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Abstract

Spatial transcriptomic is a technology to provide deep transcriptomic profiling by preserving the spatial
organization. Here, we present a framework for SPAtial Transcriptomic Analysis (SPATA,
https://themilolab.github.io/SPATA), to provide a comprehensive characterization of spatially resolved
gene expression, regional adaptation of transcriptional programs and transient dynamics along spatial

trajectories.
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Brief Communication

Deep transcriptional profiling of single cells by RNA-sequencing maps the cellular composition of tissue
specimens regarding cellular origin, developmental trajectories and transcriptional programs'-3.
However, information determining the spatial arrangement of specific cell types or transcriptional
programs are lacking and thus can only be predicted indirectly*, which is a considerable drawback of
this method. Spatial tissue organization was traditionally investigated by imaging technologies which
provide information at high resolution but are strongly limited by the number of genes or proteins to be
mapped. Several novel technologies such as MERFISHS, FISH-seq®, Slide-seq’ or spatial
transcriptomics®® are able to preserve the spatial context of transcriptional data, however all these
technologies are limited by either the spatial resolution or depth of transcriptional profiling. Further, data
integration, visualization and analysis of transcriptomic and spatial information remains challenging.
Here, we present a software tool to provide a framework for integration of high-dimensional
transcriptional data within a spatial context. By combining user-friendly interfaces for visualization,
segmentation or trajectory analysis and command-based pipe-friendly functions for data manipulation
and modeling, we provide a broad range of applications for different analytical demands. In addition, we
implemented interfaces to provide easy exchange of numerous external tools. Previously published
tools focus mainly on the visualization of gene expression using known tools from scRNA-seq analysis
rather than addressing gene expression within its spatial context'®-'2. In particular, we focus on transient
changes of gene expression and aim to infer transcriptional programs that are dynamically regulated as
a function of spatial organization.

In order to present an overview of possible analytic capabilities of the SPATA workflow, Figure 1a, we
generated spatial transcriptomic datasets from human cortex and human glioblastoma samples using
the Visium technology (10X Genomics). The human cortex is separated into defined layers containing
different types of neurons and cellular architecture. In a first step, we combine shared-nearest neighbor
clustering and spatial pattern recognition by an external tool (spatial pattern recognition via kernels,
“SPARK""3) in order to determine genes with a defined spatially resolved expression pattern. We found
that the cortical layering is accurately reflected by our clustering approach. In order to gain insights into
the spatial organization we provided a tool to compute the spatial distance within the defined layers or
correspondent clusters. An increasing distance within individual clusters allows to differentiate between

narrowly related or a widespread dispersion of spots within the cluster.
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Figure 1: a) lllustration of the SPAtial Transcriptomic Analysis (SPATA) workflow containing Data Input and a predefined set of
analysis which will be saved in a SPATA object. In the following step of the workflow, annotation of segment trajectories can be
performed using a user-friendly interface. Additionally, multiple tools for visualization are available within the user interface. This
also includes tools for geneset enrichment analysis (GSEA) and gene set variation (GSVA). After region of interests are defined,
a list of analytic tools is provided which includes wrapper for external tools. b) H&E staining of a human cortex sample with the
corresponding SNN clustering (bottom right). The annotation tool is used to draw a trajectory along all cortical layer (right side) c)
Infer genes with defined peaks along the trajectory revealed genes with layer specific gene expression. d)Integrating an external
package (monocle3) the pseudotime within the sample was computed and visualized by a 2D UMAP representation (left) and
within its spatial context (right). e) Comparison of traditional markers (left) and markers given by our model (inferring transient

gene expression) along the cortical layering.

Next, the spatial overlap of transcriptional programs or gene expression was analyzed using a Bayesian
approach, resulting in an estimated correlation which quantifies the identical arrangement of expression
in space. In a further step, we aimed to analyze dynamic changes, which were annotated using
pseudotime estimation or RNA-velocity. We directly implemented the pseudotime inference from the
monocle3'* package, but also allow the integration of any other tool such as “latent-time” extracted from
RNA-velocity (scVelo'). Another option for dynamic gene expression analysis is the detection of defined
transcriptional programs along a defined trajectory. In our example, we mapped different activation

states of astrocytes and microglia within the cortical layering.
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90 Figure 2: a) lllustration of the SPATA workflow integrating SPARK for pattern recognition into the analysis of human glioblastoma.
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91 SPARK will estimate to what extent a gene is present in a spatial pattern. The output is piped into a spatial overlap analysis and
92 clustered to extract set of genes which belong to the same pattern. b) H&E staining of glioblastoma with 3 histological distinct
93 regions. c) Predicted pattern visualized by the z-scored gene expression of all genes aligned into a pattern. d-e) Copy-number
94 analysis of the sample and cluster annotation (e). f) Comparison of recognized pattern with known gene expression classification,
95 here the Neftel classification. g) Expression of significantly expressed pathways within a pattern. h) Spatial trajectory analysis
96 along the tumor infiltration region. i-j) Change of z-scored geneset expression along the trajectory (i) and marker genes of
97 microenvironmental alterations and inflammation (j).

