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ABSTRACT
Diffusion-weighted magnetic resonance imaging (dMRI) has become the primary method for
non-invasively studying the organization of white matter in the human brain. While many dMRI
acquisition sequences have been developed, they all sample g-space in order to characterize
water diffusion. Numerous software platforms have been developed for processing dMRI data,
but most work on only a subset of sampling schemes or implement only parts of the processing
workflow. Reproducible research and comparisons across dAMRI methods are hindered by
incompatible software, diverse file formats, and inconsistent naming conventions. Here we
introduce QSIPrep, an integrative software platform for the processing of diffusion images that is
compatible with nearly all AMRI sampling schemes. Drawing upon a diverse set of software
suites to capitalize upon their complementary strengths, QSIPrep automatically applies best
practices for dAMRI preprocessing, including denoising, distortion correction, head motion
correction, coregistration, and spatial normalization. Throughout, QSIPrep provides both visual
and quantitative measures of data quality as well as “glass-box methods reporting. Taken
together, these features facilitate easy implementation of best practices for processing of

diffusion images while simultaneously ensuring reproducibility.

Keywords: diffusion MRI, g-space imaging, tractography, connectome, white matter,
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INTRODUCTION

The computations in the human brain that give rise to cognition and behavior rely in part
on spatially distributed regions that are connected via myelinated axons. Water diffusion is
hindered and restricted in the presence of these myelinated axons, allowing axonal organization
to be characterized using diffusion-weighted MRI (dMRI). As the technology underlying dMRI
has rapidly advanced, it has become the primary technique for non-invasive studies of white
matter organization in humans. dMRI typically samples three spatial dimensions and three
additional dimensions called “g-space,” measuring signals that reflect the water diffusion process
at a spatial location, along a given direction, with a specified sensitivity. The diffusion process
can be mathematically characterized (“reconstructed”) in each voxel, such that physical
properties of local white matter microstructure can be estimated based on variability in the
diffusion process. As a method, dMRI has benefitted from dramatic improvements in g-space
sampling strategies'-?, methods to estimate diffusion propagators>* and approaches to more
accurately relate observed MR signal to white matter structures>® (see Supplementary Note 1
for an overview).

However, this rapid progress has come with costs. Both the increased diversity of g-
space sampling schemes used in image acquisition and the proliferation of analysis packages to
process and reconstruct AMRI data are a cause of confusion among translational investigators.
Two major obstacles are evident. First, many pre-processing and reconstruction methods are
dependent on specific g-space sampling schemes. Second, even within a given sampling scheme,
it is difficult for researchers to move between methods implemented by different software
packages, due to the disparate naming conventions and file formats used. Even when an

investigator does manage to implement more than one analysis workflow, it is often challenging
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to compare them due to the divergent measures produced by different software analysis
packages. As a result, most labs tend to use a limited set of software packages, failing to
capitalize upon the complementary capabilities of different tools.

In response to these obstacles, we introduce QSIPrep, a unified and robust platform for
processing and reconstructing dMRI data. QSIPrep leverages the metadata recorded in the Brain
Imaging Data Structure (BIDS)?, a widely used specification that provides a standardized means
for describing imaging data. QSIPrep automatically builds preprocessing pipelines by using
BIDS to detect critical scanning parameters such as the g-space sampling scheme, phase
encoding (PE) direction, total readout time, and fieldmap configurations. Processing pipelines
are then automatically configured based on the available data, allowing adaptive preprocessing
pipelines to accommodate diverse g-space sampling schemes. The pipelines generated by
QSIPrep are fully documented by visual reports at each step as well as standardized text that
provides a methodological description of the pipeline. All software dependencies are included in
a freely available Docker image that is subject to continuous integration testing, allowing proven
software to be executed in nearly any environment.

In addition to preprocessing, QSIPrep implements advanced reconstruction and
tractography methods in curated reconstruction workflows using tools from leading software
packages. Post-processing methods from DSI Studio'?, DIPY'! and MRtrix'? are encapsulated in
self-documented workflows that consume the output from QSIPrep’s preprocessing pipeline.
Critically, as each of these software packages uses different conventions and file formats,
QSIPrep reconstruction workflows include a final step in which all output — including
reconstructions, scalar maps, tractograms, and connectivity matrices — are converted to a

consistent, interoperable format. Together, QSIPrep provides a framework for uniform
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workflows that support both the diversity of dMRI sampling schemes and state-of-the-art
analytic approaches. As a result, QSIPrep allows translational scientists to easily implement best

practices for dMRI in a fully reproducible manner.

RESULTS

QSIPrep has been publicly available since December 2019. At the time of writing, it has
been downloaded over 2,200 times and has been used to process over 21,000 dMRI scans
according to our application and error tracking system. Continuous integration testing and the
open development environment enable rapid bug detection and feature requests from an
international user base. Below, we demonstrate that QSIPrep automatically generates
preprocessing workflows for all static g-space sampling methods. These sampling methods
include spherical sampling (both single-shell and multi-shell), Cartesian grid sampling
(sometimes referred to as Diffusion Spectrum Imaging; DSI), and random sampling. Notably,
we demonstrate that QSIPrep performs comparably or better than published workflows that were
explicitly tailored for each sampling scheme. Finally, we illustrate how preprocessed images can
be reconstructed using QSIPrep’s diverse set of curated reconstruction workflows, yielding

results that are conveniently visualized and stored in a common file format.

