

1 **Title: Survey of peridomestic mammal susceptibility to SARS-CoV-2 infection**

2

3 **Authors:** Angela M. Bosco-Lauth, J. Jeffrey Root, Stephanie M. Porter, Audrey E. Walker,
4 Lauren Guilbert, Daphne Hawvermale, Aimee Pepper, Rachel M. Maison, Airn E. Hartwig, Paul
5 Gordy, Helle Bielefeldt-Ohmann, Richard A. Bowen.

6

7 **Affiliations:**

8 Colorado State University, Fort Collins, Colorado, USA (A. Bosco-Lauth, S. Porter, A. Walker,
9 L. Guilbert, D. Hawvermale, A. Pepper, R. Maison, A. Hartwig, P. Gordy, R. Bowen.)

10

11 U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services,
12 National Wildlife Research Center, Fort Collins, Colorado, USA. (J. Root)

13

14 School of Chemistry & Molecular Biosciences and Australian Infectious Diseases Research
15 Centre, The University of Queensland. St Lucia, Queensland, Australia (H. Bielefeldt-Ohmann)

16

17 **Keywords:** Coronavirus, cottontail rabbit, deer mouse, experimental infection, fox squirrel,
18 ground squirrel, house mouse, peridomestic, mesocarnivore, raccoon, rodent, SARS-CoV-2,
19 striped skunk, wildlife

20

21

22 **Abstract**

23 Wild animals have been implicated as the origin of SARS-CoV-2, but it is largely unknown how
24 the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for
25 maintaining the virus outside the human population. Here we show that several common
26 peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are
27 susceptible to infection and can shed the virus in respiratory secretions. In contrast, we
28 demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie
29 dogs, house mice, and raccoons are not susceptible to SARS-CoV-2 infection. Our work expands
30 upon the existing knowledge base of susceptible species and provides evidence that human-
31 wildlife interactions could result in continued transmission of SARS-CoV-2.

32

33 **Introduction**

34

35 The rapid global expansion of severe acute respiratory syndrome (SARS) coronavirus 2
36 (SARS-CoV-2) has been unprecedented in modern history. While the original human
37 infection(s) were potentially linked to wild animals in a wet market (*I*), human-to-human
38 transmission is currently the dominant mechanism of viral spread. Peridomestic animals, which
39 are represented by wild and feral animals living within close proximity to humans, represent key
40 species to evaluate for SARS-CoV-2 epidemiology for multiple reasons. First, given their
41 common associations with humans and anthropogenically modified habitats, they represent the
42 wildlife species with the greatest chance of exposure to the virus from humans (i.e., reverse
43 zoonosis) or pets such as cats. Second, should select peridomestic wildlife prove to be
44 susceptible to the virus and have the capacity to replicate it to high viral titers, these species

45 would have the potential to maintain the virus among conspecifics. Third, should some species
46 possess the maintenance host criteria mentioned above, they would represent wildlife species
47 that would have the greatest chance (e.g., shedding ability and proximity to humans) to spread
48 the virus back to humans. Wild rodents, cottontail rabbits (*Sylvilagus* sp.), raccoons (*Procyon*
49 *lotor*) and striped skunks (*Mephitis mephitis*) can exhibit peridomestic tendencies in urban and
50 suburban environments. Members of all these species/taxonomic groups have been shown to
51 shed influenza A viruses following experimental inoculations (2,3,4), suggesting they might
52 harbor productive infections when exposed to other human-pathogenic respiratory viruses.

53

54 Based upon protein analyses of amino acid residues of ACE2, TMPRSS2 and S protein,
55 species susceptibility analyses suggested that, among other taxonomic groups, both carnivores
56 and wild rodents are potentially high-risk groups (5,6,7). Predicting specific species'
57 susceptibility, however, is more challenging. Looking at protein sequence analysis of ACE2
58 binding with the S protein of SARS-CoV-2, one study indicated that raccoons could be ruled out
59 as potential hosts for SARS-CoV-2 (6) and a different study based upon sequence analysis
60 suggested that the western spotted skunks (*Spilogale gracilis*) had a very low prediction of
61 SARS-CoV-2 S-binding propensity (7). Similarly, the same study also suggested that American
62 mink (*Neovison vison*) have a similar prediction as western spotted skunks (7). However, over
63 the last several months, outbreaks of SAR-CoV-2 in commercial mink farms have been noted in
64 Europe and more recently in the U.S. (8,9). Respiratory problems, rapid transmission, and/or
65 unusually high mortality have been noted in this species in various regions (9,10), which
66 suggests that the aforementioned analyses have limitations.

