
the transitions between these. (d) Phaseset N50 for Nanopore and PacBio HiFi data on HG003 and
HGO004. (e) Cost and runtime comparison between Margin and Whatshap. Plots (a) and (b) are
generated from phased HGO01 GIAB v3.3.2 variants; plot (c) is generated from an admixture of
reads from HG005 and HG02723.
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in black alternating between top and bottom. With this “Natural Switch” plot, it is possible to identify
consistent phasing as regions where the majority of reads are either direct- or cross-matched, and switch
errors in the haplotagging as regions where the majority of reads transition between the two. As the plot
shows, nanopore reads allow us to haplotag consistently with phase sets in the range of tens of megabases,
whereas PacBio HiFi reads cannot be used for long-range haplotagging. For each bucket we can calculate a
local haplotagging accuracy using the ratio: max(Re, Rq)/(Rc + Ra). On average the haplotagging accuracy
is 0.9557 for ONT data and 0.9764 for HiFi data using Margin (Supplementary Table 15). Full plots including
local haplotagging accuracy visualization are shown in Supplementary Figures 2, 3, 4.

Lastly we compare the runtime and cost for the haplotag and phase actions on the four HG001 datasets
using Margin and WhatsHap. When configured to use 64 threads, Margin at peak used 35GB of memory on
a GCP instance nl1-highcpu-64 costing $2.27/hr. This results in a total cost (for haplotagging and phasing)
of $1.35 (36m) for 25x ONT, $3.17 (84m) for 50x ONT, $4.64 (123m) for 75x ONT, $1.23 (33m) for 35x
PacBio HiFi. Given WhatsHap’s concurrent use of two threads and three GB of memory we determined it
could be run most cheaply on the GCP nl-standard-2 instance type for $0.095/hr, resulting in a total cost
of $1.48 (941m), $2.10 (1336m), $2.66 (1688m), and $1.20 (764m) respectively.

Gene Analysis

We performed an analysis of Margin’s phasing over genic regions to understand its utility for functional
studies. With 75x nanopore data from HG001 on GRCh37, we classified each of the GENCODE v35
genes|[38] (coding and non-coding) as wholly, partially, or not spanned for the GIAB v3.3.2 high confidence
regions, the phasesets proposed by Margin, and the switch errors determined by whatshap compare between
the two. In Figure 4a, we first plot the number of gene bodies as spanned by high confidence regions (23712
wholly, 26770 partly, 11372 not), then further compare how many of each division were wholly spanned
by Margin’s phasesets (22491, 24877, 9807), and finally how many of these had no detected phasing errors
(22191, 24563, unknown). In Figure 4b, we plot the number of genes wholly phased by Margin on GRCh38
(60656) for HG003 and HG004 (53817, 55234) and on GRCh37 (62438) for HG001, HG005, HG006, and
HGO007 (57175, 53150, 53112, 54116).

We analyzed accuracy statistics for PEPPER-Margin-DeepVariant with the same HG001 data used above
stratified by GENCODE annotations. SNP and INDEL accuracies are largely similar between stratifications
of all regions, all genes, and all protein coding genes, with improved performance for protein coding sequence
(including CDS, start codon, and stop codon annotations for protein coding genes) (Supplementary Tables
19, 20).

‘We combined the accuracy and phasing analysis by selecting the 3793 protein coding genes which had at
least 80% of their coding sequence covered by the high confidence regions and analyzed the presence of
phasing and SNP/INDEL errors on HG001 with 75x nanopore (Figure 4c) and 35x PacBio HiFi (Figure 4d)
reads (Supplementary Tables 21, 22). Nanopore had better read phasing for these genes, with 3540 wholly
spanned by Margin’s phasesets and only 38 exhibiting a switch error (1.07%), as compared to PacBio HiFi
with 2500 wholly spanned genes and 24 switch errors (0.96%). We then counted the number of genes which
had no SNP or INDEL errors in the high confidence region for the entire gene, all annotated exons in the
gene, and all coding sequences in the gene; PacBio HiFi performs best for this metric with 3037, 3745, and
3791 respectively as compared to nanopore with 1884, 3384, and 3770 perfectly called regions. Lastly, we
identified how many of these gene regions were perfectly captured (wholly phased with no switch errors and
having no SNP or INDEL miscalls) for the entire gene (1738 for nanopore, 2086 for PacBio HiF'i), for all
annotated exons (3121, 2446), and for all coding sequences (3481, 2471). For nanopore data, we find that
for 91.8% of genes the CDS is fully phased and genotyped without error, and for 82.3% of genes all exons
are fully phased and genotyped without error.

Diploid polishing of de novo assemblies

Oxford Nanopore-based assemblers like Flye [16] and Shasta [13] generate haploid assemblies of diploid
genomes. By calling and phasing variants against the haploid contigs they produce, it is possible to polish
the haploid assembly into a diploid assembly. We implemented such a diploid de novo assembly polishing
method with PEPPERMargin-DeepVariant (Figure 5a). It can polish haploid Oxford Nanopore-based
assemblies with either Nanopore or PacBio HiFi reads.
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Figure 4: Gene analysis. (a) Phasing analysis for HG001 over GENCODE annotated gene regions,
stratified by GIAB high confidence coverage. Percentages are relative to their predecessor. (b)
Wholly phased GENCODE annotated gene regions. Percentages are relative to the total genes
annotated on the reference. (c) Error statistics including wholly phased genes, genes without SNP
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The assembly polishing pipeline employs the modules similarly to the variant calling pipeline. The difference
between variant calling and assembly polishing is after we phase the alignment file using the initial set of
SNPs, we take candidates from each haplotype independently and classify the candidate as error or not-error
using DeepVariant. This entails converting the genotyping classification used in variant calling to a binary
classification to predict if a candidate is true error or not. A detailed description of this method is presented
in the online methods.

Diploid de novo assembly polishing performance

We generated haploid assemblies using Shasta [13] and Flye [16] for diploid samples HG005, HG00733,
HG02723, and haploid sample CHM13 (chrX) using nanopore reads, and we polished the Shasta assemblies
using ONT and PacBio HiFi reads. To evaluate the base-level accuracy of the assemblies we use the
kmer-based tool YAK][14], which uses Illumina trio data to estimate sequence quality, switch error rates,
and hamming error rates. We compare the haploid assemblies, polished diploid assemblies, and trio-aware
diploid assemblies generated with hifiasm[14]. Hifiasm uses parental short-read data to generate maternal
and paternal assemblies.

The estimated quality values (QV) of nanopore-based assemblies with Shasta (HG005: QV32, HG00733:
QV32.7, HG02723: QV32.52) assembler are higher than the nanopore-based Flye assemblies (HG005:
QV31.08, HG00733: QV31.93, HG02723: QV31.88). Furthermore, the NG50s of the Shasta assemblies
(HGO005: 39.83Mbp, HG00733: 42.49Mbp, HG02723: 49.18Mbp) are higher compared to the Flye assemblies
(HG005: 37.25Mbp, HG00733: 36.60Mbp, HG02723: 39.65Mbp) (Supplementary table 17).

As Shasta generated higher quality assemblies compared to Flye, we polished the Shasta assemblies with the
PEPPER-Margin-DeepVariant diploid polisher. The nanopore-polished assemblies achieve Q35+ estimated
quality (HG005: Q35.06, HG00733: QV35.83, HG02723: QV35.8) and PacBio-HiFi-polished assemblies
achieve Q40+ estimated quality (HG005: Q43.5, HG00733: QV43.8, HG02723: QV43.8) for all three
diploid samples. Finally, we show that the unpolished CHM13-chrX Shasta assembly (QV34.6) can be
improved to QV36.9 with nanopore-based and QV42.7 PacBio-HiFi-based assembly polishing with PEPPER-
Margin-DeepVariant. Compared to the nanopore-based Shasta assemblies, the trio-aware PacBio HiFi
assembler hifiasm achieves higher quality assemblies with respect to base-level accuracy (HG005: QV51.81,
HG00733: 53.6, HG02723: 55.94, CHM13-chrX: QV53.03) but the NG50 of the hifiasm assemblies are lower
for HG00733 and HG02723 samples (HG005: 51.32Mbp, HG00733: 32.47Mbp, HG02723: 22.21Mbp). In
summary, PEPPER-Margin-DeepVariant achieves Q354+ ONT-based assembly polishing and Q40+ PacBio-
HiFi-based assembly polishing of ONT assemblies (Figure 5b, Supplementary table 17, Supplementary table
18).

The dominant error modality for ONT data are homopolymers[13]. In Figure 5c¢ we show the run-length
confusion matrix of PacBio HiFi read alignments to four chrX assemblies of CHM13-chrX. The Shasta
assembly starts to lose resolution at run-lengths greater than 7 (RL-7) and loses all resolution around RL-25.
The nanopore-polished assembly improves homopolymer resolution up to RL-10, but also fails to resolve
run-lengths greater than RL-25. The PacBio HiFi polished assembly has fair resolution up to RL-25. The
trio-hifiasm assembly shows accurate homopolymer resolution up to and beyond RL-50.

Figure 5d shows the switch error-rate of the assemblies. The switch error-rate of haploid Shasta assemblies
(HG005: 0.16, HG00733: 0.26, HG02723: 0.28) reduce after polishing with PEPPER-Margin-DeepVariant
(HG005: 0.05, HG00733: 0.09, HG02723: 0.10) with ONT data. Similarly, the hamming error rate of the
Shasta assemblies (HG005: 0.29, HG00733: 0.43, HG02723: 0.42) reduce after polishing the assemblies with
ONT-data (HGO005: 0.20, HG00733: 0.31, HG02723: 0.24). Compared to the ONT-polished assemblies the
PacBio-HiFi-polished assemblies have higher hamming error-rate (HG005: 0.26, HG00733: 0.40, HG02723:
0.36) but lower switch error-rate (HG005: 0.02, HG00733: 0.04, HG02723: 0.04). The trio-hifiasm that use
maternal and paternal short-reads to resolve haplotypes have much lower switch error-rate and hamming
error-rate (Figure 5d, Supplementary table 18).