A BIDS app that builds appropriate preprocessing workflows
QSIPrep began as a fork of the popular fMRIPrep software!3, building on its use of
modular and adaptive workflows. As for fMRI, there are numerous software packages available

to process and reconstruct dMRI data. QSIPrep uses software from FSL'#, MRtrix3'2, DIPY'!,
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DSI Studio'® and ANTs!®, among others. Figure 1 illustrates QSIPrep’s preprocessing and

reconstruction workflows.

QSIPrep provides intuitive visual reports and automated measures of data quality

The workflows used in QSIPrep automatically adapt to the input data specified in the
BIDS layout provided by the input data. Therefore, it is critical for users to be able to see exactly
which steps were taken and how these steps impact their data. To this end, QSIPrep produces
HTML reports that describe how the input data were handled by the pipeline. Any step that alters
the image data produces an animated “Before-After” visualization that allows users to visualize
the transformation. Standardized text describing the workflow is automatically generated,
including citations for any software or methods used; see Supplementary Figure S1 and
Supplementary Note 2.1. In addition, each preprocessed Diffusion-Weighted Image (DWI)
series 1s accompanied by a quality control (QC) text file that describes the number of dropped
slices, head motion summary measures, image dimensions before and after preprocessing, and a
useful summary measure of data quality -- the neighboring DWI correlation (NDC)'6.

Reconstruction workflows produce separate HTML reports that help the user quickly
determine whether reconstruction was successful. Directional maxima are plotted in a mosaic of
slices, along with Orientation Distribution Function (ODF) fields in a series of locations where
different types of fiber crossings are visible!”. If tractography was performed, the report includes
an array of connectivity matrices, each using a different measure of connectivity (e.g., streamline
count, length, and SIFT2 weights). A full example of a reconstruction report is provided in
Supplementary Figure S2; an example of automatically generated methods text is provided in

Supplementary Note 2.2.
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Preprocessing with QSIPrep reduces additional smoothing and enhances data quality

To demonstrate the generalizability of QSIPrep, we preprocessed nine different datasets
acquired with a wide range of acquisition parameters and scanning platforms (n=657 total scans).
These datasets included a standard single-shell sequence from the Philadelphia
Neurodevelopmental Cohort (PNC)'8, as well as four different multi-shell sampling schemes: the
scheme used by the Adolescent Brain and Cognitive Development (ABCD) project!®, a NODDI-
optimized multi-shell acquisition?’, The “Lifespan” sequence?!' from the Human Connectome
Project (HCP), and the multi-shell sequence collected by the Healthy Brain Network (HBN)?2.
Furthermore, we evaluated three Cartesian grid sampling schemes (DSI) with different sampling
densities, as well as a compressed-sensing DSI (CS-DSI) sequence®® with random g-space
sampling. A complete description of these datasets is presented in Table 1.

For each of these datasets, we compared the performance of QSIPrep to that of published
pipelines tailored for each dataset on two outcomes: image smoothness and image quality. The
spatial smoothness of the 5=0 images in each series” was characterized by calculating the mean
of their estimated full width at half maximum (FWHM). This measure is impacted by multiple
interpolations and imprecise spatial resampling of images, which introduce artifactual
smoothness that reduces image contrast and anatomic detail. The quality metric we evaluated
across datasets and pipelines was the NDC, a QC metric introduced in DSI Studio'®.

Spatial smoothness and NDC scores provide complementary insights into how processing

changes the raw images. NDC computes pairwise spatial correlation between each pair of AMRI

" We did not include >0 images because their spatial frequencies strongly depend on
gradient strength and direction. The 5=0 images are directly comparable across all sampling
schemes.
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volumes that sample the closest points in g-space. This computation can be applied to any g-
space sampling scheme. Lower NDC values reflect reduced data quality, driven by noise and
misalignment between dMRI volumes. While denoising and motion correction will increase
NDC, it can also be artificially inflated by interpolation-driven spatial smoothing. Accordingly,
we regressed image smoothness from the NDC values before comparing pipelines.

For shelled schemes, QSIPrep produced significantly less blurred images than pipelines
tailored for many of the most widely used datasets (see Figure 2a, statistical results following
Bonferroni correction in Supplementary Table 1). QSIPrep images were substantially less
blurred than the custom pipelines developed for the single-shell DTI sequence from the PNC
(AFWHM = -0.16mm), the multi-shell sequence from ABCD (AFWHM = -0.8mm), and the
multi-shell sequence from the HCP-Lifespan (AFWHM = -0.75mm). Comparisons of raw and
processed data further demonstrates the relatively large increase in smoothness introduced by
many previously published pipelines (Figure S4). In contrast, the smoothness of QSIPrep’s
outputs was slightly higher than that produced by the pipeline developed for the NODDI-
optimized MultiShell 113 sequence (AFWHM = +0.09mm); no differences were seen in data
from HBN.