67

68 Rodents are the largest and most diverse order of mammals, so it is unsurprising that the
69 susceptibility of rodents to SARS-CoV-2 varies by species. To date, only a handful of rodent
70 species have been evaluated as potential reservoir hosts or animal models for SARS-CoV-2, and
71 the results largely indicate that outbred species, including lab animals, are at most only
72 moderately affected. Most non-transgenic laboratory mice (*Mus musculus*) are resistant to
73 infection, while transgenic humanized mice and hamsters, including Syrian hamsters
74 (*Mesocricetus auratus*) and dwarf hamsters (*Phodopus* sp.), are highly susceptible, with at least
75 one report of Roborovsky's dwarf hamsters becoming fatally diseased within three days of
76 exposure (11,12,13). Other species, including deer mice (*Peromyscus maniculatus*), become
77 infected and shed low titers of virus, but the infection is subclinical (14,15). Considering that
78 there are more than 1700 species of rodents world-wide, many of which exist closely at the
79 human-wildlife interface, there remain many unanswered questions about SARS-CoV-2 and wild
80 rodents.

81

82 Various lagomorphs exist as pets, livestock, and peridomestic wildlife, and as such are in
83 prime position to come into contact with SARS-CoV-2 infected humans. In one study, New
84 Zealand white rabbits were experimentally infected and shed infectious virus for up to seven
85 days without signs of clinical disease (16) Wild rabbits, particularly cottontails in the U.S., are
86 prolific and commonly found around human dwellings, farms, and commercial buildings.
87 Further, as with rodents, wild rabbits are highly likely to be predated upon by domestic cats.
88 Thus, determining the susceptibility of these animals is critically important to interpreting the
89 risk posed to them and by them from infection with SARS-CoV-2.

90 Among carnivores, felids and mustelids have been frequently linked to SARS-CoV-2
91 infections since the early stages of the pandemic. Domestic cats are highly susceptible to SARS-
92 CoV-2 and are capable of transmitting the virus to other cats, suggesting that they could
93 potentially transmit to other animals as well (17,18). While striped skunks are currently
94 considered to be mephitids, they are highly related to mammals within the family mustelidae and
95 were formerly classified as mustelids. Thus, based on the findings of SARS-CoV-2
96 susceptibility in various mustelids, the closely related mephitids are a logical candidate to
97 evaluate for the replication of this virus. Raccoons are notoriously associated with human
98 environments and frequently interact with human trash and sewage, which has been proposed as
99 a potential indirect means for infected humans to transmit SARS-CoV-2 to mammalian wildlife
100 (e.g., raccoons and select mustelids) (19,20,21). Thus, it is important to determine the relative
101 susceptibility of these common peridomestic carnivores and assess the likelihood that they could
102 propagate infection.

103

104 In this study, we assessed six common peridomestic rodent species for susceptibility to
105 SARS-CoV-2: deer mice, wild-caught house mice (*Mus musculus*), bushy-tailed woodrats (aka
106 “pack rats”; *Neotoma cinerea*), fox squirrels (*Sciurus niger*), Wyoming ground squirrels
107 (*Urocitellus elegans*), and black-tailed prairie dogs (*Cynomys ludovicianus*). These rodents are
108 common in many parts of the United States, several of them frequently come into close contact
109 with humans and human dwellings, and some are highly social animals, thus increasing the
110 likelihood of pathogen transmission among conspecifics. In addition, we evaluated three other
111 common peridomestic mammals: cottontail rabbits, raccoons, and striped skunks. Our results
112 indicate that 33% (3/9) of the species evaluated are susceptible to SARS-CoV-2 infection,

113 suggesting that wildlife may become critically implicated in the continued persistence of the
114 virus.

115

116 **Materials and Methods**

117

118 *Animals*

119 The following mixed-sex animals were evaluated for susceptibility to SARS-CoV-2: Deer mice,
120 house mice, bushy-tailed woodrats, Wyoming ground squirrels, black-tailed prairie dogs, fox
121 squirrels, cottontail rabbits, striped skunks, and raccoons. Deer mice, house mice and bushy-
122 tailed woodrats were trapped using Sherman traps baited with grain. Wyoming ground squirrels,
123 fox squirrels, black-tailed prairie dogs, and cottontails were trapped using Tomahawk live traps
124 (e.g., 7 x 7 x 20 or 7 x 7 x 24). All trapping was done in Northern Colorado (Larimer, Jackson
125 and Weld counties) in accordance with Colorado wildlife regulations and with appropriate
126 permits in place. Skunks and raccoons were purchased from a private vendor. Animals were
127 housed in an Animal Biosafety Level-3 (ABSL3) facility at Colorado State University, in
128 12'x18' rooms with natural lighting and controlled climate. Mice, black-tailed prairie dogs, and
129 Wyoming ground squirrels were group housed by species with *ad libitum* access to water and
130 food. All other animals were housed individually with access to food and water *ad libitum*.
131 Rodents were maintained on Teklad® Rodent Diet (Enviro, Madison, WI) supplemented with
132 fresh fruit and occasional nuts. Rabbits were fed alfalfa pellets (Manna Pro® Corp, Denver,
133 Colorado) supplemented with grass hay and apples. Skunks and raccoons were maintained on
134 Mazuri® Omnivore Diet (Mazuri Exotic Animal Nutrition, St. Louis, MO) supplemented with
135 fresh fruit and occasional eggs. Raccoons, striped skunks and black-tailed prairie dogs were

