

1 *Research Manuscript*

2

3 **Alpha-1-antitrypsin and its variant-dependent role in COVID-19 pathogenesis**

4

5 Christian S Stevens^{1#}, Kasopefoluwa Y Oguntuyo^{1#}, Shreyas Kowdle¹, Luca Brambilla¹,
6 Griffin Haas¹, Aditya Gowlikar¹, Mohammed NA Siddiquey², Robert M Schilke², Matthew
7 D Woolard², Hongbo Zhang², Joshua A Acklin¹, Satoshi Ikegami¹, Chuan-Tien Huang¹,
8 Jean K Lim¹, Robert W Cross³, Thomas W Geisbert³, Stanimir S Ivanov², Jeremy P
9 Kamil², the Alpha-1 Foundation⁴, and Benhur Lee¹

10

11 **Affiliations:**

12

13

14

15

16

17

18

1. Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
2. Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA 71103
3. Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
4. The Alpha-1 Foundation, University of Florida, Coral Gables, FL 33134

19

20 #These authors contributed equally to this work.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302</

Research Manuscript

24 data and wrote the original drafts of the paper. BL reviewed the draft, supported data
25 analysis, and provided invaluable direction throughout the conceptualization and
26 execution of the project. All authors had the opportunity to review the manuscript prior to
27 submission and JAA, SI, JKL, RWC, TWG, SSI, JPK provided valuable feedback during
28 the editing process.

29

30 *Research Manuscript*

31 **30 ABSTRACT**

32

33 **Rationale:** SARS-CoV-2 entry into host cells is facilitated by endogenous and
34 exogenous proteases that proteolytically activate the spike glycoprotein and
35 antiproteases inhibiting this process. Understanding the key actors in viral entry is
36 crucial for advancing knowledge of virus tropism, pathogenesis, and potential
therapeutic targets.

37

38 **Objectives:** We aimed to investigate the role of naïve serum and alpha-1-antitrypsin
39 (AAT) in inhibiting protease-mediated SARS-CoV-2 entry and explore the implications of
40 AAT deficiency on susceptibility to different SARS-CoV-2 variants.

41

42 **Findings:** Our study demonstrates that naïve serum exhibits significant inhibition of
43 SARS-CoV-2 entry, with AAT identified as the major serum protease inhibitor potently
44 restricting entry. Using pseudoparticles, replication-competent pseudoviruses, and
45 authentic SARS-CoV-2, we show that AAT inhibition occurs at low concentrations
46 compared with those in serum and bronchoalveolar tissues, suggesting physiological
47 relevance. Furthermore, sera from subjects with an AAT-deficient genotype show
48 reduced ability to inhibit entry of both Wuhan-Hu-1 (WT) and B.1.617.2 (Delta) but
49 exhibit no difference in inhibiting B.1.1.529 (Omicron) entry.

50

51 **Conclusions:** AAT may have a variant-dependent therapeutic potential against SARS-
52 CoV-2. Our findings highlight the importance of further investigating the complex

Research Manuscript

53 interplay between proteases, antiproteases, and spike glycoprotein activation in SARS-
54 CoV-2 and other respiratory viruses to identify potential therapeutic targets and improve
55 understanding of disease pathogenesis.

56

57

58 **KEYWORDS:** COVID-19, SARS-CoV-2, alpha-1-antitrypsin, SERPINA1, alpha-2-
59 macroglobulin, TMPRSS2, proteolytic activation, variants of concern, Omicron, Delta

Research Manuscript

60 **INTRODUCTION**

61 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent
62 of coronavirus disease 2019 (COVID-19), depends on the complex interplay between
63 the virus and host for cellular entry (1–3). Understanding the various steps and factors
64 involved in viral entry is vital to our ability to successfully model the process, identify
65 potential therapeutics, and even predict genetic risk factors. For SARS-CoV-2, this
66 process is mediated by the spike glycoprotein (S). Entry involves not only the simple
67 binding interaction between spike and the entry receptor ACE2, but also the delicate
68 balance of proteases and antiproteases that contribute to proteolytic activation and
69 facilitate viral fusion (4–8). SARS-CoV-2 S undergoes two sequential proteolytic
70 activation steps: first it is cleaved at the S1/S2 polybasic site, and second it is then
71 cleaved at S2' revealing the fusion peptide (9).

72

73 A variety of proteases are implicated in the proteolytic activation of SARS-CoV-2
74 including furin-like proteases, cathepsins, trypsin, neutrophil elastase, and TMPRSS2
75 (1, 9–16). This intricate process enables the virus to enter and fuse either at the plasma
76 membrane or within endosomes, engaging different proteases and pathways at each
77 stage. The complexities of viral entry for SARS-CoV-2 are particularly important to
78 understand, as they can be context-dependent, influenced by factors such as local
79 tissue-specific protease and antiprotease milieu, host genotype that impact these
80 milieux, and virus variants that alter susceptibility to cognate protease activation. As an
81 example of the way these relationships can develop and change over time, increasingly
82 efficient proteolytic processing and cell fusion were driving factors in the selective

Research Manuscript

83 pressure that gave rise to new variants in the first half of the pandemic. New SARS-
84 CoV-2 variants displayed more enhanced cell fusogenicity and proteolytic efficiency
85 relative to earlier strains, starting with the first dominant spike mutation, D614G. Alpha
86 and Beta both showed significantly increased fusogenicity and Delta even more so
87 relative to them (17–21). However, this pattern ended with the rise of the Omicron
88 sublineages as they rely predominantly on endosomal-mediated entry and have
89 significantly reduced fusogenicity (22–26).

90

91 Virus-specific mutations are not the only determinant of viral entry and pathogenicity, as
92 various host genotypes can affect virus-host interactions. SNPs in TMPRSS2 and ACE2
93 for example have been associated with differential COVID-19 risk and/or severity (27–
94 31). Extensive research has been conducted better elucidate the determinants of
95 SARS-CoV-2 pathogenicity. In this study, we investigated the cause of an unexpected
96 inhibition of viral entry by serum samples from patients not previously exposed to
97 SARS-CoV-2. We identify the likely causative factor and discuss its potential role within
98 a complex system where proteases, antiproteases, host genomics, and viral genomics
99 interact and influence each other.

100

101 *Research Manuscript*

102 **RESULTS**

103 **Serum inhibition of protease-mediated entry of SARS-CoV-2 pseudoparticles and**
104 **live virus**

105 SARS-CoV-2 entry is efficiently mediated by a host of endogenous, exogenous, and cell
106 surface proteases. Assays investigating viral entry and entry inhibition should faithfully
107 recapitulate proteolytic activation (Figure 1A) for optimal physiological relevance. Using
108 VSV Δ G pseudotyped particles bearing SARS-CoV-2 spike (CoV2pp) we have shown
109 that we can optimize entry efficiency by treatment with exogenous trypsin and followed
110 by treatment with soybean trypsin inhibitor to limit cytotoxicity (32). We tested our
111 trypsin-treated CoV2pp for validity using human serum samples, careful to only using
112 pre-pandemic samples as negative controls (Supplementary Figure 1A-B) (32). As
113 anticipated, sera from SARS-CoV-2 antibody-positive patients exhibit significantly
114 stronger neutralization compared to seronegative sera (Figure 1B-C and Supplementary
115 Figure 1C-F).

116
117 Unexpectedly, we found that sera from SARS-CoV-2 naïve patients were also capable
118 of neutralizing these pseudoviruses despite negative Spike ELISA results
119 (Supplementary Figure 1A). An external group at Louisiana State University Health
120 Shreveport (LSUHS) confirmed these findings using the same CoV2pp assay and
121 experimental conditions (Figure 1C and Supplementary Figure 1B, C-F). In both groups,
122 SARS-CoV-2 naïve sera inhibited CoV2pp entry by 90-97% (Supplementary Figure 1E,
123 F). However, seropositive patient sera exhibited inhibition orders of magnitude beyond

Research Manuscript

124 this threshold, suggesting antibody mediated inhibition of CoV2pp entry (Figure 1C and
125 Supplementary Figure 1C-F). Additionally, using identical serum samples as LSUHS,
126 collaborators at the University of Texas Medical Branch at Galveston (UTMB) also
127 observed significant neutralization of authentic SARS-CoV-2 by seronegative sera, as
128 assayed by a plaque reduction neutralization assay (PRNT) (Fig. 1E and Supplemental
129 Fig. 1G).

130

131 During the validation and optimization our CoV2pp system, we described that this
132 inhibition was abolished by heat-inactivation at 56°C for 1hr (32). Here we show a
133 schematic representing entry inhibition by naïve sera from our previously published
134 findings and replicated by other published SARS-CoV-2 neutralization assays using
135 proteolytic activation without sufficient heat inactivation (33–35) (Figure 1B). These
136 findings imply the existence of a heat-labile serum factor or factors capable of inhibiting
137 protease-mediated entry of SARS-CoV-2.

138

139 **A serum factor capable of inhibiting protease-mediated entry**

140 Upon observing and verifying our results, we identified alpha-1-antitrypsin (AAT) and
141 alpha-2-macroglobulin (A2M) as abundant and heat labile products in serum that may
142 be responsible for inhibition of protease-mediated entry (36–39). These blood products
143 are typically present in human serum at high concentrations—1.1-2.2 mg/mL for AAT
144 and 2-4 mg/mL for A2M—and have been described to inhibit both exogenous and
145 endogenous proteases (40). A2M and AAT alone are responsible for approximately
146 10% and 90% of serum antiprotease capacity, respectively (41).

Research Manuscript

147

148 In spite of the name, the primary physiological target of AAT is neutrophil elastase (NE),
149 a protease released by neutrophils and found at high concentrations during acute
150 inflammation, especially in the context of acute respiratory distress syndrome (ARDS)
151 secondary to COVID-19 (42–44). In order to lend weight to the AAT hypothesis, we
152 therefore investigated whether NE, like trypsin or TMPRSS2, was also capable of
153 enhancing CoV2pp entry. We found that NE potently enhances cellular entry relative to
154 untreated particles (Figure 2A), further underlying the potential role of AAT in inhibiting
155 protease-mediated entry *in vivo*.

156

157 To assess whether AAT and/or A2M alone could inhibit protease-mediated CoV2pp
158 entry, we treated with each at the time of infection and observed dose-dependent entry
159 inhibition by both AAT and A2M, with IC50s of 14.47 μ g/mL and 54.20 μ g/mL,
160 respectively (Figure 2B), values that are 50-100-fold below their concentration in serum
161 and bronchoalveolar lavage (BAL) (36, 40, 45). Importantly, neither protein inhibited
162 VSV-Gpp, replicating the inhibitory effect of naïve serum (Figure 2C). Albumin, the most
163 abundant protein in blood, showed no significant reduction of entry of either CoV2pp or
164 VSV-Gpp (Figure 2B), underscoring that the inhibitory effects of AAT and A2M on
165 CoV2-S mediated entry was specific.

166

167 While these findings suggest that AAT—and to a lesser extent A2M—can inhibit
168 exogenous proteases known to enhance SARS-CoV-2 entry, SARS-CoV-2 infection is
169 also mediated by proteases at the cell surface as well as endosomal proteases (Figure

Research Manuscript

170 **1A).** TMPRSS2 and cathepsin L are well-characterized examples of cell surface and
171 endosomal proteases, respectively. AAT and A2M are secreted extracellular proteins
172 that can access the former but likely not the latter. Therefore, we sought to investigate
173 whether either protein could inhibit TMPRSS2-mediated SARS-CoV-2 entry. We first
174 showed that saturating amounts of nafamostat mesylate, a specific inhibitor of
175 TMPRSS2, maximally inhibited ~80% of CoV2pp entry in 293T-ACE2/TMPRSS2 cells
176 (**Figure 3A**) but had no effect on isogenic 293T-ACE2 cells (**Figure 3B**). This is
177 consistent with the use of endosomal proteases such as Cathepsin L in the absence of
178 TMPRSS2 or other exogenous proteases. Soluble Spike receptor binding domain
179 (sRBD) completely abolished CoV2pp entry in both cell lines confirming that entry was
180 still entirely ACE2-dependent (**Figure 3A-B**).