Notably, QSIPrep yielded images with higher NDC than nearly all custom pipelines
designed for shelled imaging sequences (see Figure 2b and statistical tests in Supplementary
Table 2). The only exception to this was the HCP pipeline, where NDC scores were not
significantly different from QSIPrep. These results emphasize that QSIPrep produces images of
superior (or at least non-inferior) data quality compared to custom pipelines developed for a wide

variety of shelled acquisition schemes.
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One important advantage of QSIPrep is that in addition to shelled acquisition schemes, it

can also effectively process advanced non-shelled schemes. In this case, no direct comparisons to
an existing pipeline were available, so only comparisons with raw data were evaluated.
Inevitably, any image processing introduces at least some increase in smoothness (see Figure 2¢
and statistical tests in Supplementary Table 3). As expected, images processed with QSIPrep
were slightly but significantly smoother than the raw images (AFWHM = +0.53mm), similar to
that seen for shelled schemes (see Supplementary Figure 3). Notably, processing non-shelled
sequences with QSIPrep significantly improved data quality, reflected in a large increase in NDC

values (see Figure 2d and statistical tests in Supplementary Table 4).

Interoperability of reconstruction workflows enables direct comparison of disparate
methods

A major challenge in comparing reconstruction methods is that many dMRI software
packages have their own file formats, coordinate systems, orientation conventions, and
visualization tools (see Supplementary Note 1). This diversity is compounded by the large
number of possible AMRI acquisition schemes, many of which only meet the requirements of a
subset of reconstruction methods. QSIPrep’s set of curated reconstruction workflows provides
two critical benefits to users: correct processing and a uniform derived output format. First,
workflows are designed to ensure that data preprocessed by QSIPrep are handled correctly within
the reconstruction workflow. Second, outputs from each reconstruction method conform to a
consistent format across methods.

This emphasis on software interoperability facilitates comparisons between methods.

For example, Figure 3 displays the results from a number of reconstruction workflows, depicting
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disparate sampling schemes reconstructed using popular methods from MRtrix3, DSI Studio, and
the Laplacian-regularized MAPMRI (MAPL)** implementation from DIPY. The visual similarity
of the reconstructed ODFs and Fiber Orientation Distributions (FODs) suggests that many of
these methods share important features like peak directions. All reconstruction outputs are
produced in the native file format of each software package used and also consistently provided
in a DSI Studio (fib format) file.

Capitalizing upon the interoperability described above, QSIPrep also allows users to
apply standard processing and reconstruction methods developed for shelled sequences to
advanced non-shelled sequences. To do this, QSIPrep converts non-shelled sampling schemes to
a multi-shell scheme using a 3dSHORE-based g-space interpolation. This conversion allows, for
example, the use of multi-shell multi-tissue reconstruction and MRtrix3 tractography methods on
any non-shelled sampling scheme. The ability to apply standard analytic methods to non-shelled

schemes dramatically increases the accessibility of these advanced acquisition sequences.

Structural connectome estimation

One of the most popular applications for dMRI is to construct whole-brain structural
connectomes via streamline tractography. However, file formats for storing and representing
connectomes vary across software packages, thereby limiting comparisons. For example,
MRtrix3 produces text files, DSI Studio produces MATLAB files, and DIPY produces NumPy
arrays. Furthermore, many software packages produce inconsistently sized matrices across
subjects, due to some participants missing small regions from high-resolution atlases. In
contrast, QSIPrep ensures that connectivity matrices are directly comparable across methods and

participants. Specifically, the software checks that matrices are correctly shaped across all
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atlases and stores them in easily accessible HDFS5 files. Finally, due to the interoperability of the
component software elements, QSIPrep allows a far more diverse array of connectivity

measurements to be calculated than is possible with individual software packages (see Table 2).

DISCUSSION

QSIPrep provides a fully reproducible and transparent platform for preprocessing and
reconstructing virtually all AIMRI data. It is unique in that it integrates cutting-edge methods from
multiple software packages to build proper preprocessing and reconstruction pipelines for all
nearly all diffusion sampling schemes. The use of complementary tools incorporated by QSIPrep
likely contributes to our finding that its automatically configured pipelines perform as well or
better than published workflows tailored to each dataset.

The generalizability of QSIPrep is facilitated by two major features. As a BIDS app, the
processing workflow adapts to the characteristics of the input data, producing an appropriate
pipeline as long as the user has correctly specified their data in BIDS. The BIDS app interface
alleviates much of the burden for users who wish to follow best practices in data processing, but
do not have the time or skills to learn the minutiae of multiple software packages. The adaptive
pipelines configured by QSIPrep dramatically enhances accessibility and reproducibility without
sacrificing quality. This is underscored by the result that pipelines automatically constructed by
QSIPrep yielded results with comparable or better data quality and smoothness when compared
to established pipelines for multiple studies.