136 implanted with thermally-sensitive microchips (Bio-Thermo Lifechips, Destron-Fearing) for
137 identification and temperature measurement, deer mice were ear notched; all other animals were
138 identified by cage number or distinct markings.

139 *Virus*

140 SARS-CoV-2 virus strain WA1/2020WY96 was obtained from BEI Resources (Manassas, VA,
141 USA), passaged twice in Vero E6 cells and stocks frozen at -80°C in Dulbecco's Modified Eagle
142 Medium (DMEM) with 5% fetal bovine serum and antibiotics. Virus stock was titrated on Vero
143 cells using standard double overlay plaque assay (17) and plaques were counted 72 hours later to
144 determine plaque-forming units (pfu) per ml.

145

146 *Virus challenge*

147 Prior to challenge with SARS-CoV-2, most animals were lightly anesthetized as needed with 1-3
148 mg/kg xylazine and 10-30 mg/kg ketamine hydrochloride (ZetamineTM) and a blood sample
149 collected just before inoculation (Day 0). Virus diluted in phosphate buffered saline (PBS) was
150 administered to all species via pipette into the nares (50ul for deer and house mice, 100ul for
151 bushy-tailed woodrats, and 200ul for all other species) and animals were observed until fully
152 recovered from anesthesia. Virus back-titration was performed on Vero cells immediately
153 following inoculation, confirming that animals received between 4.5 and 4.9 log₁₀ pfu of SARS-
154 CoV-2.

155

156 *Sampling*

157 Groups of three animals from each species (two for ground squirrels) were used for preliminary
158 studies to evaluate viral shedding and acute pathological changes. For these animals, oral swabs

159 were obtained pre-challenge and on days 1-3 post-challenge, at which time animals were
160 euthanized and the following tissues harvested for virus isolation and formalin fixation: trachea,
161 nasal turbinates, lung, heart, liver, spleen, kidney, small intestine, and olfactory bulb. The
162 exception to this was raccoons, for which only one animal was euthanized at day 3; the
163 remaining two were kept through day 28 to evaluate serological response. The remaining 3-6
164 animals per select species were swabbed daily from days 0-5 and 7 to further evaluate duration
165 of viral shedding (if any). Striped skunks and raccoons were sedated for all sampling and a nasal
166 swab was collected in addition to the oral swab. Tissues harvested from animals euthanized on
167 day 7 were evaluated as for the day 3 animals. The remaining animals were euthanized at 28
168 days post-infection (DPI) and tissues were harvested for histopathology and serum was collected
169 for serology. Table 1 illustrates the necropsy scheme for each species.

170

171 Table 1. Wildlife species evaluated for experimental infections with SARS-CoV-2 and day post
172 infection the animals were euthanized.

Animals	# euthanized at 3	# euthanized at 7 DPI	# euthanized at 28
	DPI*	DPI	DPI
Deer mice (n=9)	3	3	3
House mice (n=6)	3	0	3
Bushy-tailed woodrats(n=6)	3	0	3
Fox squirrels (n=3)	3	0	0
Wyoming ground squirrels (n=2)	2	0	0

Black-tailed prairie dogs (n=9)	3	3	3
Cottontails (n=3)	3	0	0
Raccoons (n=3)	1	0	2
Striped skunks (n=6)	3	0	3

*Table footnotes: *DPI = Days post-infection

173

174

175 *Clinical observations*

176 Clinical evaluations were performed for all animals daily and included assessment for
177 temperament and presence of any clinical signs of disease, such as ocular discharge, nasal
178 discharge, ptalism, coughing/sneezing, dyspnea, diarrhea, lethargy, anorexia, and if moribund.
179 The stress of handling wild animals for sampling precluded the ability to obtain accurate body
180 temperature measurements; as such, temperature was excluded in these preliminary studies for
181 all species except skunks and raccoons, which were implanted with thermal microchips and
182 could be measured under sedation during sampling.