181
182 To examine inhibition of TMPRSS2-mediated entry by AAT and A2M, we infected both
183 cell lines with non-protease-treated CoV2pp. We observed that AAT inhibited CoV2pp
184 entry into 293T-ACE/TMPRSS2 cells, but not 293T-ACE2 cells (**Figure 3C, D**). A2M and
185 albumin both displayed no entry inhibition at the concentrations tested. AAT inhibition of
186 entry into the 293T ACE2-TMPRSS2 cells resulted in approximately a 70% drop in
187 relative infection (**Figure 3C**). This finding indicates that AAT inhibition accounts for
188 much of the entry attributed to TMPRSS2 enhancement, given that the use of
189 nafamostat mesylate resulted in a maximal inhibition of 80% in the 293T ACE2-
190 TMPRSS2 cells (**Figure 3A**). This observation suggests that AAT plays a significant role
191 in inhibiting TMPRSS2-mediated entry even at concentrations far below those seen in
192 serum and bronchioalveolar lavage (BAL) (1.1 – 2.2 milligrams/ml) (36, 40, 45).

Research Manuscript

193

194 In summary, our findings provide evidence that AAT, and to a lesser extent A2M, can
195 inhibit protease-mediated entry of SARS-CoV-2 in a cell culture model. AAT
196 demonstrated the ability to inhibit not only exogenous proteases like trypsin but also cell
197 surface protease TMPRSS2, which plays a crucial role in SARS-CoV-2 entry. These
198 results highlight the potential role of these serum factors in modulating viral entry *in*
199 *vivo*.

200

201 **AAT inhibits protease-mediated entry of authentic SARS-CoV-2**

202 To test whether these findings held for authentic SARS-CoV-2, we infected 293T-ACE2
203 cells and treated them with elastase, trypsin, or a cathepsin inhibitor (E64). We
204 measured the fraction of cells infected with SARS-CoV-2 at 6, 12, 24, and 36 hours
205 post-infection. Consistent with our CoV2pp observations, both elastase and trypsin
206 significantly enhanced entry, while E64 inhibited infection as expected, by inhibiting the
207 cathepsin-mediated pathway utilized when exogenous proteases and TMPRSS2 are
208 absent (Figure 4A).

209

210 Next, we performed serial dilutions of AAT in the presence of trypsin- and elastase-
211 treated SARS-CoV-2 at 24 hours post-infection (Figure 4B,C). We observed a dose-
212 dependent inhibition of protease-mediated entry, with potent inhibition at concentrations
213 far below those present in serum and bronchoalveolar lavage fluid. These results are
214 consistent with those obtained using the CoV2pp system, further demonstrating that
215 AAT can inhibit protease-mediated entry of live SARS-CoV-2.

Research Manuscript

216

217 In conclusion, our experiments with authentic SARS-CoV-2 validate the findings
218 obtained using the CoV2pp system, showing that AAT can effectively inhibit protease-
219 mediated entry of the virus. This highlights the potential physiological relevance of AAT
220 in modulating SARS-CoV-2 infection.

221

222 **Serum-inhibition of rVSVCoV2 entry is reduced in subjects with AAT deficient
223 genotypes**

224 Recognizing AATs potential as an inhibitor of protease-mediated entry enhancement,
225 we aimed to better elucidate the potential physiological relevance of these findings to
226 individuals of various AAT genotypes. AAT levels in serum varies across individuals and
227 are determined by co-dominant alleles in the SERPINA1 gene. The four genotypes
228 investigated here are designated as PI*MM, PI*MS, PI*MZ, and PI*ZZ. Typically, PI*MM
229 individuals have normal AAT levels, while PI*MS and PI*MZ individuals have varying
230 amounts that range from near to sub-normal AAT levels. PI*ZZ individuals are
231 considered AAT deficient (AATD) (Figure 5A).

232

233 To better elucidate the physiological implications our findings we obtained pre-2020
234 serum samples from individuals with these four major AAT genotypes and tested their
235 ability to inhibit SARS-CoV-2 Spike-mediated entry. We used replication-competent
236 VSV containing Spike in place of G (rVSV-CoV-2-S) to model SARS-CoV-2 entry. We
237 first infected Vero cells with trypsin-treated WT rVSV-CoV-2-S in the presence of
238 serially diluted serum from the indicated genotypes (Fig. 5B and Supplemental Figure

Research Manuscript

239 2A). At 12 hours post-infection, we observed elevated GFP expression at higher serum
240 concentrations for PI*ZZ samples compared to PI*MM, PI*MS, and PI*MZ samples
241 (Figure 5B and Supplemental Figure 2A). This suggests that the most severe AATD
242 genotypes have reduced serum inhibitory potential against protease-mediated entry of
243 WT SARS-CoV-2 Spike, but this reduction is not observed for heterozygotes of the Z
244 and S alleles.

245

246 During the SARS-CoV-2 pandemic, several viral lineages have emerged and become
247 dominant. While many similarities exist between all variants of concern (VOCs), some
248 show distinct differences, particularly in viral entry and proteolytic processing of Spike
249 (4, 22, 25). Therefore, we investigated whether the effects of AAT would remain
250 consistent across all SARS-CoV-2 VOCs.

251

252 Using our rVSV-CoV-2-S system, we compared entry of isogenic viruses differing only
253 in Spike to model entry by different SARS-CoV-2 VOCs (1). The pattern observed for
254 WT rVSV-CoV-2-S was also seen with Delta rVSV-CoV-2-S containing the Spike
255 protein from B.1.617.2. This VOC became dominant in mid to late 2021, and AATD sera
256 were still less able to inhibit protease-mediated entry (Figure 5C).

257

258 Finally, we examined Omicron rVSV-CoV2 containing the Spike protein from B.1.1.529.
259 The Omicron lineage became dominant in 2022 and has remained the dominant lineage
260 since (46), overtaking Delta as the primary VOC in circulation. Notably, Omicron has
261 been shown to undergo less enhancement of entry by proteolytic activation of Spike

Research Manuscript

262 (22, 25). Using Omicron rVSV-CoV2, we observed no significant difference in inhibitory
263 potential between PI*ZZ and other AAT genotypes (Figure 5D), unlike what we observe
264 for Delta and WT (Figure 5B,C). These data suggest that AAT, and consequently AATD,
265 may have less impact on protease-mediated entry for the Omicron variant compared to
266 WT and Delta variants.

267

268

Research Manuscript

269 **DISCUSSION**

270

271 In this study, we identify alpha-1 antitrypsin as the primary inhibitor of protease-
272 mediated entry of SARS-CoV-2 in naïve serum. We demonstrated that AAT effectively
273 inhibits entry mediated by trypsin, elastase, or TMPRSS2. Furthermore, we found that
274 serum from individuals with at least one functional AAT allele (PI*MM, PI*MS, PI*MZ)
275 can inhibit protease-mediated entry by both WT and Delta SARS-CoV-2. Notably,
276 serum from subjects homozygous for AATD alleles (PI*ZZ) exhibited reduced ability to
277 inhibit WT and Delta entry. However, genotype-dependent inhibition of entry was not
278 observed for the Omicron variant, as all serum samples—regardless of subject
279 genotype—displayed similar inhibitory potential. This finding highlights the potential for
280 AAT's role to vary depending on the entry mechanisms predominantly relied on by the
281 virus.

282

283 Approximately 116 million individuals worldwide carry AATD alleles—PI*S or PI*Z—and
284 3.4 million people are homozygous for AATD—PI*SS, PI*SZ, and PI*ZZ (47). In the
285 early stages of the COVID-19 pandemic, studies reported correlations between mortality
286 rates and the geographic distribution of AAT deficiency (48–50). More recent
287 retrospective analyses indicate that heterozygotes for AATD alleles (e.g. PI*MS, PI*MZ)
288 do not appear to face an increased risk of severe COVID-19 (51). This observation
289 aligns with our findings regarding the inhibitory potential of PI*MM, PI*MS, and PI*MZ
290 sera. Unfortunately, determining a clear increased risk of COVID-19 severity for PI*ZZ
291 patients remains elusive, as large-scale population studies have not yet included a

Research Manuscript

292 sufficient number of these individuals (52–54). Moreover, disentangling the confounding
293 influence of patients' awareness of their AATD status presents a challenge. In Germany,
294 survey data from March 2021 revealed that individuals diagnosed with AATD were more
295 concerned with being infected, more likely to restrict their social groups in response,
296 and saw a 65% drop in the percent who had been infected relative to the general
297 population (55).

298

299 An additional contributing factor in elucidating the risk associated the alpha-1 antitrypsin
300 deficiency is the emergence of the Omicron lineage of SARS-CoV-2, which is less
301 dependent on the protease-mediated entry pathway for efficient infection (25). As
302 Omicron has become the dominant variant, it has affected the potential risk factors for
303 more severe COVID-19. New variants may alter the role of AAT in disease severity,
304 leading to a different risk profile for individuals with AATD. The COVID-AATD Study
305 from Spain, involving over 2000 patients, showed that both AATD mutations and AAT
306 serum concentration below 116 mg/dl were associated with severe COVID-19 (56). One
307 limitation of this study might be that it was conducted from 1 May 2021 to 1 September
308 2022, and Omicron (BA.1) overtook Delta as the dominant strain in Spain around 3
309 January 2022 (57). If AATs antiprotease activity is playing a significant role in their
310 findings of increased risk of COVID-19 severity, separating subjects by estimated date
311 of infection may uncover whether the relationship is lessened after January 2022.

312

313 AAT has been predominantly described in the SARS-CoV-2 literature for its role as an
314 acute phase protein in modulating the host immune response (58). AAT plays a critical

Research Manuscript

315 part in modulating inflammation by inhibiting elastase and other factors (59–62). It is
316 involved in the formation of neutrophil extracellular traps (NETs) in acute pneumonia
317 and can modulate activities resulting in downstream IL-6 inhibition, which is heavily
318 implicated in COVID-19 pathogenicity (41–44, 63). In particular, the IL-6:AAT ratio is
319 highly correlated with COVID-19 severity (64). AAT is also noted for its regulatory role in
320 the coagulation cascade which may have relevance in preventing COVID-19
321 thromboses (43, 65–67). Previous works have also noted the importance of AAT's
322 ability to inhibit TMPRSS2 (68). Our study further elucidates the antiprotease role of
323 AAT and suggests that the presence or absence of functional AAT could influence the
324 efficiency of viral entry in other respiratory pathogens.

325

326 Patients diagnosed with AATD can receive supplementation through an FDA approved
327 medication: either IV or aerosolized AAT. Four clinical trials for use of AAT in the
328 context of COVID-19 have been registered. One never proceeded beyond recruitment
329 (NCT04385836), one was completed but has not published results (NCT04495101),
330 and one was stopped for futility (NCT04547140). One focused on treating with AAT
331 following a diagnosis of Acute Respiratory Distress Syndrome (ARDS) and saw
332 moderate effects, mostly on modulating inflammation (EudraCT 2020-001391-15) (69).
333 AAT as a treatment for proteolytically activated respiratory viruses shows promise as
334 both an immune modulator as well as a protease-inhibitor and would be well served by
335 clinical trials investigating treatment of a larger patient population as well as treatment in
336 the earlier stages of infection.