The trio-hifiasm method is able to phase large structural variants in the assemblies. Therefore, trio-hifiasm
is expected to produce globally higher quality assemblies. PEPPER-Margin-DeepVariant can not achieve
similar global accuracy by polishing haploid assemblies in a diploid manner with small variants. In table 3,
we compare HG005 assemblies at the small variant level. The analysis show that the F1l-score of unpolished
Shasta assembly (INDEL: 0.1203, SNP: 0.4928) improves significantly after polishing with nanopore reads
using PEPPER-Marin-DeepVariant (INDEL: 0.3611, SNP: 0.9825). The PacBio-HiFi-polished Shasta
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Polished True False False
Method Type Recall | Precision | F1 score
with positives | negatives | positives
INDEL | 128989 253403 | 1629782 | 0.3373 | 0.0732 0.1203
Shasta -
SNP 1279988 | 1696540 | 939228 | 0.4300 | 0.5769 0.4928
INDEL | 279793 102605 906353 | 0.7317 | 0.2397 0.3611
Shasta | Nanopore
SNP 2940462 36058 68863 | 0.9879 | 0.9771 0.9825
PacBio | INDEL | 367819 14575 19341 | 0.9619 | 0.9512 0.9565
Shasta
HiFi SNP 2971733 4787 9689 0.9984 | 0.9968 0.9976
INDEL | 374002 8390 12451 | 0.9781 | 0.9686 0.9733
Hifiasm -
SNP 2973193 3320 3730 0.9989 | 0.9987 0.9988

Table 3: Small variant accuracy evaluation of HG005 assemblies against GIAB HGO005 v3.3.2
benchmarking set. We derive a small variant set against GRCh37 from the assemblies using
dipcall[39] and compare the variant calls against HG005 GIAB benchmark. We restrict our analysis
in regions that are assembled by both Shasta and trio-hifiasm and falls in the high-confidence region
defined by GIAB.

assembly achieves similar F1-score (INDEL: 0.9565, SNP: 0.9976) compared to the trio-hifiasm assembly
(INDEL: 0.9733, SNP: 0.9988). This analysis provide evidence that PEPPER-Margin-DeepVariant can
effectively improve the assembly quality at small variant level.

Discussion

Third-generation long-read sequencing technology is allowing gapless human genome assembly [11] and
enabling investigations in the most repetitive regions of the genome[28].

In this work, we present PEPPER-Margin-DeepVariant, a state-of-the-art long-read variant calling pipeline
for Oxford nanopore data. For the first time, we show that nanopore-based SNV identification outperforms
a state-of-the-art short-read based method at whole genome scale. Particularly in segmental duplication
and difficult-to-map regions, the nanopore-based method outshines the short-read based method. It seems
likely, therefore, that the anticipated widespread application of long-read variant calling will for the first
time accurately illuminate variation in these previously inaccessible regions of the genome.

The genomic contexts where nanopore SNP accuracy suffers for our pipeline are identifiable, meaning that
variant calls in these regions can be treated with skepticism while calls outside these contexts can be handled
with confidence. The one obvious area that Nanopore variant calling lags is in INDEL accuracy. While
the results achieved here are to our knowledge the best shown so far, we believe it is likely that further
technological innovations at the platform level will be required to make nanopore INDEL accuracy on par
with other technologies.

Oxford Nanopore provides a highly-multiplexed sequencing solution with its PromethION device [13]. With
this device and the PEPPER-Margin-DeepVariant pipeline described here it should be comfortably possible
to go from biosample collection to complete genome inferences in under half a day. This fast turnaround
should enable its use in a medical context, where diagnosis for acute disease situations requires speed.

We have demonstrated our nanopore-based phasing is able to wholly phase 85% of all genes with only 1.3%
exhibiting a switch error. This phasing ability could play a useful role in population genetics studies [40, 41]
and clinical genomics [42]. For clinical applications the accurate identification of compound-heterozygotes
should be particularly valuable.
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We have extended PEPPER-Margin-DeepVariant to PacBio HiFi reads and demonstrated a more accurate
and cheaper solution to the existing WhatsHap-DeepVariant variant calling methods, making cohort-wide
variant calling and phasing with PacBio HiFi more accessible.

We have demonstrated diploid polishing of nanopore-based haploid assemblies with PEPPER-Margin-
DeepVariant. We achieve Q35+ nanopore polished assemblies and Q40+ PacBio-HiFi-polished assemblies.
We observe that our polishing method can resolve homopolymer errors up to 20bp with PacBio HiFi data.
However, our polishing method fails to resolve 25bp+ long homopolymers indicating that they need to be
resolved during the consensus generation of the de novo assembly methods. As nanopore assembly methods
like Shasta move toward generating fully resolved diploid genome assemblies like trio-hifiasm, our polishing
method can enable nanopore-only Q40+ polished diploid assemblies.
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Code Availability

The modules of PEPPER-Margin-DeepVariant are publicly available in these repositories:
o PEPPER: https://github.com/kishwarshafin/pepper

e Margin: https://github.com/UCSC-nanopore-cgl/margin
o DeepVariant: https://github.com/google/deepvariant

For simpler use we have also created a publicly available docker container
kishwars/pepper_deepvariant:r0.4 that can run our variant calling and polishing pipelines.

Data availability
Analysis data available
We have made the analysis data available publicly (variant calling outputs, genome assemblies etc.) in:
https://console.cloud.google.com/storage/browser /pepper-deepvariant-public/analysis_ data.
Sequencing data availability
We used several publicly available datasets:

o Genome-In-a-Bottle consortium[26, 28]:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

e Human Pangenome Reference Consortium (HPRC):
https://s3-us-west-2.amazonaws.com/human- pangenomics/index.html

o Telomere-to-telomere consortium[11, 12]:
https://github.com/nanopore-wgs-consortium/CHM13

Please see supplementary notes to find specific links to the sequencing data that we used for our analysis.
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Online Methods

Analysis methods and data pre-processing

Read alignment

We used minimap2 [43] version 2.17-r941 and pbmm2 version 1.4.0 to align reads to a reference genome.
The supplementary notes have details on execution parameters.

Subsampling alignment files to different coverages

We used samtools [44] version 1.10 to generate alignment files of different coverages. The supplementary
notes have details on execution parameters.

Variant calling

We used the following methods to call variants with nanopore data:

e PEPPER-Margin-DeepVariant version r0.4.
e Medaka [18] version v1.2.1.
e Clair [19] version v2.1.1.

o Longshot [20] version v0.4.2.

For Illumina short-reads and PacBio HiFi we used DeepVariant version v1.1.0. The details on execution
parameters are available in supplementary notes.

Benchmarking variant calls

We used hap.py [45] version v0.3.12 to assess the variant calls against GIAB truth set. The hap.py
program is available via jmcdani20/hap.py:v0.3.12 docker image. The command used for the assessment
is described in the supplementary note.

For HG002, HG003, HG004 we used GIAB v4.2.1 truth set against GRCh38 reference and for HG001, HG005,
HG006, HG007 samples, we used v3.3.2 variant benchmarks against GRCh37 reference genome. We used GIAB
stratification v2.0 files with hap.py to derive stratified variant calling results. The GIAB benchmarking
data availability is listed in data availability section of supplementary notes.

Phasing and haplotagging

We used Margin version v2.0 and WhatsHap [22] version v1.0 to haplotag and phase the variants.
Margin is available in https://github.com/UCSC-nanopore-cgl/margin and WhatsHap is available
in https://github.com/whatshap/whatshap. The details on how we ran these tools is described in
supplementary notes.

Small variant switch error rate and hamming error rate determination

We used a Workflow Description Language (WDL)-based analysis pipeline whatshap.wdl available in
https://github.com/tpesout/genomics_scripts to derive the switch error rate and hamming error rate
compared to the GIAB truth set. The whatshap.wdl workflow invokes the stats and compare submodules
available in whatshap version v1.0.

In our analysis, we compared phased variants against GRCh37 reference against GIAB v3.3.2 truth set to
derive switch error rate and Hamming error rate. We only considered variants that have PATMAT annotation in
the truth set and that fall in the high-confidence region defined by GIAB benchmarking set. The non-PATMAT
annotated variants in the GIAB benchmarking variant set are not trio-confirmed so we did not use those to
benchmarking our phasing methods. We used whatshap compare command to generate the whole genome
switch error rate and used a custom script defined in whatshap.wdl to derive the hamming error rates.
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Local phasing correctness calculation

For the Local Phasing Correctness (LPC) analysis, we used the calcLocalPhasingCorrectness exe-
cutable found in the https://github.com/UCSC-nanopore-cgl/margin repository. The LPC analysis
require a truth variant set and a query variant set. We used GIAB benchmarking set as truth. The
calcLocalPhasingCorrectness generates a tsv file describing the results.

We used https://github.com/tpesout/genomics_scripts/plot_haplotagging_lpc.py script to visualize
the results. The details of parameters is described in supplementary notes. The methods used in local
phasing correctness as a metric is presented separately in the methods description.

Haplotagging accuracy and natural switch determination

We used https://github.com/tpesout/genomics_scripts/haplotagging stats.py to calculate the hap-
lotagging accuracy. The script calculates average haplotagging accuracy and average tagged reads per 10kb.
Details on execution parameters is available in supplementary notes.

We visualized the natural switch error using compare_read_phasing hapBam.py available in
https://github.com/tpesout/genomics_scripts. Details on execution parameters is available in
supplementary notes.

Phaseblock N50 calculation

An N50 value is a weighted median; it is the length of the sequence in a set for which all sequences
of that length or greater sum to 50% of the set’s total size. We used the ngx_plot.py available from
https://github.com/rlorigro/nanopore_assembly_and_polishing_assessment/ to plot phaseblock N50.
From a phased VCF file, we extracted the phaseblock name, contig, start position, and end position to
create the input file. We used 3272116950 as the size of the genome to maintain consistency with previous
work [13].