183

184 *Viral assays*

185 Virus isolation was performed on all oral swab, nasal swab and 3 DPI tissue samples by double
186 overlay plaque assay on Vero cells as previously described (17). Briefly, 6-well plates with
187 confluent monolayers of cells were washed once with PBS and inoculated with 100 μ l of serial
188 10-fold dilutions of samples, incubated for 1 hour at 37°C, and overlaid with a 0.5% agarose in
189 MEM containing 2% fetal bovine serum and antibiotics/antifungal agents. A second overlay with

190 neutral red dye was added at 48 hours and plaques were counted at 72 hours. Viral titers were
191 reported as the \log_{10} pfu per swab (oropharyngeal/nasal) or per gram (tissue).

192

193 *Serology*

194 Plaque reduction neutralization assays (PRNT) were performed as previously described (17).
195 Serum was heat-inactivated for 30 mins at 56°C, and two-fold dilutions prepared in BA-1 (Tris-
196 buffered MEM containing 1% bovine serum albumin) starting at a 1:5 dilution were aliquoted
197 onto 96-well plates. An equal volume of virus was added to the serum dilutions and incubated
198 for 1 hour at 37°C. Following incubation, serum-virus mixtures were plated onto Vero
199 monolayers as described for virus isolation assays. Antibody titers were recorded as the
200 reciprocal of the highest dilution in which >90% of virus was neutralized.

201

202 *qRT-PCR*

203 Plaques were picked from culture plates from each positive animal to confirm SARS-CoV-2
204 viral shedding. RNA extractions were performed per the manufacturer's instructions using
205 Qiagen QiaAmp Viral RNA mini kits. RT-PCR was performed as recommended using the
206 E_Sarbeco primer probe sequence as described by Corman and colleagues (22) and the
207 Superscript III Platinum One-Step qRT-PCR system (Invitrogen), with the following
208 modification: the initial reverse transcription was at 50°C. RNA standards for PCR were obtained
209 from BEI Resources (Manassas, VA, USA).

210

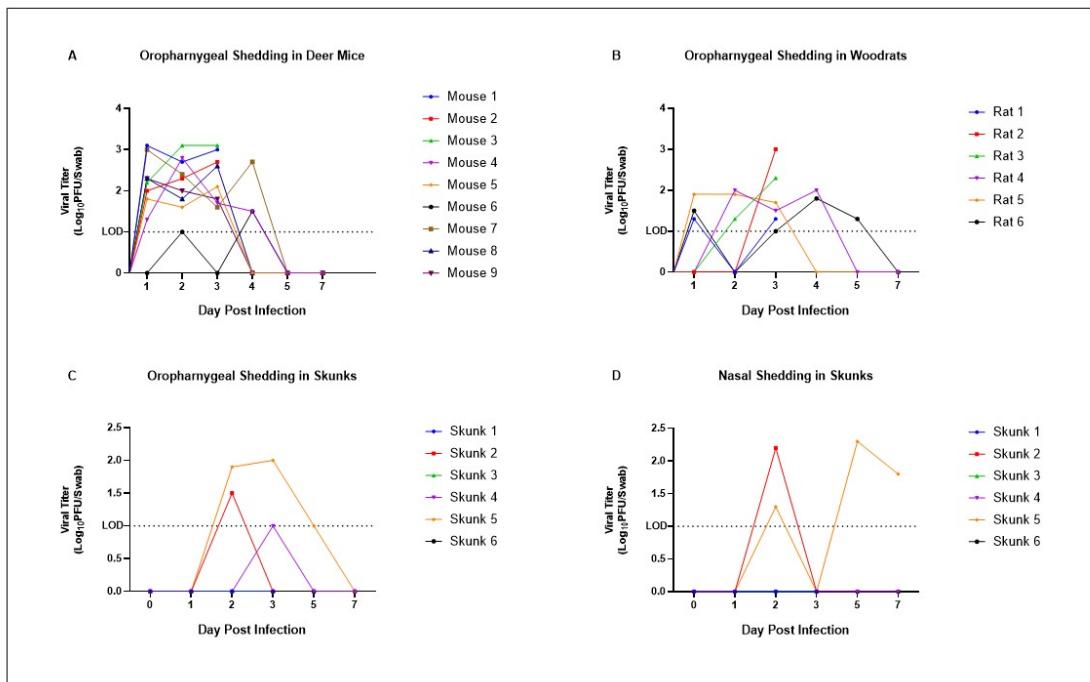
211 *Histopathology*

212 Animal tissues were fixed in 10% neutral-buffered formalin for 12 days and transferred to 70%
213 ethanol prior to processing for paraffin-embedding, sectioning for H&E staining. Slides were
214 read by a veterinary pathologist blinded to the treatments.