337

Research Manuscript

338 Despite the modest results seen in clinical trials of AAT supplementation, the clinical
339 implications of these findings for patients with an AAT deficiency are significant. Typical
340 clinical guidance is that AATD patients are only at increased risk of respiratory
341 infections secondary to chronic obstructive pulmonary disease, not primarily due to the
342 lack of functional AAT except in the case of immune dysregulation (70, 71). Our work
343 suggests this may miss the AATs role as an inhibitor of serine proteases and how that
344 might affect respiratory pathogens reliant on proteolytic activation. For example, not
345 only is TMPRSS2 known to be an important protease for proteolytic activation of the
346 surface glycoprotein hemagglutinin in H1, H3, H7, and H10 influenza A viruses (IAV)
347 (72, 73) but AAT specifically has been shown to inhibit protease-mediated entry of
348 H3N2 IAV and influenza B virus (72). Additionally, multiple studies have implicated AAT
349 in HIV entry as well (62, 74, 75). AAT's role in viral entry may be specific to the reliance
350 on proteolytic processing at or outside the cell. We show that in the case of SARS-CoV-
351 2, new variants may alter that role, leading to a different risk profile for individuals with
352 AATD. It is crucial to continue investigating the relationship between AAT and new
353 variants to better understand the evolving landscape of risk factors for COVID-19.
354 Furthermore, our findings suggest that it may be worthwhile to invest more into
355 investigating the role of AAT in other respiratory viruses mediated by serine proteases
356 (76, 77). A better understanding of the interplay between AAT and these viruses could
357 help identify potential therapeutic targets, improve patient outcomes, and affect clinical
358 guidance for AATD patients in relation to other respiratory pathogens.

359

Research Manuscript

360 In conclusion, our study highlights the critical role of AAT in inhibiting protease-mediated
361 entry of SARS-CoV-2 and its potential implications for treatment, especially in patients
362 with AAT deficiency. As the COVID-19 pandemic evolves with the emergence of new
363 variants, understanding the role of AAT in the context of these variants is crucial for
364 assessing the shifting risk profiles of individuals with AATD. Our findings also suggest
365 that AAT may play a role in the pathogenesis of other respiratory viruses mediated by
366 serine proteases, opening avenues for future research into the therapeutic potential of
367 AAT in treating these infections. Investigating the role of AAT in other respiratory
368 viruses could lead to the identification of potential therapeutic targets, improved patient
369 outcomes, and updated clinical guidance for AATD patients in relation to other
370 respiratory pathogens. Lastly, further investigation is needed to expand our
371 understanding of AAT's clinical implications, including the efficacy of AAT
372 supplementation for treating respiratory infections and determining the risk factors for
373 AATD patients in the context of COVID-19 and other respiratory illnesses. By deepening
374 our understanding of AAT's role in viral pathogenicity and its potential as a therapeutic
375 target, we can better inform clinical practice and contribute to improved public health
376 outcomes.

Research Manuscript

377 **METHODS**

378 Maintenance and generation of isogenic cell lines:

379 Vero-CCL81, BHK-21, Bsr-T7 (78), 293T, 293T ACE2, and 293T ACE2-TMPRSS2 cells
380 were cultured in DMEM with 10% heat inactivated FBS at 37°C in the presence of 5%
381 CO₂. Isogenic 293T ACE2, and 293T ACE2-TMPRSS2 cell clones were generated by
382 lentivirus transduction to stably express ACE2 only or ACE2 and TMPRSS2. ACE2
383 expression was under puromycin selection and TMPRSS2 was under blasticidin
384 selection as previously described (32).

385

386 Production of VSVΔG pseudotyped particles and neutralization studies:

387 Detailed protocols for the production and use of standardized VSVpp (CoV2pp and
388 VSV-Gpp) are given in Oguntuyo and Stevens et al (32). Briefly, 293T producer cells
389 were transfected to express the viral surface glycoprotein of interest, infected with
390 VSVΔG-rLuc-G* reporter virus, then virus supernatant collected and clarified 2 days
391 post infection prior to use. Trypsin-treated CoV2pp were treated as previously described
392 (32). All pseudotyped viruses were aliquoted prior to storage at -80°C and tittered prior
393 to usage for neutralization experiments. Neutralization experiments were performed by
394 diluting the appropriate pseudotyped virus with a 4-fold serial dilution of Albumin
395 (Sigma-Aldrich, A8763), alpha-1-antitrypsin (Sigma-Aldrich, SRP6312), alpha-2-
396 macroglobulin (Sigma-Aldrich, SRP6314) or Nafamostat mesylate (Selleckchem,
397 S1386). SARS-CoV-2 soluble RBD (sRBD) with human IgG-Fc was produced using a
398 recombinant Sendai virus expression platform further described below. All infections

Research Manuscript

399 were processed for detection of Renilla luciferase activity at 20hrs post-infection, and
400 luminescence was read on the Cytaion3 (BioTek).

401

402 SARS-CoV-2 plaque reduction neutralization titration (PRNT) by sera:

403 Neutralization experiments with live virus were performed by incubating sera with 50-
404 100 PFU of SARS-CoV-2, isolate USA-WA1/2020 P4, for one hour at 37°C. All sera
405 were diluted in serum free DMEM. Serial dilutions started at a four-fold dilution and went
406 through seven three-fold serial dilutions. The virus-serum mixture was then used to
407 inoculate Vero E6 cells for one hour at 37°C and 5% CO₂. Cells were overlaid with
408 EMEM medium (no FBS) and 1.25% Avicel, incubated for 3 days, and plaques were
409 counted after staining with 1% crystal violet in formalin.

410

411 SARS-CoV-2 infection of 293T-ACE2 cells and protease treatment:

412 SARS-CoV-2 isolate USA-WA1/2020 (NR-52281) was provided by the Center for
413 Disease Control and Prevention and obtained through BEI Resources, NIAID, NIH.
414 1x10⁶ 293T cells stably transduced to express ACE2 were plated in a 6 well dish and
415 infected at an MOI of 0.01 for the time period indicated. Just before infection, virus was
416 treated with alpha-1-antitrypsin (Sigma-Aldrich, SRP6312) at the concentration noted,
417 elastase from human leukocytes (Sigma-Aldrich, E8140) at 0.167 mg/mL, TPCK-treated
418 trypsin (Sigma-Aldrich, T1426-1G) at 50 µg/mL, or E-64 (Sigma-Aldrich, E3132) at 100
419 µM. Cells were harvested into 4% PFA and were allowed to fix for 30 minutes prior to
420 staining for flow cytometry. Infection was determined with mouse anti-SARS-CoV
421 nucleoprotein antibody, directly conjugated to Alexa Fluor 594. Samples were collected

Research Manuscript

422 on through an Attune NxT Flow Cytometer and data was analyzed using FlowJo
423 software (v10.6.2). All SARS-CoV-2 work was performed in the CDC and USDA-
424 approved BSL-3 facility at the Icahn School of Medicine at Mount Sinai in accordance
425 with institutional biosafety requirements.

426

427 Production of Replication competent VSVΔG with SARS-CoV-2 Spike Variants and
428 Neutralization Studies:

429 VSV-eGFP was cloned into the pEMC vector containing an optimized T7 promotor and
430 hammerhead ribozyme. Original VSV-eGFP sequence was from pVSV-eGFP; a gift
431 from Dr. John Rose (79). pEMC-VSV-eGFP-CoV2 Spike was cloned as follows: human
432 codon optimized SARS-CoV-2 Spike variants with the 21 amino acid truncation of the
433 cytoplasmic tail were inserted into the VSV-G open reading frame (80) (rVSV-CoV2).
434 The Spike transcriptional unit is flanked by MluI and Pael restriction sites. Expression
435 plasmids containing VSV N, P, M, G, and L open reading frames were each cloned into
436 a pCI vector backbone to allow for efficient virus rescue, generating pCI-VSV-N, pCI-
437 VSV-P, pCI-VSV-M, pCI-VSV-G, and pCI-VSV-L.

438

439 rVSV-CoV2 was rescued in 4×10^5 293T ACE2-TMPRSS2 or BHK-21 ACE2 cells (32) in
440 each well of a 6-well plate. 2000 ng of pEMC-VSV-EGFP-CoV2 spike, 2500 ng of
441 pCAGGS-T7opt (81), 850 ng of pCI-VSV-N, 400 ng of pCI-VSV-P, 100 ug of pCI-VSV-
442 M, 100 ng of pCI-VSV-G, 100 ng of pCI-VSV-L were mixed with 4 ml of Plus reagent
443 and 6.6 ml of Lipofectamine LTX (Invitrogen). 30 minutes later, the transfection mixture
444 was applied to 293T ACE2-TMPRSS2 cells dropwise. Cells were maintained with

Research Manuscript

445 medium replacement every day for 4-5 days until GFP positive syncytia appeared.
446 Rescued viruses were amplified in VeroCCL81 TMPRSS2 cells (32), harvested after 6
447 days, stored at -80C. For titration, 5×10^4 293T ACE2-TMPRSS2 cells were seeded onto
448 each well of a 96-well plate and 24 hours later were infected with serially diluted rVSV-
449 CoV2 stock. Virus titer (IU/mL) was calculated 10 hours later by counting GFP positive
450 cells on the Celigo imaging cytometer (Nexcelom).

451

452 Human Sera Samples:

453 All patient sera were acquired after approval by the respective institutional review
454 boards (IRBs) and/or equivalent oversight bodies (Bioethics Committee, Independent
455 Ethics Committee), as follows: (i) the Mount Sinai Hospital IRB (New York, NY, USA),
456 (ii) the Louisiana State University Health Sciences Center—Shreveport (LSUHS, LA,
457 USA), and (iii) the Alpha-1 Foundation (University of Florida, Coral Gables, FL, USA).
458 Samples were deidentified at the source institutions or by the respective principal
459 investigators (PIs) of the IRB-approved protocols for sample collection before analyses
460 performed in this study. All necessary patient/participant consent has been obtained,
461 and the appropriate institutional forms have been archived. Specifically, SERPINA1
462 genotyped sera samples collected before 2019 were obtained from the Alpha-1
463 Foundation.

464

465 Enzyme-Linked Immunosorbent Assay:

466 Spike ELISAs for patient sera from the Krammer lab were performed in a clinical setting
467 using the two-step protocol previously published (32, 82). Briefly, this involves screening

Research Manuscript

468 patient sera (at a 1:50 dilution) with the sRBD; samples determined to be positive were
469 further screened at 5 dilutions for reactivity to the spike ectodomain. Background was
470 subtracted from the OD values, samples were determined to be positive if their ODs
471 were ≥ 3 -fold over that of the negative control, and the AUC was calculated in PRISM.
472 ELISAs performed by the LSUHS group utilized the sRBD with a 1:50 dilution of patient
473 serum to screen all samples, followed by use of the spike ectodomain with patient sera
474 at a 1:100 dilution. Background-subtracted OD values are reported for both sets of
475 ELISAs.

476

477 Production of Soluble SARS-CoV-2 Spike Receptor Binding Domain (sRBD):
478 Sendai virus (SeV) Z strain (AB855655.1) was cloned into a pRS vector backbone with
479 an additional eGFP transcriptional unit upstream of N. The F transcriptional unit was
480 derived from the SeV Fushimi strain (KY295909.1). We then generated an additional
481 transcriptional unit between the P gene and M gene. SARS-CoV-2 Spike receptor
482 binding domain (sRBD), amino acids 319-541, was taken from human codon optimized
483 Spike (MN908947) in a pCAGGS backbone, a gift from Dr. Florian Krammer (82), and
484 was fused to human IgG1 Fc (amino acids 220-449 of P0DOX5.2) at the C-terminus
485 (SeV-Z-eGFP-sRBD).

486

487 2×10^5 Bsr-T7 cells, stably expressing T7-polymerase, were seeded in a 6-well plate. 24
488 hours later 4 μ g of pRS-SeV-Z-eGFP-sRBD, 4 μ g of pCAGGS-T7opt, 1.44 μ g of SeV-N,
489 0.77 μ g of SeV-P, 0.07 μ g of SeV-L were mixed with 5.5 μ l of Plus reagent and 8.9 μ l of
490 Lipofectamine LTX (Invitrogen). 30 minutes later, the transfection mixture was applied to

Research Manuscript

491 Bsr-T7 cells dropwise. Medium was replaced with DMEM + 0.2 µg /ml of TPCK-trypsin
492 (Millipore Sigma, #T1426) at one day post transfection, followed by media replacement
493 every day until infection reached confluence. Supernatant was stored at -80C.