Variant calling and phasing analysis on Gencode annotated regions

We used Gencode v35 [37] to determine the variant calling and phasing accuracy in gene regions. The
Gencode data is publicly available and can be found in data availably section of supplementary notes. We
used https://github.com/tpesout/genomics_scripts/gencode_to_stratification.py script to convert
the Gencode regions to a bed file that is acceptable to hap.py. With the newly defined stratified regions
from Gencode, we ran hap.py to determine the variant calling accuracy in gene regions.

Nanopore and PacBio HiFi de novo assembly generation

We used Shasta [13] with a development build after version 0.7.0 available from
https://github.com/chanzuckerberg/shasta

(commit 06a639d36d26a4203c0b934d6e63c719750c5398) and Flye [16] version 2.8.2 available from
https://github.com/fenderglass/Flye to generate nanopore-based de novo assemblies. For PacBio-HiFi-
based assemblies we used hifiasm [14] version 0.14 available from https://github.com/chhylp123/hifiasm.
The commands used to generate the assemblies are provided in execution parameters section of supplementary
notes.

Assembly QV and switch error rate analysis

We assessed the assemblies with yak [14] version 0.1 available from https://github.com/1h3/yak. YAK
is a short-read kmer-based assembly quality estimator. We use short-reads for each sample to estimate
the quality of the assembly with k-mer size of 31, With parental short-reads, YAK can also estimate the
switch error rate in the assembly. WDL version of the pipeline standard_qc_haploid.wdl is available in
https://github.com/human-pangenomics/hpp_production_workflows/.

Homopolymer run-length analysis

We used runLengthMatrix module of margin to derive the homopolymer run-length analysis between
assembly and reads. In runLengthMatrix, we convert each read sequence into RLE form and track a map of
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raw positions to RLE positions. We convert from a raw alignment to RLE alignment by iterating through
the matches in raw space and tracking the previous RLE match indices. From this set of matched read and
reference RLE positions, we construct a confusion matrix. Details of the command are provided in execution
parameters section of supplementary notes.

Small variant accuracy evaluation of assemblies

We used dipcall [39] to identify the small variants from the assemblies. The dipcall variant identification
takes the maternal and paternal haplotypes generated by a phased assembly and a reference genome sequence.
It maps the haplotypes to the reference and generates a VCF file containing all small variants identified in
the assembly. For the haploid assembly, we provided the haploid assembly as both maternal and paternal
haplotypes to dipcall. dipcall also generates a bed file containing regions where the assembly maps
to the reference. We intersected the bed files to get regions that are assembled by all assembly methods
and intersected with GIAB high-confidence region. Finally, we used hap.py to compare the variant calls
derived from the assemblies against GIAB benchmarking VCF to get the accuracy statistics. Please see
supplementary notes for dipcall parameters.

Method description
PEPPER

PEPPER is a recurrent neural network-based sequence prediction tool. In PEPPER, we use summary
statistics derived from reads aligned to a reference to produce base probabilities for each genomic location
using a neural network. We translate the position-specific base probabilities to the likelihood values of
candidate variants observed from the read alignments. We propose candidate variants with likelihood value
above a set threshold to DeepVariant for genotyping. Candidate pre-filtering with PEPPER ensures a
balanced classification problem for DeepVariant and achieves high-quality variant calling from erroneous
long-reads.

We use PEPPER in two steps in the variant calling pipeline. Initially, we use the PEPPER-SNP submodule
to find single nucleotide variants (SN'Vs) from the initial unphased alignment file. In this setup, we tune
PEPPER-SNP to have high precision so Margin can use the SN'Vs confidently to phase the genome. To this
end, we also exclude INDELSs from the callset as they have notably worse performance for nanopore reads.
Margin can then tag reads in the alignment file with predicted haplotypes.

After Margin, we use the PEPPER-HP submodule on the phased alignment file to generate haplotype-specific
likelihoods for each candidate variant observed from the read alignments. In PEPPER-HP, we consider
SNVs, insertions, and deletions (INDELs) as potential candidate variants. We propose the candidate
variants with likelihood values higher than a set threshold to DeepVariant for genotyping with a more
extensive convolutional neural network (CNN). We tune PEPPER-HP to achieve high-sensitivity but
low-precision during candidate finding. The PEPPER-Margin-DeepVariant suite can identify small variants
with high-quality from erroneous reads.

PEPPER-SNP

PEPPER-SNP is a submodule of PEPPER used to identify single nucleotide variants (SNVs) from reads
aligned to a reference sequence. PEPPER-SNP works in three steps: image generation, inference, and
candidate finding. First, we generate summary statistics from reads aligned to a reference sequence. We
encode basic alignment statistics at each genomic location in an image-like tensor format. Second, we apply
a recurrent neural network to predict the two most likely bases at each genomic location. Finally, we use
the base predictions from each genomic location to compute the likelihoods of SN'Vs we observe from the
reads. We filter candidate variants with a likelihood value below a set threshold to find a set of SNVs. The
SNV set we get from PEPPER-SNP is used by Margin to phase the alignment file.

PEPPER-SNP: Image generation

In the image generation step of PEPPER-SNP, we generate summary statistics of base-level information
per genomic location. The summary provides weighted observation of bases from all reads divided into
nucleotide and orientation.
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Feature description

Figure 6: PEPPER-SNP image generation scheme.

In PEPPER-SNP, we do not encode insert bases observed in reads to reference alignment as we only look
for SNVs. We use a position value to represent a location in the reference sequence. For each genomic
location, we iterate over all reads that align to that genomic location and encode ten features to encode
base-level information: {A,C, G, T, Gap(x)} divided into two read orientations: {forward,reverse}. Finally,
we normalize the weights of each genomic position based on the read coverage.

Figure 6 describes the feature encoding scheme we use in the image generation step of PEPPER-SNP. The
top row of the image, annotated as REF', describes the reference base observed at each genomic location.
The colors describing the bases are {A : Blue,C : Red, G : Green, T : Yellow, Gap(x) : White}. Each row
after REF describes a feature; each feature encodes an observation of nucleotide bases from a forward, or
a reverse strand read. We use ten features to encode base-level information: {A,C, G, T, Gap(x)} divided
into two read orientations: {forward,reverse}. For example, Ar encodes the observations of base A from
forward-strand reads, and Ar encodes observations of base A from reverse-strand reads. The columns
describe genomic locations to the reference sequence.

In each column, we encode each observation as weights, which we show as alpha of each base. The grey
weights are zero weights. At position (23), the weight distribution of {C, G} bases indicates a potential
heterozygous variant at that position. The REF row is shown in the figure to describe the scheme; in
practice, we do not encode the REF row.

PEPPER-SNP: Inference model

In the inference step of PEPPER-SNP, we use a recurrent neural network for sequence prediction. The network
architecture consists of two bidirectional gated recurrent unit (GRU) layers and a linear transformation
layer. The linear transformation layer produces a prediction of two bases for each genomic location
present in the summary image. To identify potential variants, we use 15 class-labels for base prediction:
{AA, AC, AG, AT, Ax,CC,CG,CT,Cx,GG,GT,G*,TT, T*,++}. We do not use co-linear classes like CA
and AC as two separate classes, as it is not possible to differentiate between these two classes from the
summary observations.

From the image-generation module of PEPPER-SNP, we get summary images in 1kb chunks. We use a
sliding window method during inference and chunk the 1kb segments into multiple overlapping windows
of 100bp segments. We first run inference on the leftmost window and go to the next window with 50bp
overlapping bases. We pass the hidden state output from the left window to the next window and keep a
global inference counter to record base-predictions.

Figure 7 describes the neural network-based inference scheme. The two dotted boxes indicate two adjacent
windows with overlapping sequences. The top panel shows the inference scheme. We start with the first
window and produce base predictions for each genomic location present in that window; then, we slide
the window to the right. We do this from left to right on the entire genomic sequence. We record the
base predictions from all windows in a global counter and report them to the candidate finder to calculate
candidate likelihoods.

We trained the inference model using a gradient descent method. We use adaptive moment estimation
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Figure 7: PEPPER-SNP inference scheme.

(Adam [46]) to compute gradients based on a cross-entropy loss function. The loss function is defined
to calculate the prediction performance at each genomic location against a labeled set of expected base
observations derived from the Genome-In-A-Bottle (GIAB) truth set. The gradient optimization attempts
to minimize the loss function by tuning the parameters of the neural network.

We trained PEPPER-SNP with 100X coverage of HG002 data subsampled at different coverage values. We
split the training sets into three sets: train, test, and holdout. We use chromosome 1 to 19 for training,
chromosome 20 for testing, and we keep 21 and 22 as holdout sets. We train the models for several epochs
and test after each epoch. Finally, we pick a model that performs the best on the holdout dataset.

PEPPER-SNP: Candidate finding

In the candidate finding step of PEPPER-SNP, we take the base-predictions and derive likelihoods of SNVs
we observe from the read alignments. If the likelihood value of a variant is above a set threshold, we pick
that allele to be a real variant.

In PEPPER-SNP, we derive a allele probability (AP) and a non-reference observation likelihood (NR)
for each observed SNV. First, at each genomic location (pos) we use the prediction vector of base-classes
{AA, AC, AG, AT, Ax,CC,CG,CT,Cx,GG,GT,Gx, TT, T*,*x} to derive two prediction vectors Vi [pos] =
[A1, C1,G1, T, Gap(*)1] and Va[pos] = [Az, Ca, G2, To, Gap(x)2]. For example, the predicted value of class
{GT} contributes to Vi[pos][G1] and Vz[pos][Tz] values. Then, we iterate over all the reads to find potential
SNVs by recording each read base that does not match the reference base. We calculate the likelihood of
candidate base b, observed at position pos, by taking the maximum likelihood from the prediction vectors
Vi[pos] and Va[pos] as shown in equation 1 where we denote allele likelihood as AP.

API[b, pos] = max (Vi [pos][b], Va[pos][b]) (1)

We also calculate the likelihood of non-reference base observation (N R) to estimate the likelihood of observing
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any allele other than the reference allele at a location. We derive non-reference base observation likelihood
from prediction vectors Vi and V2 independently and take the maximum value between two values. For each
prediction vector, we take the sum of the values, subtract the observation likelihood of the reference base,
and divide by the sum of the prediction vector. Equation 2 describes the calculation NR in PEPPER-SNP.