Notably, QSIPrep is distributed as both a Python package and as a Docker container that
includes all the dependencies, ensuring that it is able to run on all modern computing systems.

QSIPrep’s development is open and uses GitHub to manage feature requests, bug reports, and
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user questions. Basic functionality is constantly verified using continuous integration testing,
yielding containers whose contents are curated by numbered releases that chronicle bug fixes and
new features. This design philosophy and development practice has enabled QSIPrep to rapidly
respond to bugs and feature requests, accelerating the growth of its user and developer base.

While dMRI presents unique challenges, such as diversity of sampling schemes and
software packages, it also has advantages that allow for scalability. One major obstacle to
scalability in large-scale imaging efforts is consistent, quantitative measures of image quality.
Notably, QSIPrep calculates the NDC, in-scanner motion, the number of dropped slices, and the
b=0 intensity variability?® as quality metrics. All measures are scalar values that can be used to
quickly assess the relative quality of scans regardless of sampling scheme, so outlying values can
be flagged for detailed examination of the rich HTML reports that QSIPrep generates.

QSIPrep offers a particularly large advance in processing cutting-edge Cartesian and
random g-space sampling schemes, which previously had no publicly available head motion
correction methods. Cartesian sampling schemes are unique in providing a direct relationship to
the diffusion propagator> and random sampling schemes inherit this advantage while taking
much less time to acquire!. QSIPrep provides novel methods for preprocessing these valuable
images and allows users to apply tractography and reconstruction methods previously only
available to shelled sampling schemes. These advances enhance the accessibility of advanced
sampling schemes to the neuroscience community.

Several limitations of the current version of QSIPrep should be noted. First, the software
does not support double diffusion encoding g-space imaging or gradient tensor imaging. These
scanning sequences are not widely used, not currently supported by BIDS, and lack open

preprocessing software and methods. Second, it is critical to note that we do not claim that the
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reconstruction workflows are optimal for any given method, only that they implement current
best practices. Traditionally, the question of optimality in reconstruction and tractography
methods has been difficult to address, in part due to the lack of comparability of measures
produced by different software packages. The interoperability provided by QSIPrep facilitates
the comparison of many measures — including ODFs, anisotropy scalars, and connectivity
matrices — across reconstruction methods and sampling schemes.

Taken together, QSIPrep allows researchers to correctly apply reproducible preprocessing
pipelines and advanced reconstruction methods to nearly any dMRI data. By harnessing cutting-
edge techniques from individual software packages and unifying them in an interoperable
framework, the widely generalizable methods provided by QSIPrep perform as well or better
than existing customized solutions that can only be applied to a subset of sampling schemes. As
such, QSIPrep facilitates the adoption of fully reproducible best practices for the processing,

quality assurance, and reconstruction of diffusion images.
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ONLINE METHODS

The QSIPrep workflow

The preprocessing workflow is dynamically built based on data provided as BIDS input.
Separate dMRI scans can be grouped and processed together depending on their acquisition
parameters and user-supplied options. Image processing can include denoising, head motion,
eddy current and distortion correction, b=0 reference image creation (including an optional
single-subject b=0 template), coregistration to the T1w image, spatial normalization, image

resampling, and gradient rotation. Figure 1’s left panel depicts the sequence of these steps.

Conform, Merge, and Denoise workflow

One of the unique challenges of dMRI preprocessing is that the g-space sampling scheme
is often split into multiple separate scans. Moreover, groups of these scans may be acquired with
opposite phase encoding directions so that their /=0 images can be used for SDC. The heuristic
used by QSIPrep is to divide the scans into “warped groups” that share the same susceptibility

distortions. The warped groups are sent to the conform, merge, and denoise workflow.

All spatial transformation operations in QSIPrep (excluding TOPUP/eddy) are performed
using ANTs'>. ANTs internally uses an LPS+ coordinate system. The FSL-style bvec format
required by BIDS specifies gradient directions with respect to the image axis, not world
coordinates. By conforming all images and bvecs to LPS+ image orientation, ANTSs can be used
directly for registration and transformation on both the images and the gradient vectors. The
conform step enforces this orientation and checks that the images have matching qform/sform

mappings.
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Next, warped groups are denoised (using MP-PCA?2%, Gibbs unringing?’, bias

correction®®, b=0 image-based intensity normalization), and concatenated if multiple runs are
present. This step can be done as concatenate-then-denoise or denoise-then-concatenate (default),
depending on the user’s preference. If images are concatenated before denoising, there will be
more data for MP-PCA to include in its denoising. However, if the concatenated scans are very
far out of alignment with one another, the performance of MP-PCA may be sub-optimal. The
other denoising methods are not affected by when data is concatenated. The user can select the
concatenate-then-denoise order using a command line flag. A visual description of these

workflows is presented in Supplementary Figure 3.

HMC/ECC/SDC workflow

We combined head motion correction, eddy current correction, and susceptibility
distortion into a single workflow due to the interdependence of the TOPUP and eddy tools. This
workflow is split into special cases for shelled sampling schemes (multi-shell or single-shell) and

all other sampling schemes.