98

99 Moreover, we provide the opportunity to screen for gene expression or transcriptional programs which
100 transiently change along predefined trajectories by modelling gene expression changes in accordance
101 to various biologically relevant behaviors. All genes or transcriptional programs which significantly
102  followed one or multiple predefined models were ranked and visualized. The detection of dynamic
103 spatially defined gene expression patterns is also of great interest in malignant specimens. In another
104 example, we profiled tissue of a human glioblastoma, the most malignant tumor of the central nervous
105  system (CNS) as SPATA provides numerous tools to analyze datasets with malignant origin. In a first
106  step, integrating inferred copy-number alterations (CNV)?'®, spatial pattern recognition and shared-
107 nearest neighbor clustering provides a broad overview of spatially defined transcriptional programs
108  within the subclonal architecture of tumor samples, Figure 2a-g. Using this information, specific
109 segments can be specified and analyzed to gain insights into their spatially differentially expressed
110  genes. We showed that segments of higher cellular density also contained increased signaling of the
111 hypoxic pathway including expression of VEGFA, HIF1A and GAPDH. Additionally, mapping the
112 subclonal architecture based on a CNV clustering allowed to screen for gene expression differences
113 within regions of exclusive genetic context Figure 2d. Inferring spatially transient gene expression along
114  trajectories connecting particular tumor regions, i.e. between tumor core and infiltration zone, provided

115 the opportunity to map transcriptional programs executed during tumor infiltration and tumor-induced

5
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116  microenvironment changes of the surrounding areas. Thus, we were able to show that immune related
117  genes from myeloid cells and reactive astrocytes were localized in a “glial-scars” resembling structure,
118 sharply separating normal brain from tumor regions Figure 2h. We observed a transient increase of
119 macrophage and microglia activation directed towards the tumor boarder. Mapping transcripts that mark
120  for lymphoid cells, we found more T cells abundance within the normal brain compared to tumor regions
121 which is in line with the reported immunosuppressive environment within glioblastoma. Inferring
122 pseudotime, we were able to confirm a dynamic adaptation of myeloid cells along our defined trajectory
123 Figure 2i5j. Recently, Neftel and colleagues established a classification of 4 transcriptional states using
124  single-cell RNA-sequencing, Figure 2f,i. Using these signatures, we were able to map the spatial
125  distribution of assumed tumor heterogeneity. We implemented a 2D representation of all 4 states which
126  could be used to map the distribution of all transcriptional states within defined segments or along spatial
127  trajectories. Of utmost importance, our tool enables the usage of a variety of different biological data
128 containing a spatial context such as spatially resolved mass-spectroscopy or imaging mass cytometry
129 (IMC). SPATA is a resource developed from scientists for scientists incorporating the FAIR principles of
130  providing findable, accessible, interoperable, and reusable data'”.

131
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132  Methods:

133  SPATA software and functions

134 A detailed overview of all included functions and the structure of the package is given at the package
135  website (https://themilolab.github.io/SPATA/index.html). We implemented tutorials for all described
136  analytic approaches to provide a simple-as-possible solution to trace the individual analytic steps.

137

138 Data preparation, per-analysis and SPATA object implementation

139  We offer two possible input options. On one side, we implemented the direct input from spaceranger by
140 using the Seurat wrapper for spatial transcriptomics. On the other hand, we used the Seurat v3.0
141 package to normalize gene expression values by dividing each estimated cell by the total number of
142  transcripts and multiplied by 10,000, followed by natural-log transformation. As described for single cell-
143 RNA sequencing, we removed batch effects and scaled data using a regression model including sample
144 batch and percentage of ribosomal and mitochondrial gene expression. For further analysis we used
145 the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 100
146 principal components and determined the number of non-trivial components by comparison to
147 randomized expression values. The obtained non-trivial components were used for SNN clustering
148  followed by dimensional reduction using the UMAP and TSNE algorithm. After analysis all date will be
149 saved in a SPATA object, detailed information of the S4 object structure is given at the package
150 information. Another option is to provide 3 files that will be used to create a SPATA object, one file
151 containing barcode information or other identifier of each spot with the given x and y coordinates
152  determining the spatial position of each spot within the H&E image. The second file contains an
153 expression or intensity matrix with identifier as colnames and genes or other features as rownames. The
154 last file is an image with x and y coordinates corresponding to the identifier of file1. If the inputs are gene
155 expression counts we run the standard pipeline (Seurat wrapper), otherwise (IMC, MALDI or MERFISH)
156  we provide a data analysis pipeline which is designed for non-integer inputs and normal distributed data.
157