> (vilpos)—Vilpos][Rlpos]] D (Va[pos])—Valpos][R[pos]]

2
> (Vipos)) ’ > (Valpos]) ) @)

NR[pos] = max(

Finally, we derive a genotype for the variant from the prediction vector Vi and V2. If a variant has a
likelihood above a set threshold observed in both Vi and V2, we set the genotype as a homozygous alternate
(1/1). If the likelihood is above the threshold in one vector but not in the other, we call it a heterozygous
variant (0/1). For each variant, we use N R value of that position to be the genotyping quality.

PEPPER-SNP: Code availability
PEPPER-SNP is available at https://github.com/kishwarshafin/pepper.

PEPPER-HP: Haplotype-aware sequence prediction.

PEPPER-HP is a haplotype-aware sequence prediction tool designed to find candidate variants from read
alignments. In PEPPER-HP, we take a phased alignment file as input where each read has a haplotag of
{0, 1,2} indicating which haplotype the read represents (or lack of haplotype information), and we output a
set of SNV, insertion, and deletion candidates for genotyping using DeepVariant.

Similar to the PEPPER-SNP submodule, PEPPER-HP has three steps, image generation, inference, and
candidate finding. In the image generation step, we generate two sets of summary statistics, one per
haplotype, and save them as image-like tensors. We use a recurrent neural network to predict bases on each
haplotype for each genomic location in the inference step. Finally, we calculate likelihood values for SNV
and INDEL candidates based on base-predictions of each haplotype. We consider candidates with likelihood
values over a certain threshold to be candidate variants and propose them to DeepVariant for genotyping.

PEPPER-HP: Image generation

In the image generation step of PEPPER-HP, the input is an alignment file with phased reads, and we
generate image-like summary statistics of base-level information per genomic location for each haplotype
{0,1}. The summary of haplotype 1 provides weighted observation of bases from reads with haplotag 1
divided into nucleotide and orientation. Similarly, the haplotype 2 summary provides weighted observations
of bases from reads with haplotag 2. Reads that are unphased or have haplotag 0 contribute to summary
statistics for both haplotypes.

In PEPPER-HP, we represent position in reference sequence using two values: position and index. The
position value indicates a location in the reference sequence, and we use the index to accommodate insert
alleles anchored to a position. All reference sequence positions have an index of 0. On each haplotype {0, 1},
we iterate over all haplotype associated reads that align a genomic location and encode ten features to
encode base-level information: {A,C,G,T, Gap(*)} divided into two read orientations: {forward, reverse}.
The weights depend on the mapping quality and base quality of the associated reads. Finally, we normalize
the weights of each genomic position based on the haplotype associated read coverage.

In Figure 8, we describe the feature encoding scheme of PEPPER-HP. We derive two summary statistics
based on the haplotype association of the reads. The top row of the image, annotated as REF', describes
the reference base observed at each genomic location. The colors describing the bases are {A : Blue,C :
Red, G : Green, T : Yellow, Gap(x) : White}. Each column represents a reference position with two values
(pos,index). For example, pos (14,0) is the reference reference position 14 and (14, 1) is the insert base
anchored in position (14,0). For each haplotype, we use ten features to encode base-level information:
{A,C,G,T,Gap(x)} divided into two read orientations: {forward,reverse}. From the summary, we can
see that at location (23,0) HP-1 observers C' bases where the reference is 7' but in HP-2 the reads observe
C' bases that match with the reference, denoting a heterozygous variant present in haplotype-1 sequence.
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Figure 8: PEPPER-HP haplotype specific image generation scheme. Each row describes an encoded
feature and each column describes a reference position. The top summary is derived from reads
with haplotag 1 (HP-1) and the bottom is derived from reads with haplotag 2 (HP-2).
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Figure 9: PEPPER-HP haplotype-specific inference scheme.
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PEPPER-HP: Inference model

We use a recurrent neural network for sequence prediction on haplotype-specific images of PEPPER-HP.
The network architecture consists of two bidirectional gated recurrent unit (GRU) layers and a linear
transformation layer. For each haplotype, the linear transformation layer predicts a base for each genomic
location present in the image-like tensor. We use five class-labels for base prediction: {A,C, G, T, Gap(x)}.

The haplotype-specific images in 1kb chunks, and we use a sliding window method to go over the 1kb chunk
in overlapping 100bp segments on both haplotype images simultaneously. We start from the leftmost window
of 100bp and slide the window to 50bp to the right for the next step. We use two global counters from the
base predictions, one per haplotype, to record the haplotype-specific base predictions.

The inference scheme of PEPPER-HP is shown in Figure 9. We have two haplotype-specific image for each
genomic region representing two haplotypes. For each haplotype, we start from the leftmost window and
generate haplotype-specific base predictions. The base predictions are recorded in two global counters.

We train the PEPPER-HP inference model using a gradient descent method. We use adaptive moment
estimation (Adam) to compute gradients based on a cross-entropy loss function. The loss function is defined
to calculate the prediction performance at each genomic location against a labeled set of expected base
observations derived from the Genome-In-A-Bottle (GIAB) truth set. We use GIAB v3.3.2 truth set as the
variants in v3.3.2 are phased. We use phase-specific base predictions to optimize PEPPER-HP model for
each haplotype.

We train PEPPER-HP with three sets of HG002 data with 50x, 80x, and 100x coverage. We further
generate multiple train sets by arbitrarily downsampling the three training sets at different fractions. We
split the training sets into three sets: train, test, and holdout. We use chromosome 1 to 19 for training,
chromosome 20 for testing, and we keep 21 and 22 as holdout sets. We train the models for several epochs
and test after each epoch. Finally, we pick the model that performs the best on the holdout dataset.

PEPPER-HP: Candidate finding

In the candidate finding step of PEPPER-HP, we evaluate variants observed from the read alignments. We
use the base-predictions from the neural network to calculate the likelihood of an observed allele. If the
likelihood value of a candidate variant is above a set threshold, we pick that variant as a potential candidate
for DeepVariant to assess.

We evaluate the SNVs and INDELs observed in read alignments to find potential candidate variants.
First, at each genomic location (pos,index) we use the haplotype-specific prediction values of base-classes
Viuilpos,index| = [A1,C1,G1,T1, Gap(x)1] and Via[pos,index] = [A2, C2, G2, T2, Gap(x)2]. We iterate over
all the reads to find potential variants by recording the read base that does not match the reference
base. We calculate the allele likelihood of a SNV candidate APsnyy with base observation b, observed at
position (pos,index), by taking the maximum likelihood from the prediction vectors Vi1[(pos, index)] and
Viz[(pos,index)] as described in equation 3. For inserts and deletes we extend the likelihood calculation to
cover the length of the allele.

AP;spy[b, pos| = max(Vi [(pos, 0)][b], Virz[(pos, 0)][b]) (3)

We also calculate the likelihood of observing a variant other than the reference allele at any location. In
equation 4, let R[(pos,index)] be the reference base at location (pos,index) and N be the maximum index
value observed in position pos. The reference base at any position with index > 0 is gap(x). We take
the maximum value of observing a non-reference base between (pos,0) and (pos, maz_index[pos]). For
each index, we calculate the total value of the prediction vector, subtract the observation likelihood of the
reference base and divide by the sum of the prediction vector. The non-reference observation likelihood N R
is the maximum value we observe across index values. For insertion and deletion alleles we cover the allele
length and take the maximum value as the NR for those candidates.

(Z(vm[<pos,z‘>1)—vm[(pos,mm[pos,m > (Vara[(pos,i)]) = V2 [(pos,i)][R[pos,il]

N
NRlpos] =
[pos] = max ) ’ S (Virzl(pos.)]) )

(4)
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Based on the allele likelihood and non-reference observation likelihood, we calculate a likelihood value
for each type of candidate SNP, insert and delete. Then for each type, we set a threshold value and if a
candidate passes the threshold value, we propose the candidate to DeepVariant for genotyping.

PEPPER-HP: Code availability
PEPPER-HP is available at https://github.com/kishwarshafin/pepper as a submodule.

Margin

Margin is a suite of tools employing Hidden Markov Models (HMMs) to perform genomic analysis with
long reads. MarginPhase (the first module) was introduced alongside WhatsHap as a tool performing
joint genotyping and phasing [22]. MarginPolish (the second module) was introduced as a graph-based
assembly polisher which can do standalone polishing and is the first step in a two-part polishing framework
MarginPolish-HELEN [13]. Release 2.0 of Margin incorporates both tools into one suite, including diploid-
aware polishing in MarginPolish which has informed improvements in a new iteration of MarginPhase.

In this paper we focus exclusively on improvements made to the phasing submodule. The core partitioning
algorithm is described in our previous work [22], but we provide a summary here of the previous methodology,
followed by a description of the modifications made in the current iteration. First, we give a high-level
overview of the phasing workflow.

Overview

Margin takes as input an alignment (BAM), reference (FASTA), and variant set (VCF). It determines regions
to run on from the alignment and variant set, and it breaks the input into chunks to enable multiprocessing.
For each chunk, it extracts reference substrings around each variant site, and read substrings aligning around
each variant site. For each variant site, it calculates the alignment likelihood between all substrings and all
variant alleles. These likelihoods are used in the core phasing algorithm which bipartitions reads and assigns
alleles to haplotypes. After all chunks have been analyzed, we stitch the chunks together to produce results
across whole contigs. Last, we output a copy of the input BAM with haplotagged reads and a copy of the
input VCF with phased variants.

Parameterization. Margin is parameterized with a configuration file. For each configuration, parameters
are grouped into polish and phase sections. There is overlap in the parameters used by both submodules,
so some parameters used by the phasing algorithm fall under the polish heading and vice versa. When
referenced in this document, we specify the full path of the parameter and the default value associated with
the intended configuration.