Shelled sampling schemes. If a reverse-phase encoding direction image is available in the
fmap/ or dwi/ directories, a fieldmap is calculated using TOPUP and sent to eddy to be
applied in addition to HMC and ECC. In all other cases the fieldmap is calculated using

workflows adapted from fMRIPrep and applied to the motion-corrected output from eddy.


https://doi.org/10.1101/2020.09.04.282269
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.282269; this version posted September 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

16
Cartesian and random sampling schemes. These schemes are processed using the
QSIPrep’s novel SHORELine algorithm™ before being processed using the distortion correction

workflows.

Regardless of the sampling schemes, SDC requires a careful selection of representative
b=0 images from each DWI scan. QSIPrep selects up to three (depending on availability) 5=0
images evenly spaced in time from each group of phase encoding directions. Using a
representative subset of all »=0 images is required to limit the run time of TOPUP. The details

of which images are used for SDC are included in the HTML report.

b=0 template workflow

The reference image for each DWI series is created by extracting the 5=0 images from
the series after HMC, ECC, and SDC. They are combined using a normalized average as
implemented in ANTs and undergo a histogram equalization as implemented in DIPY. A visual

report is generated showing the b=0 template before and after histogram equalization.

Intramodal template workflow

In cases where there are multiple sessions or multiple separate DWI scans that should not
be merged, there will be multiple =0 reference images. Each can be affected by errors in SDC
or intermodal coregistration to the T1w image. QSIPrep provides the option to create an
“intramodal template” using ANTs template construction? on the set of =0 reference images.
The intramodal template is co-registered to the T1w image instead of each individual b=0

reference image. The transform to the intramodal template and as well as the intramodal

T https://gsiprep.readthedocs.io/en/latest/preprocessing.html?#head-motion-estimation-shoreline
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template’s transform to register to the T1w image are added to the stack of transforms that get

combined and applied to each DWI.

Coregistration and resampling workflow

Coregistration between the h=0 template images (or the intramodal =0 template) is
performed using antsRegistration. If the user requests a T1w-based spatial normalization to
a template, this is also performed using the antsRegistration-based workflow from
fMRIPrep. Similar to the HCP Pipelines®® and the ABCD MMPS pipeline!®, QSIPrep uses a rigid
transformation to register the skull-stripped T1w image to AC-PC alignment. Unlike these other
pipelines, QSIPrep combines all spatial transformations so that only a single resampling is ever
performed on the images. The final resampling uses a Lanczos-windowed Sinc interpolation if
the requested output resolution is close to the resolution of the input data. If more than a 10%
increase in spatial resolution is requested, then a BSpline interpolation is performed (as
suggested in the MRtrix3 documentation). The final resampling can at most include the affine
head motion correction, the polynomial eddy current correction, the nonlinear susceptibility
distortion correction, the nonlinear registration to the 5=0 template, the coregistration to the T1w
image, and the realignment to AC/PC orientation. Combining these into a single shot

interpolation helps preserve high frequency spatial features.

QSIPrep reconstruction workflows

QSIPrep’s curated reconstruction workflows apply developer-recommended post-

processing and reconstruction steps, storing the results in both the software-native and DSI
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Studio formats. The pipelines were chosen from the most popular open source diffusion imaging
software packages such that there is at least one workflow for each g-space sampling scheme. A
comparison of pipelines is shown in Table 2 and their implementation details are described
below grouped by software. While the included workflows use fixed parameters, users can

download and edit workflow configuration files to change the workflow’s behavior.

MRtrix3

There are a number of MRtrix3-based workflows that share the same initial steps but
differ in how the FOD estimation is performed. In each MRtrix3-based workflow the fiber
response function is estimated using dwi2response dhollander?! with a brain mask based
on the T1w. The main differences are the MRtrix3 workflows are in 1) the CSD algorithm used
to estimate WM FODs and GM/CSF compartments (either multi-shell multi-tissue CSD, MSMT-
CSD; or single-shell 3-tissue®?2* CSD, SS3T-CSD) and 2) whether a T1w-based tissue
segmentation is used during tractography. In the * _noACT versions of the pipelines no T1w-
based segmentation is used during tractography, which is desirable if no SDC was performed
during preprocessing. Otherwise, cropping is performed at the GM/WM interface along with
backtracking. In all MRtrix3 pipelines, tractography is performed using tckgen, which employs
the iFOD2 probabilistic tracking method to generate 107 streamlines with a maximum length of
250mm, minimum length of 30mm, FOD power of 0.33. Weights for each streamline are
calculated using SIFT2, which is then used to estimate the structural connectivity matrix.

mrtrix_multishell_msmt. This workflow uses the dwi2fod msmt_csd algorithm?' to
estimate FODs for white matter, gray matter and cerebrospinal fluid using multi-shell

acquisitions. The white matter FODs are used for tractography and the T1w segmentation is used
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for anatomical constraints**. mrtrix_multishell_msmt_noACT is identical except that no T1w-
based anatomical constraints are used in tractography. mrtrix_singleshell_ss3t is optimized for
single-shell acquisitions and also estimates multi-tissue FODs for white matter, gray matter and
cerebrospinal fluid using the ss3t_csd_betal (SS3T-CSD) algorithm?*>33, provided via the
MRtrix3Tissue fork of MRtrix3. The white matter FODs are used for tractography and the T1w
segmentation is used for anatomical constraints®**. mrtrix_singleshell_ss3t noACT removes

the anatomical constraints from tractography.