158 Modeling of transient gene expression along spatial trajectories

159 A given trajectory includes multiple spots summarized into predefine bins of the directed trajectory. In
160  order to model the gene expression of single genes or genesets we created a set of mathematical
161 models which represent defined biological behaviors, including linear, logarithmic or gradient

162 ascending/descending expression pattern, one-, or multiple peak expression, detailed information in the
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163 package description. The analysis is implemented into the function assessTrajectoryTrends(). Further,
164 if a defined pattern is requested, we open the possibility to add a vector containing the requested model
165  for which the algorithm will screen. Next, we fitted the summarized expression values of each bin using

166  anon-parametric kernel estimation (Gaussian or Cauchy-Kernel), input vectors were normalized and z-

Aexp i—min(Aexp)
max(Aexp)—min(Aexp)

167  scored: (1) Neyxy; = ) frn(nexpi) = %Z’;I Ky (Nexp — Nexp:) Kis the kernel and 0.7 >

168 h > 0.3 is used to adjust the estimator. Next, we computed residuals for each input vector (gene

169 expression) and estimated area under the curve (AUC) using the trapezoidal numerical integration.
170 (3) [ f(res) dx ~ Yp_,L[0ek=0/Ce0 Ares, The distance and direction is defined by [ab] a=xo <x1<,

171 .. ,< xn1 <xn=b. We use the AUC to rank the estimated models and predict genes that follow our
172 predefined behavior. The implemented function plotTrajectoryFit() shows the model fit with respect
173  to the given residuals.

174

175  Enrichment analysis for SPATA

176  Gene sets were obtained from the database MSigDB v7 and internally created gene sets are available
177 at within the package. For enrichment analysis we provide multiple methods listed in the description of
178 the plotSurface() function. Per default, we use a probability distribution fitting of the input values which
179  could be genes or summarized gene sets and transformed the distribution to representative colors.
180 Further adaptation of the applied color scale can be performed by using the
181 confuns: :scale_color_add_on(). Further additions for geneset enrichment analysis or gene set variation
182  analysis are implemented by using the GSVA package. As input for a GSEA the normalized and
183 centered expression data are used and further transformed to z-scores ranging from 1 to 0. Genes were
184 ranked in accordance to the obtained differential expression values and used as the input for GSEA.
185

186 Two-dimensional representation of cellular states

187 Within the SPATA toolbox, we allow to plot a recently popular 2D presentation of multiple cellular states.
188  As usual in SPATA, we provide two versions to acquire the data, on one side plotting from inside a
189  SPATA-object is possible (plotFourStates()) and on the other hand, data can be used from outside (for
190 example an expression matrix containing a single-cell dataset) by applying version 2 of the
191  function(plotFourStates2()). Therefore, we aligned spots to variable states based on defined gene sets:

192 GS@2.n. We separated cells into GSq+2) versus GS+), using the following equation: A, =
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193 11 G541), GS(z) lleo—Il GS(3y, GS(4y Il A1 defines the y-axis of the two-dimensional representation. In a next
194  step, we calculated the x-axis separately for spots A1<0 and A1>0: Al > 0:4, =1log2 (GSy) —
195 [GSp +1]) A1<0:4, =1log2(GSi) — [ GSw |) For further visualization of the enrichment of subsets
196  of cells according to gene set enrichment across the two-dimensional representation, using a probability
197 distribution fitting - we transformed the distribution to representative colors. This representation is an
198 adapted method published by Neftel and colleges recently?3.

199

200  Spatial distance measurement

201 In order to measure the spatial distance, we use either a defined factorized input or a continuous vector.
202 We fist measure the spatial distance from each spot to all other spots and compute a distance matrix

203  with spots as rows and columns (nr=nc). If factorized input was applied, we factorize the matrix and

S1 5
_ Ik

204  calculate the mean distance per factor (f1 > fi): (1) disty; = Zznla (2)a= [ ] If a distance is

Snr Snc

205 numeric, we created bins of spots with common gene expression of gene set enrichment resulting in
206  factorized values. Using the distance computation, we estimate to what extent a gene is expressed in
207 exclusive spots (lower distance) or diffuse without spatial enrichment.