Core Phasing Algorithm

For the core phasing algorithm, we construct a graph G = (Vg, E¢) describing all possible bipartitions of
reads with positions as variant sites, vertices as a combination of position and read bipartitions, and edges
as possible transitions between bipartitions for adjacent positions. For example, at postition P; with aligned
reads Ry and Ra, we have the possible vertices V;, with haplotypes H1 = {R1, R2} and H> = {} (R1, R2/.),
Vi, = Ri/R2, Vi, = R2/Ri1, and V;; = ./R1, R2. At position P; with the same aligned reads R1, Rz and a
new read Rs, vertex V;, = R1, R2, R3/. and V;, = Ri1, R2/R3 are both connected to vertex V;, because all
reads shared between vertices are have the same haplotype assignment, but V;, = R1/Ra, R3 is not connected
to V;, because read R> has different haplotype assignments in the two vertices. We extend each vertex
as described above to additionally represent all possible genotypes. After running the forward-backward
algorithm on this graph, at each position the posterior distribution over states describing read bipartitions
and genotypes can be marginalized to determine the most likely genotype.

The state space for this algorithm increases exponentially with the number of reads at each position. To
account for this, Margin implements a pruning and merging heuristic where the input is divided into
smaller pieces, unlikely states are pruned, and the resulting graphs are merged before running the full
forward-backward algorithm.
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Improved Functionality

One of the most significant changes to the Margin workflow is that we now only analyze sites
proposed by the input VCF. Previously we considered any reference position where less than
80% of the nucleotides agreed with the reference base as a candidate variant site. To determine
which proposed variants are considered, we read the input VCF and remove all INDEL variants
(phase.onlyUseSNPVCFEntries = false), all homozygous variants (phase.includeHomozygousVCFEntries
= false), all non-PASS variants (phase.onlyUsePassVCFEntries = true), and all variants with a
quality score below phase.minVariantQuality = 10. For each chunk, we perform an adaptive sampling
of variants (phase.useVariantSelectionAdaptiveSampling = true) where we start by taking all
variants with a quality score above phase.variantSelectionAdaptiveSamplingPrimaryThreshold
= 20. If the average distance between these variants for the chunk is greater than phase.
variantSelectionAdaptiveSamplingDesiredBasepairsPerVariant = 2000, we take variants ordered by
quality score descending until we achieve the desired number of variants. These values were determined
after experimentation on HG002.

Instead of considering only the nucleotide aligned directly to the variant position as the first iteration of
Margin had done, we now extract substrings from the reference and reads and perform an alignment to
determine which allele the read most likely originated from. In theory, this allows Margin to use INDELs
during phasing, although for our current evaluations we do not test this functionality. When extracting
reference bases, we take phase.columnAnchorTrim = 12 bp from the reference before the variant position,
and the same amount upstream from the end of the variant position. All alleles (including the reference
allele) in the VCF are recreated by substituting the replaced reference base with the allelic sequence from
the VCF. Note that there is no further modification of the reference sequences for cases where multiple
variants fall within the extracted region. From the reads, we extract all sequence between the first and last
position matched to the reference over the extracted reference region. Reads substrings for which the average
base-level quality score over the substring is less than polish.minAvgBaseQuality = 10 are excluded at
these positions.

The original Margin phasing HMM used an emission model based off of a read error model (empirically
determined) and a mutation likelihood model (based on likelihood of specific mutations). In the new
implementation, we replace this with a likelihood generated by aligning the read substrings to the allelic
substrings.

As in the previous iteration, after running the forward-backward algorithm on the HMM we marginalize over
possible genotypes at each variant site to determine final predicted haplotypes. Given these haplotypes and
the read-to-allele alignment likelihoods, we compute from which haplotype the read most likely originated
using the joint probability of the read substrings aligning to the alleles for each haplotype. This haplotyping
step is performed for all reads used for phasing, as well as other reads filtered out before phasing (as described
below in the Chunking section). If a read does not span any variants or has equal likelihood of aligning to
both haplotypes, no prediction is made regarding the haplotype from which it originated.

Chunking

Margin divides input into polish.chunkSize = 100000 bp chunks with polish.chunkBoundary = 10000
bp boundary on both ends, resulting in 2x polish.chunkBoundary overlap between chunks. Once the
boundaries have been determined, the ordering of the chunks is mutated (polish.shuffleChunks = true)
by default based on descending order of size (polish.shuffleChunksMethod = size_desc), with random
ordering (random) also as a configurable option. While the ordering does not have a large effect on the
runtime during phasing, we found that deep chunks would take drastically longer to complete for polishing,
and ensuring that they were completed first would reduce overall runtime for the submodule.

When operating on a chunk, Margin first extracts all the reads that have an alignment between the
start and end of the chunk, tracking all alignments falling between the start and end of the extended
boundary. Margin then collects a set of reads to run the main algorithm on, first by removing
reads that have a MQ score below polish.filterAlignmentsWithMapQBelowThisThreshold = 10, are
secondary alignments (polish.includeSecondaryAlignments = false), or are supplementary alignments
(polish.includeSupplementaryAlignments = false). Given this set of reads, we downsample to an
expected depth of polish.maxDepth = 64 for haplotagging and polish.maxDepth = 32 for variant phasing.
The downsampling is biased to maximize coverage over heterozygous variants given the constraint on
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expected coverage. To accomplish this, we compute the sampling probabilities for each read according to the
following linear program, which we solve using the LP Solve library (http://lpsolve.sourceforge.net/).

N
max ViPi
subject to 0<p<1 (5)

N
Z lipi S CL7
=1

where p; is the probability of selecting read i, v; is the number of heterozygous variants on read i, ; is the
length of read i, C' is the desired coverage, and L is the length of the chunk.

The algorithm runs on the chunk region with the primary set of reads (all reads kept after filtering and
downsampling) and assigns reads and variants to haplotypes. Then it takes any removed reads (either
through filtering or downsampling) and assigns them to haplotypes as described above. Margin tracks
the assignment of variants to haplotypes within the chunk (not including the boundaries), and of reads to
haplotypes for the whole region (including the boundaries).

To stitch two chunks together, we need to determine whether the two previous haplotypes (Pi, P2) are
oriented with the two current haplotypes (C1,C2) in cis (P1C1, P2C2) or in trans (P1C2, PC1). To do this,
we compare the number of reads that are in cis and in trans between the two chunks; if there are more reads
in trans, we switch the haplotypes of the current chunk’s reads and variants. To mulithread this process,
Margin separates all the chunks in a contig into numThreads contiguous groups. The chunks in each of the
groups are stitched together by a single thread, and then the same stitching process is used to stitch each of
these groups together to complete the whole contig.

The final assignment of a read to a haplotype is determined by the haplotype it was assigned to in the first
chunk for the contig. The final assignment of an allele to a haplotype is determined by the chunk it falls
within (boundary region excluded).

Phaseset Determination

When writing the output VCF, Margin makes predictions about which sets of variants are confidently
inherited together and annotates the output with phaseset (PS) tags. Margin will assign a phaseset to
a variant if it is heterozygous, a SNP (phase.onlyUseSNPVCFEntries = true), and if it agrees with the
genotype from the input VCF (phase.updateAl10utputVCFFormatFields = false). For variants meeting
this criteria, as Margin iterates through the VCF it will extend the current phaseset unless (a) the variant is
the first in the contig, (b) there are no reads spanning between the current variant and the previous variant,
(c) there is an unlikely division of reads for the variant (explained below), or (d) the reads spanning the
current variant and the previous variant are discordant above some threshold (explained below). The values
described below were determined after experimentation on HG002.

To identify unlikely divisions of reads (which we take as potential evidence there is an error in the phasing), we
take the number of primary reads assigned to each haplotype and find the binomial p-value for that division
of reads. If that probability is less than the threshold phase.phasesetMinBinomialReadSplitLikelihood
= 0.0000001, we create a new phase set for this variant.

Within each chunk region (boundary region excluded) and after determining haplotype assignment for the
reads, we track which primary reads were used for phasing and to which haplotype they were assigned in the
chunk. This serves as a check against poorly-phased or poorly-stitched chunks. To determine discordancy in
the phasing between variants, we compare the number of reads which are in cis or “concordant” (C.) given
the read assignment to adjacent variants, and the number in trans or “discordant” (Cq) between variants. If
the discordancy ratio Cq/(Ce + Cq) is greater than phase.phasesetMaxDiscordantRatio = 0.5, we create
a new phase set for this variant.

Margin: Code availability

Margin is available at https://github.com/UCSC-nanopore-cgl/margin.
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Local Phasing Correctness

The local phasing correctness (LPC) is a novel metric for measuring phasing accuracy that we developed for
this study. More precisely, the LPC is a family of metrics parameterized by a varying parameter p € [0, 1],
which controls the degree of locality. The LPC can be seen as a generalization of the two most common
metrics used to evaluate phasing accuracy: the switch error rate and the Hamming rate. The switch error
rate corresponds to the LPC with p = 0 (fully local), and the Hamming rate is closely related to the LPC
with p =1 (fully global). With intermediate values of p, the LPC can measure meso-level phasing accuracy
that the two existing metrics cannot quantify.

The LPC consists of a sum over all pairs of heterozygous variants where each pair contributes an amount
that decays with greater genomic distance. If the variants are incorrectly phased relative to each other, the
pair contributes 0. This sum is normalized by its maximum value so that the LPC is always takes a value
between 0 and 1. In mathematical notation,

Y Zé_v;l_ p D50, )
JF#i

Zi\; Zévil pi-9)
J#i

LPC, = (6)

where d(4, j) is the distance between variants ¢ and j, and (¢, j) is an indicator for whether variants ¢ and j
are correctly phased relative to each other. In the case that p = 0 the above formula is undefined, and we
instead take the limit of LPC, as p — 0.

If we take d(i,7) to be |i — j|, then it can be shown that LPCj is equivalent to the complement of the
switch error rate (i.e. the “switch correctness” rate). LPC4 is not equivalent to the Hamming rate, but they
are monotonic functions of each other. Thus, LPC1 and Hamming rate always produce the same relative
ranking but not the same numerical value. Alternatively, we can take d(7,j) to be the genomic distance
between the variants, measured in base pairs. In doing so, the LPC no longer has the provable relationships
to switch error rate and Hamming rate, neither of which has any mechanism to incorporate genomic distance.
However, we consider the genomic distance to be a more relevant measurement of distance for phasing
accuracy than the variants’ ordinal numbers. Accordingly, we believe that this amounts to a further strength
of the LPC over existing metrics, and all LPC values reported in this work use this definition of distance.