DSI Studio

dsi_studio_gqi runs the standard GQI reconstruction®® followed by deterministic
tractography?®. GQI works on almost any sampling scheme. GQI models the diffusion ODF, so
ODF peaks are much smaller than is commonly seen with CSD. Diffusion ODFs exhibit
relatively small ODF peaks, yet still robustly detect fiber crossings®’. Although GQI technically
works on DTI scans, with spherical sampling on a single-shell around »=1000 s/mm?, its
performance markedly improves when more g-space samples are available. The tractography
performed in this pipeline ensures that 5 million streamlines are created with a maximum length
of 250mm, a minimum length of 30mm, random seeding, a step size of Imm, and an
automatically calculated QA threshold. Additionally, a number of anisotropy scalar images are
produced such as quantitative anisotropy (QA)*, generalized fractional anisotropy (GFA), and

the isotropic component of the ODF.

DIPY
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dipy_mapmri Mean Apparent Propagator MRI (MAPMRI) is a recently proposed
reconstruction method* that can estimate ensemble average diffusion propagators (EAPs) and
ODFs analytically using multi-shell, Cartesian or random g-space sampling schemes. This
method produces EAP-derived scalars like return to origin probability (RTOP), return to axis
probability (RTAP), return to plane probability (RTPP), g-space inverse variance (QIV), and
mean squared displacement (MSD). The ODFs are saved in DSI Studio format and optionally as
spherical harmonics coefficients in the MRtrix3 format. dipy 3dshore. The 3D Simple
Harmonic Oscillator-based Reconstruction and Estimation (3dSHORE)?*® method also uses a
closed-form solution to estimate EAPs and ODFs from g-space data. This workflow uses the
BrainSuite 3dSHORE basis in a DIPY reconstruction. Much like dipy_mapmri, EAP-related
scalars such as RTOP, RTAP, RTPP, and MSD are estimated. For both of these reconstruction

pipelines, tractography is run identically to the dsi_studio_gqi.

Experimental DSI scheme-converting reconstruction

csdsi_3dshore This pipeline is for DSI or compressed-sensing DSI. The first step is an
L2-regularized 3dSHORE reconstruction®* of the ensemble average propagator in each voxel.
These EAPs are then used to 1) calculate ODFs, which are then sent to DSI Studio for
tractography and 2) impute signal for a multi-shell (specifically HCP) sampling scheme, which is
run through the mrtrix_multishell_msmt pipeline. The resampling is similar to a previously-
described GQI-based method* but uses the 3dSHORE basis set to estimate out-of-sample

images.

Structural connectivity matrices
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Tractography resulting in connectivity matrices are conformed to a standard HDF5-based
output format so as to be directly comparable across methods and software packages. A set of
commonly-used parcellation schemes are included with QSIPrep, such as the Schaefer atlases in
the 100, 200, and 400 resolutions, the brainnetome atlas (264 regions), AICHA (384 regions),
Gordon (333 regions), the AAL (116 regions), and the Power atlas (264 regions). Furthermore,

users can easily add their own custom atlases as required.

Evaluation Data

Data were gathered from a number of independent studies from multiple institutions.
These samples were selected to test a variety of g-space sampling schemes and evaluate if
QSIPrep handles each one correctly. An overview of the acquisition parameters is provided in
Table 1. QSIPrep was run on the raw data from each study. Spatial smoothness and neighboring
DWI correlation!” were calculated for the QSIPrep-preprocessed data and for the data processed
using a pipeline specifically designed for that sampling scheme. In the case of non-shelled
schemes, QSIPrep was compared to unprocessed data.

Single-shell DTI. The single shell data was collected as part of the Philadelphia
Neurodevelopmental Cohort (PNC)'® and processed according to the methods described by Roalf
et al.?>. This pipeline is similar to QSIPrep, utilizing eddy (from FSL5) and custom code for
applying distortion correction. The QSIPrep pipeline differs in that it adds MP-PCA, Gibbs
unringing, FSL6, and resampling using ANTs. A total of 111 subjects were randomly selected
from the available PNC dMRI data.

Multi-shell, NODDI-optimized. This sampling scheme was designed with the goal of

fitting microstructural models such as NODDJI’. The data were published Pines ef al.?°, where the
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preprocessing scheme used FSL5’s TOPUP and eddy with outlier replacement enabled. The
QSIPrep pipeline differed in that it added MP-PCA denoising, Gibbs unringing, FSL6, and
resampling using ANTs. We evaluated a sample of 136 participants from the cohort used by
Pines et al..