215

216 **Results**

217


218 *Viral shedding*

219 Of the nine species evaluated, three (deer mice, bushy-tailed woodrats, and striped skunks) shed
220 infectious virus following challenge (Figure 1). Deer mice, which have previously been
221 demonstrated to shed infectious SARS-CoV-2 experimentally (15 Griffin), shed virus orally for
222 up to four days and virus was isolated from lungs (n=3/3) and trachea (n=2/3) from animals
223 harvested at 3 DPI. All nine inoculated deer mice shed virus on at least two of the first four days
224 following infection, with peak titers of $3.1 \log_{10}$ pfu/swab. Bushy-tailed woodrats shed virus
225 orally for up to five days post inoculation (n=6/6) and virus was isolated from turbinates (n=2/3),
226 trachea (n=1/3) and lung (n=1/3) from animals necropsied on 3 DPI. Peak titers from bushy-
227 tailed woodrats reached $3.0 \log_{10}$ pfu/swab by 3 DPI. Interestingly, the single bushy-tailed
228 woodrat for which infectious virus was isolated from the lungs only shed $1.3 \log_{10}$ pfu/swab
229 orally on the day of necropsy, but the lungs contained $5.2 \log_{10}$ pfu/gram virus. Striped skunks,
230 which had to be handled under heavy sedation, were sampled on days 1-3, 5, and 7, during which
231 time three of the six infected animals shed orally, nasally, or both, with one animal shedding up
232 to 7 DPI. Of the three skunks necropsied on 3 DPI, two had infectious virus in the turbinates, but
233 not in other tissues tested. One of those two animals had $3.2 \log_{10}$ pfu/gram in the turbinates but
234 failed to shed detectable virus nasally or orally prior to euthanasia. In general, viral titers were

235 slightly higher in nasal samples compared to oral, but overall peak titers in skunks were
236 relatively low, with oral titers reaching $2 \log_{10}$ pfu/swab and nasal flush titers at $2.3 \log_{10}$
237 pfu/swab. All animals with plaque-assay positive samples were confirmed for SARS-CoV-2 by
238 RT-PCR. Similarly, all animals that were negative on plaque assay were confirmed negative for
239 viral shedding by RT-PCR.

240

241 Figure 1: Oropharyngeal shedding of SARS-CoV-2 in deer mice (A), bushy-tailed woodrats (B)
242 and striped skunks (C) and nasal shedding in striped skunks (D). Values expressed as \log_{10}
243 pfu/swab; limit of detection $1 \log_{10}$ pfu.

244

245 *Seroconversion*

246 All animals were seronegative against SARS-CoV-2 at the time of inoculation (<50% viral
247 neutralization at 1:10 serum dilution). Based on the lack of evidence of infection and the overall
248 difficulty of maintaining wildlife, we opted not to hold subsets of squirrels or rabbits for

249 additional time to assess seroconversion. Neutralizing antibody titers were assessed in all
250 animals euthanized at 28 DPI, which included deer mice, house mice, bushy-tailed woodrats,
251 black-tailed prairie dogs, raccoons and striped skunks. All species which had detectable viral
252 infections (deer mice, skunks, and bushy-tailed woodrats) also developed neutralizing antibodies,
253 while the other species (house mice, raccoons, and black-tailed prairie dogs) did not. Deer mice
254 and bushy-tailed woodrats reached or exceeded titers of 1:80, and the two skunks that shed
255 infectious virus reached or exceeded titers of 1:160, while the single skunk that did not shed
256 virus had a titer of 1:10 at 28 DPI. Animals euthanized at 3 DPI were not tested for
257 seroconversion as previous investigations have demonstrated that neutralizing antibodies are
258 typically not detectable during acute infection (23).

259

260 *Clinical disease*

261 None of the animals exhibited clinical signs of disease (see methods for symptoms) at any time
262 during the study. Skunks and raccoons, which were sedated for procedures which involved
263 sampling, failed to display elevated temperatures at those times. In addition to clinical signs,
264 behavior was monitored by observing animals through double-paned glass and assessing eating
265 and response to provided enrichment (playing with toys, eating treats, using hides, etc.), and
266 none of the animals were observed to behave abnormally following infection when compared to
267 the acclimation period.

268

269 *Pathology*

270 None of the animals had gross lesions at the time of necropsy. On histopathologic examination,
271 rare, small foci of mild macrophage and neutrophil infiltration were noted in the lungs of two

272 woodrats and two deer mice with one of the latter also having mild vasculitis. Two skunks
273 presented with well-developed bronchiole associated lymphoid tissue (BALT), but inflammation
274 was not apparent in the lungs or other tissues.