The p parameter is mathematically convenient but difficult to interpret. To improve interpretability, we
can reparameterize the LPC with A = —log 2/ log p, which we call the “length scale”. This is the distance
(measured either in base pairs or number of variants) at which a pair of variants has 1/2 of the maximum
weight. The length scale gives an approximate sense of the scale of distances that the LPC incorporates,
although it is worth stressing that pairs that are closer together always receive more weight than pairs that
are further apart.

Local Phasing Correctness: Code availability

The code used to calculate LPC is available at https://github.com/UCSC-nanopore-cgl/margin.

DeepVariant

DeepVariant is a small variant identification method based on deep neural networks that achieve high
performance on different short-read and long-read sequencing platforms [36]. DeepVariant has released
models for different datatypes and a details of the methods implemented in DeepVariant can be found in
associated releases [36, 21]. Here we present an overview of the methods we implemented to achieve high
performance with nanopore data.

Adapting DeepVariant to Oxford Nanopore reads

DeepVariant performs variant calling in three stages, “make examples”, “call variants”, and “postprocess

variants”. In “make examples”, potential variant positions are identified by applying a minimal threshold
for evidence. In positions meeting the candidate generation criteria, the reads overlapping the position
are converted into a pileup of a 221-bp window centered at the variant. Multiple features of the reads are
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represented as different dimensions in the pileup, including the read base, base quality, mapping quality,
strand, whether the read supports the variant, and whether the base matches the reference. Prior to this
work, the heuristics for candidate generation were simple (at least 2 reads supporting a variant allele and a
variant allele fraction at least 0.12). However, the higher error rate of Oxford Nanopore data generated
far too many candidates for DeepVariant to call variants in a genome in a reasonable time. To integrate
DeepVariant with PEPPER, we developed the ability to import candidates directly from a VCF to replace
the logic in “make examples”. This allows DeepVariant to read the output of PEPPER, and in theory, can
be used in a similar manner with the outputs of other methods.

DeepVariant has released models for different datatypes [36, 21]. In order to achieve high performance
on Oxford Nanopore data, a new DeepVariant model trained for this datatype was required. For this,
we modified the training process for DeepVariant. The training process for DeepVariant is very similar
to the variant calling process (generating candidates from make examples in a similar manner), but with
the addition of a step which reconciles a candidate variant with the truth label from Genome-in-a-Bottle.
We adapted this process to use the VcfCandidateImporter to propose PEPPER candidates. Because the
representations of variants can diverge from the representation in GIAB (even for the same event), modifying
the process for training required multiple rounds of iteration to identify mislabeled edge cases and to modify
the proposed candidate representation for training.

With these modifications, training of DeepVariant models using the existing machinery could proceed. These
modifications also allowed existing logic for the stages “call variants” and “postprocess variants” to work
directly with the trained Oxford Nanopore model.

DeepVariant: Code availability

All code in the DeepVariant repository incorporates the improvements made for this paper
(https://github.com/google/deepvariant). This repository also contains a model retraining tutorial
(https://github.com/google/deepvariant /blob/r1.1/docs/deepvariant-training-case-study.md).

Assembly polishing with PEPPER-Margin-DeepVariant
The assembly polishing method of PEPPER-Margin-DeepVariant is described below:

1. PEPPER-SNP: PEPPER-SNP finds single nucleotide polymorphisms (SNPs) from the read align-
ments to a haploid assembly using a RNN. For assembly polishing, we use the same infrastructure
described in the haplotype-aware variant calling section.

2. Margin: Margin takes the SNPs reported by PEPPER-SNP and generates a haplotagged alignment file
using a HMM. For assembly polishing, we use the same infrastructure described in the haplotype-aware
variant calling section.

3. PEPPER-HP: PEPPER-HP takes the haplotagged alignment file and evaluates each haplotype
independently and produces haplotype-specific candidate SNP and INDEL-like errors present in the
assembly.

o Haplotype-1 and Haplotype-2 candidate finding: For haplotype-1, we take reads with HP-1 and
HP-0 and generate base-level summary statistics. Then we use a RNN to produce nucleotide
base predictions for each location of the genome. Finally, we find all the observed SNP or
INDEL-like candidates in the reads with HP-1 and HP-0 tag and calculate a likelihood of each
candidate to be a potential error in the assembly. If the likelihood of the candidate is above a set
threshold, we propose that candidate as a potential edit for haplotype-1(HP-1) of the assembly.
For haplotype-2, we take reads with HP-2 and HP-0 and find SNP and INDEL-like candidate
errors following the same process described in Haplotype-1 candidate finding.

4. DeepVariant: DeepVariant takes the haplotype-specific candidate set from PEPPER-HP and the
haplotagged alignment from Margin to identify errors present in the assembly using a convolutional
neural network (CNN).

o Haplotype-1 and haplotype-2 polishing: For each candidate error from haplotype-1 set proposed
by PEPPER-HP, we generate a feature set representing base, base-quality, mapping quality
etc. in a tensor like format. In haplotype-specific polishing setup, reads are sorted by their
haplotags in the order {HP-1, HP-0, HP-2}. Then we use a pre-trained inception_v3 CNN to
generate a prediction of {0/0, 1/1} for each candidate. Candidates in haplotype-1 that are
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classified as {1/1} are considered as missing heterozygous variants from the haploid assembly or
an error present in the assembly. We apply the candidates of haplotype-1 classified as {1/1} to
the haploid assembly using bcftools consensus to get a polished assembly haplotype_1.fasta
representing one haplotype of the sample.

For haplotype-2, we sort the reads by their haplotags in the order {HP-2, HP-0, HP-1}. Can-
didates in haplotype-2 that are classified as {1/1} are similarly considered to be a missing
heterozygous variant or an error present in the assembly, and are applied to the haploid assembly
to get the second polished haplotype (haplotype_2.fasta).

We trained the PEPPER-Margin-DeepVariant assembly polishing method with HG002 assembly generated
by the Shasta assembler. We first aligned the HG002 Shasta assembly to GRCh38 reference with dipcall[39]
to associate assembly contigs with GRCh38 reference. Then we aligned HG002 GIAB v4.2.1 small variant
benchmarking set to the assembly and marked the high-confidence regions to restrict training only in regions
that GIAB notes as high-quality. The alignment between HG002 GIAB v4.2.1 to the assembly produced
the training set. We trained PEPPER and DeepVariant on contigs that associate to chri-chr19 and used
chr20 as a holdout set. We used the same approach for Oxford Nanopore and PacBio HiFi based models.

References

[1] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human
genomes. Nature, 491(7422):56, 2012.

[2] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, Andrew
Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, et al. The genome analysis

toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. Genome research,
20(9):1297-1303, 2010.

[3] Wentian Li and Jan Freudenberg. Mappability and read length. Frontiers in genetics, 5:381, 2014.

[4] Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky, Tobias Rausch,
Eugene J Gardner, Oscar L. Rodriguez, Li Guo, Ryan L Collins, et al. Multi-platform discovery of
haplotype-resolved structural variation in human genomes. Nature communications, 10, 2019.

[5] Jon-Matthew Belton, Rachel Patton McCord, Johan Harmen Gibcus, Natalia Naumova, Ye Zhan,
and Job Dekker. Hi—c: a comprehensive technique to capture the conformation of genomes. Methods,
58(3):268-276, 2012.

[6] Ester Falconer and Peter M Lansdorp. Strand-seq: a unifying tool for studies of chromosome segregation.

In Seminars in cell €& developmental biology, volume 24, pages 643—-652. Elsevier, 2013.

[7] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B Jaffe. Direct determina-
tion of diploid genome sequences. Genome research, 27(5):757-767, 2017.

[8] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, and Mark Akeson. Improved
data analysis for the minion nanopore sequencer. Nature methods, 12(4):351, 2015.

[9] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso, David Rank,
Primo Baybayan, Brad Bettman, et al. Real-time dna sequencing from single polymerase molecules.
Science, 323(5910):133-138, 2009.

[10] Chirag Jain, Arang Rhie, Nancy Hansen, Sergey Koren, and Adam M Phillippy. A long read mapping
method for highly repetitive reference sequences. bioRziv, 2020.

[11] Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel Gershman, Andrey Bzikadze,
Shelise Brooks, Edmund Howe, David Porubsky, Glennis A Logsdon, et al. Telomere-to-telomere
assembly of a complete human x chromosome. Nature, 585(7823):79-84, 2020.

[12] Glennis A Logsdon, Mitchell R Vollger, PingHsun Hsieh, Yafei Mao, Mikhail A Liskovykh, Sergey
Koren, Sergey Nurk, Ludovica Mercuri, Philip C Dishuck, Arang Rhie, et al. The structure, function,
and evolution of a complete human chromosome 8. bioRziv, 2020.

[13] Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E Olsen, Colleen Bosworth,
Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren, et al. Nanopore sequencing and the

shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, pages
1-10, 2020.

30


https://doi.org/10.1101/2021.03.04.433952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433952; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[14] Haoyu Cheng, Gregory T Concepcion, Xiaowen Feng, Haowen Zhang, and Heng Li. Haplotype-resolved
de novo assembly using phased assembly graphs with hifiasm. Nature Methods, pages 1-6, 2021.

[15] Sergey Nurk, Brian P Walenz, Arang Rhie, Mitchell R Vollger, Glennis A Logsdon, Robert Grothe,
Karen H Miga, Evan E Eichler, Adam M Phillippy, and Sergey Koren. Hicanu: accurate assembly of
segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome research,
30(9):1291-1305, 2020.

[16] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of long, error-prone reads
using repeat graphs. Nature biotechnology, 37(5):540-546, 2019.

[17] Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. Nature methods, 17(2):155—
158, 2020.

Medaka, https://github.com/nanoporetech/medaka.

Ruibang Luo, Chak-Lim Wong, Yat-Sing Wong, Chi-lan Tang, Chi-Man Liu, Chi-Ming Leung, and
Tak-Wah Lam. Exploring the limit of using a deep neural network on pileup data for germline variant
calling. Nature Machine Intelligence, 2(4):220-227, 2020.