494

495 Amplification was performed by seeding 5×10^6 cells in a T175cm²-flask one day before
496 infection. Cells were infected by SeV-Z-eGFP-sRBD at an MOI of 0.01 for one hour,
497 followed by a media replacement with 0.2 mg/ml of TPCK-trypsin-containing DMEM.
498 Cells were maintained with medium replacement by the same every day until infection
499 reached confluence. At maximal infection the medium was changed and replaced with
500 plain DMEM. Cells were incubated for additional 24 hours to allow for maximum protein
501 production. Supernatant was collected and centrifuged at 360 g for 5 minutes, then
502 filtered with 0.1 µm filter (Corning 500 mL Vacuum Filter/Storage Bottle System, 0.1 µm
503 Pore). The flow-through was then applied to a Protein G Sepharose (Millipore Sigma,
504 #GE17-0618-01) containing column (5ml polypropylene columns; ThermoFisher,
505 #29922), followed by wash and elution.

506

507 Statistics and reproducibility:

508 All statistical tests were performed using GraphPad Prism 9 software (La Jolla, CA).
509 For all figures, error bars represent standard deviation of the mean. Sample size and
510 replicates for each experiment are indicated in the figure legends. Technical replicates
511 were prepared in parallel within one experiment, and experimental replicates were
512 performed on separate days. Statistical comparisons as noted in figure legends.

513

Research Manuscript

514 **ACKNOWLEDGMENTS**

515 The authors acknowledge the following funding: KYO and CS were supported by Viral-
516 Host Pathogenesis Training Grant T32 AI07647; KYO was additionally supported
517 by F31 AI154739. BL acknowledges flexible funding support from NIH grants R01
518 AI123449, R21 AI1498033, and the Department of Microbiology and the Ward-Coleman
519 estate for endowing the Ward-Coleman Chairs at the ISMMS. JPK and SSI
520 acknowledge funding from a LSUHS COVID-19 intramural grant. JPK and SSI
521 acknowledge additional funding from NIH grants AI116851 and AI143839, respectively.

522 Figures created with BioRender.com. We thank Randy A. Albrecht for oversight of the
523 conventional BSL3 biocontainment facility. We would also like to acknowledge the
524 Alpha-1 Foundation and the University of Florida which kindly provided serum samples
525 from SERPINA1-genotyped patients. BL wishes to dedicate this paper to Ernest L
526 Robles-Levroney, the first graduate student BL had the privilege to train. Ernie Robles-
527 Levroney was dedicated teacher, role model and trailblazer who passed away
528 unexpectedly during the course of writing this manuscript.

529

530 *Research Manuscript*

530 **FIGURES**

531

532 **Figure 1. Overview of SARS-CoV-2 entry and inhibition of trypsin treated CoV2pp**

533 **entry by COVID-19 seronegative sera. (A)** Overview of SARS-CoV-2 entry. Two

534 modes of entry are displayed: 1) Entry mediated by endosomal proteases such as

535 Cathepsin B/L (late entry) and 2) protease-mediated entry (early entry), driven by cell-

536 surface proteases like TMPRSS2 and extracellular proteases such as trypsin and

537 elastase. Protease-mediated entry may be inhibited by the presence of antiproteases.

538 This model was created in Biorender. **(B)** A representative schematic of entry inhibition

539 of trypsin-treated SARS-CoV-2 pseudotyped particles (CoV2pp) by sera from COVID-19

540 recovered or naïve individuals (COVID sero (+) and COVID sero (-) sera, respectively).

541 This is a representation of results previously presented in supplemental Figure 3A of

542 Oguntuyo and Stevens et al, mBio 2021, as well as Figure 5B of Nie et al, 2020. Here,

543 sera samples were incubated with trypsin-treated CoV2pp prior to infection of Vero-

544 CCL81 cells. Grey lines represent seronegative sera and purple lines are COVID-19

545 seropositive sera. The dashed lines are samples that were heat inactivated (HI) prior to

546 use. **(C)** Seronegative and seropositive samples were first identified based on IgG

547 antibodies against Spike (Supplemental Figure 1B). Normalized infection data at the

548 highest and lowest dilutions tested are shown as % maximal infection (media only) with

549 results from seronegative plotted on log scale. Data points represent the mean of

550 neutralizations performed in quadruplicate with SEM bars, each line indicating a sample

551 from a unique donor. Maximal sera inhibition was compared using Welch's t test. **(D)**

552 SARS-CoV-2 seronegative sera do not inhibit VSV-Gpp. Four serum samples were

Research Manuscript

553 analyzed each in technical triplicate, means with SEM error bars shown. **(E)** Authentic
554 SARS-CoV-2 is modestly inhibited by seronegative sera. Sera samples also presented
555 in Supplementary Figure 1E were utilized for plaque reduction neutralization
556 experiments (PRNT) with live virus. Presented here are the mean of one experiment
557 done in technical duplicates with SEM error bars. Maximal sera inhibition was compared
558 using Welch's t test. (ns, not significant; **, p < 0.01; ***, p < 0.005, and ****, p <
559 0.0001).

560

561 **Figure 2. CoV2pp is enhanced by elastase treatment and alpha-1-antitrypsin**
562 **(AAT) and alpha-2-macroglobulin (A2M) inhibit trypsin-mediated enhancement of**
563 **CoV2pp entry. (A)** Treatment of both CoV2pp and VSV-Gpp with elastase in serum-
564 free media. All points are means with SEM bars for samples performed in technical
565 triplicate. Red dotted line marks normalized maximal infection level (100%). **(B)** AAT
566 and A2M inhibit trypsin-mediated enhancement of CoV2pp. Trypsin-treated
567 pseudoparticles were diluted in serum free media, then used to infect Vero-CCL81 cells
568 in the presence of the indicated concentrations of albumin, AAT, or A2M. Data are from
569 two independent experiments and are presented as percent relative infection where
570 each concentration was normalized to the lowest concentration of the test reagent used.
571 **(C)** Performed identical to (B), AAT, A2M, and albumin have no effect on VSV-Gpp
572 entry.

573

574

Research Manuscript

575 **Figure 3. Alpha-1-antitrypsin (AAT) inhibits TMPRSS2 mediated enhancement of**
576 **CoV2pp entry. (A,B)** CoV2pp were mixed with a serial dilution of either Nafamostat or
577 sRBD prior to infection of isogenic cells stably expressing (A) ACE2 and TMPRSS2 or
578 (B) ACE2. (C) AAT inhibits TMPRSS2-mediated enhancement of CoV2pp entry.
579 CoV2pp not treated with trypsin were diluted in DMEM+10% FBS and utilized to infect
580 293T-ACE2+TMPRSS2 clonal in the presence of the indicated concentrations of A2M,
581 AAT, or Albumin. (D) CoV2pp, treated exactly as in (C), were used to infect a 293T-
582 ACE2 clonal cell line. Presented here are the results of an experiment done in technical
583 triplicates. Error bars show SEM and data were fit using variable slope, 4-parameter
584 logistics regression curve (robust fitting method). Significance calculated using a
585 Welch's T Test on the Area Under the Curve for each condition. (ns, not significant; **, p
586 < 0.01; ***, p < 0.005, and ****, p < 0.0001).

587
588 **Figure 4. Alpha-1-antitrypsin (AAT) inhibits protease-mediated enhancement of**
589 **authentic SARS-CoV-2 entry. (A)** Authentic SARS-CoV-2 entry in 293T-ACE2 clonal
590 cells over 36 hours under treatment of elastase, trypsin, E64, or untreated. Significance
591 calculated using a Welch's T Test on the Area Under the Curve for each condition. (B)
592 Authentic SARS-CoV-2 entry in 293T-ACE2 cells mediated by trypsin, treated by
593 increasing concentrations of AAT, collected at 0, 12, 24, or 36 hours post-infection. (C)
594 Authentic SARS-CoV-2 entry in 293T-ACE2 cells mediated by elastase, treated by
595 increasing concentrations of AAT. Data points are means +/- SEM from a representative
596 experiment performed in triplicate. (ns, not significant; **, p < 0.01; ***, p < 0.005, and
597 ****, p < 0.0001).

598
599
600 **Research Manuscript**

601 598

602 599

603 **Figure 5. rVSV-CoV2 entry inhibition by serum from subjects with variable AAT**
604 **genotypes. (A)** Expected range of concentrations of AAT in serum relative to AAT
605 genotype (data from Lopes et al (83)). **(B)** WT rVSV-CoV2 entry inhibition by serum
606 from 4 PI*MM subjects, 2 PI*MS subjects, 2 PI*MZ subjects, and 4 PI*ZZ subjects
607 performed in technical triplicate. Subject serum samples are identical for all data shown
608 across all variants. Boxes span 25-75th percentiles and median is noted. Whiskers span
609 minimum to maximum. **(C)** Delta rVSV-CoV2 entry inhibition by serum as described in
610 3B except only 2 PI*MM and 2 PI*ZZ subjects are shown. **(D)** Omicron rVSV-CoV2
611 entry inhibition by serum as described in 3B. All data shown performed in technical
612 triplicate. All rVSV-CoV-2 is trypsin-treated. Significance calculated using Welch's t test
613 (ns, not significant; **, p < 0.01; ***, p < 0.005, and ****, p < 0.0001).

614 611

615 **Supplemental Figure 1. Spike ELISA data and neutralization curves.** Spike
616 ectodomain ELISAs for **(A)** ISMMS or **(B)** LSUHS samples. Four seronegative and
617 seropositive samples were utilized. Shown are the OD490 values from the 1:100 sera
618 dilution with the median and interquartile range. **(C)** Seronegative and seropositive
619 samples were first identified based on IgG antibodies against Spike (Supplemental
620 Figure 1A). Normalized infection data at the highest and lowest dilutions tested are
621 shown as % maximal infection (media only) with results from seronegative plotted on
622 log scale. Data points represent the mean of neutralizations performed in quadruplicate
623 with SEM bars, each line indicating a sample from a unique donor. Maximal sera

Research Manuscript

621 inhibition was compared using Welch's t test. **(D)** Sera inhibition comparison against
622 VSV-Gpp for 4 sera samples collected at ISMMS. Sera inhibition comparisons for **(E)**
623 ISMMS or **(F)** LSUHS. Inhibition of trypsin treated CoV2pp entry by SARS-CoV-2
624 seropositive and seronegative sera independently observed. Collaborators in a different
625 state independently performed the identical experiment described in Fig. 1A with their
626 own cohort of seropositive and seronegative samples. Data shown are means from
627 technical quadruplicates/sample/dilution. Experiment performed and presented as in
628 Fig. 1C. **(G)** Live SARS-CoV-2 is inhibited by seropositive and seronegative sera. Sera
629 samples presented in Fig. 1C and (F) above were utilized for plaque reduction
630 neutralization experiments (PRNT) with live virus as described in the materials and
631 methods. Presented here are the mean of one experiment done in technical duplicates
632 and error bars show SEM. (ns, not significant; **, p < 0.01; ***, p < 0.005, and ****, p <
633 0.0001).

634

635 **Supplemental Figure 2.** Individual curves of rVSV-CoV2 entry inhibition by serum from
636 subjects with variable AAT genotypes in spike variants: **(A)** WT (Wuhan-Hu-1) and **(B)**
637 Omicron (B.1.1.529). Error bars show SEM and data were fit using variable slope, 4-
638 parameter logistics regression curve (robust fitting method). **(C)** Estimation plots for
639 area under the curve shown for PI*MM compared to PI*ZZ in WT rVSV-CoV2 and **(D)**
640 PI*MM compared to PI*ZZ in Omicron rVSV-CoV2. Significance calculated using a
641 Welch's t test on the Area Under the Curve for each condition. (ns, not significant; **, p
642 < 0.01; ***, p < 0.005, and ****, p < 0.0001).