Multi-shell, ABCD. A total of 106 datasets were downloaded from the NIMH Data
Archive (NDA) repository in their converted-to-NIfTI and minimally preprocessed form. The
ABCD dMRI preprocessing pipeline!® does not use any of the same software as QSIPrep but
performs similar steps. The ABCD pipeline includes gradient nonlinearity correction and uses in-
house code for performing Eddy current and distortion correction. QSIPrep adds MP-PCA,
Gibbs unringing, ECC, and SDC using FSL6 and resampling using ANTs.

Multi-shell HCP-Lifespan. A total of 34 subjects were scanned using the HCP-Lifespan
imaging protocol?! and processed using both the official HCP diffusion pipelines®® (v4.0.0-
alpha.5) and QSIPrep. The HCP diffusion pipeline included motion and eddy current correction,
distortion correction, across-scan intensity normalization, coregistration to the T1w image,
gradient unwarping and image pair averaging. QSIPrep was upgraded as part of 0.9.0betal to
include the image pair averaging so that QC measures could be compared directly between the
QSIPrep and HCP pipeline outputs. QSIPrep was adjusted to use a quadratic first-level model in
eddy to match the HCP diffusion pipeline.

Multi-shell HBN. A total of 27 HBN?? subjects were processed using both an early

prototype version of dMRIPrep (https://github.com/nipy/dmriprep) and QSIPrep. Both
dMRIPrep and QSIPrep use TOPUP and eddy for distortion, eddy current, and motion

correction, but dAMRIPrep did not include Gibbs unringing or MP-PCA.
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Cartesian grid (DSI) schemes. Prior to QSIPrep there was no publicly available software
for applying head motion correction to DSI or CS-DSI acquisitions. Therefore, the QSIPrep-

preprocessed images were compared directly to the NDC calculated on the raw images.

Evaluation Data Analysis

Smoothness comparison: Smoothness was estimated using AFNI’s 3dFWHMx on each
b=0 image from the QSIPrep-preprocessed images and the preprocessed images from the
previously used pipelines. A linear mixed-effects model was used to evaluate the impact of
pipeline on the outcome of image smoothness (FWHM) with subject as a random intercept.
Models were fit separately for each sampling scheme; Bonferroni correction was used to correct
for multiple comparisons. For shelled schemes, comparisons were made versus a previously
published existing pipeline tailored for that sequence. For non-shelled images, due to the lack of
well-documented existing pipelines, QSIPrep was compared to the raw images.

Neighboring DWI Correlation (NDC) comparison: NDC can also be artificially inflated
by interpolation-driven spatial smoothing. Accordingly, we regressed image smoothness
(FWHM) from the NDC values before comparing pipelines. The FWHM-corrected NDC was
modeled as a function of pipeline and subject, where the pipeline was a factor, and the subject
was a random intercept. As for smoothness, models were fit separately for each dataset, and
multiple comparisons were corrected using the Bonferroni method.

Code availability: All data and code used to perform these tests are available at:

https://pennlinc.github.io/gsiprep paper/ (DOI: 10.5281/zenodo.4014341)
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TABLES
Scheme # Max b Voxel Pipeline
Name Scheme . . Size # Scans pel
Category Directions (s/mmz2) (mm) Citation
DTI 64 1000 2 111 25
Muli- 113 3000 1.7 136 20
shell
Multi- 103 3000 1.7 106 19
shell
HCP-Lifespan Multi- 199 3000 15 34 30
shell
o Multi-
HBN shell 129 3000 1.7 27 22
cs-DSI .- Random 55,57,92 5000 17 80 N/A
DSl 258 5000 2.0 150 N/A
DSI 789 DSI 789 5000 2.0 13 N/A

Table 1 | Diffusion imaging data used in QSIPrep development and evaluation. Cartesian
(DSI), random (CS-DSI), and shelled (single-shell DTT and multi-shell) sequences were used to
test the preprocessing and reconstruction workflows in QSIPrep. Sequences varied widely in
their maximum gradient strength (1000-5000s/mm?), number of g-space samples (64-789) and
voxel size (1.5-2.3mm). The row colors represent these schemes across all figures. The colors in
the HCP-Lifespan image indicate that these samples came from different scans, grouped by

phase-encoding direction.
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Name Supported Scalar  Tractography Connectivity
Schemes maps weights
mrtrix_multishell_msmt Multi-shell None Probabilistic MRtrix3
mrtrix_singleshell_ss3t Single-shell None Probabilistic MRtrix3
Multi-shell ISO
dsi_studio_gqi Single-shell GFA Deterministic DSI Studio
Cartesian QA[0-3]
Multi-shell ~ RTOP
dipy_mapmri Cartesian RTAP Both DSI Studio
Random RTPP
MSD QlIV
Multi-shell RTOP
dipy_3dshore Cartesian SHORE Both DSI Studio
Random Coefs
: Cartesian MRtrix3
cdsdi_3dshore Random None Both DS| Studio

Table 2 | Reconstruction workflows included with QSIPrep. Supported reconstruction
workflows in QSIPrep version 0.9.0. Workflow names indicate the main software package used
for the workflow. DSI Studio connectivity Weights include for each region pair: streamline
count, length-normalized streamline count, average along-streamline GFA and mean streamline
length. MRtrix3 connectivity weights include SIFT2-weighted streamline counts (as well as the

inverse node-volume corrected version), streamline count, and mean streamline length.
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FIGURES

Preprocessing

Conform Image and
Gradient Orientation
Ensure that gradient directions and image
P axes are consistent and will be handled correctly.
L

Group by Distortion

Find images with similar distortion, based
on their fieldmmap and phase encoding
direction. Group them for motion correction
and susceptibility distortion correction.