275

276 **Conclusions**

277

278 COVID19 has had a significant impact on the human population globally, but so far very
279 little is known about how SARS-CoV-2 virus impacts wildlife. Domestic cats and dogs have
280 repeatedly been shown to be infected by SARS-CoV-2, but with few exceptions are
281 asymptomatic or develop mild clinical disease (17,24,25). Farmed mink, on the other hand, are
282 not only susceptible to infection, but can develop fulminating fatal disease (10,26). In contrast,
283 ferrets, which are closely related to mink, shed virus following infection but the infection is
284 subclinical (27). Raccoon dogs, which were heavily implicated in the SARS-CoV-1 outbreak in
285 2004, are susceptible to SARS-CoV-2 infection, but remain subclinical (28). Experimentally,
286 deer mice can be infected and shed the virus via oral secretions, as demonstrated by this study
287 and others (14,15). However, other mice, including wild house mice and non-transgenic
288 laboratory strains of this species, are not susceptible to infection by SARS-CoV-2 (29). Studies
289 in which bats and select small mammals were experimentally exposed to SARS-CoV-2 show
290 that some species (i.e., fruit bats [*Rousettus aegyptiacus*] and tree shrews [*Tupaia belangeri*]),
291 are capable of minimal viral replication while others (big brown bats [*Eptesicus fuscus*]) do not
292 appear to become infected at all, which suggests that while the virus may have originated in bats,
293 they are unlikely to serve as reservoir hosts (30,31,32). The confounding clinical response to
294 infection between closely related species makes predicting impacts on wildlife and their potential

295 for reservoir maintenance difficult. Despite best attempts to predict host susceptibility based on
296 receptor similarity or other modeling approaches, experimental infections remain the gold
297 standard for evaluating the susceptibility of an animal to infection and following the course of
298 disease.

299 Our results demonstrate that several common peridomestic wildlife species, including
300 deer mice, bushy-tailed woodrats, and striped skunks are susceptible to SARS-CoV-2 infection
301 and can shed infectious virus. Importantly, our work and the work of others indicate that so far,
302 the majority of exposed wildlife species develop mild to no clinical disease and either fail to shed
303 virus at all or shed low levels for short durations. Perhaps equally important is that these
304 experimental infections suggest that we can rule out several common rodents, select wild
305 lagomorphs and raccoons as potential SARS-CoV-2 reservoirs. There are, however, limitations
306 to these experimental models, namely that the animals in our studies were directly exposed to
307 high doses (e.g., 5 log₁₀ pfu) of virus, which is unlikely to be representative of an exposure in
308 nature. Additionally, experimental infections using low numbers of apparently healthy,
309 immunocompetent animals do not generate sufficient data to fully characterize the risk posed to
310 animals of varying ages and health status. However, the results of this work and the work of
311 others, combined with the dramatic response to infection seen in certain species such as mink,
312 indicate that the possibility exists of SARS-CoV-2 infecting wildlife, establishing a transmission
313 cycle, and becoming endemic in non-human species. In particular, the relatively high titers
314 observed in select woodrat tissues (e.g., 5.2 log₁₀ pfu/gram of lung) suggests that a predator-prey
315 transmission scenario among this rodent species and various small wild and domestic carnivore
316 species is plausible. The major outcomes of such an event include direct threat to the health of
317 wildlife and establishment of a reservoir host, which could complicate control measures of this

318 virus in human populations. Experimental studies to identify and characterize species' response
319 to SARS-CoV-2 infection help scientists classify those species that are at highest risk and allow
320 for the implementation of prevention measures. For example, both deer mice and bushy-tailed
321 woodrats are commonly found in barns and sheds in very close proximity to humans, so when
322 cleaning out sheds or attempting to rodent-proof barns, people should consider wearing
323 appropriate personal protective equipment, both to prevent exposure to the pathogens rodents
324 carry as well as to prevent exposing wildlife to SARS-CoV-2. Likewise, humans with COVID19
325 who also own cats and dogs should practice extra precaution with their pets, including
326 minimizing the pet's exposure to wildlife. Notably, a photo-monitoring study provided evidence
327 that striped skunks can commonly use the same urban cover types (e.g., outbuildings and decks)
328 as domestic cats (33). Intentionally available pet food and spilled bird feed, which were two of
329 the attractants evaluated, produced instances where skunks and domestic cats were documented
330 to be on study sites simultaneously or nearly simultaneously, which could facilitate interspecies
331 transmission of SARS-CoV-2.

332 Wildlife and SARS-CoV-2 are intricately involved, from the initial spillover event to
333 potential reverse zoonosis, and we will undoubtedly continue to discover more susceptible
334 species as the search for zoonotic reservoirs continues. COVID19 is just the latest in a series of
335 examples of how the human-wildlife interface continues to drive the emergence of infectious
336 disease. The use of experimental research, surveillance, and modeling as tools for predicting
337 outbreaks and epidemics will hopefully provide the knowledge base and resources necessary to
338 prevent future pandemics.