643

Research Manuscript

644 **REFERENCES**

645 1. Stevens CS, Oguntuyo KY, Lee B. Proteases and variants: context matters for SARS-CoV-2

646 entry assays. *Curr. Opin. Virol.* 2021;50:49–58.

647 2. Hoffmann M et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked

648 by a Clinically Proven Protease Inhibitor. *Cell* 2020;181(2):271-280.e8.

649 3. Zhu N et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N. Engl. J.*

650 *Med.* 2020;382(8):727–733.

651 4. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for

652 SARS-CoV-2 and other lineage B betacoronaviruses. *Nat. Microbiol.* 2020;5(4):562–569.

653 5. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion

654 mechanism offers a potential target for antiviral development. *Antiviral Res.*

655 2020;178(March):104792.

656 6. Wrapp D et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

657 *Science* 2020;367(6483):1260–1263.

658 7. Zhu FC et al. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes

659 at the cutting edge of antiviral research. *J. Virol.* 2020;395(2):379–397.

660 8. Shang J et al. Cell entry mechanisms of SARS-CoV-2. *Proc. Natl. Acad. Sci.*

661 2020;117(21):11727–11734.

662 9. Tang T et al. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential

663 Role of Proteases beyond Furin. *ACS Infect. Dis.* 2021;7(2):264–272.

Research Manuscript

664 10. Bhattacharyya C et al. SARS-CoV-2 mutation 614G creates an elastase cleavage site
665 enhancing its spread in high AAT-deficient regions. *Infect. Genet. Evol.* 2021;90:104760.

666 11. Belouzard S, Madu I, Whittaker GR. Elastase-mediated Activation of the Severe Acute
667 Respiratory Syndrome Coronavirus Spike Protein at Discrete Sites within the S2 Domain. *J.*
668 *Biol. Chem.* 2010;285(30):22758–22763.

669 12. Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine
670 proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. *J. Biol.*
671 *Chem.* 2021;296:100135.

672 13. Bollavaram K et al. Multiple sites on SARS-CoV-2 spike protein are susceptible to
673 proteolysis by cathepsins B, K, L, S, and V. *Protein Sci.* 2021;30(6):1131–1143.

674 14. B C et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like
675 cleavage site absent in CoV of the same clade [Internet]. *Antiviral Res.* 2020;176.
676 doi:10.1016/j.antiviral.2020.104742

677 15. G P et al. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection
678 and cell-cell fusion [Internet]. *PLoS Pathog.* 2021;17(1). doi:10.1371/journal.ppat.1009246

679 16. Peacock TP et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for
680 transmission in ferrets. *Nat. Microbiol.* 2021;6(7):899–909.

681 17. Mlcochova P et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.
682 *Nature* 2021;599(7883):114–119.

Research Manuscript

683 18. Gobeil SM-C et al. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances
684 Protease Cleavage at the S1/S2 Junction. *Cell Rep.* 2021;34(2):108630.

685 19. Lubinski B et al. Spike Protein Cleavage-Activation in the Context of the SARS-CoV-2
686 P681R Mutation: an Analysis from Its First Appearance in Lineage A.23.1 Identified in Uganda.
687 *Microbiol. Spectr.* 2022;10(4):e01514-22.

688 20. Plante JA et al. Spike mutation D614G alters SARS-CoV-2 fitness. *Nature*
689 2021;592(7852):116–121.

690 21. Rajah MM et al. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-
691 mediated syncytia formation. *EMBO J.* 2021;40(24):e108944.

692 22. Zhao H et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion
693 activity when compared with Delta variant in TMPRSS2-expressed cells. *Emerg. Microbes*
694 *Infect.* 2022;11(1):277–283.

695 23. Hui KPY et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex
696 vivo. *Nature* 2022;603(7902):715–720.

697 24. Meng B et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and
698 fusogenicity. *Nature* 2022;603(7902):706–714.

699 25. Willett BJ et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell
700 entry pathway. *Nat. Microbiol.* 2022;7(8):1161–1179.

Research Manuscript

701 26. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of
702 SARS-CoV-2: A comparative computational study of spike protein. *J. Med. Virol.*
703 2022;94(4):1641–1649.

704 27. Paniri A, Hosseini MM, Akhavan-Niaki H. First comprehensive computational analysis of
705 functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different
706 populations. *J. Biomol. Struct. Dyn.* 2021;39(10):3576–3593.

707 28. Jeon S et al. Regional TMPRSS2 V197M Allele Frequencies Are Correlated with COVID-19
708 Case Fatality Rates. *Mol. Cells* 2021;44(9):680–687.

709 29. Monticelli M et al. Protective Role of a TMPRSS2 Variant on Severe COVID-19 Outcome in
710 Young Males and Elderly Women. *Genes* 2021;12(4):596.

711 30. Li J et al. Polymorphisms and mutations of ACE2 and TMPRSS2 genes are associated with
712 COVID-19: a systematic review. *Eur. J. Med. Res.* 2022;27(1):26.

713 31. Schulert GS, Blum SA, Cron RQ. Host genetics of pediatric SARS-CoV-2 COVID-19 and
714 multisystem inflammatory syndrome in children. *Curr. Opin. Pediatr.* 2021;33(6):549.

715 32. Oguntuyo KY et al. Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a
716 Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19
717 Sera. *mBio* 2021;12(1):e02492-20.

718 33. Nie J et al. Establishment and validation of a pseudovirus neutralization assay for SARS-
719 CoV-2. *Emerg. Microbes Infect.* 2020;9(1):680–686.

Research Manuscript

720 34. Cruz-Cardenas JA et al. A pseudovirus-based platform to measure neutralizing antibodies in
721 Mexico using SARS-CoV-2 as proof-of-concept. *Sci. Rep.* 2022;12(1):17966.

722 35. Lam JH et al. Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable
723 SARS-CoV-2 Spike Protein Subunit Vaccine. *ACS Nano* 2021;15(10):15754–15770.

724 36. Rehman AA, Ahsan H, Khan FH. Alpha-2-macroglobulin: A physiological guardian. *J. Cell.*
725 *Physiol.* 2013;228(8):1665–1675.

726 37. Blanco I. *Alpha-1 Antitrypsin Biology [Internet]*. Elsevier Inc.; 2017:

727 38. Bornhorst JA, Greene DN, Ashwood ER, Grenache DG. α 1-Antitrypsin phenotypes and
728 associated serum protein concentrations in a large clinical population. *Chest* 2013;143(4):1000–
729 1008.

730 39. Sriram Vemuri, C. Tony Yu and NR. Formulation and Stability of Recombinant Alpha-1-
731 Antitrypsin [Internet]. In: Wang YJ, Pearlman R eds. *Stability and Characterization of Protein*
732 *and Peptide Drugs*. Boston, MA: Springer US; 1993:263–285

733 40. Strnad P, McElvaney NG, Lomas DA. Alpha 1 -Antitrypsin Deficiency. *N. Engl. J. Med.*
734 2020;382(15):1443–1455.

735 41. de Serres F, Blanco I. Role of alpha-1 antitrypsin in human health and disease. *J. Intern.*
736 *Med.* 2014;276(4):311–335.

737 42. Mohamed MMA, El-Shimy IA, Hadi MA. Neutrophil Elastase Inhibitors: A potential
738 prophylactic treatment option for SARS-CoV-2-induced respiratory complications?. *Crit. Care*
739 2020;24(1):311.

Research Manuscript

740 43. Middleton EA et al. Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis
741 in COVID-19 Acute Respiratory Distress Syndrome [Internet]. *Blood* [published online ahead of
742 print: June 29, 2020]; doi:10.1182/blood.2020007008

743 44. Barnes BJ et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps
744 [Internet]. *J. Exp. Med.* 2020;217(6). doi:10.1084/jem.20200652

745 45. Olsen GN, Harris JO, Castle JR, Waldman RH, Karmgard HJ. Alpha-1-antitrypsin content in
746 the serum, alveolar macrophages, and alveolar lavage fluid of smoking and nonsmoking normal
747 subjects.. *J. Clin. Invest.* 1975;55(2):427–430.

748 46. Kirsebom FCM et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in
749 England. *Lancet Infect. Dis.* 2022;22(7):931–933.

750 47. Greene CM et al. α 1-Antitrypsin deficiency. *Nat. Rev. Dis. Primer* 2016;2(1):1–17.

751 48. Yoshikura H. Epidemiological correlation between COVID-19 epidemic and prevalence of
752 α -1 antitrypsin deficiency in the world. *Glob. Health Med.* 2021;3(2):73–81.

753 49. Shapira G, Shomron N, Gurwitz D. Ethnic differences in alpha-1 antitrypsin deficiency allele
754 frequencies may partially explain national differences in COVID-19 fatality rates. *FASEB J.*
755 2020;34(11):14160–14165.

756 50. Vianello A et al. Correlation between α 1-Antitrypsin Deficiency and SARS-CoV-2 Infection:
757 Epidemiological Data and Pathogenetic Hypotheses. *J. Clin. Med.* 2021;10(19):4493.

758 51. Nygren D et al. Low Prevalence of Mild Alpha-1-Antitrypsin Deficiency in Hospitalized
759 COVID-19-Patients. *Int. J. Gen. Med.* 2022;Volume 15:5843–5848.

Research Manuscript

760 52. Faria N, Costa MI, Gomes J, Sucena M. Alpha-1 antitrypsin deficiency severity and the risk
761 of COVID-19: A Portuguese cohort [Internet]. *Respir. Med.* 2021;181.
762 doi:10.1016/j.rmed.2021.106387

763 53. Rodríguez-García C et al. Is SARS-CoV-2 associated with alpha-1 antitrypsin deficiency?
764 [Internet]. *J. Thorac. Dis.* 2023;15(2). doi:10.21037/jtd-22-1062

765 54. Schneider CV, Strnad P. SARS-CoV-2 infection in alpha1-antitrypsin deficiency [Internet].
766 *Respir. Med.* 2021;184. doi:10.1016/j.rmed.2021.106466

767 55. Köhnlein T, Wilkens M, Eydt K. Auswirkungen der COVID-19-Pandemie auf das
768 Informationsmanagement und die Therapieadhärenz von substituierten Patienten mit Alpha-1-
769 Antitrypsin-Mangel (AATM). *Pneumologie* 2022;76(07):494–498.

770 56. Rodríguez Hermosa JL et al. Severe COVID-19 Illness and α 1-Antitrypsin Deficiency:
771 COVID-AATD Study. *Biomedicines* 2023;11(2):516.

772 57. SARS-CoV-2 sequences by variant [Internet]. *Our World Data*
773 <https://ourworldindata.org/grapher/covid-variants-bar>. cited April 1, 2023

774 58. de Loyola MB et al. Alpha-1-antitrypsin: A possible host protective factor against Covid-19.
775 *Rev. Med. Virol.* 2021;31(2):e2157.

776 59. Zhou Z et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19
777 Patients. *Cell Host Microbe* 2020;27(6):883-890.e2.

Research Manuscript

778 60. Lucas C et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19

779 [Internet]. *Nature* [published online ahead of print: July 27, 2020]; doi:10.1038/s41586-020-

780 2588-y

781 61. Liao M et al. Single-cell landscape of bronchoalveolar immune cells in patients with

782 COVID-19. *Nat. Med.* 2020;26(6):842–844.

783 62. Bryan CL et al. HIV infection is associated with reduced serum alpha-1-antitrypsin

784 concentrations. *Clin. Investig. Med. Med. Clin. Exp.* 2010;33(6):E384-389.