208

209 Spatial overlap and correlation analysis

210 Spatial overlap of spatial correlation was designed to estimate the similarity of gene expression pattern
211  within the spatial organization. In order to map spatial correlated gene expression or gene set
212 enrichments, we used z-scored ranked normalized expression values. We used a Bayesian approach
213 to compute the correlation distribution within two different genes or gene sets (~5-20 minutes runtime,
214 MacOS 2019). The spatial reference is given by the x and y coordinates of each spot. In order to provide
215 an alternative method which is computationally less-intensive (~1-3 minutes runtime, MacOS 2019) we
216 construct a trajectory of spots from lowest ranked to highest ranked spot (based on z-scored input
217  vectors). The genes of interest (which were correlated with the spatial trajectory) were fitted by loess-fit
218 from the stats-package (R-software) and aligned to the ranked spots and fitted by a probability
219 distribution. Correlation analysis was performed by Pearson's product moment correlation coefficient.
220 For heatmap illustration the gene order was computed by ordering the maximal peak of the loess fitted
221 expression along the predefined spatial trajectory.

222
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223 Implantation of external tools: SPARK

224 For pattern recognition of spatially distinct expressed genes we integrated the R package SPARK™,
225 which was shown to perform beneficial compared to other tools such as SpatialDE'®. We transformed
226  the required data into a SPARK object which is externally analyzed and reimported to SPATA. We add
227  the possibility to group genes with a significant spatial pattern by overlap estimation and SNN clustering
228  of the given correlation matrix.

229

230 Implantation of external tools: InferCNV

231 Copy-number Variations (CNVs) were estimated by aligning genes to their chromosomal location and
232 applying a moving average to the relative expression values, with a sliding window of 100 genes within
233 each chromosome, as described recently'®. First, we arranged genes in accordance to their respective
234 genomic localization using the CONICSmat package (R-software). As a reference set of non-malignant
235 spots, we used cortex from epilepsy patients. To avoid the considerable impact of any particular gene
236 on the moving average we limited the relative expression values [-2.6,2.6] by replacing all values
237 above/below expg=|2.6|, by using the infercnv package (R-software). This was performed only in the
238  context of CNV estimation as previously reported’®.

239

240 Implantation of external tools: Monocle3 or RNA-velocity

241 We implemented a wrapper to easily switch between cds-objects (monocle3) and SPATA objects. First,
242 we compute minimum spanning tree (MST) to estimate the most separate paths and order these cells

243  to annotate pseudotime. By using the createPseudotime() function, a shiny-interface from

244 monocle3 will give the possibility to select a root for pseudotime annotation. Further, we provide the
245 possibility to implement each vector, for example “latent time” extracted from RNA-velocity using scvelo,
246  to integrate into our SPATA object.

247

248 Data acquisition of spatial transcriptomics

249  All Visium Gene Expression experiments were performed according to 10X Genomics user guide
250 ‘Visium Spatial Gene Expression Reagent Kits'. In brief, 10um thick, cryosectioned slices of fresh frozen
251 brain tissue were applied onto capture areas of Visium Spatial Gene Expression Slide, hematoxylin and
252  eosin stained and imaged for subsequent alignment with spatial RNA data. During permeabilization,

253 mRNA was liberated from cells and captured by primers on the slide’s surface which enable downstream

10
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254 reassignment of barcoded mMRNA sequences to their former, spatial location. Permeabilization times
255 had been determined in advance (Cortex: 18 min; Tumor: 12 min; Cerebellum: 12 min) according to
256 manufacturer’s instructions (10X Genomics, Spatial Tissue Optimization Reagent Kit). After reverse
257  transcription, second strand synthesis and denaturation of cDNA, second strands were amplified by
258 PCR and desired cDNA fragments were selected via SPRIselect reagent. Successful amplification was
259  confirmed by QC via Agilent Fragment Analyzer system. During the following fragmentation and double-
260 sided size selection via SPRIselect reagent, length of cDNA fragments was optimized for analysis via
261 lllumina NextSeq Sequencing System. Each fragment was provided with unique, dual indexes as well
262  as adapters binding to oligonucleotides on llumina flow cell. Post Library Construction QC via Agilent
263  Fragment Analyzer system and Invitrogen Qubit Fluorometer was performed before normalization of
264  libraries. For more information consult lllumina ‘Denature and Dilute Libraries Guide - Protocol A:
265 Standard Normalization Method’. Phix control at a concentration of 1.8pM was added to each library in
266  adilution of 1:100. Sequencing was performed using the NextSeq 500/550 High Output Kit (150 Cycles).
267

268

269 Data and code Availability

270 Further information and requests for resources, raw data and reagents should be directed and will be
271  fulfilled by the Contact: D. H. Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. The source code of
272  SPATA is available at https://github.com/theMILOlab/SPATA, additional functions are at
273  https://github.com/heilandd/SPATA_Developer and https://github.com/kueckelj/confuns.  Spatial
274  Transcriptomic data will be provided at GEO (in preparation) and SPATAobjects at www.themilolab.com
275  (in preperation).
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