Denoising
Use MP-PCA to non-aggressively denoise
diffusion-weighted images.

Distortion Correction

Most types of fieldmaps are supported, including
Gradient Recall Echo, TOPUP-style references,
real fieldmaps, and fieldmapless (SyN).

Head Motion Correction

Build Subject BO Template
Multiple BO reference images can be used to
build a single unbiased reference image that

all DWI scans will be registered to: great
for longitudinal voxelwise analysis.

Registration and Normalization

Register the BO reference image to the
skull-stripped T1w image. ANTs

Estimate Connectivity

Reconstruction

@ DSI Studio

WaE A

QA-enhanced deterministic tractography - GQI - QBALL - DSI - QSDR

MRtrix3

Global, Probabilistic, Deterministic Tractography - CSD - Multi-shell, Multi-tissue -
Meaningful Streamline Count (SIFT) - Anatomically Constrained Tractography

eddy ) . FSL's eddy and our novel SHORELine method
(FSL) BHORELME can motion correct any sampling scheme LIAPYIRY o S IElaTOlRIE -
(DS, DTI, Multi-Shell, etc). RTOP - RTAP - RTPP -

QlV - MSD

Structural Connectome Estimation

Atlases:
Schaefer17 (100, 200, 400) - AAL
Schaefer7 (100, 200, 400) - Gordon333 -
Brainnetome - Aicha

Metrics:
(SIFT) Streamline Count - Average GFA -
: Average QA - Streamline Length -
ROI Size-Corrected

S]EWI0- JBAUOD

registration to MNI used for derivatives.

Fig 1 | QSIPrep workflows. QSIPrep includes preprocessing (left column) and reconstruction
(right column) workflows. BIDS data enters the workflow at the top left, following the blue
arrow sequentially through the possible steps. The outputs from the preprocessing pipeline are
inputs for the reconstruction workflows, which includes reconstruction methods from MRtrix3,
DSI Studio, and DIPY. Gray arrows labeled “Estimate Connectivity” indicate that connectivity

matrices can be estimated from all 3 software packages. Gray arrows labeled “Convert Formats”
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indicate that a reconstruction from one software package can be converted to be used in the
destination software for further processing (e.g., DIPY reconstructions can be used for

tractography in MRtrix3).
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Fig. 2 | QSIPrep improves image quality without additional smoothing. For shelled

schemes, image smoothness (FWHM) and data quality (neighboring DWI correlation; NDC)
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produced by QSIPrep were compared to previously published pipelines tailored for each
acquisition scheme (see Table 1). QSIPrep introduced less blurring than published pipelines
(panel A) in all cases except MultiShell 113 (where QSIPrep was slightly smoother) and HBN
(where no difference was seen; see statistical results in Supplementary Table 1). Notably,
QSIPrep yielded images with higher data quality than all pipelines evaluated, with the exception
of the HCP-lifespan data, where no difference was present (panel B, see statistical results in
Supplementary Table 2). For non-shelled schemes, as comparisons with existing pipelines
were not available, QSIPrep was compared to raw data. As expected, compared to the raw data,
non-shelled schemes were smoother after processing with QSIPrep (panel C; see statistical
results in Supplementary Table 3). However, these differences were small (AFWHM <
0.5mm), especially when compared to the larger differences seen between existing pipelines
developed for shelled schemes (i.e., AFWHM up to ~1.5mm in panel A; also see
Supplementary Figure 3 for analogous comparisons to raw data for shelled schemes). NDC
QC scores were significantly improved for data processed with QSIPrep than the raw data for all

non-shelled schemes (panel D; see statistical results in Supplementary Table 4).
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Single Fiber Crossing Fibers
MT-CSD MAPL MT-CSD

Single Fiber

ABCD

Crossing Fibers

DSI (258)
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Fig 3 | QSIPrep reconstruction workflows produce comparable output across diverse
sampling schemes and reconstruction methods. Four sampling schemes each reconstructed
using four methods: GQI from DSI Studio, multi-tissue CSD from MRtrix, and MAPL from
Dipy. ODF fields are shown in two white matter regions (left), a single fiber area in the corpus
callosum (top) and a crossing fiber region in the centrum semiovale (bottom). The middle panel
shows ODFs reconstructed in the single fiber region, and the right panel shows ODFs
reconstructed in the crossing fiber region for the four sampling schemes (rows) and the three
reconstruction methods (columns). The ability to run multi-tissue CSD on DSI data is a unique

feature of QSIPrep.
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