785 63. Grifoni E et al. Interleukin-6 as prognosticator in patients with COVID-19 [Internet]. *J.*

786 *Infect.* [published online ahead of print: June 2020]; doi:10.1016/j.jinf.2020.06.008

787 64. McElvaney OJ et al. Characterization of the Inflammatory Response to Severe COVID-19

788 Illness. *Am. J. Respir. Crit. Care Med.* 2020;202(6):812–821.

789 65. Janciauskiene S, Welte T. Well-Known and Less Well-Known Functions of Alpha-1

790 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease

791 Developments. *Ann. Am. Thorac. Soc.* 2016;13(Supplement_4):S280–S288.

792 66. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and

793 coagulation. *Lancet Respir. Med.* 2020;8(6):e46–e47.

794 67. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients:

795 COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past [Internet]. *J. Clin. Virol.*

796 2020;127. doi:10.1016/j.jcv.2020.104362

Research Manuscript

797 68. Azouz NP et al. Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease

798 *TMPRSS2. Pathog. Immun.* 2021;6(1):55–74.

799 69. McElvaney OJ et al. A randomized, double-blind, placebo-controlled trial of intravenous

800 alpha-1 antitrypsin for ARDS secondary to COVID-19. *Med* 2022;3(4):233-248.e6.

801 70. Meseeha M, Attia M. Alpha 1 Antitrypsin Deficiency [Internet]. In: *StatPearls*. Treasure

802 Island (FL): StatPearls Publishing; 2023:

803 71. Black L, Kueppers F. alpha1-Antitrypsin deficiency in nonsmokers.. *Am. Rev. Respir. Dis.*

804 1978;117(3):421–428.

805 72. Harbig A et al. Transcriptome profiling and protease inhibition experiments identify

806 proteases that activate H3N2 influenza A and influenza B viruses in murine airways. *J. Biol.*

807 *Chem.* 2020;295(33):11388–11407.

808 73. Böttcher-Friebertshäuser E et al. Cleavage of Influenza Virus Hemagglutinin by Airway

809 Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease

810 Inhibitors. *J. Virol.* 2010;84(11):5605–5614.

811 74. Potthoff AV, Münch J, Kirchhoff F, Brockmeyer NH. HIV infection in a patient with alpha-1

812 antitrypsin deficiency: a detrimental combination?. *AIDS Lond. Engl.* 2007;21(15):2115–2116.

813 75. Zhou X et al. Alpha-1-antitrypsin interacts with gp41 to block HIV-1 entry into CD4+ T

814 lymphocytes. *BMC Microbiol.* 2016;16(1):172.

815 76. Peitsch C, Klenk H-D, Garten W, Böttcher-Friebertshäuser E. Activation of Influenza A

816 Viruses by Host Proteases from Swine Airway Epithelium. *J. Virol.* 2014;88(1):282–291.

Research Manuscript

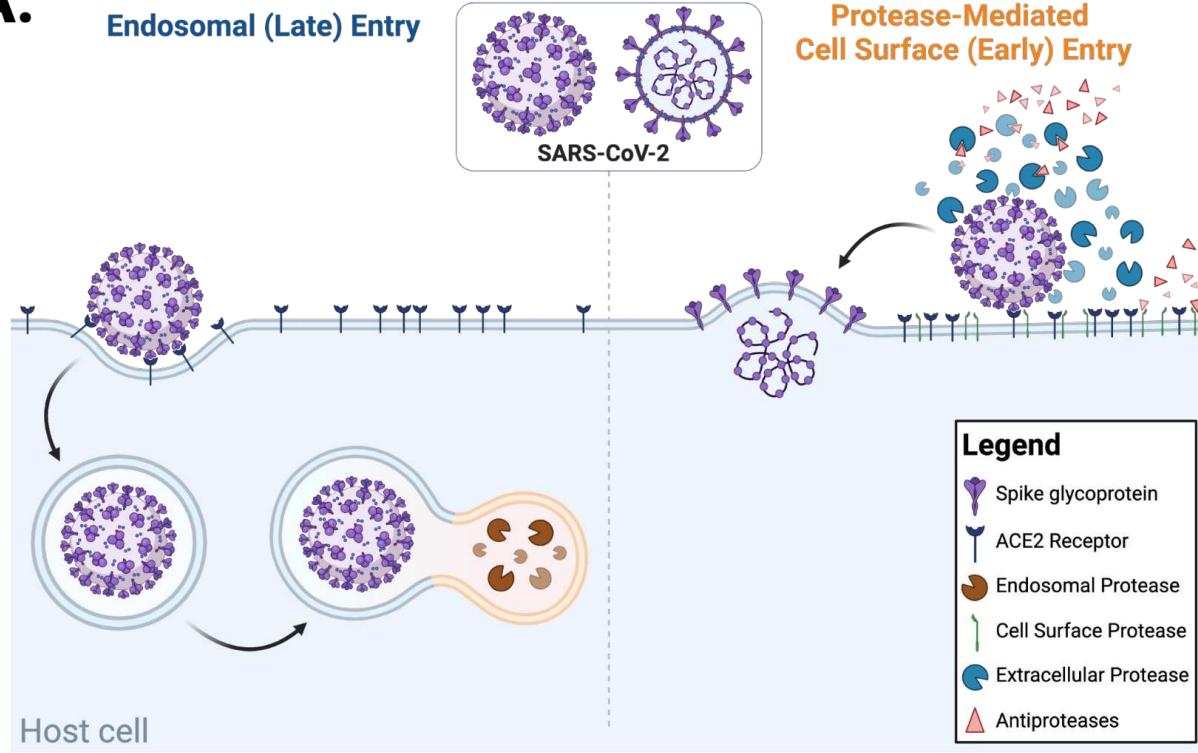
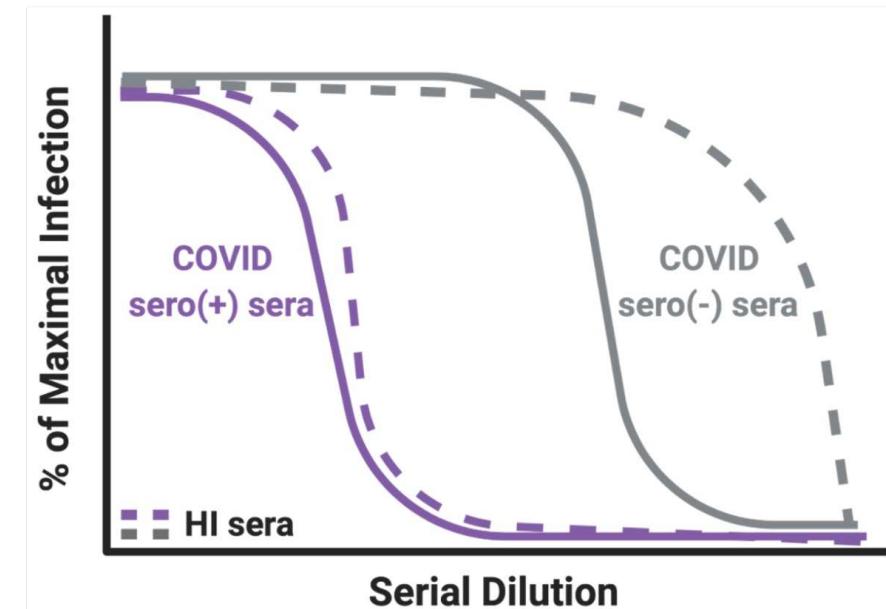
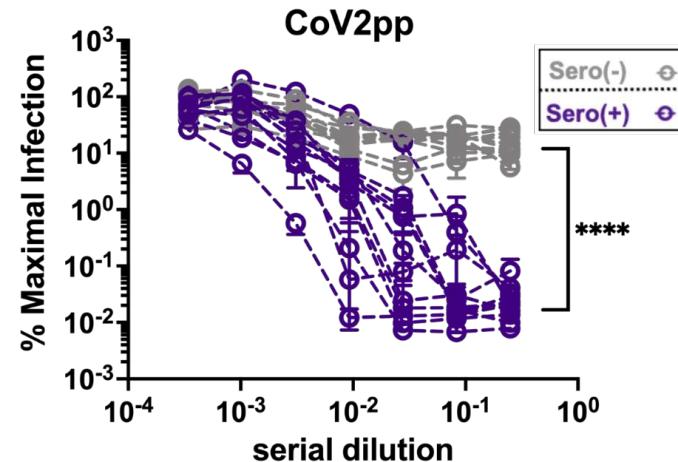
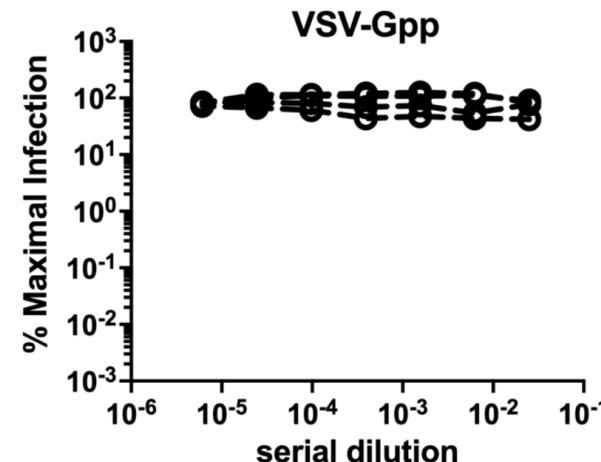
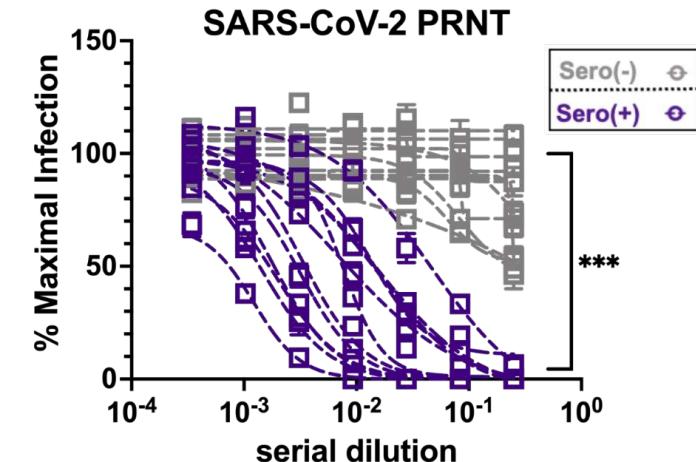
817 77. Hatesuer B et al. Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice.
818 *PLOS Pathog.* 2013;9(12):e1003774.