[20] Peter Edge and Vikas Bansal. Longshot enables accurate variant calling in diploid genomes from
single-molecule long read sequencing. Nature communications, 10(1):1-10, 2019.

[21] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall, Gregory T
Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D Olson, et al.
Accurate circular consensus long-read sequencing improves variant detection and assembly of a human
genome. Nature biotechnology, 37(10):1155-1162, 2019.

[22] Jana Ebler, Marina Haukness, Trevor Pesout, Tobias Marschall, and Benedict Paten. Haplotype-aware
diplotyping from noisy long reads. Genome biology, 20(1):116, 2019.

[23] John Huddleston, Mark JP Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra Hoekzema, David
Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kronenberg, Laura Vives, et al. Discovery
and genotyping of structural variation from long-read haploid genome sequence data. Genome research,
27(5):677-685, 2017.

[24] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad, Arndt von Haeseler,

and Michael C Schatz. Accurate detection of complex structural variations using single-molecule
sequencing. Nat Methods, 15(6):461-468, 2018.

[25] Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo Van Iersel, Leen Stougie, Gunnar W Klau,
and Alexander Schonhuth. Whatshap: weighted haplotype assembly for future-generation sequencing
reads. Journal of Computational Biology, 22(6):498-509, 2015.

[26] Justin M Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow, Ziming
Weng, Yuling Liu, Christopher E Mason, Noah Alexander, et al. Extensive sequencing of seven human
genomes to characterize benchmark reference materials. Scientific data, 3:160025, 2016.

[27] Justin Wagner, Nathan D Olson, Lindsay Harris, Ziad Khan, Jesse Farek, Medhat Mahmoud, Ana
Stankovic, Vladimir Kovacevic, Aaron M Wenger, William J Rowell, et al. Benchmarking challenging
small variants with linked and long reads. BioRxiv, 2020.

[28] Nathan D Olson, Justin Wagner, Jennifer McDaniel, Sarah H Stephens, Samuel T Westreich, Anish G
Prasanna, Elaine Johanson, Emily Boja, Ezekiel J Maier, Omar Serang, et al. precisionfda truth
challenge v2: Calling variants from short-and long-reads in difficult-to-map regions. bioRziv, 2020.

[29] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R
Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al. Nanopore sequencing and assembly
of a human genome with ultra-long reads. Nature biotechnology, 36(4):338, 2018.

[30] Miten Jain, Hugh E Olsen, Daniel J Turner, David Stoddart, Kira V Bulazel, Benedict Paten, David
Haussler, Huntington F Willard, Mark Akeson, and Karen H Miga. Linear assembly of a human
centromere on the y chromosome. Nature biotechnology, 36(4):321, 2018.

[31] Ian T Fiddes, Gerrald A Lodewijk, Meghan Mooring, Colleen M Bosworth, Adam D Ewing, Gary L
Mantalas, Adam M Novak, Anouk van den Bout, Alex Bishara, Jimi L. Rosenkrantz, et al. Human-specific
notch2nl genes affect notch signaling and cortical neurogenesis. Cell, 173(6):1356-1369, 2018.

18
19

[32] Evan E Eichler, Royden A Clark, and Xinwei She. An assessment of the sequence gaps: unfinished
business in a finished human genome. Nature Reviews Genetics, 5(5):345, 2004.

31


https://doi.org/10.1101/2021.03.04.433952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433952; this version posted March 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[33] Philipp Euskirchen, Franck Bielle, Karim Labreche, Wigard P Kloosterman, Shai Rosenberg, Mailys
Daniau, Charlotte Schmitt, Julien Masliah-Planchon, Franck Bourdeaut, Caroline Dehais, et al. Same-
day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta
neuropathologica, 134(5):691-703, 2017.

[34] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle to basepair: computational
approaches for improving nanopore sequencing read accuracy. Genome biology, 19(1):90, 2018.

[35] Chen-Shan Chin, Justin Wagner, Qiandong Zeng, Erik Garrison, Shilpa Garg, Arkarachai Fungtam-
masan, Mikko Rautiainen, Sergey Aganezov, Melanie Kirsche, Samantha Zarate, et al. A diploid
assembly-based benchmark for variants in the major histocompatibility complex. Nature communications,
11(1):1-9, 2020.

[36] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Alexander Ku,
Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T Afshar, et al. A universal snp and small-indel
variant caller using deep neural networks. Nature biotechnology, 36(10):983, 2018.

[37] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken, D. Barrell,
A. Zadissa, and S. et al. Searle. Gencode: The reference human genome annotation for the encode
project. Genome Research, 22(9):1760-1774, 2012.

[38] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis, Jane Loveland,
Jonathan M Mudge, Cristina Sisu, James Wright, Joel Armstrong, et al. Gencode reference annotation
for the human and mouse genomes. Nucleic acids research, 47(D1):D766-D773, 2019.

[39] Heng Li, Jonathan M Bloom, Yossi Farjoun, Mark Fleharty, Laura Gauthier, Benjamin Neale, and
Daniel MacArthur. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nature
methods, 15(8):595-597, 2018.

[40] Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J Topol, and Nicholas J Schork. The importance of
phase information for human genomics. Nature Reviews Genetics, 12(3):215-223, 2011.

[41] Sharon R Browning and Brian L Browning. Haplotype phasing: existing methods and new developments.
Nature Reviews Genetics, 12(10):703-714, 2011.

[42] Gustavo Glusman, Hannah C Cox, and Jared C Roach. Whole-genome haplotyping approaches and
genomic medicine. Genome medicine, 6(9):1-16, 2014.

[43] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094-3100,
2018.

[44] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo
Abecasis, and Richard Durbin. The sequence alignment/map format and samtools. Bioinformatics,
25(16):2078-2079, 2009.

[45] Peter Krusche, Len Trigg, Paul C Boutros, Christopher E Mason, M Francisco, Benjamin L Moore, Mar
Gonzalez-Porta, Michael A Eberle, Zivana Tezak, Samir Lababidi, et al. Best practices for benchmarking
germline small-variant calls in human genomes. Nature biotechnology, 37(5):555-560, 2019.

[46] Whitney K Newey. Adaptive estimation of regression models via moment restrictions. Journal of
Econometrics, 38(3):301-339, 1988.

32


https://doi.org/10.1101/2021.03.04.433952
http://creativecommons.org/licenses/by-nc-nd/4.0/