339

340

341 **Acknowledgments**

342 This work was funded by internal funding from Colorado State University and the U.S.
343 Department of Agriculture, Animal and Plant Health Inspection Service. A. Walker and L.
344 Guilbert were supported by the USDA Animal Health and Disease Veterinary Summer Scholar's
345 Program.

346 **Disclaimers**

347 None

348 **Author Bio**

349 Angela Bosco-Lauth is an Assistant Professor in the Department of Biomedical Sciences
350 at Colorado State University. Her research interests include pathogenesis, transmission and
351 ecology of infectious disease.

352 **References**

- 353 1. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak
354 associated with a new coronavirus of probable bat origin. *Nature*. 2020 Mar
355 1;579(7798):270–3.
- 356 2. Root JJ, Bosco-Lauth AM, Bielefeldt-Ohmann H, Bowen RA. Experimental infection of
357 peridomestic mammals with emergent H7N9 (A/Anhui/1/2013) influenza A virus:
358 Implications for biosecurity and wet markets. *Virology*. 2016 Jan;487:242–8.
- 359 3. Shriner SA, VanDalen KK, Mooers NL, Ellis JW, Sullivan HJ, Root JJ, et al. Low-
360 Pathogenic Avian Influenza Viruses in Wild House Mice. Davis T, editor. *PLoS ONE*.
361 2012 Jun 15;7(6):e39206.

362 4. Romero Tejeda A, Aiello R, Salomoni A, et al. Susceptibility to and transmission of
363 H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (*Myodes*
364 *glareolus*). *Vet Res* 46, 51 (2015).

365 5. Martínez-Hernández F, Isaak-Delgado AB, Alfonso-Toledo JA, Muñoz-García CI,
366 Villalobos G, Aréchiga-Ceballos N, et al. Assessing the SARS-CoV-2 threat to wildlife:
367 Potential risk to a broad range of mammals. *Perspectives in Ecology and Conservation*.
368 2020 Oct;18(4):223–34.

369 6. Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts
370 the host range and an optimized ACE2 for SARS-CoV-2 infection. *Biochemical and*
371 *Biophysical Research Communications*. 2020 May;526(1):165–9.

372 7. Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, et al. Broad host
373 range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in
374 vertebrates. *Proc Natl Acad Sci USA*. 2020 Sep 8;117(36):22311–22.

375 8. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der
376 Honing RW, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and
377 May 2020. *Eurosurveillance* [Internet]. 2020 Jun 11 [cited 2020 Dec 23];25(23).

378 9. DeLiberto T and Shriner S. [Coronavirus disease 2019 update \(536\): Animal, USA \(Utah\),](#)
379 [wild mink, first case](#). ProMED-mail, International Society for Infectious Diseases. Posted
380 December 13, 2020.

381 10. Molenaar RJ, Vreman S, Hakze-van der Honing RW, Zwart R, de Rond J, Weesendorp
382 E, et al. Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in
383 Farmed Mink (*Neovison vison*). *Vet Pathol*. 2020 Sep;57(5):653–7.

384 11. Younes S, Younes N, Shurab F, Nasrallah GK. Severe acute respiratory syndrome
385 coronavirus-2 natural animal reservoirs and experimental models: systematic review. Rev
386 Med Virol [Internet]. 2020 Nov 18 [cited 2021 Jan 18]; Available from:
387 <https://onlinelibrary.wiley.com/doi/10.1002/rmv.2196>

388 12. Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, et al. Pathogenesis and
389 transmission of SARS-CoV-2 in golden hamsters. *Nature*. 2020 Jul;583(7818):834-838.

390 13. Trimpert J, Vladimirova D, Dietert K, Abdelgawad A, Kunec D, Dökel S, et al. The
391 Roborovski dwarf hamster is a highly susceptible model for a rapid and fatal course of
392 SARS-CoV-2 infection. *Cell Rep*. 2020 Dec 8;33(10):108488.

393 14. Fagre A, Lewis J, Eckley M, Zhan S, Rocha SM, Sexton NR, et al. SARS-CoV-2
394 infection, neuropathogenesis and transmission among deer mice: Implications for reverse
395 zoonosis to New World rodents [Internet]. *Microbiology*; 2020 Aug [cited 2020 Dec 7].
396 Available from: <http://biorxiv.org/lookup/doi/10.1101/2020.08.07.241810>

397 15. Griffin BD, Chan M, Tailor N, Mendoza EJ, Leung A, Warner BM, et al. North
398 American deer mice are susceptible to SARS-CoV-2 [Internet]. *Microbiology*; 2020 Jul
399 [cited 2020 Dec 14]. Available from:
400 <http://biorxiv.org/lookup/doi/10.1101/2020.07.25.221291>

401 16. Mykytyn AZ, Lamers MM, Okba NMA, Breugem TI, Schipper D, van den Doel PB, et
402 al. Susceptibility of rabbits to SARS-CoV-2. *Emerging Microbes & Infections*. 2021 Jan
403 10(1): 1-7.