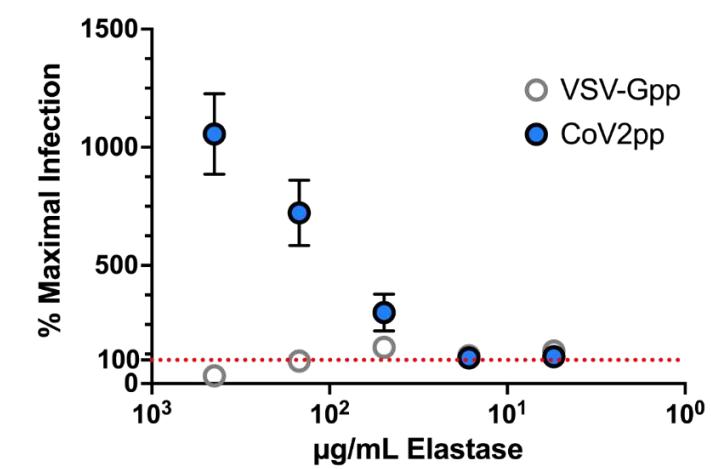
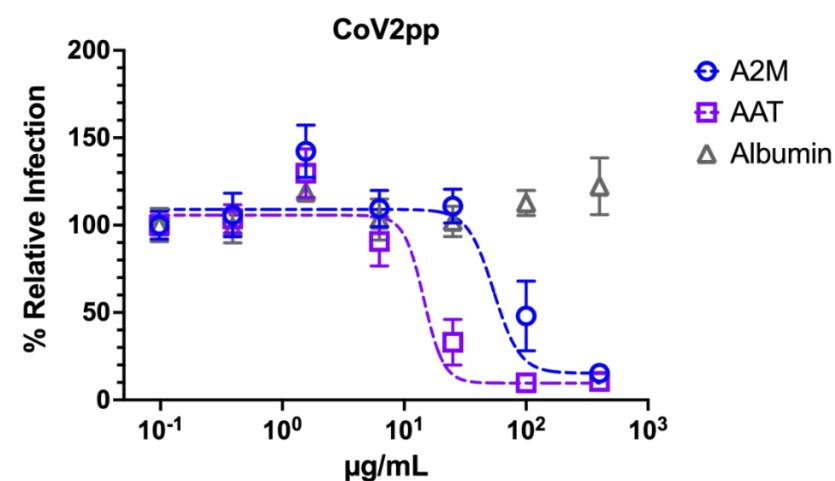
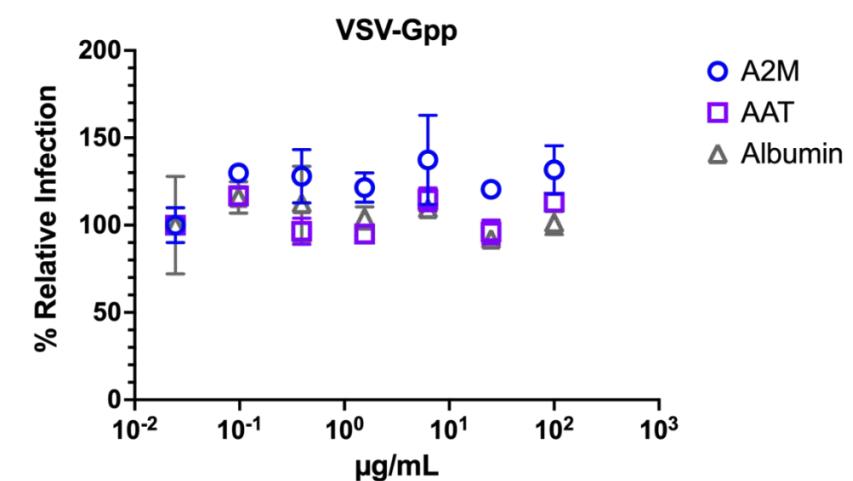
819 78. Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus
820 (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the
821 human RSV leader region acts as a functional BRSV genome promoter. *J. Virol.*
822 1999;73(1):251–259.

823 79. Ramsburg E et al. A Vesicular Stomatitis Virus Recombinant Expressing Granulocyte-
824 Macrophage Colony-Stimulating Factor Induces Enhanced T-Cell Responses and Is Highly
825 Attenuated for Replication in Animals. *J. Virol.* 2005;79(24):15043–15053.

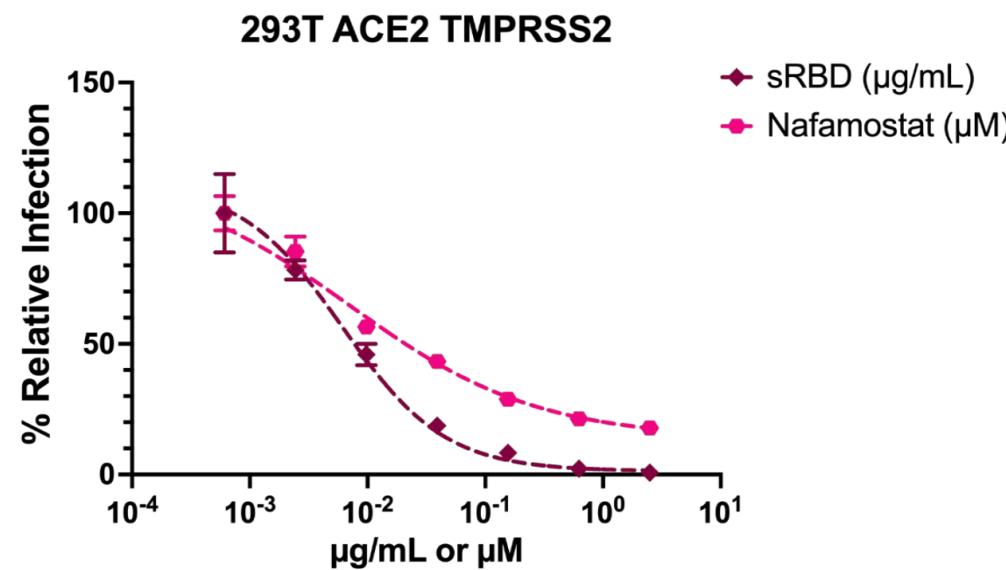
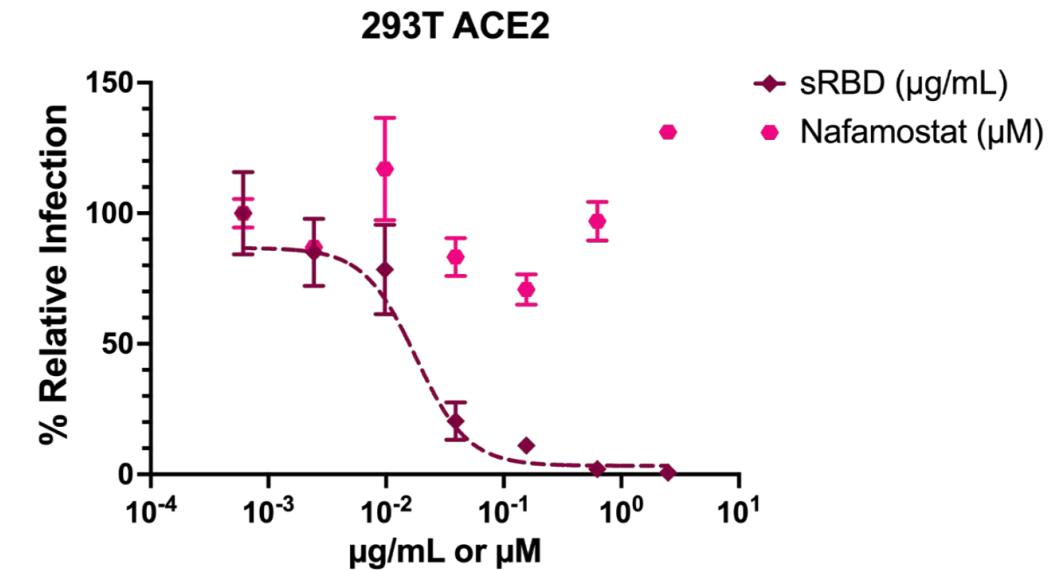
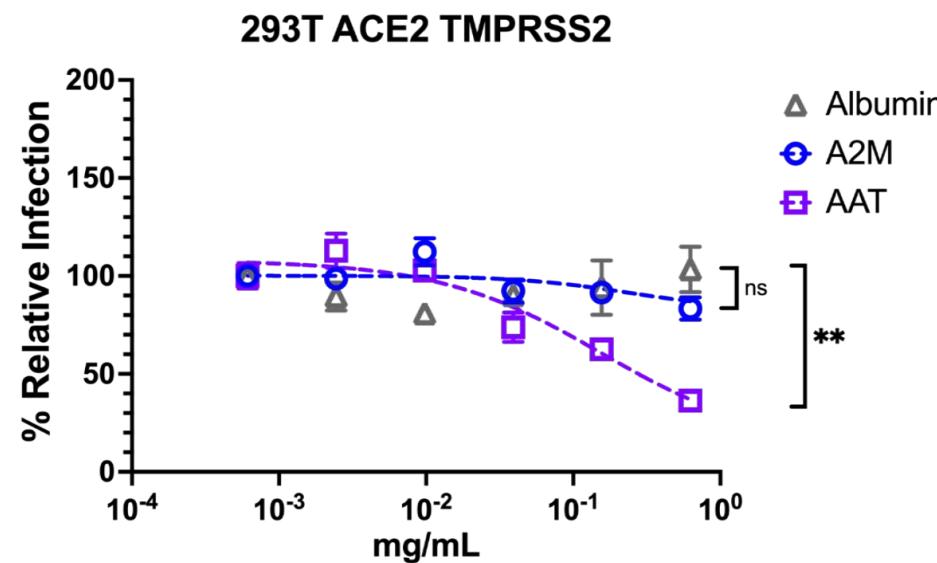
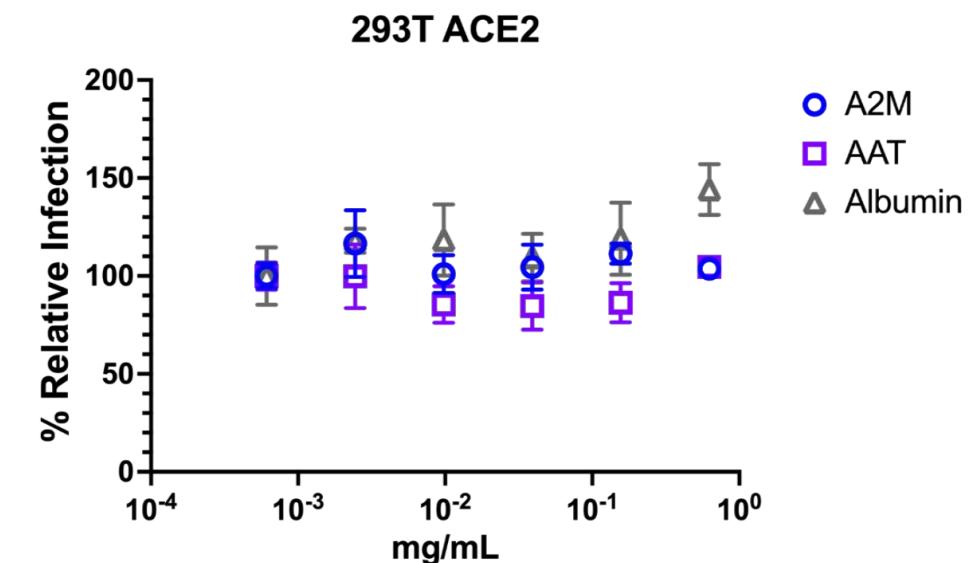
826 80. Case JB et al. Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-
827 Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. *Cell Host Microbe*
828 2020;28(3):475-485.e5.