	㤶㐠〠潢樊㰼 呩瑬攨﻿㤶㔠〠潢樊㰼 呩瑬攨﻿㤶㘠〠潢樊㰼 呩瑬攨﻿㤶㜠〠潢樊㰼 呩瑬攨﻿㤶㠠〠潢樊㰼 呩瑬攨﻿㤶㤠〠潢樊㰼 呩瑬攨﻿㤷〠〠潢樊㰼 呩瑬攨﻿㤷ㄠ〠潢樊㰼 呩瑬攨﻿㤷㈠〠潢樊㰼 呩瑬攨﻿㤷㌠〠潢樊㰼 呩瑬攨﻿㤷㐠〠潢樊㰼 呩瑬攨﻿㤷㔠〠潢樊㰼 呩瑬攨﻿㤷㘠〠潢樊㰼 呩瑬攨﻿㤷㜠〠潢樊㰼 呩瑬攨﻿㤷㠠〠潢樊㰼 呩瑬攨﻿㤷㤠〠潢樊㰼 呩瑬攨﻿㤸〠〠潢樊㰼 呩瑬攨﻿㤸ㄠ〠潢樊㰼 呩瑬攨﻿㤸㈠〠潢樊㰼 呩瑬攨﻿㤸㌠〠潢樊㰼 呩瑬攨﻿㤸㐠〠潢樊㰼 呩瑬攨﻿㤸㔠〠潢樊㰼 呩瑬攨﻿㤸㘠〠潢樊㰼 呩瑬攨﻿㤸㜠〠潢樊㰼 呩瑬攨﻿㤸㠠〠潢樊㰼 呩瑬攨﻿㤸㤠〠潢樊㰼 呩瑬攨﻿㤹〠〠潢樊㰼 呩瑬攨﻿㤹ㄠ〠潢樊㰼 呩瑬攨﻿㤹㈠〠潢樊㰼 呩瑬攨﻿㤹㌠〠潢樊㰼 呩瑬攨﻿㤹㐠〠潢樊㰼 呩瑬攨﻿㤹㔠〠潢樊㰼 呩瑬攨﻿㤹㘠〠潢樊㰼 呩瑬攨﻿㤹㜠〠潢樊㰼 呩瑬攨﻿㤹㠠〠潢樊㰼 呩瑬攨﻿㤹㤠〠潢樊㰼 呩瑬攨﻿㄰〰‰⁯扪਼㰠⽔楴汥⣾Ｑ〰ㄠ〠潢樊㰼 呩瑬攨﻿㄰〲‰⁯扪਼㰠⽔楴汥⣾Ｑ〰㌠〠潢樊㰼 呩瑬攨﻿㄰〴‰⁯扪਼㰠⽔楴汥⣾Ｑ〰㔠〠潢樊㰼 呩瑬攨﻿㄰〶‰⁯扪਼㰠⽔楴汥⣾Ｑ〰㜠〠潢樊㰼 呩瑬攨﻿㄰〸‰⁯扪਼㰠⽔楴汥⣾Ｑ〰㤠〠潢樊㰼 呩瑬攨﻿㄰㄰‰⁯扪਼㰠⽔楴汥⣾Ｑ〱ㄠ〠潢樊㰼 呩瑬攨﻿㄰ㄲ‰⁯扪਼㰠⽔楴汥⣾Ｑ〱㌠〠潢樊㰼 呩瑬攨﻿㄰ㄴ‰⁯扪਼㰠⽔楴汥⣾Ｑ〱㔠〠潢樊㰼 呩瑬攨﻿㄰ㄶ‰⁯扪਼㰠⽔楴汥⣾Ｑ〱㜠〠潢樊㰼 呩瑬攨﻿㄰ㄸ‰⁯扪਼㰠⽔楴汥⣾Ｑ〱㤠〠潢樊㰼 呩瑬攨﻿㄰㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰〮㤸㔠㈲〮㔶㠠㔰㜮㔸㘠㈲㠮㈳㑝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㔱㜮㠶㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵ㄱ⸲㌲′㈰⸵㘸‵ㄷ⸸㌳′㈸⸲㌴崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰‴㠹⸷㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔱ㄮ㌶㔠㈰㤮㘰㤠㔱㜮㤶㘠㈱㜮㈷㕝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㐴ㄮ㤰㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘷⸴〹‱㠷⸶㤱′㜴⸰〹‱㤵⸳㔷崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰‴㈶⸹㘰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㤮㈶㔠ㄷ〮㜵㔠㌳㔮㠶㘠ㄷ㠮㐲崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰″㤰⸵㤶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㤮㐶㤠ㄷ〮㜵㔠㌴㘮〷‱㜸⸴㉝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㌵㌮㈳㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐹⸶㜳‱㜰⸷㔵″㔶⸲㜴‱㜸⸴㉝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㌲㜮㠳㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㈳⸵㌷‱㜰⸷㔵‴㌰⸱㌷‱㜸⸴㉝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㌰ㄮ㐳㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㌳⸷㐱‱㜰⸷㔵‴㐰⸳㐱‱㜸⸴㉝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㈷㔮㔲㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㠴⸹㤠ㄵ㤮㜹㘠㌹㘮ㄹ㠠ㄶ㜮㐶ㅝਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㈳㠮㘶㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐹⸵〲‱㐸⸸㌷‴㘰⸷ㄠㄵ㘮㔰㍝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㈱㌮㈶㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘴⸳ㄴ‱㐸⸸㌷‴㜵⸵㈲‱㔶⸵〳崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰‱㜵⸹〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐷㤮ㄲ㜠ㄴ㠮㠳㜠㐹〮㌳㔠ㄵ㘮㔰㍝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠ㄳ㤮㔳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㤳⸹㌹‱㐸⸸㌷‵〵⸱㐷‱㔶⸵〳崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‷㈸⸶㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㠮㜵㈠ㄴ㠮㠳㜠㔱㤮㤶‱㔶⸵〳崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‷〴⸱㜸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㤰⸳㐴‱㌷⸸㜸‱〱⸵㔲‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‶㔶⸲㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㐮㈹㤠ㄳ㜮㠷㠠ㄱ㔮㔰㜠ㄴ㔮㔴㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㘳〮㜳㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〹⸰㜵‱㌷⸸㜸‴㈰⸲㠳‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‶〵⸷ㄷ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐲㌮〳‱㌷⸸㜸‴㌴⸲㌸‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㤰⸶㘴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐳㘮㤸㐠ㄳ㜮㠷㠠㐴㠮ㄹ㈠ㄴ㔮㔴㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㔵㐮ㄹ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔰⸹㌹‱㌷⸸㜸‴㘲⸱㐷‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㈸⸶㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㐮㠹㐠ㄳ㜮㠷㠠㐷㘮㄰㈠ㄴ㔮㔴㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㐸ㄮ㈴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜸⸸㐸‱㌷⸸㜸‴㤰⸰㔶‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‴㔵⸷㌰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹㈮㠰㌠ㄳ㜮㠷㠠㔰㐮〱ㄠㄴ㔮㔴㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㐰㠮㈹㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵〶⸷㔸‱㌷⸸㜸‵ㄷ⸹㘶‱㐵⸵㐴崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰″㜱⸸㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷㤮㌳㘠ㄲ㘮㤱㤠㈹〮㔴㐠ㄳ㐮㔸㕝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㌳㔮㌵㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〰⸸㐷‱ㄵ⸹㘠㐱㈮〵㔠ㄲ㌮㘲㙝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㈹㤮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘶⸱㌱‹㐮〴㈠㈷㜮㌳㤠㄰ㄮ㜰㡝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㈶㈮㤰㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〴㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈱⸰㌮〴⸴㌳㤵㈩㸾敮摯扪਱〴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱〴㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱〵〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪਱〵ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㄰㔰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㄰㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㔮㐱㈠㜱㜮㘸㈠㐷㘮㘲‷㈵⸳㐸崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰‱㌹⸵㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㔳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㔮〴㔠㜰㘮㜲㌠㌴㘮㈵㌠㜱㐮㌸㥝ਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠ㄳ㤮㔳㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〵㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔰⸱㈵‷〶⸷㈳″㘱⸳㌳‷ㄴ⸳㠹崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰′㈶⸴㌱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㤮㔷㌠㘹㔮㜶㐠㈷〮㜸ㄠ㜰㌮㐳崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰′㌸⸶㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㠮㔷㜠㘸㐮㠰㔠ㄹ㤮㜸㔠㘹㈮㐷ㅝਯ䑥獴⁛㈱‰⁒ 塙娠㤱⸸〱〠㈱㌮㈶㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〳⸴㐵‶㠴⸸〵′ㄴ⸶㔳‶㤲⸴㜱崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‱㠹⸴㔹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㠮㌱㌠㘸㐮㠰㔠㈲㤮㔲ㄠ㘹㈮㐷ㅝਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠ㄵ㈮㤸㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌳⸱㠱‶㠴⸸〵′㐴⸳㠹‶㤲⸴㜱崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‱ㄶ⸵ㄳ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄲ㜮㔳㐠㘷㌮㠴㘠ㄳ㠮㜴㈠㘸ㄮ㔱㉝ਯ䑥獴⁛㈹‰⁒ 塙娠㤱⸸〱〠㜲㠮㘴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈴⸱㤴‶㘲⸸㠸″㌵⸴〲‶㜰⸵㔳崊⽄敳琠嬲㤠〠删⽘奚‹ㄮ㠰㄰‶㠱⸵㘷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㌮㈳㘠㘲㐮〳㌠㈴㐮㐴㐠㘳ㄮ㘹㥝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㔲㠮㘷㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〶㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘰⸱㜳‶ㄳ⸰㜴′㜱⸳㠱‶㈰⸷㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㔲㠮㘷㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘲⸲㘷‶〲⸱ㄵ″㜳⸴㜵‶〹⸷㠱崊⽄敳琠嬲㤠〠删⽘奚‹ㄮ㠰㄰‶㔵⸶㘵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹㐮㐳‶〲⸱ㄵ‵〵⸶㌸‶〹⸷㠱崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰′㤹⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴ㄮ㈳‵㜴⸲㈠㈵㈮㐳㠠㔸ㄮ㠸㙝ਯ䑥獴⁛㈹‰⁒ 塙娠㤱⸸〱〠㘰㜮㠴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㄰⸷㤷‵㘳⸲㘱‴㈲⸰〵‵㜰⸹㈷崊⽄敳琠嬲㤠〠删⽘奚‹ㄮ㠰㄰‶〷⸸㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄵ㘮㈲㜠㔳〮㌸㐠ㄶ㜮㐳㔠㔳㠮〵崊⽄敳琠嬲ㄠ〠删⽘奚‹ㄮ㠰㄰‱㌹⸵㌸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ〮㠰㔠㔳〮㌸㐠ㄸ㈮〱㌠㔳㠮〵崊⽄敳琠嬲㤠〠删⽘奚‹ㄮ㠰㄰‶㠱⸵㘷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㜮ㄸ㤠㐹ㄮ㔳‴ㄸ⸳㤷‴㤹⸱㤶崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㈸⸶㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㤳⸳㐴‴㘹⸶ㄲ‱〴⸵㔲‴㜷⸲㜸崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㈸⸶㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㌮〹㐠㌵㤮〲㜠㐷㐮㌰㈠㌶㘮㘹㍝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㘰㔮㜱㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〷㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵〶⸱㐳″㔹⸰㈷‵ㄷ⸳㔱″㘶⸶㤳崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㤰⸶㘴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄴ㜮㤹㐠㌴㠮〶㠠ㄵ㤮㈰㈠㌵㔮㜳㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㔵㐮ㄹ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘸⸲㤷″〴⸲㌲″㜹⸵〵″ㄱ⸸㤸崊⽄敳琠嬲㤠〠删⽘奚‹ㄮ㠰㄰‵㜰⸹㠲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄲ㈮㌸㠠ㄶ㔮㈱㘠ㄲ㠮㤸㠠ㄷ㘮ㄷ㕝ਯ䑥獴⁛㌰‰⁒ 塙娠㤱⸸〱〠㜲㔮㌲㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〷㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈱⸰㌮〴⸴㌳㤵㈩㸾敮摯扪਱〷㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱〷㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱〷㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪਱〸〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㄰㜹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㄰㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㔮㈵㤠㈰㔮㘲㌠㈹㘮㐶㜠㈱㌮㈸㡝ਯ䑥獴⁛㈹‰⁒ 塙娠㤱⸸〱〠㘰㜮㠴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〸㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈱⸰㌮〴⸴㌳㤵㈩㸾敮摯扪਱〸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱〸㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱〸㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪਱〸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㄰㠴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㄰㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㘮㈵ㄠ㔱㘮〳㈠㔱㜮㐵㤠㔲㌮㘹㡝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㘰㔮㜱㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸰ㄴ‵〵⸰㜳‱㈴⸲㈲‵ㄲ⸷㌹崊⽄敳琠嬲㈠〠删⽘奚‹ㄮ㠰㄰‵㤰⸶㘴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㜮〳㠠㔰㔮〷㌠ㄹ㠮㈴㘠㔱㈮㜳㥝ਯ䑥獴⁛㈲‰⁒ 塙娠㤱⸸〱〠㔵㐮ㄹ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〸㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㠶⸳㠴‴〹⸱㠳‱㤲⸹㠴‴㈰⸱㐲崊⽄敳琠嬳〠〠删⽘奚‹ㄮ㠰㄰‷㈵⸳㈸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‰⸵〰〠〮㔰〰崊⽈⽉ਯ剥捴⁛㈸㠮㈹㘠㐰㤮ㄸ㌠㈹㐮㠹㜠㐲〮ㄴ㉝ਯ䄼㰯䐨瑡扬攮捡灴楯渮㌷