404 17. Bosco-Lauth AM, Hartwig AE, Porter SM, Gordy PW, Nehring M, Byas AD, et al.
405 Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis,

406 transmission, and response to reexposure in cats. *Proc Natl Acad Sci USA*. 2020 Oct
407 20;117(42):26382–8.

408 18. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats,
409 dogs, and other domesticated animals to SARS–coronavirus 2. *Science*. 2020 May
410 29;368(6494):1016–20.

411 19. Gross J, Elvinger F, Hungerford LL, Gehrt SD. Raccoon use of the urban matrix in the
412 Baltimore Metropolitan Area, Maryland. *Urban Ecosyst*. 2012 Sep;15(3):667–82.

413 20. Hoffmann CO, Gottschang JL. Numbers, Distribution, and Movements of a Raccoon
414 Population in a Suburban Residential Community. *Journal of Mammalogy*. 1977 Nov
415 29;58(4):623–36.

416 21. Franklin AB, Bevins SN. Spillover of SARS-CoV-2 into novel wild hosts in North
417 America: A conceptual model for perpetuation of the pathogen. *Science of The Total
418 Environment*. 2020 Sep;733:139358.

419 22. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of
420 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Eurosurveillance* [Internet].
421 2020 Jan 23 [cited 2020 Nov 28];25(3).

422 23. Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-
423 CoV-2 infection and the potential for reinfection. *Journal of General Virology*. 2020 Aug
424 1;101(8):791–7.

425 24. Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, et al. Evidence of
426 exposure to SARS-CoV-2 in cats and dogs from households in Italy. *Nat Commun*. 2020
427 Dec;11(1):6231.

428 25. de Moraes HA, dos Santos AP, do Nascimento NC, Kmetiuk LB, Barbosa DS, Brandão
429 PE, et al. Natural Infection by SARS-CoV-2 in Companion Animals: A Review of Case
430 Reports and Current Evidence of Their Role in the Epidemiology of COVID-19. *Front
431 Vet Sci.* 2020 Oct 27;7:591216.

432 26. Hammer AS, Quaade ML, Rasmussen TB, Fonager J, Rasmussen M, Mundbjerg K, et al.
433 SARS-CoV-2 Transmission between Mink (*Neovison vison*) and Humans, Denmark.
434 *Emerg Infect Dis* [Internet]. 2021 Feb [cited 2020 Dec 7];27(2).

435 27. Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J, Yu K-M, et al. Infection and Rapid
436 Transmission of SARS-CoV-2 in Ferrets. *Cell Host & Microbe.* 2020 May;27(5):704-
437 709.e2.

438 28. Freuling CM, Breithaupt A, Müller T, Sehl J, Balkema-Buschmann A, Rissmann M, et al.
439 Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. *Emerg Infect
440 Dis.* 2020 Dec;26(12):2982-5.

441 29. Cohen J. From mice to monkeys, animals studied for coronavirus answers. *Science.* 2020
442 Apr 17;368(6488):221-2.

443 30. Hall JS, Knowles S, Nashold SW, Ip HS, Leon AE, Rocke T, et al. Experimental
444 challenge of a North American bat species, big brown bat (*Eptesicus fuscus*), with
445 SARS-CoV-2. *Transboundary and Emerging Diseases.* 2020 Dec 9;tbed.13949.

446 31. Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, et al. SARS-CoV-2 in
447 fruit bats, ferrets, pigs, and chickens: an experimental transmission study. *The Lancet
448 Microbe.* 2020 Sep;1(5):e218-25.

449 32. Zhao Y, Wang J, Kuang D, Xu J, Yang M, Ma C, et al. Susceptibility of tree shrew to
450 SARS-CoV-2 infection. *Sci Rep.* 2020 Dec;10(1):16007.

451 33. Weissinger MD, Theimer TC, Bergman DL, Deliberto TJ. Nightly and seasonal
452 movements, seasonal home range, and focal location photo-monitoring of urban striped
453 skunks (*Mephitis mephitis*): Implications for rabies transmission. *Journal of Wildlife
454 Diseases*. 2009 Apr;45(2):388–97.

455

456 Address for correspondence: Angela Bosco-Lauth, Department of Biomedical Sciences,
457 Colorado State University, 1683 Campus Delivery, Fort Collins, CO 80523. email:
458 angela.bosco-lauth@colostate.edu

459