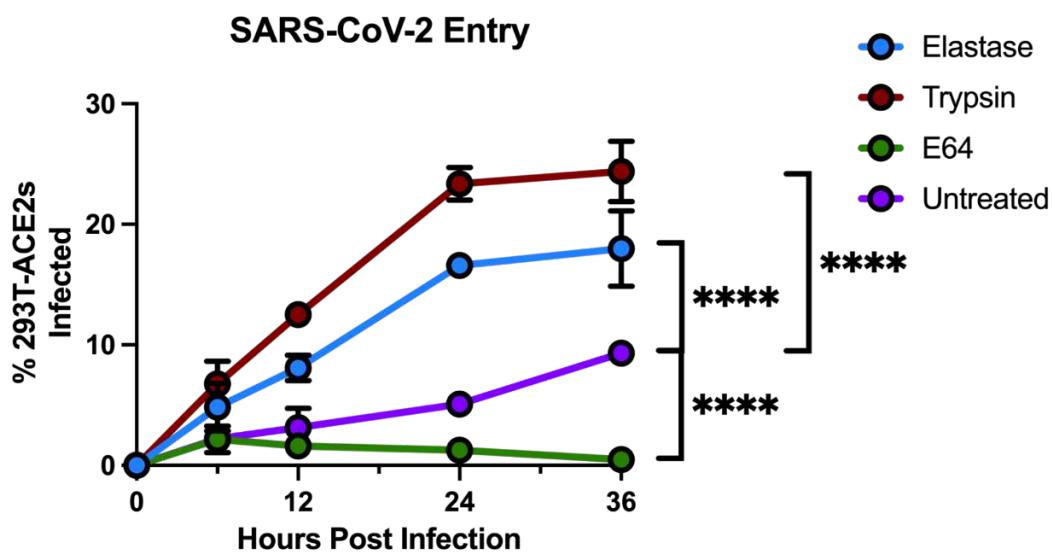
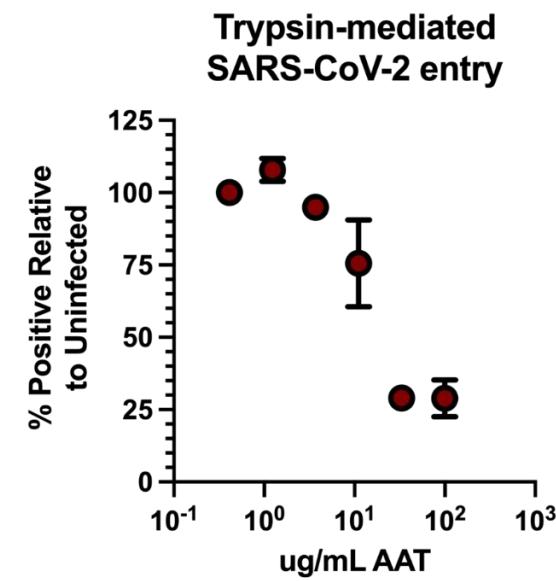
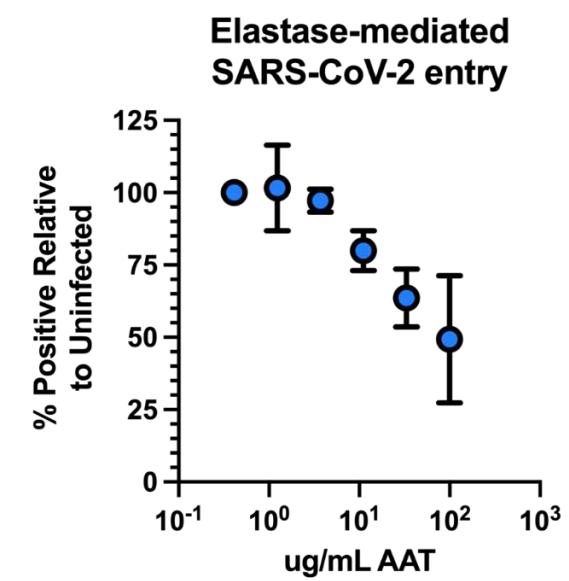
829 81. Beaty SM et al. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. *mSphere*
830 2017;2(2):e00376-16.

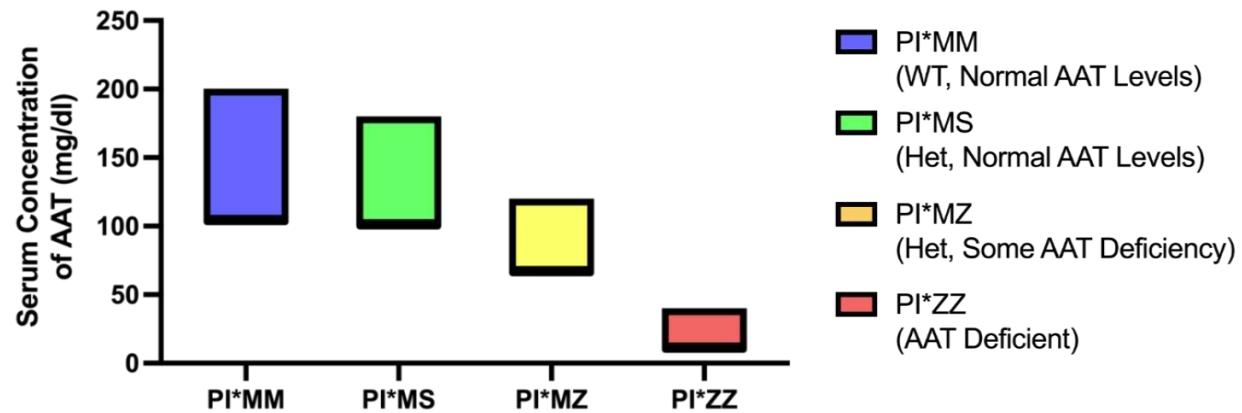
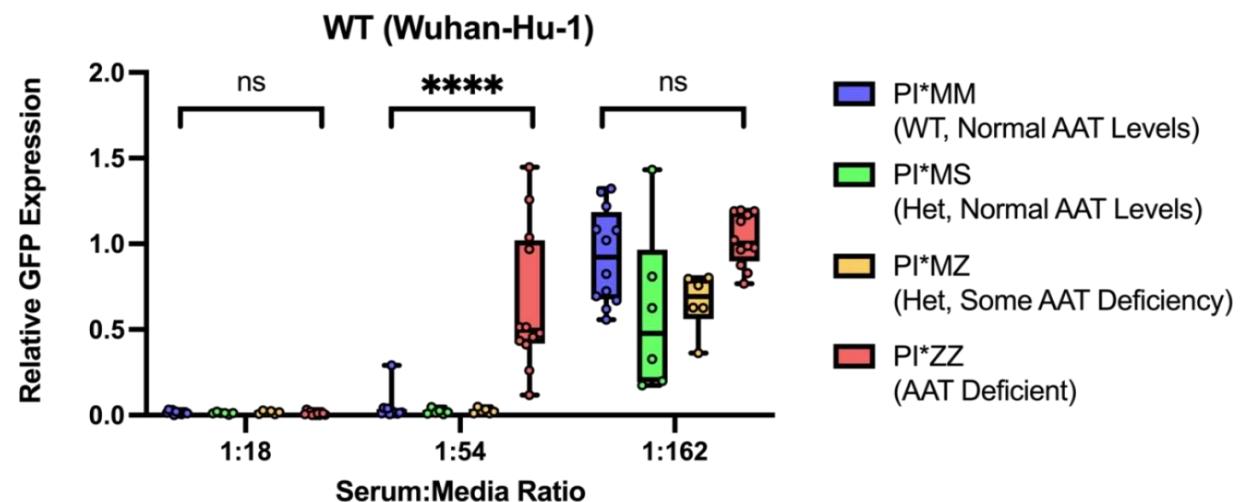
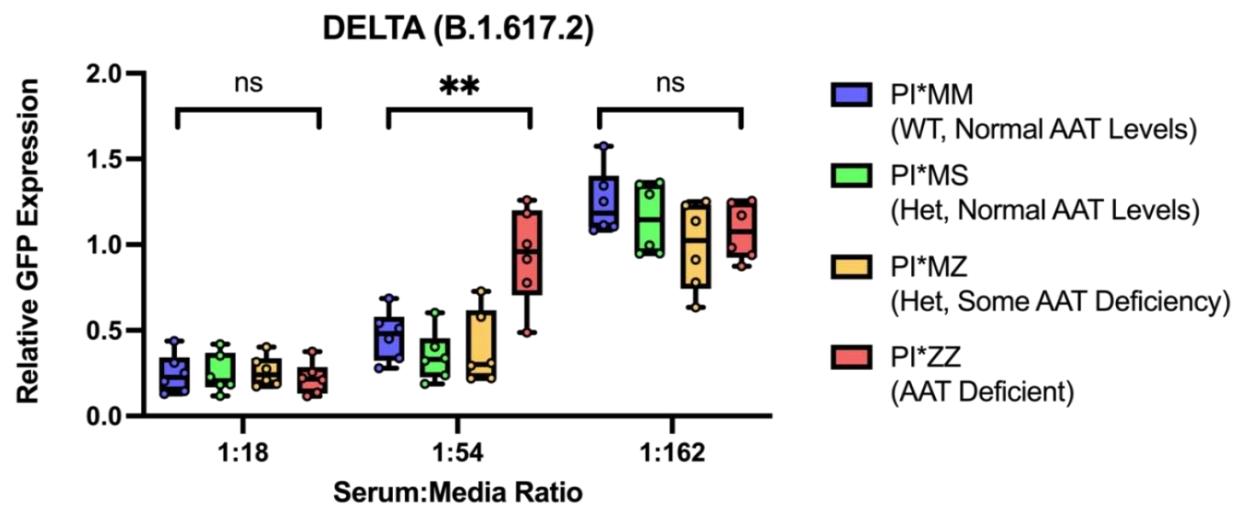
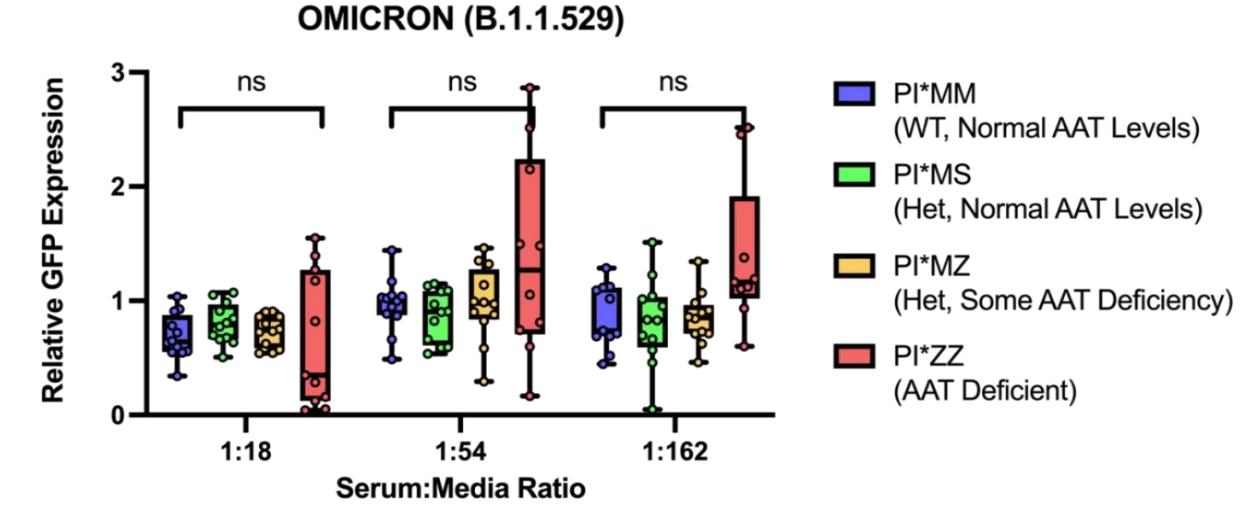





831 82. Amanat F et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. *Nat.*
832 *Med.* 2020;26(7):1033–1036.




833 83. Lopes AP et al. Portuguese consensus document for the management of alpha-1-antitrypsin
834 deficiency. *Pulmonology* 2018;24 Suppl 1:1–21.

835





Alpha-1-antitrypsin and its variant-dependent role in COVID-19 pathogenesis




Christian S Stevens^{1#}, Kasopefoluwa Y Oguntuyo^{1#}, Shreyas Kowdle¹, Luca Brambilla¹, Griffin Haas¹, Aditya Gowlikar¹, Mohammed NA Siddiquey², Robert M Schilke², Matthew D Woolard², Hongbo Zhang², Joshua A Acklin¹, Satoshi Ikegami¹, Chuan-Tien Huang¹, Jean K Lim¹, Robert W Cross³, Thomas W Geisbert³, Stanimir S Ivanov², Jeremy P Kamil², the Alpha-1 Foundation⁴, and Benhur Lee¹





A.**B.****C.****D.****E.**

A.**B.****C.**

○ A2M
□ AAT
△ Albumin

A.**B.****C.****D.**

A.**B.****C.**

A.**B.****C.****D.**